dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · que el...

283
Dynamics of woody vegetation patches in semiarid ecosystems in the southeast of Iberian Peninsula Beatriz Amat Martínez

Upload: others

Post on 21-Sep-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Dynamics of woody vegetation patches in semiarid ecosystems in the southeast of Iberian Peninsula

Beatriz Amat Martínez

Page 2: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Dynamics of woody vegetation patches in semiarid

ecosystems in the southeast of Iberian Peninsula

Memoria presentada por

Beatriz Amat Martínez

para optar al grado de Doctor con Mención Internacional por la

Universidad de Alicante

Director

Dr. Jordi Cortina Segarra

Alicante, 8 Mayo 2015

Page 3: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos
Page 4: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Jordi Cortina Segarra, Catedrático y Profesor Titular de la Universidad de Alicante

e Investigador del Instituto Multidisciplinar para el Estudio del Medio "Ramón

Margalef"

HACE CONSTAR:

Que el trabajo descrito en la presente memoria, titulado: “Dynamics of woody

vegetation patches in semiarid ecosystems in the southeast of Iberian

Peninsula” ha sido realizado bajo su dirección por Beatriz Amat Martínez en la

Universidad de Alicante, y reúne todos los requisitos necesarios para su

aprobación como Tesis Doctoral con Mención Internacional.

Alicante, 8 de Mayo de 2015

Dr. Jordi Cortina Segarra

DIRECTOR DE LA TESIS

Page 5: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos
Page 6: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

AGRADECIMIENTOS

Esta tesis ha sido realizada gracias al apoyo financiero de distintas

instituciones a las cuales quiero agradecer. Al Ministerio de Educación, por

haberme otorgado una beca FPU, al proyecto UNCROACH (CGL2011-30581-C02-

01) financiado por el Ministerio de Ciencia e Innovación), al proyecto RECUVES

(077/RN08/04.1) y ESTRES (063/SGTB/2007/7.1) financiados por el Ministerio de

Medio Ambiente, Areas Marinas y Rurales, al proyecto GRACCIE (CSD2007-00067),

financiado por el Ministerio de Ciencia e Innovación), a la Generalitat Valenciana

por financiación de personal (Programa G. Forteza; FPA/2009/029) y provision de

plantones para mis experimentos y al personal de VAERSA por su ayuda en las

plantaciones de uno de mis experimentos.

Finaliza mi tesis y una etapa de mi vida. Durante esta etapa no sólo mi

tesis, sino yo misma he evolucionado, y ninguna era la misma al inicio que ahora.

Durante la realización de esta tesis y muchas veces a causa de ella, han entrado

personas en mi vida que me han marcado de una u otra forma. Y a todas estas

personas quiero agradecerles la ayuda que me han dado en este tiempo.

En primer lugar quiero agradecer a mi director de tesis, Jordi, por toda su

confianza en mi. Gracias por haberme animado desde el primer momento a

adentrarme en el mundo de la ciencia, y por creer en mí y en que yo era capaz de

aportar algo en este mundillo. Muchas gracias por toda la paciencia que has

tenido conmigo, por atender a mis exigencias y prisas en muchos momentos, por

todas las ideas aportadas que sin ellas nunca me habría planteado el estudio de

los dichosos “parches” y que he terminado cogiéndoles el gustillo, por enseñarme

trabajar de forma científica y por siempre tener un momento para sentarnos a

hablar. Gracias también por seguir mostrándome tu apoyo, a pesar de los más y

los menos durante todo este tiempo.

A Karen que ha sido como mi “madrina” guiándome desde el principio

cuando más perdida me encontraba y hasta el final, dándome siempre algún

consejo que me ha sido muy útil. Muchas gracias por todos esos ratos

compartidos y por acercarte siempre para preguntarme cómo estaba y cómo iba

mi tesis. A mis otros compañeros de despacho, a Román quien observaba mis

inicios cuando él ya estaba finalizando, pero con quien he compartido ratos de

Page 7: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

despacho amenos. A Jorge, aunque ahora muy lejos, pero empezamos juntos este

doctorado y compartimos quebraderos de cabeza mientras intentábamos escribir

nuestro primer intento de paper o entender la estadística en R, e incluso te viniste

conmigo a buscar parches alla por mis inicios. A Mchich, siempre tan cordial y con

quien no solo compartimos despacho sino unos días por Marruecos conociendo

otro interesante trabajo de campo. A Jaume, que además de también compartir

Marruecos y hacer divertido el viaje, me ha hecho pasar muy buenos ratos

durante dos años con todos esos cafés aderezados con charlas sobre gemelas,

viajes, curriculum o, de nuevo, R, y por supuesto gracias por la ayuda en campo. Y

a todos los que han pasado por ese despacho de forma más breve, a Victor, mi

amigo fantasma, por compartir tanto conocimientos como alguna copita de vino.

A David y Cristian, ahora cada uno en un lugar distinto del planeta pero que

fueron unos compis de despacho muy majos. Gracias a Lucia por los ratos

compartidos buscándole anillos a los arbustos, por su hospitalidad en Coimbra las

veces que he estado por allí y por seguir haciéndome favores que le pido de vez

en cuando.

Gracias a toda esa gente que a pasado fugazmente por aquí y se ha

venido al campo conmigo o me ha echado una mano en el laboratorio, Lorena,

Nuria, Adela, Alejandro, Patricia, María, Elisa, y muy especialmente a María Joao,

quien fue la primera en acompañarme al campo a muestrear parches hiciera frío o

calor y en quien he encontrado una bonita amistad a pesar de la distancia que

ahora nos separa. Gracias también por acogerme en tu casa en Porto. Sabes que

te tengo mucho cariño.

Gracias también al sector CEAM con quien además de colaborar de vez en

cuando, he pasado buenos ratos. Especialmente a David y Alejandro, con quienes

empecé a colaborar en mis inicios, mucho antes de comenzar esta tesis y siempre

me han hecho sentir muy a gusto. A Jaime, Joan, Alberto, y los que pasaron por

aquí Marina, Vanesa, Thanos, Esteban y que han tenido una palabra amable o un

buen gesto hacia mí.

Muy especialmente gracias a mi compi Cristian, o ricotí como hemos

terminado bautizándolo, por esos cafés con cocacola casi a la hora de comer que

sólo él entendía y gustosamente me acompañaba, por ayudarme a hacer mapitas

y en la revisión de parte de esta tesis y por todos esos buenos ratos que hemos

Page 8: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

pasado más allá de la universidad, en playas, chat, Vallanca, un peñón en medio

del mar o en la cima de una montaña, y que estoy segura que continuarán. Por

supuesto también gracias a Nieves por esa transparencia y confianza que hace

que parezca que nos conocemos de toda la vida.

Gracias a los doctorandos, contratados, becarios y amantes del arte del

departamento de Ecología que alguna vez en todos estos años me dieron una

palabra de afecto, aunque a penas hayamos llegado a conocernos. A Rosario,

Samantha, Bea, Soraya, Estrella, Encarni, Lorena, Azucena, Anna, Luna, Diana,

Fran, Hassane y todos cuantos han pasado por estos despachos y me dedicaron

una sonrisa. También gracias a los botánicos con quienes he compartido campo,

risas y comidas, especialmente al principio de esta tesis.

Gracias a mis dos paisanas Alma y Dinorah, que aunque ya están de vuelta

al otro lado del charco, cuando estaban por aquí siempre fueron muy amables y

dulces conmigo, y siempre hasta la fecha se han preocupado por saber cómo

estaba. Ojalá nos veamos pronto!

Gracias a Germán López, Andreu Bonet, Susana Bautista y Juan Bellot por

atender más de una y dos veces mis peticiones por una cosa u otra y responderme

siempre atentamente y con una sonrisa. Gracias a Paco por introducirme en R y

atender mis constantes preguntas y visitas para descifrar los árboles de regresión.

Especialmente también gracias a Jose Zubcoff por mostrarse tan abierto para

ayudarme con la compleja revisión estadística de un paper que terminó dando

buen fruto.

Gracias también a los revisores externos de esta tesis y al tribunal por

dedicar parte de su tiempo a mi trabajo. Santi, gracias especialmente por

mostrarte tan colaborativo y dispuesto en estos años, y por los buenos ratos

compartidos en Escocia. Gracias a Emma y María del Servicio de Lengua y Cultura

por sus correcciones en las últimas versiones de esta tesis. A Fernando Maestre,

gracias por sus consejos sobre mi trabajo, y por haber comenzado a describir la

importancia de los parches, que de alguna manera fueron los trabajos

predecesores de esta tesis.

Gracias también a los técnicos de laboratorio, Fran y Jose, por ayudarme y

pacientemente aguantar mis muestras y experimentos raros durante estos años.

A los administrativos del departamento de Ecología e IMEM a quienes he

Page 9: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

mareado muchas veces con tickets, dietas y gestiones varias pero siempre me han

atendido amablemente a Fina (E.P.D.), Emilio, Juanfra, Gema, Rosa y Ramón.

Esta tesis afortunadamente me ha permitido viajar mucho y conocer el

mundo de los congresos científicos, las reuniones relámpago y las estancias en

países extranjeros que tanto ayudan a crecer. Y agradezco a las personas que han

participado en esas estancias, desde su organización aquí en Alicante hasta

aquellas personas que me he ido encontrando por allí, en Inglaterra y en Estados

Unidos. Gracias a Scott Collins, quien ha sido atento y ha escuchado con interés mi

trabajo desde el principio, y por supuesto, gracias por la revisión de esta tesis.

Gracias a mis amigas Silvia y Ana, que son como mis hermanas y que

aunque yo viviera en Alicante y ellas en Elda, se han venido muchas veces a

desayunar conmigo a la Universidad con tal de verme un ratillo. Gracias a Cristina,

por acogerme con los brazos abiertos más de una vez y por tus consejos como

amiga y como colega sobre mi tesis. Y tampoco podía olvidarme de agradecer a

quien debe ser mi amiga de más tiempo, que me ha demostrado que una amistad

verdadera se sostiene a pesar de tiempos y distancias, gracias Ana Elena, y mucha

suerte en tu tesis que acabas de comenzar. Gracias a todos los amigos que me han

acompañado durante esta etapa aunque no supieran de que iba mi tesis pero que

brindaban conmigo para sacarla adelante.

Gracias también a mi familia, mis padres, tíos, prima y sobrinos, que

aunque nunca han entendido muy bien qué hacía en la Universidad todos estos

años siempre se interesaban y me preguntaban por mi trabajo (y por cuándo

acabaría…). Gracias a mis hermanos por estar ahí, e incluso dejarse engañar

alguna vez para venirse a descargar data-loggers al campo conmigo. Gracias

también a mi primo Héctor que incluso me creó un programa para prepararme los

datos para analizar las redes.

Gracias a Jonás, por haber estado y seguir siempre ahí. Por haberme

acompañado durante un largo recorrido y gran parte de mi tesis. Gracias por

venirte a buscar parches, a analizar hojarasca, pasarme papers, reunirnos para

discutir sobre el futuro de nuestras tesis, aunque sea con cervezas delante, y

ayudarme siempre que te lo he pedido, que no ha sido poco. Y sobre todo por

enseñarme a mi y a todos que cuando las cosas se hacen bien, dos personas son

amigos a pesar de lo que sea.

Page 10: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Finalmente, gracias a Pablo. Por compartir mi amor por la naturaleza, por

hacérmelo todo tan fácil, por entender que muchas veces tocaba tesis aunque eso

implicara comer a deshoras casi siempre, por hablar mi mismo idioma, por

ayudarme en todo, por descubrirme tantas buenas experiencias y lugares pero

sobre todo por quererme como compañera de viaje. Gracias porque ese

entusiasmo tuyo me ha motivado para darle el último empujón a esta tesis,

además ayudándome con los diseños que tan bien se te dan. Y aunque no

sepamos a dónde nos llevará el viento ahora, gracias por aún así querer volar

conmigo.

Page 11: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos
Page 12: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

INDEX

INTRODUCTION .......................................................................................... 1

1. Arid and semiarid areas. The threat of desertification. ...................... 3

2. The semiarid Mediterranean: the case of Stipa tenacissima L.

steppes................................................................................................. 7

3. Use of patch-forming species in restoration. ................................... 13

4. Unknown aspects of the dynamics of woody vegetation patches in

semiarid ecosystems. ......................................................................... 14

5. Objectives and structure of the dissertation.................................... 15

CHAPTER 1 ............................................................................................... 17

Overview of woody vegetation patches in Stipa tenacissima steppes

CHAPTER 2 ............................................................................................... 61

Networks of plant-plant co-occurrence in semiarid steppes

CHAPTER 3 ............................................................................................. 121

Endogenous and exogenous drivers of network structure in woody

patches of semiarid steppes

CHAPTER 4 ............................................................................................. 137

Community attributes determine facilitation potential in a semiarid

steppe

CHAPTER 5 ............................................................................................. 165

Litter as a filter for the recruitment of keystone species in Stipa

tenacissima steppes

Page 13: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

GENERAL DISCUSSION ............................................................................ 197

1. What is a woody patch? ................................................................ 199

2. How is a patch community structured? ......................................... 200

3. Emergent properties and community drivers ................................ 204

4. Ecological role of woody patches .................................................. 207

5. Restrospective view of woody patches. Insights on the

response to climate change ........................................................ 210

6. Woody patches and steppe management ..................................... 212

CONCLUSIONS ........................................................................................ 215

REFERENCES ........................................................................................... 217

RESUMEN ............................................................................................... 259

Page 14: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

INTRODUCTION

Page 15: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos
Page 16: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Dynamics of woody vegetation patches in semiarid ecosystems

3

1. Arid and semiarid areas. The threat of desertification.

Drylands cover more than 40% of the emerged land (Fig. 1; MEA, 2005).

They include hyper-arid, arid, semiarid and sub-humid areas, according to the

aridity index (AI), which is the ratio between mean annual precipitation and mean

annual evapotranspiration (UNESCO, 1997). Generally speaking, drylands are

areas where water scarcity limits primary productivity for crops and for the

maintenance of a continuous plant cover (Whitford, 2002). Despite their low

productivity, drylands have been inhabited for millennia, and currently they are

estimated to hold 38% of the world population. In terms of surface area affected

and their impact, grazing for domestic livestock production and, to a lesser extent,

agriculture, are the main land uses in drylands (MEA, 2005).

Figure 1: Worldwide distribution of hyper-arid, arid, semiarid and dry subhumid areas

according to FAO aridity index (AI). Source: Millennium Ecosystem Assessment, 2005.

Page 17: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Introduction

4

Ecosystems provide goods and services to humans through different

processes such as primary production, production and decomposition of organic

matter, nutrient cycling, redistribution and storage of water and soil erosion

(Whitford, 2002). Goods offered by arid and semiarid ecosystems include food,

fiber, fodder, fuel, medicines, building materials, biochemical compounds and

water. They also provide a variety of services such as water regulation and

purification, pollination and seed dispersal, local and global climate regulation

(through vegetation and carbon sequestration, respectively), residue degradation,

soil development, control of pathogens and parasites, places for recreation and

tourism, signs of cultural identity, and spiritual and aesthetic services (Whitford,

2002; MEA, 2005).

It is estimated that between 10 and 20% of dryland areas are affected by

desertification (MEA, 2005). This complex process is defined as "land degradation

in arid, semiarid and dry sub-humid areas resulting from various factors, including

climatic variations and human activities" (UNCCD, 1994). Climatic factors include

drought and the reduction of available fresh water due to global warming. Human

factors are both direct, such as activities related to land use and the use of

services, and indirect, such as population pressure, political and socio-economic

factors and changes in international market regulations.

Desertification results in the loss of biological and economic productivity,

and the reduction of the provision of goods and services. It represents a greater

threat to human wellbeing than degradation in other parts of the world, because

of the shortage of water, the intense demand for services, and intrinsic

vulnerability to climate change. For these reasons, measures to combat

desertification and recover land potential to provide goods and services and

sustain biodiversity are crucial (Reynolds, 2001; MEA, 2005; Rey-Benayas et al.,

2009). Among them, the restoration of degraded areas is increasingly demanded.

1.1. Plant cover: a mosaic of vegetation patches

Vegetation cover in arid and semiarid steppes and shrublands is low and

discontinuous. Landscapes are often organized as a two-phase mosaic of

vegetation patches and bare ground, at various spatial scales (Valentin et al.,

1999). This spatial arrangement may be generated by geological factors, together

with complex interactions between soil, climate, plants and animals (Whitford,

Page 18: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Dynamics of woody vegetation patches in semiarid ecosystems

5

2002). Still, the origin and consequences of the spatial patterns of vegetation in

drylands is still a matter of discussion (Gilad et al, 2004; Pueyo and Alados, 2007;

Thompson et al., 2008; Konings et al., 2011). Patch size and shape may reflect

patch dynamics. For example, vegetation commonly forms bands or spots,

depending on whether the driver of patch dynamics is water or wind, respectively

(Aguiar and Sala, 1999; Valentin et al., 1999). Vegetation patterns have been used

as indicators of ecosystem functioning in arid and semiarid areas (Maestre and

Cortina, 2004b; Kefi et al, 2007).

Vegetation modulates patch formation, as it modifies environmental

conditions and resource availability (Jones et al., 1994). This modification

produces distinct microhabitats (Gilad et al., 2004, 2007), promoting spatial

heterogeneity and the formation of "islands of fertility" around vegetation

patches (Schlesinger and Pilmanis, 1998; Reynolds et al, 1999). These patches

concentrate resources, and together with physical obstacles, act as sinks of

resources as water, sediments, nutrients, litter and seeds, generated in bare or

source areas (Tongway and Ludwig, 1994; Aguiar and Sala, 1999; Cortina et al,

2010).

1.2. Vegetation dynamics: Dependence on water and species interactions

Vegetation dynamics greatly depend on the availability of soil resources

as water and nutrients. In arid and semiarid systems, water is scarcely available,

and its supply is intermittent and unpredictable. Thus, plant population dynamics

depend on the response of individual plants to pulses of water ("auto-ecological

hypothesis", Noy Meir, 1973; Collins et al., 2014). Precipitation events are isolated

in time, and their impact is ephemeral (Timmermann et al, 1999; Abanades et al,

2007). Aridity promotes the presence of fast-growing species at the expense of

slow-growing species, such as shrubs, as only the former can take advantage of

sporadic rainfall events (Armesto et al., 1993; Cabido et al., 1993; Rey and

Alcántara, 2000; Kutiel et al., 2000; Verdú and García-Fayos, 2002; Bochet et al,

2007). However, a recent study has shown that herbaceous systems are less

resistant to extreme periods (Ruppert et al., 2014). Low efficiency of shrub

recruitment may be offset by longevity (Bowers et al., 1995). Globally, climate

pulses at various temporal scales, as El Niño Southern Oscillation (ENSO),

Page 19: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Introduction

6

influence long-term vegetation dynamics in semiarid ecosystems, opening

windows for recruitment of tree and shrub species (Holmgren et al., 2001).

Plant response to environmental conditions is strongly affected by species

interactions (Jones et al, 1997; Callaway and Walker, 1997). It has been suggested

that improved microhabitat conditions by one species may decrease the level of

stress for other species (facilitation) in stressful environments. Conversely, when

stress is low, competition prevails over facilitation ("stress-gradient hypothesis";

Bertness and Callaway, 1994). Numerous exceptions to this theory led to further

refinements (Maestre et al, 2009a). Fauna is also an important factor affecting

vegetation dynamics in arid and semiarid ecosystems. Small mammals, birds and

arthropods play an important role in seed dispersal and predation, and physical

modification of the environment (Debussche et al., 1982; Verdú and Gracía-Fayos,

1996; Gutiérrez et al., 1997; Barberá et al., 2006).

As a result of biotic and abiotic interactions in arid and semiarid

ecosystems, populations of woody species are mainly dominated by adults

forming isolated patches of relatively slow growth. Their recruitment is variable

and largely dependent on environmental conditions. Thus, factors contributing to

the creation of spatial heterogeneity and favorable microenvironments for plant

establishment and growth in these ecosystems, such as availability of water and

nutrients, concentration of propagules and soil availability, would positively

influence recruitment of woody species.

1.3. Changes in plant cover: shrub encroachment

Woody species density and cover have increased in semiarid areas

worldwide over the last 150 years (Van Auken, 2000; Roques et al, 2001; Maestre

et al, 2009b; Tighe et al, 2009). Invasion of grasslands by woody species was first

described in southwest USA, and later in disparate areas such as Alaska, the

Chihuahuan desert, southern Africa, South America, New Zealand and Australia

(Van Auken, 2000; Briggs et al., 2005). In Spain, it has been reported in dehesas

(Ramirez and Díaz, 2008), abandoned pastureland (Montané et al., 2007; De Soto

et al., 2010), and rangelands (Alados et al., 2004; Maestre et al., 2009b). This

phenomenon, known as ‘shrub encroachment’ and ‘woody encroachment’, has

important implications for ecosystem functioning and the provision of goods and

services (Jackson et al, 2002; Huxman et al., 2005). There is currently no

Page 20: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Dynamics of woody vegetation patches in semiarid ecosystems

7

agreement on the causes of such large-scale process. In US grasslands, it may

result from a combination of warming, high levels of herbivory and concomitant

fire suppression (Van Auken, 2000; Tews et al., 2006; Brudwig, 2010). However,

other factors such as increased atmospheric CO2 concentration, N deposition and

cattle trampling may have contributed to the observed patterns (Van Auken,

2000; Briggs et al., 2005). Similarly, there is no consensus on the consequences of

this phenomenon. An increase in cover of woody species could lead to an increase

in evapotranspiration (Bellot et al, 2001; Huxman et al, 2005; Jackson et al, 2005).

In addition, shrub encroachment may reduce forage production and nutritive

value (Zarovali et al., 2007), and decrease community diversity and stability (Baez

and Collins, 2008; Brudvig, 2010). Conversely, an increase in woody species cover

has been associated with an increase in the richness of vascular plants, birds,

fungi and microorganisms (López and Moro, 1997; Maestre et al., 2009b), as well

as higher soil organic C and N content (Jackson et al., 2002; Asner and Martin,

2004). The previously described arguments have been used to both remove and

re-introduce woody species in drylands worldwide (Cortina et al, 2004; Brudvig,

2010).

Despite the importance of shrub encroachment, our understanding of this

process in Mediterranean areas is still scarce. Current evidence suggests that the

presence of woody species in Mediterranean environments has a positive effect

on community composition and ecosystem function (Maestre and Cortina, 2005;

Maestre et al., 2009b). However, the composition and dynamics of woody

patches, and their impact on the recruitment of key species and ecosystem

services, are largely unknown.

2. The semiarid Mediterranean: the case of Stipa tenacissima L. steppes.

2.1. Extension, composition and land use history

The semiarid Mediterranean is covered by perennial grasslands, low

shrublands dominated by Fabaceae, Cistaceae and Labiaceae, tall shrublands

dominated by resprouting species of the genera Quercus, Juniperus and Pistacia,

and open forests of Pinus spp, Quercus spp, and Olea europaea L. (Quézel and

Médail, 2003). In the western Mediterranean, semiarid areas are often covered by

Page 21: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Introduction

8

open steppes of Stipa tenacissima L. (‘alfa grass’, Le Houérou, 1986). These

steppes are abundant in North Africa, Spain and Italy, where they occupy 70,000

km2 (Fernández-Palazón, 1974). Current S. tenacissima steppes represent

degradative stages of succession from open forest (wooded steppes) of Pinus

halepensis Mill, Tetraclinis articulata (Vahl) Masters and Juniperus phoenicea L.

(Le Houérou, 1986, 2001). In the Iberian Peninsula, steppes have been associated

to degradative stages of oak (Quercus ilex L.) and pine (P. halepensis) woodlands,

and thickets of kermes oak (Quercus coccifera L.) and sclerophyllous scrubs (Costa,

1973, 1999; Rivas-Martínez, 1987). Human pressure, together with periodic

droughts and fires, are the main mechanisms responsible for degradation

trajectories (Puigdefábregas and Mendizábal, 1998).

In Spain, S. tenacissima steppes are located in the southeast of the Iberian

Peninsula, where they cover 6,500 km2 (Fernández-Palazón, 1974). These steppes

have been affected by human activity for centuries, if not millennia (Barber et al.,

1997). Until the mid 20th century, most land that was suitable for agriculture had

been cultivated sometime in the history of the Mediterranean basin. As a result,

shrub populations were probably reduced during periods of social integration and

increasing demand for natural resources to few individuals that thrived on the

margins of crop terraces and low-productivity areas, as rock outcrops. Removal

and burning of woody species were common practices in these steppes until the

mid-20th century (Servicio del Esparto, 1953; Fernández-Palazón, 1974). Later, as

dryland crops were gradually abandoned, shrub recover was heterogeneous. On

abandoned orchards, recruitment of dominant species has been commonly high

and nucleated (Verdú and Garcia-Fayos, 1996; Bonet, 2004; Pausas et al., 2006). In

contrast, spontaneous recruitment in abandoned S. tenacissima crops has been

much slower (Barberá et al., 2006). For decades, the Forest Administration has

fostered this process by planting trees and shrubs. For example, plantations

carried out under the Spanish National Afforestation Plan (Plan Nacional de

Repoblación Forestal, 1939) reached 3,820,000 Ha in the late 80’s (Peñuelas and

Ocaña, 1996). Pinus halepensis was the most common species used in the

semiarid southeast of the Iberian Peninsula (Pausas et al., 2004). Plantations in

semiarid areas frequently failed, and repeated seeding and planting were needed

to establish new populations (Cortina et al., 2004, 2006).

Page 22: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Dynamics of woody vegetation patches in semiarid ecosystems

9

Currently, S. tenacissima steppes are formed by a matrix of bare soil and

S. tenacissima tussocks, interspersed by woody patches of resprouting shrubs,

smaller shrub species mainly of the Labiaceae and Cistaceae family, and perennial

grasses. Woody patches are mainly generated by Rhamnus lycioides L., Pistacia

lentiscus L., Quercus coccifera, Juniperus oxycedrus and Ephedra fragilis L. Desf. In

some cases, these steppes appear as low shrublands within open Pinus halepensis

forests (Fig. 2).

Figure 2. Stipa tenacissima steppe in southwest of Iberian Peninsula. Dark green patches

are large resprouting shrubs and Pinus halepensis adults.

2.2. Drivers of shrub colonization

As in other arid and semiarid areas, low water availability is the main

factor limiting ecosystem recovery and recruitment of woody species in S.

tenacissima grasslands (Albaladejo et al., 1998; Gómez-Aparicio et al., 2004;

Barberá et al., 2006; Mendoza et al., 2009). In these areas, water is frequently

available only for a short period (Bochet et al., 2007), thus, it is not surprising that

these habitats favor plant species that germinate fast and do not require high

Page 23: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Introduction

10

levels of soil moisture, and species that rely on sporadic recruitment events

(Holmgren et al., 2001; Schütz et al., 2002; Bochet et al., 2007).

In addition to climate, other factors control the establishment of

resprouting shrubs in S. tenacissima steppes. Most of these species are dispersed

by birds, thus nucleation occurs under the canopy of fleshy-fruited species and

other physical structures as they act as resting perches for birds (Rey et al., 2002;

Verdú and García-Fayos, 2003). Mammals commonly disperse fewer seeds than

birds in Mediterranean rangelands (Herrera, 1995), but they are responsible for

part of the long-distance dispersal (Jordano et al. 2007). Mammalian contribution

to the regeneration of Mediterranean woody plant species through endozoochory

has been highlighted in disturbed and undisturbed areas (Herrera, 1989; Herrera,

1995; Matias et al., 2008; Rosalino and Santos-Reis, 2009). Herbivore mammalians

like rabbits (Oryctolagus cuniculus) can be important dispersers for fleshy-fruited

shrub species in these environments (Muñoz Reinoso, 1993; Cerván and Pardo,

1997; Dellafiore et al., 2006; Delibes-Mateos et al., 2008). Mammals may disperse

seeds from preferred habitats to less favorable areas as degraded shrublands and

plantations (Matias et al., 2008), and may be significant vectors for the

colonization of degraded S. tenacissima steppes by fleshy-fruited woody species.

2.3. Importance of woody patches in Stipa tenacissima steppes

2.3.1. Community assemblage

‘Woody patches’, as they will be referred to throughout this dissertation,

are groups of large shrub species whose physiognomy is different from the

adjacent matrix in Stipa tenacissima steppes. They may include up to six different

resprouting species (hereafter ‘patch-forming species’), and are commonly

accompanied by a large set of herbaceous species and small shrubs.

Community assembly in semiarid areas is mainly driven by facilitation

(Pugnaire et al., 1996; Maestre et al., 2001; Tirado and Pugnaire, 2005; Valiente-

Banuet and Verdú, 2007). However, the facilitative capacity is species-dependent

(El-Bana et al., 2007; Maestre et al., 2009a), and the effect of patch-forming

species on recruitment may be a function of patch composition and structure.

Differences in litter accumulation, production of allelochemicals, and distribution

and density of canopy and roots may affect the outcome of plant-plant

Page 24: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Dynamics of woody vegetation patches in semiarid ecosystems

11

interactions within and between patches of large woody species (Beckage et al.,

2000; Alrababah et al., 2009; Koorem and Moora, 2010; Rodríguez-Calcerrada,

2011). In addition, plant-plant interactions are modulated by resource availability

and abiotic stress. It has been suggested that the frequency and intensity of

facilitation may increase along a gradient of stress (Bertness and Callaway, 1994),

although this theory is not general and has many specifications (Maestre et al.,

2009a). These observations are consistent with a completely different view of

woody patches as relicts of a past denser shrubland. We believe that both forces

(colonization favored by positive interactions and historical fragmentation) have

shaped S. tenacissima steppes for the last decades.

Patches of woody vegetation can be considered as networks of

interactions between species. Patch-forming species may appear in different

combinations varying geographically, as their composition depends on previous

land-use, environmental conditions and patch structure. The relative importance

of these factors in determining patch composition is unknown. Similarly, the

presence and abundance of accompanying species (smaller species that are

attached to the patches but do not form patches themselves) may reflect

differences in environmental conditions and land-use history, but they may also

result from interactions with patch-forming species and other accompanying

species, resulting in different patterns of biodiversity. The analysis of species co-

occurrence patterns provides useful information on medium to long-term

interspecific interactions. Null-model randomization tests have proven very

valuable to analyze these patterns and provide new insights on community

assembly (Gotelli, 2000). Similarly, the analysis of ecological networks has

widened our knowledge on species interactions, and community properties and

dynamics (Bascompte et al., 2003; Blüthgen et al., 2006; Bastolla et al., 2009), and

may be very helpful in understanding the drivers of patch formation and patch

impact on community composition.

2.3.2. Biodiversity

Despite the relatively low cover of patch-forming species, they play a key

role in the composition, functioning and stability of Mediterranean semiarid

steppes (Maestre and Cortina, 2004b; Cortina and Maestre, 2005; Maestre et al.,

2009b). For example, the surface area covered by shrubs has been positively

Page 25: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Introduction

12

related to the richness and diversity of perennial vascular plants (Maestre, 2004;

Maestre and Cortina, 2005), although this relationship may be influenced by shrub

age (Pugnaire and Lázaro, 2000). The presence of shrubs also affects composition

of the biological soil crust and the relative abundance of fungi, bacteria and

actinomycetes (Maestre et al., 2009b). The richness of birds and other animals

such as small invertebrates has been positively related to the abundance and

structure of shrub species (López and Moro, 1997; García-Pausas et al., 2004;

Doblas-Miranda et al., 2009).

2.3.3. Soil properties

Woody patches have been associated with higher values of soil organic C,

total N and available N, water infiltration, and improved nutrient cycling and

physical soil properties (Maestre and Cortina, 2004b; Maestre et al., 2009b). For

example, soil beneath patches may show higher percentage of stable aggregates

and greater ability to enhance the development of mycorrhizae than soil in bare

areas or soil under grass cover (Caravaca et al., 2003). Furthermore, the density of

soil meso- and micro-fauna may be higher under shrub patches, which contributes

to increase soil porosity and aeration (García-Pausas et al., 2004). As observed in

studies in arid and semiarid ecosystems (Geddes and Dunkerley, 1999; Schlesinger

et al., 1999; Ludwig et al., 2005), water infiltration rate can be high under woody

patches because of the protection against raindrop impact conferred by shrub

canopies, and because of the high content of organic matter and increased

density of soil fauna, which together contribute to improve soil structure.

2.3.4. Ecosystem services

Resprouting shrubs contribute to the provision of ecosystem goods and

services through their impact on biogeochemical processes, such as primary

production, C sequestration, organic matter decomposition, nutrient cycling,

redistribution and storage of water, and soil erosion. Thus, changes in the cover

and composition of patch-forming species may affect the provision of ecosystem

services provided by S. tenacissima steppes. Although the scientific community

has come to a consensus on many aspects of the composition-function

relationship, including potential effects on the provision of ecosystem services

(e.g., Balvanera et al., 2001), ecosystem processes can respond to changes in

composition or functional diversity in several ways. This response may vary for

Page 26: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Dynamics of woody vegetation patches in semiarid ecosystems

13

different processes, different ecosystems, different degradation-integration states

of the ecosystems, and even different compartments within the ecosystem

(Cortina et al., 2006; Hughes et al., 2007), resulting in divergences in the provision

of ecosystem services. For example, reforestation and revegetation have been

traditionally promoted on the assumption that forests and woodlands maximize

water availability and contribute to flood control. However, recent research

suggests that tree canopies can indeed reduce water yield (Jackson et al., 2005;

Van Dijk and Keenan, 2007), and may be unable to control flooding (O’Connell et

al., 2005; FAO, 2005). Derak and Cortina (2014) recently showed that the level of

services provided by shrublands in southeastern Spain was lower than the level of

services provided by Pinus halepensis plantations, S. tenacissima steppes and

grasslands, despite the relatively high values of soil organic matter, forage

productivity and number of rare and endangered species observed in the former.

3. Use of patch-forming species in restoration

In restoration programs in semiarid areas, the use of shrub species has

been recently encouraged because of their role as keystone species, and

evidences of low spontaneous recruitment (Fig. 3). The main objective of these

interventions is to increase the cover of woody species in degraded S. tenacissima

steppes (Cortina et al., 2004). The success of seeding plantations in these

environments is often low and extra inputs in eco-technology are frequently

needed for the establishment of new populations (Cortina et al., 2004, 2006).

Traditional and innovative technologies have been employed to enhance shrub

establishment in semiarid environments, including the optimization of seedling

fertilization regimes in the nursery, the improvement of water harvesting

techniques and soil preparation, and the use of species interactions to the benefit

of introduced plants (Peñuelas and Ocaña, 1996; Maestre et al., 2001;

Valdecantos, 2001; Maestre et al., 2002; Navarro et al., 2006).

Page 27: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Introduction

14

Figure 3. Use of resprouting shrubs in semiarid areas. Apical view of planted Quercus

coccifera (left) and Pistacia lentiscus (right) seedlings growing inside treeshelters.

4. Unknown aspects of the dynamics of woody vegetation patches in semiarid

ecosystems

Despite the importance of resprouting shrubs in semiarid ecosystems, and

their increasing use in restoration programs, there is little information on the

structure and dynamics of their populations in the Iberian Peninsula. Few studies

have evaluated the distribution and composition of shrub patches in semiarid

ecosystems in the southeastern Iberian Peninsula. Similarly, patterns of species

assemblage and emergent properties of patches when they are considered as

separate communities, remain unknown. In addition, the attributes of these

patches in relation to their ability to modify their surroundings and to modulate

species assemblages, and how these attributes affect the interaction between

species have not been evaluated either. For example, no studies have evaluated

whether the low recruitment of some species is related to the presence of woody

patches or, on the contrary, if woody patches promote the establishment of new

individuals. In this context, organic horizons accumulated underneath shrubs

could play a major role in the establishment of new individuals, especially in

water-limited environments such as semiarid steppes, but there is little

information on the accumulation of these horizons and their impact on

recruitment.

Page 28: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Dynamics of woody vegetation patches in semiarid ecosystems

15

5. Objectives and structure of the dissertation

In this PhD thesis entitled Dynamics of woody vegetation patches in

semiarid ecosystems in the southeast of Iberian Peninsula I address different

aspects of the composition and dynamics of woody patches in Stipa tenacissima

steppes of southeastern Spain. First, I describe the main characteristics of woody

patches, and the methodology used throughout the ensuing chapters. Second, I

use a network approach to study patch composition and explore their properties.

Third, I explore the biotic and abiotic drivers of network structure, and discuss

their implication on steppe management. Fourth, I evaluate the ability of woody

patches to facilitate the establishment of new individuals, and identify intrinsic

and extrinsic factors modulating facilitation potential. And fifth, I assess the effect

of litter of common woody species on the germination and early rooting of seeds

of two key species in S. tenacissima steppes. Finally, I discuss the previous findings

in the context of steppe ecology and management. These steps are structured

into six chapters*:

Chapter 1: Overview of woody vegetation patches in Stipa tenacissima steppes.

Chapter 2: Networks of plant-plant co-occurrence in semiarid steppes.

Chapter 3: Endogenous and exogenous drivers of network structure in woody

patches of semiarid steppes.

Chapter 4: Community attributes determine facilitation potential in a semiarid

steppe.

Chapter 5: Litter as a filter for the recruitment of keystone species in Stipa

tenacissima steppes.

Chapter 6: General discussion and conclusions.

* Chapters 3 to 5 are, respectively, enlarged versions of the following articles:

Endogenous and exogenous drivers of network structure in woody patches of a

semiarid steppe (Submitted)

Community attributes determine facilitation potential in a semiarid steppe

(Perspectives in Plant Ecology, Evolution and Systematics).

Litter effects on seedling establishment of key species in Stipa tenacissima

steppes (In review).

Page 29: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos
Page 30: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

CHAPTER 1

Overview of woody vegetation patches in Stipa tenacissima steppes

Page 31: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

a

Page 32: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Overview of woody vegetation patches in Stipa tenacissima steppes

19

INTRODUCTION

Stipa tenacissima steppes cover 70,000 km2 in the western Mediterranean

basin. They frequently form a mosaic of woody vegetation patches immersed in a

matrix of S. tenacissima tussocks, small sub-shrubs and bare soil. Some studies

suggest that large woody species enhance vascular plant richness and affect the

composition and functioning of soil microflora in these steppes (Maestre and

Cortina, 2004b, 2005; Doblas-Miranda et al., 2009; Maestre et al., 2009a), acting

as keystone species (sensu Hulbert, 1997). Thus, patch-forming species have been

frequently used to restore degraded S. tenacissima steppes (Cortina et el., 2004).

However, information on the composition and dynamics of these species and

their impact on community composition, ecosystem processes and the provision

of goods and services is scarce.

In the southeast of the Iberian Peninsula, S. tenacissima steppes cover

6,500 km2 in semiarid areas. They are largely the remnants of fiber crops that

were tended and harvested until the second half of the 20th century. These

steppes frequently cover the slopes of small catchments, where terraced old

crops occupy the bottom and the ridges are often covered by rock outcrops (Fig.

1). As for S. tenacissima, most crops were abandoned during the second half of

the 20th century. Woody patches are present throughout the area, and they are

frequently aggregated around old crop margins (stone walls) and rock outcrops.

This is probably the result of previous land use, when rainfed fruit crops in the

terraces and fiber crops in the slopes were the main priority, and shrubs and trees

were removed (Servicio del Esparto, 1953; Fernández-Palazón, 1974). Only areas

of low accessibility and unsuitable for cropping were left aside and acted as local

biodiversity refugia.

Page 33: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 1

20

Figure 1. Aerial view of a semiarid catchment in Campello (Alicante, southeastern Spain). Slopes are dominated by Stipa tenacissima, and valley bottoms are occupied by abandoned rainfed crops. Woody vegetation patches (small dark green spots) are dispersed on the slopes, and agreggated in ridges (white line) and abandoned terraces (red area).

Woody patches are composed by large resprouting shrubs, and they can

be easily distinguished from the matrix (Fig. 2). They include one to a few shrub

species accompanied by a larger set of herbaceous species and smaller shrubs. In

this study, I define these two groups of plant species as “dominant” and

“accompanying” species, respectively (Fig. 3). Dominant species are large

resprouting shrubs that form patches themselves. Six dominant species are found

Page 34: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Overview of woody vegetation patches in Stipa tenacissima steppes

21

in the area: Pistacia lentiscus L., Quercus coccifera L., Rhamnus lycioides L.,

Juniperus oxycedrus L., Ephedra fragilis Desf. and Osyris lanceolata Hochst. &

Steud.

Figure 2. Woody vegetation patches in a semiarid catchment (Orihuela, Alicante,

southeastern Spain).

Figure 3. A characteristic woody patch in a semiarid Stipa tenacissima steppe formed by

individuals of Quercus coccifera and Rhamnus lycioides. Some accompanying species are

also identifiable in the picture: Anthyllis cytisoides, Brachypodium retusum, Fumana

ericoides.

Page 35: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 1

22

Despite the importance of woody patches for ecosystem functioning and

biodiversity (as previously described in the Introduction section of the present

dissertation), woody patches in S. tenacissima steppes have not been

characterized. To know species composition and their distribution within the

patch and along the steppes give valuable information for the study of the role of

this vegetation in the ecosystem and it represents a starting point for

management and conservation studies. In this chapter, I describe the physical

structure and the biotic composition of 450 woody patches distributed in 15

semiarid catchments in southeastern Spain. I also describe biotic and abiotic

attributes of these catchments.

METHODOLOGY

I selected 15 semiarid catchments along a 60 km-transect in a semiarid

area in southern Alicante, Spain (Fig. 4, Table 1). As described above, catchment

slopes are covered by Stipa tenacissima steppes, and they frequently show

abandoned agricultural terraces at their bottom. Site characterization was carried

out at catchment level, at unit level (see description below), and in the terraces to

encompass the whole spectrum of spatial heterogeneity.

1

12

1411

152

3

45

8

7

6

10

9

13

Figure 4. Distribution of the 15 catchments studied in Alicante province, southeast Spain.

Numbers correspond to those shown in Table 1.

Page 36: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Overview of woody vegetation patches in Stipa tenacissima steppes

23

Table 1. Location and main properties of the 15 study catchments dominated by Stipa tenacissima.

Code Catchment

name Tempe-

rature (ºC) Precipitation

(mm)

Total surface

area (m2)

Old terraces surface

area (m2)

No. units

No. of woody patche

s 1 Aigües 16 417 26484 9130 2 56 2 Aspe 3 18 282 29522 2166 2 310

3 Ballestera 1

18 343 23624 2841 2 350

4 Ballestera 2

18 343 27688 3641 1 363

5 Campello 18 357 75858 3150 1 271

6 Colmenar 2

18 300 13851 170 2 219

7 Colmenar 3

18 300 41128 1619 2 211

8 Orihuela 16 361 97317 0 1 242

9 Porxa 18 368 51235 9976 2 491

10 Torreón 18 343 30647 3049 3 286

11 Ventós 1 15 293 34194 1390 1 129

12 Vila 17 525 50626 11596 3 323

13 Crevillente 16 382 25183 0 1 228

14 Ventós 3 16 288 28209 0 3 107

15 Aspe 5 18 306 11998 968 1 163

Catchment characterization

We recorded five variables at catchment level (Table 2). Mean annual

precipitation and mean annual temperature were obtained from Atlas Climático

Digital de la Península Ibérica (Ninyerola et al., 2005). Total surface area and total

number of woody patches was estimated using aerial photographs and in situ

verification of catchment boundaries and woody patches bigger than 1 m of

canopy diameter. These procedures excluded trees (mainly P. halepensis and

Ceratonia siliqua), small patches (<1 m canopy diameter) and other confounding

landscape features. We measured soil availability in 30 randomly selected points

over the whole catchment area. At each point, we measured soil availability as the

depth at which we could hammer a 1 cm-diameter iron rod into the soil.

Unit characterization

We selected 3-6 homogeneous units per catchment in terms of exposure,

topography and plant cover by using aerial photographs and on-site verification

(Table 1). Units were limited to S. tenacissima slopes, accounting for a total of 27

Page 37: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 1

24

units. In each unit we set one to three 15 x 21 m plots, depending on the unit

area, and established two 21 m-transects per plot, 8 m apart, following the

maximum slope. In each transect, we quantified plant cover, and the cover of

loose rocks and rock outcrops, by visual estimation in 14 consecutive quadrats of

1.5 x 1.5 m (Table 2). Total plant cover was estimated as the sum of all species

present in the transects, and was higher than 100% when canopies overlapped. In

addition, in each plot we recorded plant richness, number of rabbit latrines, and

number and size (2 orthogonal diameters of the projected canopy and maximum

height) of recruits of patch-forming species. We considered an individual as a

recruit when the diameter of its canopy projection area was less than 1 m. All

variables obtained in the plots were averaged per unit.

In the same 21 m-transects, we estimated indicators of slope

functionality, such as mean patch width, density of patches, total patch area and

the average interpatch length, following the directions provided by the Landscape

Functional Analysis (LFA; Tongway and Hidley, 2004; Table 2). In this method, a

“patch” is every long-lived feature that acts as a sink of resources by obstructing

or diverting water flow and thus collecting and filtering water, nutrients, seeds

(e.g., grass tussocks, stones, branches and litter). Accordingly, “interpatches” are

gaps between patches acting as source of resources such as bare soil, gravel and

plants whose structure is unable to retain resources.

Patch characterization

We identified and geo-referenced all woody patches in each catchment by

using aerial photographs and in situ verification. Then, we randomly selected 30

patches per catchment for patch characterization. As patches were chosen at

random, we consider that patch characterization represents the actual status of

woody vegetation patches in each catchment.

We recorded the aspect, slope and specific location of each woody patch

(i.e. patches located on slopes vs. rock outcrops and troughs; Table 2). We

measured the maximum canopy height, maximum canopy diameter and

orthogonal diameter for the whole patch and for each dominant species in the

patch. Litter depth and soil availability were measured in 6-10 randomly

distributed points, depending on canopy projected area. Soil availability was

Page 38: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Overview of woody vegetation patches in Stipa tenacissima steppes

25

considered as the depth at which we could hammer a 1 cm-diameter iron rod into

the soil. We also recorded the identity and cover of all accompanying species

underneath the canopy of each patch. For this, we set a transect underneath the

patch and centered, parallel to the main slope. Transects extended from 1 m

upslope to 1 m downslope of the patch. We visually estimated cover of each

accompanying species in consecutive 50 cm-quadrats along the transects.

Old crop terraces characterization

In catchments with old crop terraces, we estimated the total area

occupied by terraces using aerial photographs and in situ verification of their

boundaries (Table 2). In a randomly defined set of terraces corresponding to one

third of the total crop area we estimated dominant and accompanying species

cover. We set upslope-downslope transects using the point-intercept method

recording the identity of dominant and accompanying species each 1 m.

Note: Plant survey lasted several months and annual species composition

varied during this period. Thus, only perennial species were taken into account for

the analyses. Perennials represent the majority of plant cover in these steppes (J.

Tormo, University of Alicante, pers. comm.).

Statistical analysis

I performed Student’s t tests to compare the cover and number of

accompanying species underneath and in the periphery of the patches. I used

linear regression to analyze the relation between patch area and the number of

species in a patch. Non-linear fit was also evaluated but discarded as linear

regression fit best to the data. The significance of differences between patches

dominated by different species was assessed using ANOVA. I used Non-metric

Multi Dimensional Scaling (NMDS) to analyze species composition in patches.

NMDS has been recommended over other ordination techniques for community

analysis because it does not ignore community structure that is unrelated to

environmental variables and it does not assume multivariate normality (McCune

and Grace, 2002). I performed NMDS to reduce the dimensionality of the species

composition matrix using cover of dominant and accompanying species. I used

Bray-Curtis distance measure with random starting configurations for NMDS.

Page 39: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 1

26

Finally, I used Pearson correlation analysis to explore the relationship between

variables measured at unit level. All analyses were performed using R 3.1.0

statistics software (R Development Core Team, 2014).

Table 2. Summary of the variables recorded at each level. Catchment level (N=15)

Mean annual precipitation

Mean annual temperature

Total surface area

Total number of woody patches

Soil availability Unit level (N=27)

Total plant cover

Cover of perennial species

Total rock (<5cm) cover

Total rock outcrop cover

Plant richness

Number of rabbit latrines

Number of recruits of patch-forming species

Size of recruits Unit level-LFA indices

Mean patch width (cm)

Nº patches/10m

Mean interpatch length (m)

Interpatch length (%)

Mean patch length (m)

Total patch area (m2) Patch level (N=450)

UTM co-ordinates

Aspect

Slope

Patch location within the catchment

Patch area

Area of each dominant species

Patch height

Each dominant species height

Litter depth

Soil availability

Accompanying species richness

Cover of each accompanying species Terraces (N=15)

Area covered by old crop terraces

Dominant species cover

Accompanying species cover

Page 40: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Overview of woody vegetation patches in Stipa tenacissima steppes

27

RESULTS and DISCUSSION

Patch characterization

Physical structure of woody patches

Woody vegetation patches were 1.5 m high on average. They covered 11

m2, although the range of projected patch area was substantially wide (Table 3).

Litter accumulation was maximum under patches dominated by Quercus

coccifera. Soils were narrow, as mean soil depth underneath woody patches

ranged between 1.4 and 50 cm. Woody patches were formed by 1 to 5 dominant

species, and between 1 and 26 accompanying species.

Patches dominated by Q. coccifera were the biggest, reaching a maximum

of 104 m2 (ANOVA and post-hoc Tukey-HSD test, F=50.13, df=5, p <0.05; Fig.5).

Patches of E. fragilis, J. oxycedrus, O. lanceolata and R. lycioides were the smallest

ones, and did not differ between them.

Table 3. Main physical and biological attributes of 450 woody patches in Stipa tenacissima steppes of southeastern Spain. Patch attribute Mean ± SE Range

Patch height (m) 1.61 ± 0.02 0.33 - 3.15

Patch area (m2) 11.2 ± 0.6 0.5 - 103.7

Litter depth (cm) 1.3 ± 0.1 0.1 - 7.0 Soil depth (cm) 20.0 ± 0.5 1.4 - 50 Number dominant species 2 ± 1 1 - 5 Number accompanying species underneath 8 ± 0 1 - 26 Number accompanying species periphery 7 ± 0 1 - 17 Total richness underneath 10 ± 0 2 - 29 Cover accompanying species underneath (%) 52.7 ± 1.1 0.3 - 113.3 Cover accompanying species periphery (%) 45.7 ± 1.2 1.5 - 131.3

Page 41: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 1

28

Dominant species

Ephed

ra fr

agilis

Junipe

rus ox

yced

rus

Osy

ris la

nceo

lata

Pista

cia

lent

iscu

s

Que

rcus

coc

cife

ra

Rha

mnu

s lycioide

s

Pa

tch

ca

no

py p

roje

cte

d a

rea

(m

2)

0

5

10

15

20

25

30

35

aa

a

b

c

a

Figure 5. Size of patches dominated by different patch-forming species in Stipa

tenacissima steppes. Mean ± 1 SE are shown. Different letters indicate significant

differences between species (Tukey-HSD test).

Biotic structure of woody patches

I defined the most dominant species in a patch as those species whose

canopy projection area was the biggest. Patches dominated by R. lycioides were

the most abundant (199 patches out of 450; Fig. 6). Juniperus oxycedrus and O.

lanceolata patches were the least abundant. Within each group of patches

dominated by one species, patches were formed mainly by one or two dominant

species, and they rarely reached four or five species (16 patches out of 450).

Page 42: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Overview of woody vegetation patches in Stipa tenacissima steppes

29

Dominant species

Ephed

ra fr

agilis

Junipe

rus ox

yced

rus

Osy

ris la

nceo

lata

Pista

cia

lent

iscu

s

Que

rcus

coc

cife

ra

Rha

mnu

s lycioide

s

Nu

mb

er

of

pa

tch

es

0

50

100

150

200

250

1 dominant species

2 dominant species

3 dominant species

4 dominant species

5 dominant species

199

7669

2829

49

Figure 6. Distribution of the 450 woody patches used in this study according to the

dominant species (numbers at the top of the bars). Differences in shade indicate the

number of patches formed by 1, 2, 3, 4 and 5 dominant species within each group.

The cover of accompanying species in the periphery of the patches was

lower than underneath them (t-test, t=4.306, df=898, p<0.05; Fig. 7). This pattern

was not consistent when I segregated the database by dominant species. Patches

dominated by E. fragilis, Q. coccifera and R. lycioides showed higher cover of

accompanying species underneath them than in their periphery (t-test p<0.05:

t=2.716, df=91.9 for E. fragilis; t=2.506, df=146.6 for Q. coccifera; t=2.803,

df=395.7 for R. lycioides), whilst patches dominated by J. oxycedrus, P. lentiscus

and O. lanceolata had similar accompanying species cover in both microsites (t-

test, p>0.05). The number of accompanying species was also lower in the

periphery of the patches than underneath them (t-test, t=3.880, df=869, p<0.001).

Page 43: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 1

30

This pattern also depended on the dominant species but it was different from the

cover pattern: P. lentiscus, Q. coccifera and O. lanceolata had more accompanying

species underneath the patches than in their periphery (t-test p<0.05: t=3.700,

df=117.5 for P. lentiscus; t=4.710, df=122.2 for Q. coccifera; t=3.346, df=53.4 for

O. lanceolata), and there were no differences between microsites in patches

dominated by the rest of the species (t-test, p>0.05).

Dominant species

Eph

edra

frag

ilis

Junipe

rus ox

yced

rus

Osy

ris la

nceo

lata

Pista

cia

lent

iscu

s

Que

rcus

coc

cife

ra

Rha

mnu

s lycioide

s

Cover

of

accom

pa

nyin

g s

pe

cie

s (

%)

0

20

40

60

80

100

Underneath patches

Patch periphery

Figure 7. Total cover of accompanying species underneath woody patches and in their

periphery for each dominant species. Plant cover underneath E. fragilis, Q. coccifera and

R. lycioides was significantly higher than in their periphery. Differences were not

statistically significant for other species.

In addition to species cover, the identity of accompanying species was

also different underneath patches and in their periphery (Table 4). Most species

were slightly more abundant underneath the former microsite. Species that were

apparently favored by woody patches included shade-tolerant mesic species

whose presence may be strongly dependent on their existence, such as Carex

Page 44: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Overview of woody vegetation patches in Stipa tenacissima steppes

31

humilis, Polygala rupestris, and Rubia peregrina. Surprisingly, species as Anthyllis

cytisoides, Asparagus horridus, Ballota hirsuta, Dorycnium pentaphyllum,

Helichrysum stoechas, and Sedum sediforme showed the same pattern, despite

the fact that they may endure high levels of aridity. In contrast, a few species

were more abundant in the periphery of the patches than inside them; these

included Fumana ericoides, F. tymifolia, Globularia alypum, Plantago albicans and

S. tenacissima. Other species, mostly rare species, appeared exclusively

underneath (18% of accompanying species) or in the periphery (3% of

accompanying species) of the patches. Finally, the frequency of species as Erica

multiflora, Helianthemum spp., Cistus spp, Phagnalon spp., Rosmariuns officinalis,

Sedum album, Sideritis leucantha, Stipa parviflora, Teucrium spp. and Thymus

vulgaris was remarkably similar in both microsites.

Differences in the abundance of some species between microsites suggest

that microsite conditions may be different enough to affect their performance.

Vegetated patches may promote positive inter-specific interactions (Cuesta et al.,

2010; Pugnaire et al., 2011), but no study has specifically assessed the difference

between species abundance and composition underneath patches and in their

immediate vicinity. Micro-environmental conditions in the area surrounding

woody patches may be intermediate between those underneath the patches and

in open areas (Gallardo, 2003). Thus, roots and mycrorrhizae are likely to spread

beyond the projected area of woody patches, and the same may be applicable to

soil faunal activity (Maestre and Cortina, 2002), and aboveground features as

shadow and litterfall (Martens et al., 2000; see Chapters 4 and 5). In contrast,

raindrop is frequently higher in the periphery of the canopy of Mediterranean

woody species. It has been widely shown that woody patches in Mediterranean

steppes increase the richness of vascular plants (Maestre, 2004; Maestre and

Cortina, 2005). My results show that micro-environmental heterogeneity

generated by woody patches may be partly responsible for the increase in

biodiversity. On the other hand, the particular conditions created in the periphery

of the patches have strong implications on the establishment of new individuals

and species, and the enlargement of woody patches.

The density of some species was very low. In some cases, as Phyllirea

angustifolia and Chamaerops humilis, S. tenacissima steppes represent their

Page 45: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 1

32

distribution limit. In others (e.g., Olea europaea, Salsola genistoides) this was

unexpected, as these species are frequently used in restoration programs in

semiarid steppes where they commonly show good performance. Finally, Pinus

halepensis may be underrepresented, as we intentionally excluded catchments

where this species was abundant. In contrast, some species were widespread in

these steppes. Stipa tenacissima and, particularly, Brachypodium retusum, where

present in more than 50% of the area, and were only followed by Asparagus

horridus, Fagonia cretica, Fumana ericoides, Globularia alypum and

Helianthemum violaceum as they were present in more than one third of the

sampled sites.

Table 4. Proportion of patches where accompanying species were present underneath and in the periphery of woody patches in 15 Stipa tenacissima steppes.

Accompanying species Underneath (%) Periphery (%)

Ajuga iva 0.7 -

Anthyllis cytisoides 14.9 7.1

Anthyllis terniflora 3.1 3.8

Artemisia lucentica 1.1 1.6

Asparagus acutifolius 1.6 -

Asparagus horridus 35.3 16.2

Asparagus officinalis 0.4 -

Asperula aristata subsp. scabra 0.2 -

Asphodelus fistulosus 4.0 3.8

Astragalus hispanicus 0.9 -

Astragalus incanus 1.1 0.7

Atractylis humilis 8.7 10.0

Ballota hirsuta 3.8 0.7

Brachypodium retusum 96.4 84.9

Bupleurum fruticescens 6.2 3.1

Carex humilis 23.8 13.3

Centaurea aspera subsp. stenophyla 6.2 5.1

Centaurium quadrifolium subsp. barrelieri 5.6 5.3

Ceratonia siliqua 0.2 -

Chamaerops humilis 2.0 0.2

Cheirolophus intybaceus 5.8 2.4

Chiliadenus glutinosus 0.4 -

Page 46: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Overview of woody vegetation patches in Stipa tenacissima steppes

33

Cistus albidus 7.6 8.4

Cistus clusii 4.0 4.9

Convolvulus altaeoides 1.8 1.6

Convolvulus lanuginosus 1.3 0.9

Coris monspeliensis 1.1 0.9

Coronilla juncea 1.6 0.9

Coronilla minima subsp. lotoides 16.0 9.3

Dactylis glomerata 1.1 1.6

Dianthus broteroi - 0.4

Diplotaxis harra subsp. lagascana 0.7 1.1

Dorycnium pentaphyllum 4.4 1.6

Echium humile 2.7 2.2

Elaeoselinum asclepium 0.9 1.8

Elaeoselinum tenuifolium 0.2 0.7

Erica multiflora 5.1 6.0

Eryngium campestre 1.3 2.0

Fagonia cretica 39.3 25.6

Fumana ericoides 39.6 44.2

Fumana laevipes 11.3 12.7

Fumana thymifolia 20.7 32.7

Galium setaceum 1.8 1.6

Globularia alypum 30.7 44.4

Haplophyllum linifolium 4.2 4.7

Hedysarum boveanum 0.4 -

Helianthemum cinereum 9.1 9.6

Helianthemum syriacum 8.0 7.6

Helianthemum violaceum 32.2 38.4

Helichrysum stoechas 20.2 14.4

Heteropogon contortus 1.3 0.2

Hyparrhenia hirta 2.7 3.3

Hyparrhenia sinaica 0.2 0.4

Hypericum ericoides 0.4 -

Lavandula dentata 1.6 0.4

Lithodora fruticosa 0.2 -

Lobularia maritima 1.6 1.3

Lonicera etrusca - 0.2

Matthiola fruticulosa 4.7 2.4

Olea europaea - 0.2

Ononis minutissima 1.3 0.7

Pallenis spinosa 0.2 -

Page 47: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 1

34

The composition of woody patches was mainly determined by the

dominant species (Fig.8, Table 5). NMDS analysis including all species (92

accompanying species and 6 dominant species) showed the prevailing effect of

dominant species over accompanying species on species ordination (Appendix).

Paronychia suffruticosa 2.4 2.4

Phagnalon rupestre 19.1 19.3

Phagnalon saxatile 20.4 18.0

Phillyrea angustifolia 0.2 -

Phlomis lychinitis 0.2 -

Pinus halepensis 0.9 0.2

Plantago albicans 5.8 10.0

Polygala rupestris 21.8 11.3

Retama sphaerocarpa 0.2 -

Rhamnus alaternus 0.4 -

Rosmarinus officinalis 9.8 12.0

Rubia longifolia 0.2 -

Rubia peregrina 6.4 0.4

Ruta angustifolia 14.4 6.0

Salsola genistoides 0.7 1.3

Santolina chamaecyparisus subsp. squarrosa 0.7 0.7

Satureja obovata 4.7 4.2

Sedum album 8.7 7.1

Sedum sediforme 29.3 18.2

Sideritis leucantha 18.4 14.4

Staehelina dubia 0.7 0.4

Stipa parviflora 18.2 22.4

Stipa tenacissima 51.3 67.6

Teucrium buxifolium subsp. rivasii 0.4 0.4

Teucrium capitatum 22.9 22.4

Teucrium carolipaui 9.8 8.4

Teucrium pseudochamaepitys 18.4 13.8

Teucrium ronnigeri 8.0 10.4

Thymelaea argentata 0.2 -

Thymelaea hirsuta 2.0 0.4

Thymus moroderi 2.0 1.3

Thymus vulgaris 21.6 20.4

Viola arborescens 1.6 1.8

Page 48: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Overview of woody vegetation patches in Stipa tenacissima steppes

35

However, some accompanying species were also correlated with NMDS axes and

influenced patch ordination. Thus, to explore the composition of the community

of accompanying species in further detail I performed separated NMDS analyses

for dominant and accompanying species (Fig.8, Table 5). The first NMDS axis of

dominant species ordination was positively correlated to Rhamnus lycioides and

negatively correlated to Pistacia lentiscus, and the second NMDS axis was

positively correlated to Quercus coccifera and negatively correlated to Osyris

lanceolata. These results agree with a study in a Mediterranean ecosystem in

Israel (Blank and Carmel, 2012) where the community of herbaceous species

growing under different woody dominant species was strongly determined by the

identity of the dominant species. Dominant species abundance may substantially

respond to thermic and aridity gradients. Particularly, R. lycioides abundance was

strongly and positively correlated with high mean annual temperature and

relatively low mean annual precipitation. On the contrary, Q. coccifera is more

abundant under lower temperatures, even when the range of mean annual

temperature in the studied steppes was narrow (15-18ºC). High mean annual

precipitation was positively correlated to Juniperus oxycedrus abundance and

negatively correlated with Ephedra fragilis abundance (Fig. 8).

In accompanying species ordination, Stipa tenacissima and Brachypodium

retusum were the most influential accompanying species correlated with the

same axis (NMDS 1; Fig. 8, Table 5) but in opposite directions. They are both

perennial grasses and very common in these areas. Stipa tenacissima forms tall

tussocks, and it is the most abundant species in these steppes in terms of cover.

Brachypodium retusum is a small and widespread resprouting grass. Both species

were equally abundant underneath the patches as in their periphery. The second

NMDS axis was mainly defined by Asparagus horridus and Carex humilis, in

opposite directions. These species are much less abundant in S. tenacissima

steppes than S. tenacissima and Brachypodium retusum. Mean annual

temperature and precipitation were weakly correlated with both NMDS axes,

although S. tenacissima abundance was positively correlated to high mean annual

temperatures and B. retusum showed the opposite correlation. Carex humilis was

associated to low temperatures while A. horridus was more abundant in warmer

sites.

Page 49: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 1

36

Figure 8. Correlation of dominant (top) and accompanying (bottom) species with the first

two NMDS (Non-metric Multi-Dimensional Scaling) axes. The correlation of each axis with

mean annual temperature and precipitation is also shown. NMDS analyses were

performed separately, and thus axes for dominant species are not equivalent to axes for

accompanying species. Only significant accompanying species are depicted for clarity

(p<0.05, see Table 5). Species abbreviations are shown in Table 5.

Page 50: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Overview of woody vegetation patches in Stipa tenacissima steppes

37

Table 5. Pearson correlation coefficients relating species cover and NMDS axes 1 and 2.

NMDS analyses for dominant and accompanying species were performed separately.

Significant p-values (p<0.05) are shown in bold.

Species Species

abbreviation NMDS axis 1

NMDS axis 2

p-value NMDS 1

p-value NMDS 2

ACCOMPANYING SPECIES

Ajuga iva Ajuiva 0.060 -0.055 0.207 0.243

Anthyllis cytisoides Antcyt 0.022 0.013 0.644 0.782

Anthyllis terniflora Antter 0.055 -0.017 0.241 0.719

Artemisia lucentica Artluc -0.148 -0.015 0.002 0.747

Asparagus acutifolius Aspacu -0.063 -0.025 0.183 0.590

Asparagus horridus Asphor 0.040 -0.212 0.393 <0.001

Asparagus officinalis Aspoff 0.090 0.110 0.057 0.020

Asperula aristata subsp. scabra Aspari 0.078 0.043 0.099 0.361

Asphodelus fistulosus Aspfis 0.003 0.030 0.950 0.527

Astragalus hispanicus Asthis -0.037 0.059 0.435 0.215

Astragalus incanus Astinc -0.055 0.003 0.241 0.957

Atractylis humilis Atrhum 0.140 -0.022 0.003 0.647

Ballota hirsuta Balhir -0.083 0.001 0.080 0.982

Brachypodium retusum Braret 0.320 0.013 <0.001 0.778

Bupleurum fruticescens Bupfru 0.244 0.070 <0.001 0.136

Carex humilis Carhum 0.311 0.172 <0.001 <0.001

Centaurea aspera subsp. stenophyla

Cenasp -0.005 -0.026 0.912 0.586

Centaurium quadrifolium subsp. barrelieri

Cenqua -0.062 0.023 0.189 0.623

Ceratonia siliqua Cersil 0.065 -0.135 0.169 0.004

Chamaerops humilis Chahum -0.115 -0.014 0.015 0.773

Cheirolophus intybaceus Cheint 0.021 -0.005 0.658 0.914

Chiliadenus glutinosus Chiglu 0.037 -0.087 0.429 0.066

Cistus albidus Cisalb 0.049 -0.143 0.303 0.002

Cistus clusii Cisclu 0.125 0.005 0.008 0.920

Convolvulus altaeoides Conalt 0.019 -0.001 0.684 0.985

Convolvulus lanuginosus Conlag 0.082 0.015 0.083 0.750

Coris monspeliensis Cormon -0.035 -0.023 0.453 0.628

Coronilla juncea Corjun -0.003 -0.080 0.956 0.091

Coronilla minima subsp. lotoides Cormin 0.098 0.044 0.037 0.351

Page 51: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 1

38

Dactylis glomerata Dacglo -0.144 -0.011 0.002 0.808

Diplotaxis harra subsp. lagascana

Diphar 0.086 -0.092 0.067 0.051

Dorycnium pentaphyllum Dorpen 0.181 0.064 <0.001 0.173

Echium humile Echhum -0.014 -0.055 0.763 0.245

Elaeoselinum asclepium Elaasc 0.109 0.020 0.020 0.678

Elaeoselinum tenuifolium Elaten 0.058 -0.023 0.217 0.630

Erica multiflora Erimul 0.013 0.037 0.783 0.439

Eryngium campestre Erycam 0.087 -0.010 0.064 0.840

Fagonia cretica Fagcre -0.015 -0.124 0.745 0.009

Fumana ericoides Fumeri 0.072 -0.102 0.128 0.030

Fumana laevipes Fumlae 0.062 0.076 0.186 0.106

Fumana thymifolia Fumthy 0.190 -0.012 <0.001 0.800

Galium setaceum Galset 0.160 0.030 0.001 0.525

Globularia alypum Gloaly -0.107 0.164 0.023 <0.001

Haplophyllum linifolium Haplin -0.024 0.009 0.616 0.857

Hedysarum boveanum Hedbov 0.104 -0.133 0.028 0.005

Helianthemum cinereum Helcin 0.033 0.167 0.49 <0.001

Helianthemum syriacum Helsyr 0.125 -0.072 0.008 0.125

Helianthemum violaceum Helvio 0.275 -0.073 <0.001 0.121

Helichrysum stoechas Helicsto 0.036 -0.004 0.447 0.925

Heteropogon contortus Hetcon 0.030 -0.053 0.520 0.264

Hyparrhenia hirta Hyphir 0.076 -0.005 0.106 0.915

Hyparrhenia sinaica Hypsir -0.105 -0.006 0.026 0.900

Hypericum ericoides Hyperi -0.004 -0.047 0.932 0.317

Lavandula dentata Lavden 0.099 0.068 0.036 0.148

Lithodora fruticosa Litfru 0.047 0.109 0.318 0.020

Lobularia maritima Lobmar 0.134 -0.086 0.004 0.068

Matthiola fruticulosa Matfru -0.014 0.049 0.762 0.298

Ononis minutissima Onomin 0.050 0.078 0.285 0.100

Pallenis spinosa Palspi -0.065 0.103 0.170 0.028

Paronychia suffruticosa Parsuf 0.110 0.050 0.020 0.288

Phagnalon rupestre Pharup -0.070 0.074 0.140 0.119

Phagnalon saxatile Phasax 0.175 -0.090 <0.001 0.057

Phillyrea angustifolia Phiang -0.057 -0.020 0.227 0.666

Phlomis lychinitis Phllyc 0.064 -0.020 0.175 0.674

Pinus halepensis Pinhal 0.083 0.112 0.078 0.017

Plantago albicans Plaalb 0.082 -0.019 0.082 0.686

Page 52: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Overview of woody vegetation patches in Stipa tenacissima steppes

39

Polygala rupestris Polrup 0.270 0.100 <0.001 0.033

Retama sphaerocarpa Retsph -0.002 0.035 0.966 0.455

Rhamnus alaternus Rhaala 0.144 -0.072 0.002 0.127

Rosmarinus officinalis Rosoff 0.038 -0.049 0.420 0.302

Rubia longifolia Rublon -0.080 0.078 0.090 0.098

Rubia peregrina Rubper 0.056 0.108 0.233 0.021

Ruta angustifolia Rutang -0.034 0.004 0.475 0.937

Salsola genistoides Salgen -0.022 -0.109 0.648 0.021

Santolina chamaecyparisus subsp. squarrosa

Sancha -0.016 0.063 0.739 0.179

Satureja obovata Sataov 0.047 0.099 0.317 0.036

Sedum album Sedalb -0.154 -0.076 0.001 0.109

Sedum sediforme Sedsed 0.085 -0.067 0.072 0.156

Sideritis leucantha Sidleu 0.162 -0.166 0.001 <0.001

Staehelina dubia Stadub 0.063 -0.059 0.183 0.215

Stipa parviflora Stipar 0.157 0.142 0.001 0.003

Stipa tenacissima Stiten -0.448 0.070 <0.001 0.141

Teucrium buxifolium subsp. rivasii

Teubux -0.110 -0.012 0.020 0.800

Teucrium capitatum Teucap 0.005 -0.037 0.914 0.436

Teucrium carolipaui Teucar 0.014 -0.030 0.760 0.521

Teucrium pseudochamaepitys Teupse 0.234 0.240 <0.001 <0.001

Teucrium ronnigeri Teuron 0.184 -0.007 <0.001 0.879

Thymelaea argentata Thyarg -0.003 0.012 0.944 0.805

Thymelaea hirsuta Thyhir 0.018 0.095 0.702 0.043

Thymus moroderi Thymor 0.051 0.002 0.283 0.974

Thymus vulgaris Thyvul 0.204 0.088 <0.001 0.062

Viola arborescens Vioarb -0.044 -0.089 0.350 0.060

DOMINANT SPECIES

Quercus coccifera Quecoc -0.193 0.721 <0.001 <0.001

Pistacia lentiscus Pislen -0.526 0.109 <0.001 0.021

Rhamnus lycioides Rhalyc 0.646 -0.521 <0.001 <0.001

Juniperus oxycedrus Junoxy -0.477 -0.194 <0.001 <0.001

Ephedra fragilis Ephfra 0.470 0.366 <0.001 <0.001

Osyris lanceolata Osylan -0.285 -0.449 <0.001 <0.001

Page 53: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 1

40

Relationship between physical and biotic structure of woody patches

I found that patch richness was positively related to patch area when I

considered all species together, or dominant and accompanying species

separately (Fig. 9, Table 6). Conversely, this relation was not always significant

when I analyzed the data separating the patches by its dominant species (Fig.10,

Table 6). The positive relation between the richness of accompanying species and

patch area was significant for patches dominated by J. oxycedrus, Q. coccifera and

R. lycioides, and marginally significant for P. lentiscus. Because of this relation, Q.

coccifera patches (the biggest ones; Fig. 5) had the highest richness of

accompanying species. The slope of the relationship between patch size and

richness of accompanying species was higher in patches dominated by J.

oxycedrus than in patches dominated by other species.

Patch projected area (m2)

0 20 40 60 80 100

Nu

mb

er

of

sp

ecie

s

0

5

10

15

20

25

30

35Dominant species

Accompanying species

Total species

Figure 9. Number of perennial species as a function of patch area. Lines correspond to

linear regressions of total number of species (upper line), accompanying species (middle

line) and dominant species (lower line). See Table 6 for estimated parameters of the

regressions.

Page 54: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Overview of woody vegetation patches in Stipa tenacissima steppes

41

Ephedra fragilis

Patch canopy projected area (m 2)0 5 10 15 20 25 30

Num

ber

of accom

panyin

g s

pecie

s

0

2

4

6

8

10

12

14

16

18

20Juniperus oxycedrus

Patch canopy projected area (m 2)0 5 10 15 20 25 30

Num

ber

of accom

panyin

g s

pecie

s

0

2

4

6

8

10

12

14

16

18

20

Osyris lanceolata

Patch canopy projected area (m 2)0 5 10 15 20 25 30

Num

ber

of accom

panyin

g s

pecie

s

0

2

4

6

8

10

12

14

16

18

20

Pistacia lentiscus

Patch canopy projected area (m 2)0 10 20 30 40 50 60

Num

ber

of accom

panyin

g s

pecie

s

0

5

10

15

20

25

30Quercus coccifera

Patch canopy projected area (m 2)0 20 40 60 80 100 120

Num

ber

of accom

panyin

g s

pecie

s

0

5

10

15

20

25

30

Rhamnus lycioides

Patch canopy projected area (m 2)0 5 10 15 20 25 30

Num

ber

of accom

panyin

g s

pecie

s

0

2

4

6

8

10

12

14

16

18

20

Figure 10. Number of accompanying species underneath patches as a function of patch

area, for patches dominated by different patch-forming species. Note the different scale

for Q. coccifera and P. lentiscus. Lines correspond to linear regressions. See Table 6 for

estimated parameters of the regressions.

Page 55: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 1

42

Accompanying species density was negatively related to patch area fitting

an exponential decay (Fig. 11) suggesting that an increase in patch size does not

increase the probability of admitting new species at the same rate, and thus small

patches are relatively richer than bigger ones.

Patch canopy projected area (m2)

0 20 40 60 80 100 120

Density o

f accom

panyin

g s

pecie

s (

specie

s m

2)

0

5

10

15

20

25

30

Density = 7.005 e-0.315 area

R2=0.420

p>0.001

Figure 11. Density of accompanying species as a function of patch canopy projected area.

Line corresponds to exponential fitting.

Table 6. Estimated parameters of linear regression fits between patch size (P) and number (No.) of species (S; (S=a+bP). p= p-value, N= sample size. Dominant species refer to linear regressions for patches where that species was the most dominant species in the patch. Original data is presented in Figures 9 and 10.

S a b R2 p N Dominant species

Total number of species 8.42 0.15 0.247 <0.001 450 -

No. of dominant species 1.53 0.02 0.132 <0.001 450 -

No. of accompanying species 6.89 0.12 0.200 <0.001 450 -

No. of accompanying species 7.72 0.01 0.000 0.903 49 Ephedra fragilis

No. of accompanying species 4.08 0.47 0.374 <0.001 29 Juniperus oxycedrus

No. of accompanying species 7.18 0.18 0.038 0.321 28 Osyris lanceolata

No. of accompanying species 7.22 0.09 0.047 0.072 69 Pistacia lentiscus

No. of accompanying species 7.33 0.11 0.326 <0.001 76 Quercus coccifera

No. of accompanying species 6.88 0.11 0.032 0.011 199 Rhamnus lycioides

Page 56: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Overview of woody vegetation patches in Stipa tenacissima steppes

43

Catchment and unit characterization

Mean annual temperature was negatively correlated to altitude and

average woody patch area at unit level (Table 7). This relationship may reflect the

prevalence of P. lentiscus and Q. coccifera patches at higher altitudes, as these

species formed the biggest patches. Mean annual precipitation and plant cover

were positively related at this level. Units with relatively high cover of loose rock

and rock outcrops showed higher distance between resource sinks (interpatch

length) than units where the soil surface was less rocky. In units where the

distance between resource sinks was relatively high, the cover and length of these

resource sinks were smaller. In units with high plant cover, resource sink size

(length and width) was also high. However, woody patch area was negatively

correlated to resource sink width, which might suggest that in units with big

woody patches (those dominated by Q. coccifera and P. lentiscus) interpatch area

is basically bare, whereas in units with smaller woody patches (those dominated

by R. lyciodes, E. fragilis, J. oxycedrus and O. lanceolata) the surrounding area is

covered by small shrubs and perennial grasses, which may act as resource sinks.

Page 57: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Table 7. Pearson correlation coefficients between unit features. N=27 in all cases, except for resource sink cover and resource sink

width (N=26). P-values are shown in parenthesis. Significant correlations (p<0.05) are highlighted in bold. “Resource sink”

corresponds to every long-lived feature that obstructs or diverts water flow and collects/filters out material from runoff (e.g.,

grass tussocks, stones, branches and litter).

Pre

cip

itat

ion

Tem

pera

ture

Alt

itud

e

Pat

ch a

rea

Ro

ck c

ove

r

Ro

ck o

utc

rop

cove

r

Pla

nt c

ove

r

Inte

rpat

ch

len

gth

Res

ou

rce

sin

k co

ver

Res

ou

rce

sin

k le

ngt

h

Temperature -0.148 - - - - - - - - - (0.461) - - - - - - - - -

Altitude -0.069 -0.913 - - - - - - - - (0.732) (<0.001) - - - - - - - -

Patch area -0.162 -0.694 0.762 - - - - - - - (0.418) (<0.001) (<0.001) - - - - - - -

Rock cover -0.292 0.121 -0.027 -0.063 - - - - - - (0.140) (0.547) (0.892) (0.753) - - - - - -

Rock outcrop cover

-0.132 0.101 -0.051 -0.048 0.315 - - - - - (0.513) (0.617) (0.799) (0.814) (0.110) - - - - -

Plant cover 0.680 0.043 -0.107 -0.118 -0.089 -0.005 - - - - (<0.001) (0.832) (0.595) (0.558) (0.659) (0.981) - - - -

Interpatch length -0.307 -0.074 0.225 0.275 0.386 0.467 -0.321 - - - (0.120) (0.714) (0.259) (0.165) (0.046) (0.014) (0.103) - - -

Resource sink cover

-0.010 0.348 -0.400 -0.422 -0.249 -0.036 0.146 -0.568 - - (0.960) (0.082) (0.043) (0.032) (0.221) (0.863) (0.477) (0.002) - -

Resource sink length

0.302 0.311 -0.420 -0.266 -0.235 -0.121 0.610 -0.530 0.740 - (0.125) (0.114) (0.029) (0.180) (0.239) (0.547) (0.001) (0.005) (<0.001) -

Resource sink width

0.176 0.370 -0.385 -0.414 -0.181 -0.172 0.422 -0.387 0.818 0.695

(0.391) (0.063) (0.052) (0.036) (0.377) (0.401) (0.032) (0.051) (<0.001) (<0.001)

Page 58: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Overview of woody vegetation patches in Stipa tenacissima steppes

45

The relation between the abundance of woody patches and climatic

variables was highly dependent on the dominant species (Fig. 12 and 13). Under

warmer conditions, R. lycioides patches were the most abundant, and as mean

annual temperature decreased, the abundance of R. lycioides patches decreased

(Fig. 12). In contrast, Q. coccifera and J. oxycedrus patches were dominant at the

lowest temperatures. Rhamnus lycioides patches were also abundant in the driest

conditions, together with patches of Q. coccifera, J. oxycedrus and E. fragilis. In

the wettest sites, O. lanceolata patches were more abundant than patches

dominated by other species. Although all dominant species were present in many

catchments, patches dominated by O. lanceolata, Q. coccifera and J. oxycedrus

were more abundant at specific catchments, and thus, specific climatic conditions

(Fig. 13). O. lanceolata-dominated patches were more abundant under warm

conditions, but in a wide range of precipitation. J. oxycedrus-dominated patches

were more abundant in colder sites and at a relative wide range of precipitation.

Quercus coccifera-dominated patches showed their maximum abundance at low

temperatures but also at low precipitation (288-361 mm), which is surprising as

this species forms dense shrublands in sub-humid and humid sites (>400 mm

annual precipitation) in the Mediterranean region (E. Pastor, University of

Alicante pers. comm.). Taking into account the fact that the range of variation in

mean annual temperature in the studied steppes was narrow (15-18ºC),

differences in species abundance suggest that these species may be very sensitive

to climatic variations. Average temperatures in southeastern Spain are expected

to increase by 2.5-3.5 in the next 75 years (IPCC, 2007). Most predictions on

average precipitation point towards a decrease in average precipitation in this

area, although the degree of certainty is much lower in this case (Machado et al.,

2011). Thus, considering that the model of species dominance along gradients of

temperature and precipitation described would hold true under new climate

scenarios, catchments covered by patches of Q. coccifera and J. oxycedrus would

gradually be dominated by R. lycioides and E. fragilis over the next decades.

Species shift may have significant implications on the functioning of S. tenacissima

steppes, as patch function and ecological interactions are strongly related to the

dominant species (see Chapters 3 and 4).

Page 59: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 1

46

Mean annual temperature (ºC)

15 16 17 18

Pro

po

rtio

n o

f p

atc

he

s

0.0

0.2

0.4

0.6

0.8

1.0E. fragilis

J. oxycedrus

O. lanceolata

P. lentiscus

Q. coccifera

R. lycioides

Mean annual precipitation (mm)

250 300 350 400 450 500 550

Pro

po

rtio

n o

f p

atc

he

s

0.0

0.2

0.4

0.6

0.8

1.0

Figure. 12. Proportion of patches dominated by each patch-forming species as a function

of mean annual temperature (top) and mean annual precipitation (bottom).

Page 60: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Overview of woody vegetation patches in Stipa tenacissima steppes

47

Figure 13. Distribution of woody patches along temperature and precipitation gradients.

Circle size corresponds to the relative abundance of patches of a given species with

respect to the total number of patches dominated by this species in all catchments. As a

reference: 43% of O. lanceolata patches were present at the catchment with 525 mm and

17ºC, 20% of Q. coccifera patches were present at the catchment with 288 mm and 16ºC,

and 6% of P. lentiscus patches were present at the catchment with 417 mm and 16ºC.

Page 61: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 1

48

Variability in the recruitment of patch-forming species was huge. Seedling

density in the different catchments ranged from 1 to 49 seedlings Ha-1 (Fig. 14 and

15). Recruitment of patch-forming species depended on the considered species,

Rhamnus lycioides showed the largest recruitment, with an average of 11 ± 3

seedlings Ha-1. On the contrary, recruitment of other species was lower, and did

not significantly differ between them (ANOVA and post-hoc Tukey-HSD test,

p<0.05; Fig. 14). The pattern is similar when considering only catchments where

adult species were present. There were not juveniles of certain dominant species

in catchments where that species was not present. However, with respect to the

abundance of adult individuals, the pattern is different, J. oxycedrus had higher

recruitment than O. lanceolata, P. lentiscus and Q. coccifera, with no significant

differences with E. fragilis and R. lycioides (ANOVA and post-hoc Tukey-HSD test,

F=3.12, df=5, p <0.05, Fig. 15). These results suggest that population dynamics of

patch-forming species are heterogeneous, and some species may be stagnant or

may recruit in pulses.

Page 62: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Overview of woody vegetation patches in Stipa tenacissima steppes

49

Catchment

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Re

cru

itm

en

t d

en

sity (

Nu

mb

er

of

se

ed

lings H

a-1

)

0

10

20

30

40

50

Woody shrub species

R. lycioides

E. fragilis

J. oxycedrus

P. lentis

cus

O. lanceolata

Q. coccife

ra

Re

cru

itm

en

t d

en

sity (

Nu

mb

er

of

se

ed

lings H

a-1

)

0

2

4

6

8

10

12

14

16 All catchments

Catchments where thespecies was present

6

14

6

7

4

3

Figure 14. Recruitment of patch-forming species (top) and total recruitment in each of the

15 studied catchments (bottom). In the upper figure, black bars correspond to density

recruitment considering all catchments (15), and grey bars correspond to density

recruitment only in the catchments where juveniles of each species were present

(numbers at top of the bars). Catchment features are described in Table 1.

Page 63: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 1

50

Woody shrub species

Ephedra fragilis

Juniperus oxycedrus

Osyris la

nceolata

Pistacia lentis

cus

Quercus coccifera

Rhamnus lycioides

Tu

rno

ve

r ra

te (

Nu

mb

er

recru

its ·

Nu

mb

er

ad

ults -1

)

0.0

0.2

0.4

0.6

0.8

ab

bb b

ab

a

Figure 15. Estimation of the turnover rate of patch-forming species in catchments where

adults were present. Mean ± 1 SE are shown. Different letters indicate significant

differences between species (Tukey-HSD test).

The relation between recruitment, and mean annual temperature and

precipitation was positive in both cases, although the variability between

catchments was very high (Fig. 16). It is worth mentioning that the relation

remained positive when outliers were removed (data not shown). The increase in

recruit density with temperature may be a result of the increasing relative

dominance of the more thermophilous species R. lycioides and E. fragilis. These

results suggest that the reduction in recruit density with decreasing precipitation

predicted by climate models may be counterbalanced by the effect of the

increasing average temperature. However, recruitment rates would be

maintained at the expenses of the shift in species composition mentioned above

It is worth to recall here that R. lycioides was present in 44% of the patches and all

catchments. The overwhelming presence of this species and its large recruitment

performance indicate that it may become more widespread in S. tenacissima

Page 64: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Overview of woody vegetation patches in Stipa tenacissima steppes

51

steppes as climate becomes warmer and drier. Yet, other species whose presence

is currently scarce or are indeed absent may expand as a result of changing

climatic conditions (Bakkenes, et al., 2002).

Mean annual temperature (ºC)

15 16 17 18

De

nsity o

f re

cru

itm

en

t (n

um

be

r o

f se

ed

lings H

a-1

)

0

10

20

30

40

50

60

Mean annual precipitation (mm)

250 300 350 400 450 500 550

De

nsity o

f re

cru

itm

en

t (n

um

be

r o

f se

ed

lings H

a-1

)

0

10

20

30

40

50

60

y = -45.47 + 3.87 x

R2 = 0.070p = 0.343

y = -9.37 + 0.08 x

R2 = 0.120p = 0.205

Figure 16. Recruitment of patch-forming species in Stipa tenacissima steppes as a function

of mean annual temperature (top) and precipitation (bottom).

Page 65: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 1

52

The cover of patch-forming species in old crop terraces was highly variable

(Fig. 17). Rhamnus lycioides was present in the terraces of all catchments, being

the only species in catchment 6 and 11. The mean cover of this species was 15 ± 3

%, which more than doubled the cover of other patch-forming species (6 ± 2 %

and 2 ± 1% for P. lentiscus and O. lanceolata, respectively). The cover of Q.

coccifera, E. fragilis and J. oxycedrus was remarkably low in the terraces of all

catchments.

Catchment

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Cover

of

patc

h-f

orm

ing s

pecie

s (

%)

0

10

20

30

40

50

60

E. fragilis

J. oxycedrus

O. lanceolata

P. lentiscus

Q. coccifera

R. lycioides

Figure 17. Cover of the six patch-forming species in old crop terraces of the 15 evaluated

catchments in Stipa tenacissima steppes. No old crop terraces were present in catchments

8, 13 and 14.

Page 66: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Overview of woody vegetation patches in Stipa tenacissima steppes

53

The number of woody patches and the recruitment of patch-forming

species in the slopes were positively related to the number of woody patches in

old crop terraces (Fig. 18). Inferring causal relationships from observational data is

risky. However, I may hypothesize that abandoned terraces, and particularly stone

walls used to retain soil, acted as local refugia for patch-forming species. As S.

tenacissima crops in slopes were abandoned (mostly during the second half of the

20th century; Fernández-Palazón, 1974), species present in terraces probably

expanded along the terraces and along the slopes. Chronosequences of aerial

photographs, and genetic and dendrological analysis are not conclusive in this

respect (V. Rolo, K. Disante, L. De Soto, pers. comm.). On the one hand, expansion

trajectories from abandoned terraces may be blurred by the presence of old

isolated individuals in slopes, and particularly in ridges which could protect these

species during the peak of farming activities. Besides, most patch-forming species

are zoochorous, and long-distance transport from inside and outside the

catchments is likely.

Page 67: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 1

54

Cover of dominant species in old crop terraces (%)

0 10 20 30 40 50 60

To

tal n

um

be

r o

f w

oo

dy p

atc

he

s in

slo

pe

s

0

100

200

300

400

500

600

y = 171.1 + 4.1 x

R2

= 0.351p < 0.05

Cover of dominant species in old crop terraces (%)

0 10 20 30 40 50 60

Nu

mb

er

of

se

ed

ling

s o

f d

om

ina

nt

sp

ecie

s in

slo

pe

s

0

10

20

30

40

50

60

70y = 19.2 + 0.2 x

R2

= 0.035p = 0.503

Figure 18. Number of woody patches and recruitment of patch-forming species in the

slopes as a function of the cover of dominant species in old crop terraces of Stipa

tenacissima steppes.

Page 68: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Overview of woody vegetation patches in Stipa tenacissima steppes

55

CONCLUSIONS

Woody patches in S. tenacissima steppes can be very large. As they

develop on extremely narrow soils, patches may tap resources from wider areas.

Still, I have found that patch effect on accompanying vegetation declines beyond

its canopy limits, which emphasizes the importance of aboveground features in

determining patch ecological engineering capacity.

Patches are dominated by only a few species but complex communities

organize around them. The rules governing the assembly of dominant and

accompanying species are largely unknown. Considering the relationship between

both groups of species described in this study, I anticipate that complex inter-

specific and multi-specific interactions may contribute to shape community

composition in woody patches and hence, patch functioning. My results suggest

that patches facilitate the establishment of accompanying species, and may

promote the recruitment of patch-forming species. Manipulative studies could

help to evaluate patch capacity to facilitate patch-forming and accompanying

species, and identify patch features supporting facilitation capacity. Despite that

large re-sprouting shrub species have the ability to form patches, their effects on

patch properties differ. Recruitment rate in open areas was also dependent on

the identity of the woody species, as it was the relationship between recruitment

density and environmental conditions. While some species (particularly R.

lycioides) are particularly abundant and successful in incorporating new

individuals, other (mainly Q. coccifera) show a much more conservative strategy,

and may be unable to cope with future climate scenarios. These observations

should be validated by further observational studies and manipulative

experiments, as their implications on the composition and functioning of S.

tenacissima steppes can be crucial. For example, my study suggests that patch

persistence and expansion may be guaranteed when R. lycioides is present, and

this species may increase its presence under warmer and drier conditions. In

contrast, efforts to establish Q. coccifera may be doomed if not restricted to

particularly suitable microsites (N facing slopes, deep soils).

My results suggest that abandoned terraces and ridges acted as local

refugia and sustained colonization of abandoned S. tenacissima crops in slopes.

However, these evidences are weak in this respect, and further studies are

needed to validate this theory.

Page 69: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 1

56

APPENDIX

Pearson correlation coefficients relating species cover and NMDS axes 1 and 2.

The first six species correspond to patch-forming large resprouting shrubs.

Significant p-values (p<0.05) are in bold.

Species NMDS axis 1

NMDS axis 2

p-value NMDS 1

p-value NMDS 2

Quercus coccifera -0.648 0.035 0.000 0.457

Pistacia lentiscus -0.234 -0.485 0.000 0.000

Rhamnus lycioides 0.740 -0.231 0.000 0.000

Juniperus oxycedrus -0.237 0.320 0.000 0.000

Ephedra fragilis 0.217 0.504 0.000 0.000

Osyris lanceolata -0.101 0.166 0.032 0.000

Ajuga iva 0.089 -0.027 0.061 0.562

Anthyllis cytisoides -0.023 -0.016 0.629 0.736

Anthyllis terniflora 0.058 -0.029 0.219 0.535

Artemisia lucentica 0.074 -0.099 0.119 0.036

Asparagus acutifolius -0.038 0.046 0.421 0.326

Asparagus horridus 0.086 0.139 0.068 0.003

Asparagus officinalis -0.081 -0.112 0.086 0.017

Asperula aristata subsp. scabra -0.091 0.000 0.053 0.998

Asphodelus fistulosus -0.095 0.128 0.045 0.007

Astragalus hispanicus -0.060 -0.093 0.207 0.049

Astragalus incanus 0.032 -0.079 0.492 0.092

Atractylis humilis 0.093 0.000 0.049 0.998

Ballota hirsuta 0.123 -0.009 0.009 0.848

Brachypodium retusum -0.045 0.041 0.342 0.386

Bupleurum fruticescens -0.161 -0.042 0.001 0.373

Carex humilis -0.069 -0.100 0.144 0.033

Centaurea aspera subsp. stenophyla

0.179 0.034 0.000 0.474

Centaurium quadrifolium subsp. barrelieri

0.030 -0.102 0.525 0.030

Ceratonia siliqua -0.062 -0.129 0.193 0.006

Page 70: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Overview of woody vegetation patches in Stipa tenacissima steppes

57

Chamaerops humilis -0.014 -0.112 0.768 0.018

Cheirolophus intybaceus 0.036 0.064 0.448 0.175

Chiliadenus glutinosus 0.074 -0.040 0.118 0.401

Cistus albidus -0.054 0.091 0.255 0.053

Cistus clusii 0.002 -0.060 0.971 0.201

Convolvulus altaeoides 0.094 0.010 0.047 0.824

Convolvulus lanuginosus -0.092 0.014 0.051 0.761

Coris monspeliensis -0.070 -0.107 0.135 0.023

Coronilla juncea -0.063 -0.069 0.184 0.146

Coronilla minima subsp. lotoides

0.065 -0.054 0.168 0.251

Dactylis glomerata 0.071 -0.096 0.132 0.041

Diplotaxis harra subsp. lagascana

0.124 0.029 0.008 0.535

Dorycnium pentaphyllum -0.128 -0.057 0.006 0.225

Echium humile 0.053 0.012 0.260 0.808

Elaeoselinum asclepium 0.076 0.015 0.110 0.743

Elaeoselinum tenuifolium -0.071 -0.014 0.132 0.764

Erica multiflora -0.184 -0.049 0.000 0.298

Eryngium campestre 0.037 -0.064 0.430 0.177

Fagonia cretica 0.196 0.084 0.000 0.075

Fumana ericoides 0.100 0.045 0.033 0.342

Fumana laevipes -0.031 -0.061 0.516 0.194

Fumana thymifolia 0.106 -0.061 0.025 0.194

Galium setaceum -0.036 0.007 0.443 0.876

Globularia alypum -0.043 -0.110 0.365 0.019

Haplophyllum linifolium -0.056 0.030 0.237 0.526

Hedysarum boveanum -0.054 -0.026 0.250 0.585

Helianthemum cinereum 0.031 -0.078 0.510 0.098

Helianthemum syriacum 0.027 0.018 0.563 0.709

Helianthemum violaceum 0.181 0.220 0.000 0.000

Helichrysum stoechas -0.052 0.066 0.271 0.163

Heteropogon contortus -0.063 -0.078 0.182 0.100

Hyparrhenia hirta -0.015 0.066 0.753 0.165

Hyparrhenia sinaica -0.007 -0.123 0.889 0.009

Page 71: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 1

58

Hypericum ericoides 0.031 -0.096 0.507 0.042

Lavandula dentata 0.000 0.037 0.994 0.440

Lithodora fruticosa -0.112 0.016 0.017 0.738

Lobularia maritima 0.127 0.159 0.007 0.001

Matthiola fruticulosa -0.084 0.063 0.076 0.183

Ononis minutissima -0.103 -0.089 0.029 0.060

Pallenis spinosa -0.112 -0.043 0.018 0.368

Paronychia suffruticosa 0.045 0.050 0.340 0.291

Phagnalon rupestre 0.080 -0.018 0.090 0.699

Phagnalon saxatile 0.192 0.108 0.000 0.022

Phillyrea angustifolia 0.008 0.081 0.869 0.086

Phlomis lychinitis -0.079 0.006 0.094 0.894

Pinus halepensis -0.076 -0.113 0.106 0.016

Plantago albicans 0.222 0.054 0.000 0.249

Polygala rupestris 0.010 -0.118 0.827 0.012

Retama sphaerocarpa -0.026 -0.041 0.589 0.384

Rhamnus alaternus -0.148 0.009 0.002 0.845

Rosmarinus officinalis -0.105 0.051 0.026 0.279

Rubia longifolia -0.086 -0.067 0.069 0.158

Rubia peregrina -0.134 -0.136 0.005 0.004

Ruta angustifolia 0.011 0.068 0.811 0.149

Salsola genistoides -0.017 0.114 0.715 0.015

Santolina chamaecyparisus subsp. squarrosa

0.043 -0.107 0.362 0.024

Satureja obovata -0.073 -0.041 0.120 0.390

Sedum album 0.120 0.128 0.011 0.007

Sedum sediforme 0.157 0.228 0.001 0.000

Sideritis leucantha 0.252 0.096 0.000 0.042

Staehelina dubia -0.103 0.019 0.029 0.685

Stipa parviflora 0.018 -0.051 0.708 0.283

Stipa tenacissima 0.094 -0.185 0.045 0.000

Teucrium buxifolium subsp. rivasii

-0.049 0.009 0.299 0.846

Teucrium capitatum 0.241 0.089 0.000 0.060

Teucrium carolipaui 0.071 -0.089 0.133 0.059

Page 72: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Overview of woody vegetation patches in Stipa tenacissima steppes

59

Teucrium pseudochamaepitys -0.118 -0.064 0.012 0.174

Teucrium ronnigeri 0.125 0.017 0.008 0.726

Thymelaea argentata -0.016 -0.004 0.738 0.935

Thymelaea hirsuta 0.100 0.011 0.034 0.824

Thymus moroderi -0.042 -0.009 0.371 0.845

Thymus vulgaris -0.010 -0.095 0.836 0.043

Viola arborescens -0.109 -0.088 0.020 0.064

Page 73: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos
Page 74: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

CHAPTER 2

Networks of plant-plant co-occurrence in semiarid steppes

Page 75: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos
Page 76: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Networks of plant-plant co-ocurrence in semiarid steppes

63

INTRODUCTION

In semiarid areas, trees and large shrubs frequently form woody patches

immersed in a matrix of bare soil and smaller annual and perennial plants (Aguiar

and Sala, 1999). The expansion of woody patches on areas previously dominated

by herbaceous vegetation has been referred to as shrub encroachment, an

important and largely studied phenomenon in semiarid areas worldwide (Van

Auken, 2000; Eldridge et al., 2011). The effect of shrub encroachment on

community composition and ecosystem functioning depends on many factors,

including patch traits (Maestre et al. 2009a; Maestre et al. 2009b). These reflect

the morpho-functional traits of patch-forming species and the outcome of their

multiple interactions. However, despite its importance on patch and ecosystem

functioning, patch composition has been largely ignored in woody encroachment

studies.

In Chapter 1, I described the identity of dominant and accompanying

species forming woody vegetation patches in semiarid Stipa tenacissima steppes,

and classified them according to their composition (Non-metric Multi-Dimensional

Scaling analysis). However, these approaches provide few insights on the wide

array of interactions explaining patch formation and maintenance. The use of

network analysis could help to increase our knowledge on the underlying

mechanisms governing these processes.

Network theory has been used in ecological studies for decades (Paine,

1966), but only recently, network analysis has become a common approach to

study ecological communities (Jordano et al., 2003; Montoya et al., 2006; Estrada,

2007). Network analysis is a powerful tool that allows for the study of the physical

structure of the community, taking into account the fact that the interaction

between two species not only affects actors in the pair-wise relation, but the

complete network. In ecology, network theory has been mainly employed to

understand mutualistic networks and food webs (Pascual and Dunne, 2006;

Bascompte and Jordano, 2007; Thébault and Fontaine, 2010). In these networks,

the interaction between elements is usually uni-directional (e.g. pollinators-

pollinated plants, predators-preys, etc.; Bascompte and Jordano, 2007). In

contrast, network analysis has scarcely been applied to evaluate the composition

of plant communities. In these communities, interaction between species may be

Page 77: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 2

64

uni-directional (e.g. benefactor-beneficiary species in facilitative interactions;

Verdú and Valiente-Banuet, 2008). However, because of the complex nature of

plant-plant interactions and the wide range of intensity and directionality in

species interactions, they may be more accurately described by bi-directional

networks (such as species co-ocurrence networks). Uni-directional networks are

necessarily bipartite networks, as interactions between their elements occur

between nodes from different categories (‘two-mode networks’; Bascompte and

Jordano, 2007). On the contrary, bi-directional networks, where all their elements

interact may be studied through both approaches (bipartite and unipartite

networks), as their elements may belong to different or the same level. As most

studies on ecological communities focus on bipartite networks, network indices

have been mostly described and implemented for these uni-directional bipartite

networks. In contrast, few studies have employed these indices to gain further

insight on unipartite networks (but see Saiz and Alados, 2011a, 2011b), and none

has compared the suitability of both approaches for the study of co-occurrence

ecological networks. Furthermore, to my knowledge, no studies of plant-plant

networks have taken into account the intensity of inter-specific links (weights) to

describe network structure. The use of interaction weights provides more and

more precise information about the functioning of the system. Substantial

differences are found when using quantitative versus qualitative interaction data

(Scotti et al., 2007).

The use of a network approach to study plant community structure allows

for new insights into emergent properties and patterns of the whole community.

This information can be crucial to optimize management decisions, and improve

conservation and restoration actions. For example, network analysis provides

tools to define species roles within the community, and thus identify priority

species in conservation plans (Jordán and Scheuring, 2002). In addition, ecological

restoration has gradually shifted its emphasis from restoring species to restoring

species interactions, and thereby ecosystem functions and services (Henson et al.

2009; Heleno et al. 2010; Tylianakis et al., 2010; Cortina et al., 2011; Devoto et al.,

2012). Ecological interactions are key drivers of biodiversity, as the prevalence of

all organisms relies upon interactions with other individuals.

Page 78: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Networks of plant-plant co-ocurrence in semiarid steppes

65

Here, I used network theory to explore the properties of woody patch

communities in S. tenacissima steppes. These patches represent a suitable

environment to test hypotheses on community organization and network theory

as they are physically isolated, and they show heterogeneous physical and biotic

structures. In addition, patches are organized at two levels: dominant patch-

forming species and accompanying species, which allows for the use of a bipartite

approach. As I have previously explained (Chapter 1), dominant species are

resprouting shrubs which form clearly defined patches, because of their large size

and their ability to create new microhabitats. Accompanying species are smaller

shrubs, perennial grasses and annuals that thrive underneath the dominant

species, and do not form patches by themselves. The intensity and directionality

of the interaction between these two groups of species may be heterogeneous,

which impairs the use of unidirectional networks. I evaluated 27 bipartite

quantitative plant co-occurrence networks to explore the structure of woody

patch communities in semiarid steppes. First, I assessed network structure

diversity across contrasting sites by using four commonly used indices for bipartite

networks: connectance, nestedness, modularity and network specialization.

Second, I discussed the suitability of these network indices for the description of

co-occurrence networks and compared these results with a unipartite approach.

Third, I examined diversity within communities by assessing species specialization

and their linkage level, and compared these interaction patterns across sites.

Finally, I identified the contribution of each species to the maintenance of

community structure.

MATERIALS AND METHODS

Study site

The same 15 catchments of S. tenacissima steppes in SE Spain described in

Chapter 1 were studied in this Chapter. As explained above, catchments were

divided into 3-6 homogeneous units, according to exposure, topography and plant

cover, by using aerial photographs and field surveys, giving a total of 27

homogeneous units. In addition, in each catchment, 30 woody patches were

randomly selected, uo to a total of 450 patches. Each patch was assigned to its

Page 79: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 2

66

corresponding unit. In each patch, I recorded the presence of all perennial species

that occurred in more than 5% of the patches, as recommended by McCune and

Grace (2002) for community analysis. In total, there were 6 dominant species and

92 accompanying species in all catchments (See Chapter 1 for details on the

methodology).

Network analysis

Each homogeneous unit was considered a network whose nodes were

species, and interactions corresponded to co-occurrences of two species in the

same patch of a given unit (Appendix 1). The most commonly used interaction

strength surrogate for bipartite networks is interaction frequency (proportion of

cases where a given interaction is observed; Vázquez et al., 2005). However, this

surrogate is affected by the abundance of the participating species. I took this

influence into account to assign link weights, and generate an index of interaction

strength using the frequency of the co-occurrence between species weighted by

the abundance of each of the co-occurring species. This index was calculated as

(Number of patches where spi and spj co-occur * Total number of patches) *

(Number of patches where spi is present * Number of patches where spj is

present)-1. Values from this index were multiplied by 10 and rounded to satisfy the

requirements of network indices algorithms to be integers. This index is analogous

to those used in mutualistic weighted networks, which are standardized by

abundance of flowers and census time (Castro-Urgal et. al, 2012).

I described the structure of the 27 bipartite networks at two levels:

network level and species level. At network level, I estimated connectance,

nestedness, modularity and network specialization. At species level, I estimated

species specialization, weighted betweenness, generalization level and the role of

each species in network structure. Connectance, nestedness and modularity

indices were also estimated for unipartite networks. Network and species

specialization have not been developed for unipartite networks yet. This set of

network indices were selected because they are widely used, and they provide

complementary information that is relevant to understand woody patches and

their assembly rules. Each index is described in detail below.

Page 80: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Networks of plant-plant co-ocurrence in semiarid steppes

67

Network level

Connectance (C) is the number of actual links over all possible links in the

network (Dunne et al. 2002).

Nestedness (N) refers to the way that elements of a particular set are

linked to elements of a second set, dominant and accompanying species in this

study. Networks are highly nested when species with low connectance interact

with species that form perfect subsets of the species with which highly connected

species interact. Nestedness was calculated using the weighted-interaction

nestedness estimator (WINE; Galeano et al., 2008). WINE is based on the

calculation of Manhattan distance between cells that assigns positions to each cell

with the lowest number of links. Then, a new distance is calculated for each cell,

and its mean is the weighted-interaction distance (WIN). WIN is tested for

significance using a null model generated by 100 random matrices, and then it is

normalized into WINE to allow comparison between network matrices. WINE

ranges between cero (equivalent to average WIN of random matrices) and one

(equivalent to maximal nestedness matrix), although negative values may be

possible (Almeida-Neto et al., 2007; Galeano et al., 2008).

Modularity index (Q) is a measure of the degree to which a network is

organized into clearly separated modules. Nodes in a module are highly

connected between them, and poorly connected with nodes from other modules.

Modularity index was calculated using the QuanBiMo algorithm (Dormann and

Strauss, 2014) for quantitative bipartite networks based on the Louvain method

for weighted networks (Newman, 2004; Blondel et al., 2008). The value of Q is 0

when the number of within-module links is similar to random. When Q

approaches 1, it indicates strong community structure. I tested Q for significance

by comparing each empirical network with 100 random networks with the same

marginal totals.

Network specialization index (H2’) measures the degree of niche

divergence among species, obtained by comparing the observed value with an

expected probability distribution of interaction frequencies which assumes that all

species interact with their partners in proportion to their observed total

frequencies (Blüthgen et al., 2006). It ranges from 0 (low specialization, high niche

Page 81: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 2

68

overlap) to 1 (high specialization, low niche overlap). It is important to note the

differences between H2’ and the interaction strength surrogate (“interaction

weights”) that I used in this study (see above). Whilst both of them take into

account species abundance, interaction weights only consider the two species

involved in each interaction, and H2’ (and d’) consider the potential links that all

species can establish with certain species. The first one is a measure of the

community interaction, and the second one is a measure for each species.

Species level

Species specialization index (d’), as the previous network specialization

index (H’2), measures the degree of species specialization/generalization, taking

into account their abundance and the frequency of interactions (Blüthgen et al.,

2006).

Weighted betweenness is a measure of the position of the node within

the network, and describes the importance of a node as a connector between

different parts of the network by estimating the proportion of shortest paths

between pairs of species passing through each species, considering the number

and the weight of links (Freeman, 1979; Martín-González et al., 2010).

The generalization level of a species is defined as the proportion of

species it interacts with, out of the total possible in the network (normalized

degree; Martín-González et al., 2010).

Finally, the role of each species in each network was assessed following a

simplification of the criteria of Guimerà and Amaral (2005) by Olesen et al. (2007).

While the former identified seven roles, the later distinguished only four. I sorted

all species into peripherals, connectors, module hubs and network hubs. The last

three are termed generalists. A peripheral species has a few links inside its own

module and rarely any to other modules. A connector species links modules

together and is thus important for network coherence. A module hub is important

for the coherence of its own module. A network hub is important to the

coherence of both the network and its own module.

Page 82: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Networks of plant-plant co-ocurrence in semiarid steppes

69

Statistical analysis

All indices for bipartite networks except the species role identification,

were obtained using R 3.1.1 statistics software, bipartite package (R Development

Core Team, 2014). To obtain the modularity and nestedness of unipartite

networks I used PAJEK (Batagelj and Mrvar, 1998) and BINMATNEST (Rodríguez-

Gironés and Santamaría, 2006), respectively. The role of species was calculated

with software NETCARTO (Guimerà and Amaral, 2005). NETCARTO and

BINMATNEST are only implemented for unweighted networks; thus, only in these

cases, I considered presence/absence of species co-occurrences, irrespective of

the frequency of the co-occurrence and its abundance. Network indices were

tested for significance by generating 100 randomizations for each network, using

fixed marginal totals. Indices for bipartite and unipartite networks were compared

using Student’s-t test for paired samples. I estimated Pearson correlation between

network indices. These analyses were done using R 3.1.1 statistics software (R

Development Core Team, 2014)

RESULTS

Network level

In the bipartite approach of plant co-occurrence networks, connectance

ranged between 0.50 and 0.89 (Table 1). Modularity ranged from 0.10 to 0.41, all

networks were significantly modular, i.e., their modularity index was significantly

higher than the mean modularity index of 100 random networks (p<0.05). Each

network had 2-4 modules and each module had between 3 and 34 species (Fig. 1).

Only networks with more than 32 species had 4 modules. Nestedness ranged from

-0.33 to 0.55, but only 15 units were significantly nested. Network specialization

ranged from 0.08 to 0.47 and it was significant for all networks (p<0.05). The

unipartite approach showed lower connectance and higher number of modules

and nestedness, and a marginally significant increase in modularity (Student’s t

test, p<0.05; Table 1).

Page 83: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 2

70

Table 1. Network indices estimated for 27 networks of plant-plant co-occurrence in semiarid steppes. Dominant and accompanying species were considered as different levels for the bipartite approach. Significant values for modularity, nestedness and network specialization are shown in bold (100 random simulations, p<0.05). A summary of each index and Student's t test results from comparing bipartite indices with their unipartite counterpart are shown. C=Connectance, M=Modularity, nM=number of modules, N=Nestedness, H'2=Network specialization, Std. Error= Standard error, Min=minimum value, Max=maximum value, d.f.=degrees of freedom.

Network Dominant

species

Accom-panying species

Bipartite approach Unipartite approach

C M nM N H'2

C M nM N

1 6 36 0.70 0.28 3 0.24 0.26

0.75 0.16 4 0.71 2 6 20 0.61 0.32 3 -0.08 0.35

0.64 0.34 4 0.61

3 4 30 0.67 0.35 3 0.27 0.35

0.56 0.27 4 0.81 4 2 31 0.85 0.18 2 0.36 0.20

0.50 0.40 5 0.71

5 3 32 0.73 0.29 3 0.35 0.30

0.70 0.25 4 0.71 6 3 13 0.67 0.30 3 0.53 0.31

0.65 0.46 2 0.74

7 4 20 0.76 0.25 3 0.05 0.24

0.68 0.29 3 0.77 8 4 30 0.64 0.34 3 -0.02 0.41

0.58 0.33 4 0.77

9 5 38 0.64 0.33 3 0.43 0.31

0.59 0.30 5 0.71 10 3 26 0.78 0.22 3 0.27 0.22

0.76 0.18 4 0.72

11 3 35 0.64 0.36 2 0.50 0.39

0.49 0.40 5 0.66 12 2 22 0.82 0.20 2 0.20 0.25

0.58 0.40 3 0.70

13 3 38 0.67 0.32 3 0.18 0.46

0.42 0.27 4 0.83 14 5 39 0.50 0.41 3 0.55 0.47

0.50 0.32 5 0.79

15 4 28 0.76 0.30 2 0.19 0.29

0.65 0.30 3 0.73 16 6 39 0.81 0.22 3 -0.06 0.16

0.68 0.28 3 0.70

17 5 24 0.78 0.24 3 -0.27 0.24

0.70 0.27 3 0.76 18 4 39 0.87 0.21 3 0.11 0.15

0.74 0.29 3 0.72

19 6 36 0.68 0.27 4 0.26 0.25

0.68 0.26 4 0.72 20 6 20 0.73 0.22 3 0.13 0.19

0.66 0.38 2 0.74

21 4 18 0.65 0.33 3 -0.14 0.38

0.58 0.42 3 0.59 22 6 27 0.72 0.23 4 -0.10 0.24

0.52 0.35 4 0.81

23 5 16 0.89 0.10 3 -0.33 0.08

0.78 0.19 3 0.72 24 5 38 0.67 0.29 4 0.25 0.30

0.61 0.31 4 0.73

25 4 28 0.68 0.24 4 0.42 0.25

0.62 0.26 5 0.67 26 4 29 0.67 0.33 3 0.08 0.36

0.59 0.30 3 0.78

27 3 27 0.73 0.30 2 0.36 0.31 0.60 0.38 4 0.73 Mean 4 29 0.71 0.28 3 0.18 0.29

0.62 0.31 4 0.73

Std. Error 0.2 1.5 0.02 0.01 0.1 0.04 0.02

0.02 0.01 0.2 0.01 Min 2 13 0.50 0.10 2 -0.33 0.08

0.42 0.16 2 0.59

Max 6 39 0.89 0.41 4 0.55 0.47

0.78 0.46 5 0.83 Median 4 29 0.70 0.29 3 0.19 0.29 0.62 0.30 4 0.72 Student's t

5.43 -2.06 -3.76 -11.95

d.f.

26 26 26 26

p-value

<0.001 0.050 0.001 <0.001

Page 84: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Networks of plant-plant co-ocurrence in semiarid steppes

71

Network

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Num

ber

of

specie

s

0

5

10

15

20

25

30

35

40

45

50module 1

module 2

module 3

module 4

Figure 1. Number of modules and species per module of the 27 plant co-occurrence

networks studied in woody patches of Stipa tenacissima steppes.

Bipartite network indices were highly correlated. Connectance was

strongly and negatively correlated to modularity and network specialization, and

slightly and negatively correlated to nestedness (Table 2). Modularity was also

strongly and positively correlated to network specialization, and slightly and

positively correlated to nestedness. Only connectance, on one side, and

modularity and number of modules, on the other, were negatively correlated in

unipartite networks. Network size was correlated with the number of modules in

the unipartite representation (Pearson’s r=0.539, d.f.= 25, p-value=0.004). No

correlations were found between network size and bipartite network indices.

Page 85: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 2

72

Table 2. Pearson correlation of network indices for bipartite and unipartite plant co-occurrence networks (N=27 networks corresponding to woody patches in 27 homogeneous Stipa teenacissima steppes). p-values are shown in parenthesis. Significant correlations (p<0.05) are in bold.

Co

nn

ecta

nce

b

ipar

tite

Mo

du

lari

ty

bip

arti

te

Nu

mb

er m

od

ules

b

ipar

tite

Nes

ted

nes

s

bip

arti

te

Spec

ializ

atio

n b

ipar

tite

Co

nn

ecta

nce

un

ipar

tite

Mo

du

lari

ty

un

ipar

tite

Nu

mb

er m

od

ules

u

nip

arti

te

Modularity bipartite

-0.892 - - - - - - -

(<0.001) - - - - - - -

Number modules bipartite

-0.252 -0.034 - - - - - -

(0.206) (0.867) - - - - - -

Nestedness bipartite

-0.396 0.433 -0.168 - - - - -

(0.041) (0.024) (0.403) - - - - -

Specialization bipartite

-0.852 0.920 -0.081 0.359 - - - -

(<0.001) (<0.001) (0.690) (0.066) - - - -

Connectance unipartite

0.494 -0.516 0.169 -0.325 -0.686 - - -

(0.009) (0.006) (0.398) (0.098) (<0.001) - - -

Modularity unipartite

-0.199 0.232 -0.347 0.204 0.284 -0.538 - -

(0.319) (0.244) (0.076) (0.308) (0.152) (0.004) - -

Number modules unipartite

-0.394 0.335 0.053 0.471 0.361 -0.453 -0.158 -

(0.042) (0.088) (0.793) (0.013) (0.064) (0.018) (0.431) -

Nestedness unipartite

-0.033 0.088 0.151 0.043 0.146 -0.246 -0.201 -0.057

(0.871) (0.663) (0.452) (0.830) (0.468) (0.217) (0.315) (0.779)

Species level

Considering all units, the normalized degree (the degree scaled according

to the maximum number of possible links) for dominant species ranged between

0.23 and 1, and between 0.17 and 1 for accompanying species (Appendix 2).

Species specialization (d’) ranged from 0 to 0.78, with 98% of the cases (all species

in all units) showing values under 0.5. Only four cases with d’ >0.5 corresponded

to accompanying species (Centaurea aspera, Rosmarinus officinalis, Asparragus

horridus and A. acutifolius). The remaining 16 cases showing high levels of

Page 86: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Networks of plant-plant co-ocurrence in semiarid steppes

73

specialization were dominant species. Rhamnus lycioides always behaved as a

generalist, as maximum d’ value for this species was 0.37. Rhamnus lycioides was

also the dominant species with the highest degree (ANOVA and post-hoc Tukey-

HSD test, F=10.7, d.f.=5, p<0.05; Fig. 2). Species specialization was negatively

correlated to normalized degree in all units (Pearson’s r< -0.4, p<0.005 in all

units). Weighted betweenness was cero in 83% of the cases (all species in all

units); otherwise, it ranged between 0.004 and 1. Because of the high amount of

zeroes, I did not perform correlation analysis with this variable.

Ephedra fragilis

Osyris la

nceolata

Pistacia lentis

cus

Rhamnus lycioides

Quercus coccifera

Juniperus oxycedrus

Re

lative

va

lue

0.0

0.2

0.4

0.6

0.8

1.0Normalized degree

Species specialization (d')

a

AB

a

a

a

a

AB AB

B

A

A

b

Figure 2. Normalized degree and species specialization index (d’) for dominant species in

bipartite plant co-occurrence networks in woody patches of Stipa tenacissima steppes.

Mean and SE for each dominant species across all networks are shown. Different letters

indicate significant differences between species for each index (ANOVA and post-hoc

Tukey-HSD test, F=10.70, d.f.=5, p<0.05 for normalized degree and F=7.22, d.f.=5, p<0.05

for species specialization).

Rhamnus lycioides (100%) and Pistacia lentiscus (93%) were the two

dominant species present in most networks (Fig. 3). Only two accompanying

species were present in all networks: Stipa tenacissima and Brachypodium

Page 87: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 2

74

retusum. They both had high normalized degree (0.87 and 0.99, respectively) and

low specialization (0.07 and 0.01, respectively). In total, 12 accompanying species

out of 92 were present in >75% of the networks.

Accompanying species only showed peripheral and connector roles, and

none of them acted as module or network hubs (Appendix 2). Conversely, all

dominant species played all roles, except for Ephedra fragilis, which was never a

connector, and Osyris lanceolata, which was never a network hub (Fig. 3;

Appendix 2). In most cases where E. fragilis or O. lanceolata were present in a

network, they acted as peripheral nodes. Rhamnus lycioides and P. lentiscus were

hubs, either network or module hubs, in most networks where they were present.

Juniperus oxycedrus and Quercus coccifera were the less abundant dominant

species, and their role in the networks was similar: they were predominantly

peripherals and module hubs.

Dominant species

Ephedra fragilis

Osyris la

nceolata

Pistacia lentis

cus

Rhamnus lycioides

Quercus coccifera

Juniperus oxycedrus

Pro

po

rtio

n o

f u

nits (

%)

0

20

40

60

80

100

Network hub

Module hub

Peripheral

Connector

18 16 25 27 14 13

Figure 3. Network roles of dominant species in bipartite co-occurrence networks of

dominant and accompanying species forming woody patches in semiarid Stipa tenacissima

steppes. Numbers on top of the bars indicate the number of networks where each

dominant species was present.

Page 88: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Networks of plant-plant co-ocurrence in semiarid steppes

75

In three networks, I only found peripheral species, and most networks

(14/27) only comprised two types of species, mostly module hubs and peripherals

(Fig. 4). Network hubs were only present in networks with three or more roles.

Peripheral species dominated in most units, with the exception of four of them,

where connector was the most abundant network role. The maximum number of

network hub species in a network was three, and the maximum number of

module hub species was four.

Network

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Pro

port

ion o

f specie

s (

%)

0

20

40

60

80

100

Network hub

Module hub

Peripheral

Connector

Figure 4. Proportion of species role in each plant co-occurrence network of woody patches

in Stipa tenacissima steppes.

Page 89: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 2

76

DISCUSSION

Network structure

The indices used in this study to explain network structure –connectance,

nestedness, modularity and specialization- are consistent to describe the global

structure of a network, as they provide complementary information about

network cohesion, specificity of link establishment, and community segregation

into sub-communities (Fortuna et al., 2010). Species in woody patches were highly

connected, even more than in other plant networks (Verdú et al., 2010; Saiz and

Alados, 2011b). Plant co-occurrence networks may have fewer restrictions to

establish links than mutualistic networks and food webs, because there are fewer

morphological, phenological and physiological requirements to satisfy in the

former. High connectance may contribute to increase network robustness against

disturbance (Dunne et al., 2002), which is probably the result of high redundancy

(species that overlap in the species they interact with; Devoto et al., 2012).

Modularity in woody vegetation patches was moderate, similar to that found in

mutualistic networks and food webs (Thébault and Fontaine, 2010). However, the

number of modules per network was low, similar to some antagonistic networks

but lower than in many mutualistic networks (Krause et al., 2003; Olesen et al.,

2007; Travesset et al., 2013). Although there was no relation between network

size and modularity or number of modules, the maximum number of modules (4

modules) was only reached in those networks with relatively high number of

species (more than 32 species). In general, the size of plant co-occurrence

networks was in the lower range of those described for antagonistic and

mutualistic networks (Jordano et al., 2003; Saiz and Alados, 2011b). In addition to

their low specificity, compartmentalization in plant co-occurrence networks

seems unlikely. Low compartmentalization may facilitate the spread of

disturbances (Krause et al., 2003 and references therein). However, due to the

nature of plant co-occurrence networks, the effects of low modularity may be

attenuated, as link specificity is more relaxed in these than in mutualistic and

antagonistic networks.

In this study, nestedness reached a maximum of 0.55, significantly lower

than the values found in mutualistic networks and food webs (Bascompte et al.,

2003). Low values of nestedness reflect low specificity in dominant-accompanying

Page 90: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Networks of plant-plant co-ocurrence in semiarid steppes

77

species interactions (Bascompte et al., 2003). In addition, seven of the studied

communities showed a trend towards negative nestedness or ‘anti-nestedness’,

which corresponds to networks that are less nested than expected by chance

(Galeano et al., 2008). No specific model can be assigned to anti-nested matrices

as they may reflect various ecological contexts. Thus, co-ocurrence matrices that

depart from perfect nestedness may be arranged in different structural patterns,

described as checkerboard, high-turnover, compartmented and random (Almeida-

Neto et al., 2007). In this study, communities with negative nestedness showed

contrasted values of modularity and connectance, which hampers ascription to

any of the structural patterns described for anti-nested matrices. The low values

of nestedness observed in woody patches suggest that species in these

communities are mostly generalists and the level of specificity in plant-plant

interactions may be low. Low nestedness may be related to a decrease in the

stability and robustness in response to disturbances (Memmot et al., 2004, 2007;

Okuyama and Holland, 2008; Verdú and Valiente-Banuet, 2008; Thébault and

Fontaine, 2010), and a reduction in community ability to support high levels of

biodiversity (Bastolla et al., 2009). Woody patches act as ecosystem engineers,

modifying the microenvironment around them and favoring the establishment of

new species (Maestre and Cortina, 2005; Maestre et al., 2009b; Amat et al., 2015).

However, the balance between positive and negative interactions is dynamic, and

may change with time, distance, identity of the dominant species, and patch

community composition (Castro et al., 2002; Maestre and Cortina, 2004a;

Pugnaire et al., 2011; Amat et al., 2015). Results of the present study suggest that,

in general terms, microhabitats created underneath different woody patches

acted as generalist filters, and did not select for particular sets of accompanying

species. In agreement with the results obtained for nestedness, network

specialization was also low, indeed lower than specialization levels found in

mutualistic networks (Blüthgen et al., 2006; Traveset et al., 2013).

In woody patches, connectance was negatively correlated to nestedness,

modularity and network specialization. The lack of structure of highly connected

communities may reflect the difficulty to organize large numbers of interactions,

added to the fact that interactions change overtime (Fortuna et al., 2010). In

drylands, temporal variation in the intensity and direction of plant-plant

interactions results from changes in stress severity, phenology and ontogeny

Page 91: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 2

78

(Morris and Wood, 1989; Maestre and Cortina, 2004a; Amat et al., 2015).

Networks with different levels of specialization had similar values of connectance,

which indicates that the weight of the interactions was not evenly distributed

between networks (Blüthgen et al., 2006). The strong and negative correlation

between network specialization and connectance, and the strong and positive

correlation between network specialization and modularity, suggest that a higher

ability to form sub-communities was linked to more specialized interactions. This

may allow the coexistence of different types of woody patches in the same area.

However, we may note that modularity and specialization were both relatively

low, and woody patch communities should be considered overall generalists and

scarcely compartmented. My results partly agree with those of Thébault and

Fontaine (2010) who found that connectance was consistently and positively

related to nestedness, and negatively related to modularity, for both mutualistic

networks and food webs. These authors claimed that relationships between

connectance, nestedness and modularity could be used as surrogates of

community stability, as they are related to species persistence after disturbance.

Bipartite vs. unipartite approaches for co-occurrence networks

I applied four indices commonly used in the analysis of ecological bipartite

networks -mutualistic networks and food webs- for the study of plant co-

occurrence networks. In bipartite networks interactions are directed, and no

interaction between elements belonging to the same level is possible. In plant co-

occurrence networks, interactions are un-directed and possible between

elements from the same level (whether or not there is more than one level).

However, a bipartite approach to co-occurrence networks may provide insight on

community structure, specifically the structure of interactions. This approach can

be particularly valuable in studies focusing on the effect of a particular group of

species on another (e.g., benefactor and beneficiary species in plant facilitation

studies; Verdú and Valiente-Banuet, 2008; Verdú et al., 2010). Furthermore, this

approach may be useful in co-occurrence networks when two or more groups can

be discriminated, based on morphological, functional or ontogenetic traits. In my

study, I focused on the relationship between dominant and accompanying

species. While all species co-occur in woody patches (i.e., unipartite networks),

their morphology, function, distribution and impact on community composition of

Page 92: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Networks of plant-plant co-ocurrence in semiarid steppes

79

the two groups of species differ: large resprouting shrubs, which form

independent entities and predominantly occur in patches vs. small shrubs and

grasses, which are favored by woody patches but can thrive outside them.

The main disadvantage in using the bipartite approach for the study of

plant co-occurrence networks is that it misses information about co-occurrence of

species of the same level. For example, interaction between S. tenacissima and

Cistus clusii, two accompanying species, may change from positive to neutral,

depending on environmental conditions, which generates contrasting patterns of

spatial distribution (Armas and Pugnaire, 2005). Similarly, positive effects

between two patch-forming species, Juniperus sabina and J. communis, have been

described in the bibliography (Verdú and García-Fayos, 2003). Finally, studies on

bipartite and tripartite networks are more abundant than studies on unipartite

networks, which has fostered the development of powerful tools for their analysis

(Bascompte, 2009; Henson et al., 2009; Thébault and Fontaine 2010; Fontaine et

al., 2011; Chagnon et al., 2012; Heleno et al., 2013 for bipartite networks,

compared to Martín-González et al., 2010; Gómez et al., 2011; Saiz and Alados,

2011a, 2011b, 2014 for unipartite networks).

The analysis of co-occurrence networks has been surprisingly

underexplored, despite the huge amount of data available. The network

approach, either bipartite or unipartite, fosters our understanding of community

assembly rules by providing an integrative view of community structure and

composition. In this way, it complements co-occurrence studies based on pairwise

interactions. In addition, network indices are associated with functional properties

as robustness, stability against disturbances and extinctions, and spread of

disturbances (Dunne et al., 2002; Verdú and Valiente-Banuet, 2008; Thébault and

Fontaine, 2010; Gómez et al., 2011; Fontaine et al., 2011), which makes them

useful tools for ecosystem management, conservation and restoration.

In my study, I found substantial differences when comparing bipartite and

unipartite network indices for the same communities. In the unipartite approach,

connectance was lower than in the bipartite approach, which was not

unexpected, as the number of possible links is much higher when all species are

pooled. Nestedness increased substantially when using a the unipartite vs. the

bipartite approach. It is important to note that the algorithm used to estimate

Page 93: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 2

80

nestedness in unipartite networks (BINMATNEST; Rodríguez-Gironés and

Santamaría, 2006) only deals with unweighted interactions. To my knowledge, no

other algorithm has been implemented for nestedness estimation in unipartite

networks. The fact that all interactions are considered equally important in the

unipartite approach may overestimate the heterogeneity of interactions, which

explains the increased nestedness in the unipartite version. This is interesting,

because nestedness estimation in weighted networks has only been recently

developed (WINE; Galeano et al., 2008), and scarcely used in ecological studies,

despite the importance of interaction weights in community structure (Scotti et

al., 2007).

In contrast, modularity was not affected by network type, despite the fact

that the number of interactions considered in bipartite networks represents only

a subset of their unipartite versions. These results suggest that the structure of

links between dominant and accompanying species is key in determining

community segregation. The addition of further links may thus induce the

organization of new modules that are formed exclusively by accompanying

species, as it is reflected in the slight increase in the number of modules observed

in unipartite networks.

Diversity of woody patches communities

Communities of woody vegetation patches differed across units. Species

composition was relatively similar, but the way species were connected to each

other was different, which emphasizes the importance of considering species

interactions in the study of community structure. For example, the size of units 4,

22 and 26 was identical, and they shared many species, but their degree,

specialization and species role differed. On the contrary, other communities with

similar levels of modularity or nestedness differed in size or composition.

Only dominant species acted as module hubs or network hubs, which

confirms their importance as key species in maintaining community structure and

diversity of S. tenacissima steppes. Pairs of dominant species played similar roles.

Thus, P. lentiscus and R. lycioides were mostly hubs, whilst E. fragilis and O.

lanceolata were mostly peripherals, and Q. coccifera and J. oxycedrus played

different roles in similar proportions. This classification may partly respond to

Page 94: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Networks of plant-plant co-ocurrence in semiarid steppes

81

their abundance. Rhamnus lycioides was present in all units, and it was the most

abundant patch-forming species (see Chapter 1). Hence, it is not surprising that,

as a hub, most accompanying species interacted with it. However, abundance may

not be the sole factor behind hubs, as the abundance of P. lentiscus, which was

present in most units, was much lower than that of R. lycioides. Indeed, Q.

coccifera was present in only half of the units, but in those units it occurred in all

patches. As a result, its abundance was similar to that of P. lentiscus, but its role

as hub was much less predominant. The fact that equally abundant dominant

species played different roles in ecological networks denotes contrasting ability to

assemble communities. For example, P. lentiscus and R. lycioides may form

patches with less restrictions than other dominant species. Indeed, a parallel

study in S. tenacissima steppes showed that the potential to facilitate the

establishment of new individuals depended on the composition of the

communities of accompanying species and traits associated to the composition of

dominant species, such as litter accumulation and phylogenetic distance between

dominant species community and new seedlings (Amat et al., 2015; Chapter 4). It

is important to note that the identification of species roles does not take into

account the weight of the interactions, as no algorithm has been developed for

weighted networks yet. The importance of species as hubs or connectors could

change if this information was taken into account. This is particularly true for

species that were present in most networks and showed high normalized degree,

but were not identified as hubs in this study (B. retusum, Fumana ericoides,

Globularia alypum). The observation that some species are disproportionately

well linked to many other species may help to identify key species for restoration,

when restoration aims at promoting biodiversity (Pockok et al., 2012).

All networks evaluated in this study corresponded to a similar habitat (S.

tenacissima semiarid steppes). However, specialization, linkage and species role

differed across networks. Also network-scale indices showed some degree of

variability. This suggests that biotic and abiotic environmental factors, probably

playing at different scales, are important in defining community composition and

structure.

Page 95: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 2

82

CONCLUSION

I have demonstrated that network analysis is a powerful tool to uncover

emergent properties of plant communities. Compared to antagonistic and

mutualistic networks, co-occurrence networks are highly connected and less

structured. Yet, network traits in the studied semiarid steppes are heterogeneous,

and may be sensitive to both endogenous (species composition) and exogenous

factors (environmental conditions, previous land use). Identifying the drivers of

community assembly and network structure will improve our understanding of

the relationship between community composition and ecosystem function, and

enhance our ability to manage semiarid steppes. My findings are consistent with

studies on plant-plant interactions and analysis of other types of ecological

networks. Given the vast amount of information on plant co-occurrence that is

currently available at different scales, the use of network analysis on these data

sets could provide new insights on the underlying mechanisms of plant

community assembly rules, and contribute to our understanding of ecological

networks.

Page 96: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Networks of plant-plant co-ocurrence in semiarid steppes

83

APPENDIX 1. Bipartite representation of the 27 plant co-occurrence

networks. Upper level corresponds to dominant species (large shrubs that form

patches by themselves) and the lower level corresponds to accompanying species

(smaller species present in patches). Complete species names are given in

Appendix 3.

Network 1

Network 2

Network 3

Page 97: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 2

84

Network 4

Network 5

Network 6

Page 98: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Networks of plant-plant co-ocurrence in semiarid steppes

85

Network 7

Network 8

Network 9

Page 99: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 2

86

Network 10

Network 11

Network 12

Page 100: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Networks of plant-plant co-ocurrence in semiarid steppes

87

Network 13

Network 14

Network 15

Page 101: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 2

88

Network 16

Network 17

Network 18

Page 102: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Networks of plant-plant co-ocurrence in semiarid steppes

89

Network 19

Network 20

Network 21

Page 103: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 2

90

Network 22

Network 23

Network 24

Page 104: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Networks of plant-plant co-ocurrence in semiarid steppes

91

Network 25

Network 26

Network 27

Page 105: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 2

92

APPENDIX 2: Network indices at species level for the 27 plant co-occurrence

networks studied in Stipa tenacissima steppes. A list of species forming each

network, the degree, normalized degree, weighted betweenness, species

specialization and the role of species is given. Complete species names are given

in Appendix 3. See text for further details on the indices.

Network 1

Species Degree Normalized

degree Weighted

betweenness Species specialization

index (d’) Species role

Quecoc 33 0.92 0.00 0.11 network hub

Pislen 32 0.89 0.00 0.13 network hub

Rhalyc 34 0.94 1.00 0.06 connector

Junoxy 17 0.47 0.00 0.33 peripheral

Ephfra 26 0.72 0.00 0.31 network hub

Osylan 10 0.28 0.00 0.66 peripheral

Antcyt 5 0.83 0.00 0.06 connector

Asphor 6 1.00 0.00 0.01 connector

Aspoff 3 0.50 0.00 0.14 peripheral

Atrhum 3 0.50 0.00 0.13 peripheral

Braret 6 1.00 0.00 0.01 connector

Carhum 5 0.83 0.00 0.06 connector

Cenasp 2 0.33 0.00 0.60 peripheral

Cenqua 4 0.67 0.00 0.09 connector

Cheint 5 0.83 0.00 0.07 connector

Cormin 5 0.83 0.00 0.05 connector

Dorpen 3 0.50 0.00 0.14 peripheral

Echihum 5 0.83 0.64 0.13 connector

Erimul 4 0.67 0.00 0.13 connector

Fumeri 6 1.00 0.03 0.01 connector

Fumthy 3 0.50 0.00 0.13 peripheral

Gloaly 5 0.83 0.00 0.08 connector

Helcin 5 0.83 0.00 0.05 connector

Helsyr 4 0.67 0.00 0.08 connector

Helvio 5 0.83 0.00 0.06 connector

Helicsto 6 1.00 0.08 0.01 connector

Matfru 1 0.17 0.00 0.47 peripheral

Phasax 4 0.67 0.00 0.18 connector

Phiang 1 0.17 0.00 0.47 peripheral

Pinhal 3 0.50 0.00 0.13 peripheral

Rhaala 3 0.50 0.00 0.14 peripheral

Rubper 5 0.83 0.00 0.06 connector

Page 106: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Networks of plant-plant co-ocurrence in semiarid steppes

93

Rutang 6 1.00 0.25 0.07 connector

Sedalb 4 0.67 0.00 0.07 connector

Sidleu 5 0.83 0.00 0.05 connector

Stiten 5 0.83 0.00 0.05 connector

Teucap 4 0.67 0.00 0.08 connector

Teucar 4 0.67 0.00 0.08 connector

Teupse 5 0.83 0.00 0.06 connector

Thyhir 3 0.50 0.00 0.11 peripheral

Thymor 3 0.50 0.00 0.14 peripheral

Thyvul 6 1.00 0.00 0.05 connector

Network 2

Species Degree Normalized

degree Weighted

betweenness Species specialization

index (d’) Species role

Quecoc 12 0.60 0.00 0.45 connector

Pislen 10 0.50 0.00 0.34 connector

Rhalyc 10 0.50 0.00 0.33 peripheral

Junoxy 17 0.85 0.00 0.21 connector

Ephfra 11 0.55 0.00 0.37 peripheral

Osylan 13 0.65 0.00 0.26 connector

Antcyt 5 0.83 0.00 0.08 connector

Asphor 4 0.67 0.09 0.14 peripheral

Braret 6 1.00 0.00 0.01 connector

Carhum 2 0.33 0.00 0.39 peripheral

Cenqua 2 0.33 0.00 0.39 peripheral

Cheint 2 0.33 0.00 0.39 peripheral

Cormin 6 1.00 0.11 0.03 connector

Dorpen 1 0.17 0.00 0.44 peripheral

Fumeri 6 1.00 0.11 0.01 connector

Gloaly 6 1.00 0.00 0.01 connector

Helvio 1 0.17 0.00 0.50 peripheral

Helicsto 4 0.67 0.05 0.17 peripheral

Phasax 2 0.33 0.07 0.34 peripheral

Rutang 4 0.67 0.07 0.17 peripheral

Sedalb 3 0.50 0.00 0.24 peripheral

Stiten 4 0.67 0.00 0.17 peripheral

Teucap 5 0.83 0.38 0.14 connector

Teucar 3 0.50 0.01 0.36 peripheral

Teupse 5 0.83 0.11 0.07 connector

Thyvul 2 0.33 0.00 0.31 peripheral

Page 107: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 2

94

Network 3

Species Degree Normalized

degree Weighted

betweenness

Species specialization index

(d’) Species role

Rhalyc 30 1.00 0.00 0.17 module hub

Junoxy 11 0.37 0.00 0.52 peripheral

Ephfra 27 0.90 0.00 0.16 module hub

Osylan 12 0.40 0.00 0.53 peripheral

Antter 3 0.75 0.00 0.27 peripheral

Asphor 4 1.00 0.78 0.03 peripheral

Astinc 2 0.50 0.00 0.20 peripheral

Atrhum 3 0.75 0.22 0.15 peripheral

Balhir 2 0.50 0.00 0.20 peripheral

Braret 4 1.00 0.00 0.01 peripheral

Carhum 3 0.75 0.00 0.26 peripheral

Cenasp 3 0.75 0.00 0.14 peripheral

Conalt 2 0.50 0.00 0.20 peripheral

Cormin 3 0.75 0.00 0.34 peripheral

Diphar 1 0.25 0.00 0.31 peripheral

Elaasc 2 0.50 0.00 0.20 peripheral

Fagcre 4 1.00 0.00 0.00 peripheral

Fumeri 4 1.00 0.00 0.02 peripheral

Fumthy 2 0.50 0.00 0.20 peripheral

Helvio 4 1.00 0.00 0.00 peripheral

Matfru 1 0.25 0.00 0.31 peripheral

Parsuf 2 0.50 0.00 0.20 peripheral

Pharup 2 0.50 0.00 0.19 peripheral

Phasax 3 0.75 0.00 0.13 peripheral

Plaalb 3 0.75 0.00 0.07 peripheral

Polrup 3 0.75 0.00 0.16 peripheral

Sedsed 4 1.00 0.00 0.02 peripheral

Sidleu 4 1.00 0.00 0.02 peripheral

Stipar 2 0.50 0.00 0.19 peripheral

Stiten 1 0.25 0.00 0.31 peripheral

Teucap 2 0.50 0.00 0.20 peripheral

Teupse 2 0.50 0.00 0.20 peripheral

Teuron 3 0.75 0.00 0.12 peripheral

Thyvul 2 0.50 0.00 0.20 peripheral

Page 108: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Networks of plant-plant co-ocurrence in semiarid steppes

95

Network 4

Species Degree Normalized

degree Weighted

betweenness Species specialization

index (d’) Species role

Rhalyc 31 1.00 0.00 0.14 module hub

Ephfra 22 0.71 0.00 0.26 module hub

Antter 1 0.50 0.00 0.16 peripheral

Asphor 2 1.00 0.00 0.01 peripheral

Aspfis 2 1.00 0.00 0.03 peripheral

Balhir 2 1.00 0.00 0.01 peripheral

Braret 2 1.00 0.00 0.00 peripheral

Cenasp 2 1.00 0.00 0.01 peripheral

Conalt 2 1.00 0.00 0.00 peripheral

Cormin 1 0.50 0.00 0.16 peripheral

Dacglo 2 1.00 0.00 0.00 peripheral

Diphar 1 0.50 0.00 0.16 peripheral

Echihum 1 0.50 0.00 0.16 peripheral

Erycam 2 1.00 0.00 0.03 peripheral

Fagcre 2 1.00 0.00 0.00 peripheral

Gloaly 1 0.50 0.00 0.16 peripheral

Helvio 2 1.00 0.00 0.00 peripheral

Hyphir 2 1.00 0.00 0.00 peripheral

Parsuf 1 0.50 0.00 0.16 peripheral

Pharup 2 1.00 0.00 0.03 peripheral

Phasax 2 1.00 0.00 0.00 peripheral

Plaalb 2 1.00 0.00 0.01 peripheral

Polrup 2 1.00 0.00 0.00 peripheral

Rubper 2 1.00 0.00 0.03 peripheral

Rutang 1 0.50 0.00 0.16 peripheral

Sedsed 2 1.00 0.00 0.00 peripheral

Sidleu 2 1.00 0.00 0.01 peripheral

Stipar 2 1.00 0.00 0.01 peripheral

Stiten 2 1.00 0.00 0.00 peripheral

Teucap 1 0.50 0.00 0.16 peripheral

Teupse 1 0.50 0.00 0.16 peripheral

Teuron 2 1.00 0.00 0.01 peripheral

Thyhir 2 1.00 1.00 0.03 peripheral

Page 109: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 2

96

Network 5

Species Degree Normalized

degree Weighted

betweenness

Species specialization index

(d’) Species role

Pislen 12 0.38 0.00 0.51 module hub

Rhalyc 31 0.97 0.00 0.17 network hub

Ephfra 27 0.84 0.00 0.23 network hub

Antter 1 0.33 0.00 0.23 peripheral

Asphor 3 1.00 0.02 0.05 connector

Aspfis 1 0.33 0.00 0.29 peripheral

Atrhum 1 0.33 0.00 0.23 peripheral

Balhir 2 0.67 0.13 0.10 peripheral

Braret 3 1.00 0.00 0.00 connector

Bupfru 2 0.67 0.00 0.10 peripheral

Carhum 2 0.67 0.13 0.14 peripheral

Cenasp 2 0.67 0.00 0.10 peripheral

Cormin 3 1.00 0.00 0.08 connector

Fagcre 3 1.00 0.31 0.00 connector

Fumeri 3 1.00 0.00 0.05 connector

Fumthy 2 0.67 0.00 0.09 peripheral

Galset 2 0.67 0.00 0.10 peripheral

Helsyr 2 0.67 0.04 0.10 peripheral

Helvio 3 1.00 0.00 0.00 connector

Hyphir 2 0.67 0.00 0.10 peripheral

Lobmar 2 0.67 0.00 0.11 peripheral

Parsuf 2 0.67 0.00 0.09 peripheral

Pharup 2 0.67 0.15 0.15 peripheral

Phasax 2 0.67 0.00 0.14 peripheral

Plaalb 3 1.00 0.00 0.08 connector

Polrup 3 1.00 0.00 0.04 connector

Sedsed 3 1.00 0.01 0.01 connector

Sidleu 3 1.00 0.00 0.06 connector

Stipar 2 0.67 0.00 0.12 peripheral

Stiten 2 0.67 0.00 0.11 peripheral

Teucap 2 0.67 0.00 0.10 peripheral

Teucar 1 0.33 0.00 0.23 peripheral

Teupse 2 0.67 0.00 0.10 peripheral

Teuron 3 1.00 0.22 0.15 connector

Thyvul 1 0.33 0.00 0.23 peripheral

Page 110: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Networks of plant-plant co-ocurrence in semiarid steppes

97

Network 6

Species Degree Normalized

degree Weighted

betweenness Species specialization

index (d’) Species role

Pislen 5 0.38 0.00 0.43 peripheral

Rhalyc 13 1.00 0.00 0.20 module hub

Osylan 8 0.62 0.00 0.31 peripheral

Asphor 1 0.33 0.00 0.29 peripheral

Braret 3 1.00 0.00 0.04 peripheral

Dorpen 1 0.33 0.00 0.29 peripheral

Fagcre 3 1.00 0.00 0.04 peripheral

Fumeri 3 1.00 0.00 0.04 peripheral

Gloaly 3 1.00 0.00 0.05 peripheral

Helvio 2 0.67 0.00 0.14 peripheral

Pharup 1 0.33 0.00 0.29 peripheral

Phasax 1 0.33 0.00 0.29 peripheral

Stiten 3 1.00 0.00 0.08 peripheral

Teucap 2 0.67 0.00 0.14 peripheral

Thymor 1 0.33 0.00 0.29 peripheral

Thyvul 2 0.67 0.00 0.14 peripheral

Network 7

Species Degree Normalized

degree Weighted

betweenness Species specialization

index (d’) Species role

Pislen 18.00 0.90 1.00 0.16 peripheral

Rhalyc 20.00 1.00 0.00 0.04 peripheral

Ephfra 7.00 0.35 0.00 0.49 peripheral

Osylan 16.00 0.80 0.00 0.30 peripheral

Antcyt 3.00 0.75 0.09 0.19 peripheral

Asphor 4.00 1.00 0.55 0.11 peripheral

Braret 4.00 1.00 0.00 0.01 peripheral

Cenqua 2.00 0.50 0.00 0.22 peripheral

Chahum 2.00 0.50 0.00 0.29 peripheral

Erycam 2.00 0.50 0.00 0.20 peripheral

Fagcre 3.00 0.75 0.00 0.09 peripheral

Fumeri 4.00 1.00 0.00 0.04 peripheral

Fumthy 3.00 0.75 0.18 0.10 peripheral

Gloaly 3.00 0.75 0.00 0.06 peripheral

Helvio 3.00 0.75 0.09 0.07 peripheral

Helicsto 3.00 0.75 0.00 0.17 peripheral

Pharup 3.00 0.75 0.00 0.06 peripheral

Phasax 3.00 0.75 0.00 0.07 peripheral

Page 111: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 2

98

Rutang 3.00 0.75 0.09 0.07 peripheral

Sedalb 3.00 0.75 0.00 0.08 peripheral

Stiten 4.00 1.00 0.00 0.02 peripheral

Teucap 4.00 1.00 0.00 0.02 peripheral

Teucar 3.00 0.75 0.00 0.06 peripheral

Thymor 2.00 0.50 0.00 0.20 peripheral

Network 8

Species Degree Normalized

degree Weighted

betweenness

Species specialization

index (d’) Species role

Pislen 21 0.70 0.00 0.44 network hub

Rhalyc 26 0.87 0.00 0.22 network hub

Ephfra 13 0.43 0.00 0.48 module hub

Osylan 17 0.57 0.00 0.49 peripheral

Antcyt 4 1.00 0.13 0.04 connector

Asphor 2 0.50 0.00 0.19 peripheral

Asthis 1 0.25 0.00 0.36 peripheral

Atrhum 3 0.75 0.09 0.15 connector

Braret 4 1.00 0.00 0.03 connector

Cenqua 3 0.75 0.00 0.06 peripheral

Chahum 2 0.50 0.03 0.20 peripheral

Cheint 2 0.50 0.00 0.18 peripheral

Cormon 2 0.50 0.09 0.25 peripheral

Cormin 2 0.50 0.00 0.21 peripheral

Dorpen 1 0.25 0.00 0.36 peripheral

Echihum 3 0.75 0.02 0.14 peripheral

Fagcre 3 0.75 0.00 0.15 connector

Fumeri 3 0.75 0.00 0.05 peripheral

Fumthy 3 0.75 0.00 0.05 peripheral

Gloaly 4 1.00 0.00 0.01 connector

Helvio 4 1.00 0.10 0.02 connector

Helicsto 4 1.00 0.19 0.11 connector

Hypsir 1 0.25 0.00 0.37 peripheral

Pharup 2 0.50 0.00 0.33 peripheral

Phasax 3 0.75 0.00 0.13 connector

Polrup 2 0.50 0.00 0.22 peripheral

Rosoff 1 0.25 0.00 0.36 peripheral

Rutang 2 0.50 0.03 0.20 peripheral

Sedalb 3 0.75 0.00 0.12 peripheral

Stiten 4 1.00 0.00 0.00 connector

Page 112: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Networks of plant-plant co-ocurrence in semiarid steppes

99

Teucap 3 0.75 0.00 0.13 connector

Teucar 1 0.25 0.00 0.36 peripheral

Thymor 3 0.75 0.14 0.12 peripheral

Thyvul 2 0.50 0.18 0.14 peripheral

Network 9

Species Degree Normalized

degree Weighted

betweenness Species specialization

index (d’) Species role

Quecoc 9 0.24 0.00 0.52 peripheral

Pislen 38 1.00 0.00 0.13 module hub

Rhalyc 38 1.00 0.00 0.13 module hub

Ephfra 8 0.21 0.00 0.62 peripheral

Osylan 28 0.74 1.00 0.20 module hub

Antcyt 5 1.00 0.00 0.06 peripheral

Aspacu 2 0.40 0.00 0.19 peripheral

Asphor 3 0.60 0.00 0.11 peripheral

Asthis 2 0.40 0.00 0.19 peripheral

Astinc 3 0.60 0.00 0.10 peripheral

Atrhum 3 0.60 0.00 0.10 peripheral

Braret 5 1.00 0.00 0.01 peripheral

Carhum 2 0.40 0.00 0.19 peripheral

Cenqua 4 0.80 0.00 0.22 peripheral

Chahum 4 0.80 0.00 0.19 peripheral

Cormon 4 0.80 0.00 0.21 peripheral

Cormin 3 0.60 0.00 0.12 peripheral

Dorpen 2 0.40 0.00 0.19 peripheral

Echihum 2 0.40 0.00 0.19 peripheral

Fagcre 3 0.60 0.00 0.10 peripheral

Fumeri 4 0.80 0.00 0.08 peripheral

Fumlae 4 0.80 0.66 0.22 peripheral

Fumthy 3 0.60 0.00 0.11 peripheral

Gloaly 5 1.00 0.00 0.04 peripheral

Helsyr 3 0.60 0.00 0.15 peripheral

Helvio 4 0.80 0.00 0.19 peripheral

Helicsto 3 0.60 0.00 0.10 peripheral

Hetcon 3 0.60 0.00 0.10 peripheral

Hyphir 2 0.40 0.00 0.19 peripheral

Pharup 3 0.60 0.00 0.10 peripheral

Phasax 4 0.80 0.00 0.09 peripheral

Polrup 3 0.60 0.00 0.15 peripheral

Rubper 5 1.00 0.34 0.15 peripheral

Page 113: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 2

100

Rutang 2 0.40 0.00 0.19 peripheral

Salgen 3 0.60 0.00 0.12 peripheral

Sataov 2 0.40 0.00 0.19 peripheral

Sedsed 4 0.80 0.00 0.11 peripheral

Sidleu 2 0.40 0.00 0.19 peripheral

Stiten 4 0.80 0.00 0.07 peripheral

Teucap 3 0.60 0.00 0.10 peripheral

Teupse 2 0.40 0.00 0.19 peripheral

Thyhir 3 0.60 0.00 0.12 peripheral

Thyvul 3 0.60 0.00 0.12 peripheral

Network 10

Species Degree Normalized

degree Weighted

betweenness Species specialization

index (d’) Species role

Pislen 13 0.50 0.00 0.40 module hub

Rhalyc 26 1.00 0.00 0.08 network hub

Ephfra 22 0.85 0.00 0.18 network hub

Ajuiva 2 0.67 0.00 0.15 peripheral

Antcyt 2 0.67 0.00 0.12 peripheral

Asphor 3 1.00 0.00 0.01 connector

Balhir 3 1.00 0.00 0.03 connector

Braret 3 1.00 0.00 0.01 connector

Cenasp 2 0.67 0.00 0.09 peripheral

Conalt 1 0.33 0.00 0.25 peripheral

Dorpen 2 0.67 0.00 0.10 peripheral

Fagcre 3 1.00 0.00 0.01 connector

Fumeri 3 1.00 0.13 0.08 connector

Fumthy 2 0.67 0.00 0.10 peripheral

Helvio 2 0.67 0.00 0.09 peripheral

Helicsto 3 1.00 0.88 0.05 connector

Pharup 3 1.00 0.00 0.00 connector

Phasax 1 0.33 0.00 0.25 peripheral

Plaalb 2 0.67 0.00 0.09 peripheral

Polrup 1 0.33 0.00 0.25 peripheral

Rutang 2 0.67 0.00 0.10 peripheral

Sedalb 3 1.00 0.00 0.00 connector

Sidleu 2 0.67 0.00 0.10 peripheral

Stipar 2 0.67 0.00 0.22 peripheral

Stiten 3 1.00 0.00 0.01 connector

Teucap 3 1.00 0.00 0.01 connector

Page 114: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Networks of plant-plant co-ocurrence in semiarid steppes

101

Teucar 3 1.00 0.00 0.03 connector

Teupse 2 0.67 0.00 0.09 peripheral

Thyvul 3 1.00 0.00 0.02 connector

Network 11

Species Degree Normalized

degree Weighted

betweenness Species specialization

index (d’) Species role

Pislen 8 0.23 0.00 0.65 module hub

Rhalyc 35 1.00 0.00 0.24 network hub

Ephfra 24 0.69 0.00 0.30 module hub

Ajuiva 1 0.33 0.00 0.23 peripheral

Antcyt 2 0.67 0.00 0.14 peripheral

Artluc 3 1.00 0.00 0.17 connector

Asphor 3 1.00 0.00 0.05 connector

Atrhum 1 0.33 0.00 0.23 peripheral

Braret 2 0.67 0.00 0.09 peripheral

Carhum 1 0.33 0.00 0.23 peripheral

Cenasp 2 0.67 0.00 0.09 peripheral

Chiglu 1 0.33 0.00 0.23 peripheral

Dacglo 3 1.00 0.00 0.17 connector

Echihum 2 0.67 0.00 0.14 peripheral

Fagcre 3 1.00 0.00 0.00 connector

Fumeri 2 0.67 0.00 0.08 peripheral

Fumlae 1 0.33 0.00 0.23 peripheral

Fumthy 2 0.67 0.00 0.09 peripheral

Gloaly 1 0.33 0.00 0.23 peripheral

Helvio 2 0.67 0.00 0.10 peripheral

Helicsto 2 0.67 0.00 0.10 peripheral

Hyphir 2 0.67 0.00 0.14 peripheral

Hyperi 1 0.33 0.00 0.23 peripheral

Parsuf 1 0.33 0.00 0.23 peripheral

Pharup 2 0.67 0.00 0.15 peripheral

Phasax 2 0.67 0.00 0.14 peripheral

Plaalb 3 1.00 0.66 0.08 connector

Rutang 2 0.67 0.00 0.12 peripheral

Sedalb 3 1.00 0.00 0.04 connector

Sidleu 2 0.67 0.34 0.09 peripheral

Stipar 2 0.67 0.00 0.11 peripheral

Stiten 3 1.00 0.00 0.05 connector

Teucap 2 0.67 0.00 0.11 peripheral

Teucar 1 0.33 0.00 0.23 peripheral

Page 115: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 2

102

Teupse 1 0.33 0.00 0.23 peripheral

Thyhir 2 0.67 0.00 0.10 peripheral

Thyvul 3 1.00 0.00 0.15 connector

Vioarb 1 0.33 0.00 0.23 peripheral

Network 12

Species Degree Normalized

degree Weighted

betweenness Species specialization

index (d’) Species role

Pislen 14 0.64 0.00 0.33 module hub

Rhalyc 22 1.00 0.00 0.19 module hub

Artluc 1 0.50 0.00 0.22 peripheral

Asphor 2 1.00 0.00 0.02 peripheral

Balhir 2 1.00 0.00 0.03 peripheral

Braret 2 1.00 0.00 0.00 peripheral

Chahum 2 1.00 0.00 0.03 peripheral

Dacglo 1 0.50 0.00 0.22 peripheral

Fagcre 2 1.00 0.00 0.00 peripheral

Fumeri 2 1.00 0.00 0.00 peripheral

Fumthy 1 0.50 0.00 0.22 peripheral

Helvio 1 0.50 0.00 0.22 peripheral

Hyperi 2 1.00 0.00 0.03 peripheral

Pharup 1 0.50 0.00 0.22 peripheral

Rosoff 2 1.00 0.00 0.03 peripheral

Rutang 1 0.50 0.00 0.22 peripheral

Sedalb 1 0.50 0.00 0.22 peripheral

Sidleu 2 1.00 0.00 0.01 peripheral

Stipar 1 0.50 0.00 0.22 peripheral

Stiten 2 1.00 0.00 0.00 peripheral

Teubux 2 1.00 0.00 0.03 peripheral

Teucap 2 1.00 0.00 0.03 peripheral

Teucar 2 1.00 0.00 0.03 peripheral

Thyvul 2 1.00 0.00 0.00 peripheral

Network 13

Species Degree Normalized

degree Weighted

betweenness Species specialization

index (d’) Species role

Pislen 25 0.66 0.00 0.45 module hub

Rhalyc 35 0.92 1.00 0.25 network hub

Junoxy 16 0.42 0.00 0.67 module hub

Ajuiva 1 0.33 0.00 0.25 peripheral

Page 116: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Networks of plant-plant co-ocurrence in semiarid steppes

103

Antcyt 3 1.00 0.00 0.00 connector

Artluc 2 0.67 0.00 0.16 peripheral

Asphor 2 0.67 0.00 0.09 peripheral

Atrhum 2 0.67 0.00 0.18 peripheral

Balhir 2 0.67 0.00 0.11 peripheral

Braret 3 1.00 0.00 0.01 connector

Carhum 2 0.67 0.00 0.10 peripheral

Cenasp 1 0.33 0.00 0.25 peripheral

Cenqua 2 0.67 0.00 0.11 peripheral

Chiglu 2 0.67 0.00 0.13 peripheral

Cisalb 3 1.00 0.49 0.01 connector

Cormin 2 0.67 0.00 0.19 peripheral

Diphar 1 0.33 0.00 0.25 peripheral

Echihum 1 0.33 0.00 0.25 peripheral

Erycam 2 0.67 0.00 0.13 peripheral

Fagcre 3 1.00 0.00 0.01 connector

Fumeri 3 1.00 0.00 0.00 connector

Fumthy 3 1.00 0.00 0.01 connector

Gloaly 2 0.67 0.00 0.13 peripheral

Helvio 1 0.33 0.00 0.25 peripheral

Helicsto 2 0.67 0.00 0.10 peripheral

Pharup 1 0.33 0.00 0.25 peripheral

Phasax 2 0.67 0.00 0.13 peripheral

Plaalb 1 0.33 0.00 0.25 peripheral

Polrup 1 0.33 0.00 0.37 peripheral

Rosoff 3 1.00 0.00 0.00 connector

Rutang 2 0.67 0.31 0.23 peripheral

Sedalb 2 0.67 0.04 0.15 peripheral

Sidleu 2 0.67 0.00 0.10 peripheral

Stiten 3 1.00 0.00 0.01 connector

Teubux 1 0.33 0.00 0.37 peripheral

Teucap 2 0.67 0.00 0.11 peripheral

Teucar 3 1.00 0.00 0.01 connector

Teupse 2 0.67 0.00 0.13 peripheral

Thymor 2 0.67 0.00 0.13 peripheral

Thyvul 3 1.00 0.16 0.02 connector

Vioarb 1 0.33 0.00 0.37 peripheral

Page 117: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 2

104

Network 14

Species Degree Normalized

degree Weighted

betweenness Species specialization

index (d’) Species role

Quecoc 14 0.36 0.00 0.50 module hub

Pislen 34 0.87 0.60 0.33 network hub

Rhalyc 38 0.97 0.20 0.23 network hub

Junoxy 8 0.21 0.20 0.74 peripheral

Ephfra 3 0.08 0.00 0.67 peripheral

Antcyt 4 0.80 0.07 0.26 connector

Asphor 4 0.80 0.03 0.04 connector

Aspfis 2 0.40 0.00 0.16 peripheral

Atrhum 3 0.60 0.19 0.26 peripheral

Balhir 1 0.20 0.00 0.28 peripheral

Braret 5 1.00 0.08 0.07 connector

Bupfru 2 0.40 0.01 0.18 peripheral

Carhum 3 0.60 0.00 0.25 peripheral

Cisclu 3 0.60 0.00 0.19 peripheral

Conalt 2 0.40 0.00 0.16 peripheral

Cormin 1 0.20 0.00 0.28 peripheral

Dorpen 2 0.40 0.01 0.18 peripheral

Elaasc 2 0.40 0.00 0.18 peripheral

Erycam 1 0.20 0.00 0.30 peripheral

Fumeri 3 0.60 0.14 0.05 peripheral

Fumlae 1 0.20 0.00 0.28 peripheral

Fumthy 4 0.80 0.00 0.02 connector

Helcin 4 0.80 0.31 0.04 connector

Helsyr 2 0.40 0.00 0.16 peripheral

Helvio 3 0.60 0.00 0.14 peripheral

Helicsto 3 0.60 0.00 0.13 peripheral

Matfru 2 0.40 0.00 0.16 peripheral

Parsuf 2 0.40 0.00 0.17 peripheral

Pharup 2 0.40 0.00 0.16 peripheral

Phasax 2 0.40 0.00 0.16 peripheral

Plaalb 1 0.20 0.00 0.28 peripheral

Polrup 3 0.60 0.00 0.13 peripheral

Rosoff 2 0.40 0.00 0.53 peripheral

Rutang 2 0.40 0.00 0.16 peripheral

Sataov 2 0.40 0.03 0.18 peripheral

Sedsed 3 0.60 0.00 0.18 peripheral

Sidleu 3 0.60 0.00 0.14 peripheral

Stipar 3 0.60 0.02 0.14 peripheral

Page 118: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Networks of plant-plant co-ocurrence in semiarid steppes

105

Stiten 4 0.80 0.00 0.28 connector

Teucap 2 0.40 0.03 0.16 peripheral

Teupse 3 0.60 0.00 0.16 peripheral

Teuron 2 0.40 0.00 0.18 peripheral

Thyvul 2 0.40 0.00 0.18 peripheral

Vioarb 2 0.40 0.08 0.18 peripheral

Network 15

Species Degree Normalized

degree Weighted

betweenness Species specialization

index (d’) Species role

Pislen 23 0.82 0.00 0.27 module hub

Rhalyc 26 0.93 1.00 0.09 module hub

Ephfra 8 0.29 0.00 0.67 peripheral

Osylan 28 1.00 0.00 0.11 module hub

Antcyt 3 0.75 0.00 0.32 peripheral

Asphor 4 1.00 0.10 0.01 peripheral

Braret 4 1.00 0.10 0.00 peripheral

Carhum 3 0.75 0.00 0.10 peripheral

Corjun 2 0.50 0.00 0.20 peripheral

Cormin 3 0.75 0.00 0.09 peripheral

Echihum 3 0.75 0.00 0.09 peripheral

Fagcre 3 0.75 0.00 0.09 peripheral

Fumeri 3 0.75 0.00 0.09 peripheral

Fumlae 3 0.75 0.00 0.10 peripheral

Fumthy 2 0.50 0.00 0.17 peripheral

Gloaly 3 0.75 0.00 0.10 peripheral

Helvio 4 1.00 0.40 0.05 peripheral

Hyphir 3 0.75 0.03 0.11 peripheral

Lavden 3 0.75 0.00 0.09 peripheral

Pharup 3 0.75 0.00 0.09 peripheral

Rosoff 4 1.00 0.00 0.00 peripheral

Rubper 3 0.75 0.00 0.09 peripheral

Rutang 3 0.75 0.03 0.11 peripheral

Salgen 1 0.25 0.00 0.30 peripheral

Sedsed 4 1.00 0.00 0.03 peripheral

Sidleu 3 0.75 0.00 0.32 peripheral

Stipar 3 0.75 0.20 0.10 peripheral

Stiten 4 1.00 0.00 0.00 peripheral

Teucap 3 0.75 0.00 0.09 peripheral

Teucar 3 0.75 0.03 0.11 peripheral

Teuron 3 0.75 0.13 0.12 peripheral

Page 119: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 2

106

Thyvul 2 0.50 0.00 0.17 peripheral

Network 16

Species Degree Normalized

degree Weighted

betweenness Species specialization

index (d’) Species role

Quecoc 30 0.77 0.00 0.16 peripheral

Pislen 36 0.92 0.00 0.08 module hub

Rhalyc 38 0.97 0.00 0.06 module hub

Junoxy 25 0.64 0.00 0.27 peripheral

Ephfra 22 0.56 0.00 0.36 peripheral

Osylan 39 1.00 0.00 0.03 module hub

Antcyt 3 0.50 0.00 0.18 peripheral

Aspacu 5 0.83 0.00 0.09 peripheral

Asphor 3 0.50 0.00 0.18 peripheral

Atrhum 5 0.83 0.01 0.05 peripheral

Braret 6 1.00 0.00 0.00 peripheral

Bupfru 6 1.00 0.35 0.01 peripheral

Carhum 6 1.00 0.00 0.02 peripheral

Cersil 4 0.67 0.00 0.21 peripheral

Cisalb 6 1.00 0.00 0.04 peripheral

Corjun 4 0.67 0.00 0.12 peripheral

Cormin 6 1.00 0.00 0.00 peripheral

Elaten 4 0.67 0.00 0.14 peripheral

Erimul 5 0.83 0.00 0.10 peripheral

Fagcre 5 0.83 0.00 0.07 peripheral

Fumeri 6 1.00 0.00 0.01 peripheral

Fumlae 3 0.50 0.00 0.17 peripheral

Fumthy 5 0.83 0.00 0.06 peripheral

Gloaly 6 1.00 0.00 0.01 peripheral

Hedbov 4 0.67 0.00 0.21 peripheral

Helcin 2 0.33 0.00 0.25 peripheral

Helsyr 6 1.00 0.00 0.04 peripheral

Helvio 6 1.00 0.00 0.01 peripheral

Helicsto 5 0.83 0.00 0.08 peripheral

Lavden 5 0.83 0.00 0.07 peripheral

Matfru 6 1.00 0.00 0.02 peripheral

Onomin 5 0.83 0.00 0.06 peripheral

Palspi 5 0.83 0.22 0.08 peripheral

Pharup 5 0.83 0.00 0.10 peripheral

Rosoff 6 1.00 0.00 0.02 peripheral

Rubper 4 0.67 0.00 0.12 peripheral

Page 120: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Networks of plant-plant co-ocurrence in semiarid steppes

107

Rutang 6 1.00 0.00 0.00 peripheral

Sedsed 4 0.67 0.00 0.11 peripheral

Stipar 6 1.00 0.00 0.01 peripheral

Stiten 4 0.67 0.00 0.10 peripheral

Teucar 3 0.50 0.00 0.21 peripheral

Teupse 5 0.83 0.14 0.08 peripheral

Teuron 6 1.00 0.00 0.01 peripheral

Thyvul 3 0.50 0.00 0.22 peripheral

Vioarb 6 1.00 0.28 0.02 peripheral

Network 17

Species Degree Normalized

degree Weighted

betweenness Species specialization

index (d’) Species role

Pislen 24 1.00 1.00 0.02 connector

Rhalyc 15 0.63 0.00 0.37 peripheral

Junoxy 16 0.67 0.00 0.34 connector

Ephfra 14 0.58 0.00 0.41 peripheral

Osylan 24 1.00 0.00 0.01 connector

Asphor 5 1.00 0.00 0.00 connector

Atrhum 3 0.60 0.00 0.20 connector

Braret 5 1.00 0.00 0.01 connector

Carhum 3 0.60 0.00 0.19 peripheral

Cisalb 3 0.60 0.00 0.20 peripheral

Corjun 4 0.80 0.43 0.05 connector

Cormin 5 1.00 0.03 0.00 connector

Fagcre 5 1.00 0.00 0.00 connector

Fumeri 5 1.00 0.00 0.00 connector

Fumlae 4 0.80 0.00 0.11 connector

Fumthy 3 0.60 0.00 0.20 peripheral

Gloaly 4 0.80 0.20 0.05 connector

Hedbov 3 0.60 0.00 0.20 peripheral

Helvio 5 1.00 0.03 0.00 connector

Helicsto 3 0.60 0.00 0.24 peripheral

Lavden 4 0.80 0.00 0.11 connector

Onomin 3 0.60 0.00 0.24 peripheral

Pharup 3 0.60 0.00 0.20 peripheral

Rosoff 4 0.80 0.00 0.11 connector

Rutang 4 0.80 0.31 0.05 connector

Sedsed 5 1.00 0.00 0.01 connector

Stipar 4 0.80 0.00 0.11 connector

Stiten 3 0.60 0.00 0.20 connector

Page 121: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 2

108

Vioarb 3 0.60 0.00 0.24 peripheral

Network 18

Species Degree Normalized

degree Weighted

betweenness Species specialization

index (d’) Species role

Quecoc 39 1.00 0.00 0.12 module hub

Pislen 32 0.82 0.00 0.09 module hub

Rhalyc 38 0.97 0.00 0.10 module hub

Junoxy 26 0.67 0.00 0.27 module hub

Antcyt 4 1.00 0.00 0.01 peripheral

Asphor 3 0.75 0.00 0.11 peripheral

Aspari 2 0.50 0.00 0.20 peripheral

Aspfis 3 0.75 0.00 0.14 peripheral

Atrhum 4 1.00 0.00 0.04 peripheral

Braret 4 1.00 0.00 0.01 peripheral

Bupfru 2 0.50 0.03 0.20 peripheral

Carhum 4 1.00 0.00 0.00 peripheral

Cisalb 4 1.00 0.00 0.01 peripheral

Cisclu 4 1.00 0.00 0.02 peripheral

Conlag 2 0.50 0.00 0.20 peripheral

Cormin 4 1.00 0.20 0.07 peripheral

Dorpen 2 0.50 0.00 0.19 peripheral

Erycam 4 1.00 0.00 0.07 peripheral

Fumeri 4 1.00 0.00 0.01 peripheral

Fumlae 4 1.00 0.00 0.01 peripheral

Fumthy 4 1.00 0.00 0.00 peripheral

Helcin 4 1.00 0.29 0.00 peripheral

Helsyr 4 1.00 0.00 0.01 peripheral

Helvio 4 1.00 0.00 0.00 peripheral

Helicsto 4 1.00 0.00 0.03 peripheral

Hyphir 4 1.00 0.00 0.01 peripheral

Litfru 1 0.25 0.00 0.31 peripheral

Onomin 3 0.75 0.00 0.15 peripheral

Pharup 3 0.75 0.00 0.11 peripheral

Phasax 3 0.75 0.00 0.11 peripheral

Phllyc 4 1.00 0.43 0.07 peripheral

Polrup 4 1.00 0.00 0.02 peripheral

Rosoff 3 0.75 0.00 0.11 peripheral

Rubper 4 1.00 0.06 0.07 peripheral

Sataov 4 1.00 0.00 0.02 peripheral

Page 122: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Networks of plant-plant co-ocurrence in semiarid steppes

109

Sedalb 2 0.50 0.00 0.20 peripheral

Sedsed 4 1.00 0.00 0.02 peripheral

Sidleu 2 0.50 0.00 0.20 peripheral

Stipar 4 1.00 0.00 0.02 peripheral

Stiten 4 1.00 0.00 0.02 peripheral

Teucap 4 1.00 0.00 0.01 peripheral

Teupse 4 1.00 0.00 0.02 peripheral

Thyvul 4 1.00 0.00 0.00 peripheral

Network 19

Species Degree Normalized

degree Weighted

betweenness Species specialization

index (d’) Species role

Quecoc 24 0.67 0.00 0.25 connector

Pislen 35 0.97 1.00 0.07 network hub

Rhalyc 36 1.00 0.00 0.06 network hub

Junoxy 7 0.19 0.00 0.63 peripheral

Ephfra 21 0.58 0.00 0.36 peripheral

Osylan 23 0.64 0.00 0.26 peripheral

Antcyt 1 0.17 0.00 0.33 peripheral

Antter 5 0.83 0.00 0.03 connector

Asphor 3 0.50 0.00 0.24 peripheral

Aspfis 2 0.33 0.00 0.21 peripheral

Asthis 3 0.50 0.00 0.21 peripheral

Atrhum 5 0.83 0.43 0.04 connector

Braret 6 1.00 0.00 0.01 connector

Carhum 4 0.67 0.02 0.09 connector

Cheint 6 1.00 0.06 0.05 connector

Conlag 2 0.33 0.00 0.23 peripheral

Cormin 4 0.67 0.02 0.14 peripheral

Echihum 3 0.50 0.00 0.23 peripheral

Erimul 4 0.67 0.09 0.11 connector

Fagcre 6 1.00 0.04 0.03 connector

Fumeri 5 0.83 0.00 0.06 connector

Fumlae 5 0.83 0.00 0.04 connector

Fumthy 5 0.83 0.02 0.07 connector

Gloaly 5 0.83 0.00 0.05 connector

Helsyr 5 0.83 0.03 0.05 connector

Helvio 6 1.00 0.01 0.04 connector

Helicsto 5 0.83 0.06 0.04 connector

Matfru 3 0.50 0.00 0.21 peripheral

Pharup 4 0.67 0.00 0.10 peripheral

Page 123: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 2

110

Phasax 5 0.83 0.00 0.05 connector

Polrup 4 0.67 0.00 0.33 peripheral

Rosoff 2 0.33 0.00 0.23 peripheral

Rubper 4 0.67 0.00 0.08 connector

Rutang 3 0.50 0.00 0.27 peripheral

Sedsed 4 0.67 0.00 0.13 peripheral

Sidleu 4 0.67 0.00 0.09 connector

Stipar 3 0.50 0.00 0.15 peripheral

Stiten 6 1.00 0.00 0.05 connector

Teucap 4 0.67 0.01 0.12 connector

Teucar 5 0.83 0.20 0.23 connector

Teupse 2 0.33 0.00 0.23 peripheral

Thyvul 3 0.50 0.00 0.21 peripheral

Network 20

Species Degree Normalized

degree Weighted

betweenness Species specialization

index (d’) Species role

Quecoc 12 0.60 0.00 0.20 pheripheral

Pislen 15 0.75 0.00 0.09 pheripheral

Rhalyc 20 1.00 0.00 0.04 pheripheral

Junoxy 12 0.60 0.00 0.22 pheripheral

Ephfra 17 0.85 0.00 0.27 pheripheral

Osylan 11 0.55 0.00 0.31 pheripheral

Braret 6 1.00 0.00 0.00 pheripheral

Carhum 6 1.00 0.08 0.00 pheripheral

Cenqua 5 0.83 0.30 0.09 pheripheral

Cheint 2 0.33 0.00 0.29 pheripheral

Cisalb 6 1.00 0.00 0.02 pheripheral

Cormin 6 1.00 0.00 0.03 pheripheral

Fagcre 2 0.33 0.00 0.29 pheripheral

Fumeri 6 1.00 0.00 0.04 pheripheral

Gloaly 5 0.83 0.00 0.06 pheripheral

Helsyr 6 1.00 0.03 0.03 pheripheral

Helvio 4 0.67 0.00 0.17 pheripheral

Helicsto 5 0.83 0.33 0.09 pheripheral

Pharup 2 0.33 0.00 0.29 pheripheral

Phasax 4 0.67 0.00 0.12 pheripheral

Polrup 2 0.33 0.00 0.29 pheripheral

Rubper 3 0.50 0.00 0.32 pheripheral

Sedsed 2 0.33 0.00 0.29 pheripheral

Stiten 6 1.00 0.00 0.01 pheripheral

Page 124: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Networks of plant-plant co-ocurrence in semiarid steppes

111

Teucar 6 1.00 0.25 0.02 pheripheral

Thyarg 3 0.50 0.00 0.27 pheripheral

Network 21

Species Degree Normalized

degree Weighted

betweenness Species specialization

index (d’) Species role

Pislen 13 0.72 0.00 0.22 peripheral

Rhalyc 13 0.72 0.00 0.22 peripheral

Ephfra 7 0.39 0.00 0.78 peripheral

Osylan 14 0.78 0.00 0.29 peripheral

Astinc 3 0.75 0.00 0.12 peripheral

Braret 4 1.00 0.22 0.00 connector

Carhum 3 0.75 0.04 0.11 peripheral

Cenasp 1 0.25 0.00 0.48 peripheral

Chahum 1 0.25 0.00 0.48 peripheral

Fagcre 3 0.75 0.00 0.10 peripheral

Fumeri 3 0.75 0.04 0.12 peripheral

Fumthy 3 0.75 0.02 0.12 peripheral

Gloaly 4 1.00 0.00 0.00 connector

Haplin 4 1.00 0.43 0.04 connector

Helvio 3 0.75 0.02 0.12 peripheral

Rubper 3 0.75 0.10 0.12 peripheral

Sedsed 1 0.25 0.00 0.36 peripheral

Stipar 3 0.75 0.00 0.13 peripheral

Stiten 4 1.00 0.12 0.00 connector

Teucap 1 0.25 0.00 0.36 peripheral

Teupse 2 0.50 0.00 0.24 peripheral

Teuron 1 0.25 0.00 0.48 peripheral

Network 22

Species Degree Normalized

degree Weighted

betweenness Species specialization

index (d’) Species role

Quecoc 19 0.70 0.00 0.35 connector

Pislen 21 0.78 0.00 0.16 peripheral

Rhalyc 27 1.00 0.00 0.02 connector

Junoxy 11 0.41 0.00 0.49 connector

Ephfra 18 0.67 0.00 0.26 peripheral

Osylan 21 0.78 0.00 0.15 peripheral

Antter 3 0.50 0.00 0.20 peripheral

Asphor 2 0.33 0.00 0.56 peripheral

Page 125: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 2

112

Braret 6 1.00 0.00 0.01 peripheral

Carhum 6 1.00 0.00 0.04 peripheral

Cheint 4 0.67 0.00 0.13 peripheral

Cisalb 6 1.00 0.07 0.00 peripheral

Dorpen 2 0.33 0.00 0.31 peripheral

Erimul 2 0.33 0.00 0.31 peripheral

Fagcre 5 0.83 0.00 0.04 peripheral

Fumeri 3 0.50 0.00 0.22 peripheral

Gloaly 6 1.00 0.00 0.04 peripheral

Haplin 6 1.00 0.00 0.00 peripheral

Helsyr 3 0.50 0.00 0.19 peripheral

Helvio 5 0.83 0.03 0.09 peripheral

Helicsto 3 0.50 0.00 0.22 peripheral

Matfru 6 1.00 0.01 0.03 peripheral

Phasax 6 1.00 0.01 0.02 peripheral

Polrup 4 0.67 0.00 0.12 peripheral

Retsph 2 0.33 0.00 0.28 peripheral

Rubper 3 0.50 0.00 0.23 peripheral

Sidleu 4 0.67 0.00 0.13 peripheral

Stipar 6 1.00 0.00 0.01 peripheral

Stiten 5 0.83 0.00 0.04 peripheral

Teucap 4 0.67 0.00 0.13 peripheral

Teucar 6 1.00 0.13 0.04 peripheral

Teupse 4 0.67 0.00 0.13 peripheral

Thyvul 5 0.83 0.76 0.06 peripheral

Network 23

Species Degree Normalized

degree Weighted

betweenness Species specialization

index (d’) Species role

Quecoc 13 0.81 0.00 0.13 peripheral

Pislen 16 1.00 0.00 0.02 peripheral

Rhalyc 16 1.00 0.00 0.02 peripheral

Ephfra 13 0.81 0.00 0.11 peripheral

Osylan 13 0.81 0.00 0.11 peripheral

Antcyt 3 0.60 0.00 0.20 peripheral

Braret 5 1.00 0.00 0.00 peripheral

Carhum 5 1.00 0.00 0.00 peripheral

Cisalb 5 1.00 0.00 0.01 peripheral

Conlag 3 0.60 0.00 0.18 peripheral

Fagcre 3 0.60 0.00 0.18 peripheral

Fumlae 3 0.60 0.00 0.19 peripheral

Page 126: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Networks of plant-plant co-ocurrence in semiarid steppes

113

Gloaly 5 1.00 0.00 0.00 peripheral

Haplin 4 0.80 0.00 0.08 peripheral

Phasax 5 1.00 0.00 0.01 peripheral

Polrup 5 1.00 0.00 0.01 peripheral

Rublon 5 1.00 1.00 0.01 peripheral

Rubper 5 1.00 0.00 0.01 peripheral

Stipar 5 1.00 0.00 0.01 peripheral

Stiten 5 1.00 0.00 0.00 peripheral

Teucar 5 1.00 0.00 0.01 peripheral

Network 24

Species Degree Normalized

degree Weighted

betweenness Species specialization

index (d’) Species role

Quecoc 30 0.79 0.00 0.25 network hub

Pislen 24 0.63 0.00 0.29 module hub

Rhalyc 35 0.92 0.00 0.15 network hub

Junoxy 29 0.76 0.00 0.20 network hub

Osylan 10 0.26 0.00 0.62 peripheral

Aspacu 3 0.60 0.00 0.56 peripheral

Asphor 4 0.80 0.00 0.05 connector

Aspfis 3 0.60 0.00 0.13 connector

Atrhum 1 0.20 0.00 0.32 peripheral

Braret 5 1.00 0.00 0.00 connector

Bupfru 4 0.80 0.00 0.06 connector

Carhum 5 1.00 0.09 0.01 connector

Cormin 2 0.40 0.01 0.22 peripheral

Dorpen 1 0.20 0.00 0.32 peripheral

Elaasc 2 0.40 0.01 0.25 peripheral

Erimul 4 0.80 0.05 0.07 connector

Erycam 1 0.20 0.00 0.32 peripheral

Fumeri 4 0.80 0.00 0.06 connector

Fumlae 3 0.60 0.00 0.14 connector

Fumthy 4 0.80 0.04 0.09 connector

Gloaly 5 1.00 0.00 0.03 connector

Haplin 2 0.40 0.00 0.33 peripheral

Helcin 4 0.80 0.00 0.06 connector

Helsyr 1 0.20 0.00 0.32 peripheral

Helvio 5 1.00 0.00 0.02 connector

Helicsto 4 0.80 0.00 0.09 connector

Matfru 4 0.80 0.62 0.12 connector

Onomin 2 0.40 0.00 0.21 peripheral

Page 127: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 2

114

Parsuf 2 0.40 0.02 0.21 peripheral

Pharup 4 0.80 0.00 0.06 connector

Polrup 5 1.00 0.00 0.02 connector

Rhaala 1 0.20 0.00 0.39 peripheral

Rubper 2 0.40 0.00 0.23 peripheral

Rutang 5 1.00 0.07 0.05 connector

Sancha 2 0.40 0.00 0.22 peripheral

Sedalb 3 0.60 0.02 0.16 connector

Sedsed 5 1.00 0.00 0.02 connector

Stadub 4 0.80 0.00 0.08 connector

Stipar 4 0.80 0.00 0.06 connector

Stiten 5 1.00 0.00 0.02 connector

Teupse 4 0.80 0.00 0.06 connector

Teuron 4 0.80 0.05 0.06 connector

Thyvul 5 1.00 0.01 0.02 connector

Network 25

Species Degree Normalized

degree Weighted

betweenness Species specialization

index (d’) Species role

Quecoc 20 0.71 1.00 0.15 peripheral

Pislen 21 0.75 0.00 0.22 peripheral

Rhalyc 28 1.00 0.00 0.12 network hub

Junoxy 7 0.25 0.00 0.56 module hub

Asphor 2 0.50 0.00 0.19 peripheral

Aspfis 3 0.75 0.00 0.31 connector

Braret 4 1.00 0.00 0.01 connector

Bupfru 1 0.25 0.00 0.28 peripheral

Carhum 3 0.75 0.00 0.05 peripheral

Cheint 2 0.50 0.00 0.14 peripheral

Cormin 3 0.75 0.00 0.05 peripheral

Dorpen 3 0.75 0.03 0.08 peripheral

Elaasc 1 0.25 0.00 0.28 peripheral

Erimul 1 0.25 0.00 0.28 peripheral

Fumeri 4 1.00 0.03 0.07 connector

Fumlae 3 0.75 0.00 0.05 peripheral

Fumthy 3 0.75 0.13 0.08 peripheral

Galset 3 0.75 0.00 0.05 peripheral

Gloaly 3 0.75 0.00 0.05 peripheral

Helcin 2 0.50 0.00 0.18 peripheral

Helsyr 1 0.25 0.00 0.28 peripheral

Helvio 4 1.00 0.00 0.08 connector

Page 128: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Networks of plant-plant co-ocurrence in semiarid steppes

115

Parsuf 3 0.75 0.13 0.08 peripheral

Phasax 2 0.50 0.00 0.19 peripheral

Polrup 3 0.75 0.00 0.05 peripheral

Rutang 3 0.75 0.00 0.05 peripheral

Sedsed 4 1.00 0.00 0.09 connector

Stiten 4 1.00 0.20 0.04 connector

Teucap 1 0.25 0.00 0.28 peripheral

Teupse 3 0.75 0.00 0.05 peripheral

Teuron 3 0.75 0.00 0.05 peripheral

Thyvul 4 1.00 0.47 0.04 connector

Network 26

Species Degree Normalized

degree Weighted

betweenness Species specialization

index (d’) Species role

Quecoc 21 0.72 0.00 0.37 module hub

Pislen 12 0.41 0.00 0.48 peripheral

Rhalyc 29 1.00 0.00 0.08 module hub

Junoxy 16 0.55 0.00 0.49 module hub

Asphor 3 0.75 0.00 0.06 peripheral

Aspfis 2 0.50 0.00 0.23 peripheral

Braret 4 1.00 0.00 0.01 peripheral

Bupfru 3 0.75 0.00 0.17 peripheral

Carhum 4 1.00 0.00 0.02 peripheral

Cormin 2 0.50 0.00 0.23 peripheral

Erimul 2 0.50 0.00 0.23 peripheral

Fumeri 2 0.50 0.00 0.19 peripheral

Fumlae 3 0.75 0.20 0.08 peripheral

Fumthy 4 1.00 0.19 0.07 peripheral

Galset 2 0.50 0.00 0.24 peripheral

Gloaly 3 0.75 0.00 0.11 peripheral

Helcin 3 0.75 0.00 0.07 peripheral

Helsyr 2 0.50 0.00 0.24 peripheral

Helvio 3 0.75 0.20 0.06 peripheral

Helicsto 2 0.50 0.00 0.24 peripheral

Pharup 1 0.25 0.00 0.31 peripheral

Phasax 2 0.50 0.00 0.24 peripheral

Plaalb 3 0.75 0.00 0.22 peripheral

Polrup 4 1.00 0.00 0.04 peripheral

Rutang 2 0.50 0.00 0.20 peripheral

Sedsed 3 0.75 0.26 0.13 peripheral

Stipar 2 0.50 0.00 0.23 peripheral

Page 129: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 2

116

Stiten 3 0.75 0.00 0.14 peripheral

Teucap 3 0.75 0.00 0.15 peripheral

Teucar 2 0.50 0.00 0.20 peripheral

Teupse 4 1.00 0.14 0.01 peripheral

Teuron 1 0.25 0.00 0.31 peripheral

Thyvul 4 1.00 0.00 0.01 peripheral

Network 27

Species Degree Normalized

degree Weighted

betweenness Species specialization

index (d’) Species role

Quecoc 26 0.96 0.00 0.17 module hub

Pislen 7 0.26 0.00 0.62 module hub

Rhalyc 26 0.96 0.00 0.14 module hub

Asphor 3 1.00 0.13 0.01 peripheral

Atrhum 2 0.67 0.00 0.10 peripheral

Braret 3 1.00 0.00 0.00 peripheral

Bupfru 3 1.00 0.00 0.01 peripheral

Carhum 2 0.67 0.25 0.10 peripheral

Cheint 1 0.33 0.00 0.27 peripheral

Conlag 2 0.67 0.00 0.10 peripheral

Cormin 3 1.00 0.00 0.17 peripheral

Erimul 3 1.00 0.00 0.17 peripheral

Fumeri 2 0.67 0.00 0.10 peripheral

Fumlae 2 0.67 0.00 0.11 peripheral

Fumthy 2 0.67 0.25 0.11 peripheral

Galset 2 0.67 0.00 0.11 peripheral

Helcin 2 0.67 0.00 0.10 peripheral

Helsyr 2 0.67 0.00 0.10 peripheral

Helvio 2 0.67 0.00 0.10 peripheral

Helicsto 2 0.67 0.00 0.10 peripheral

Pharup 3 1.00 0.00 0.17 peripheral

Phasax 2 0.67 0.00 0.10 peripheral

Plaalb 1 0.33 0.00 0.23 peripheral

Polrup 2 0.67 0.00 0.10 peripheral

Rubper 2 0.67 0.13 0.10 peripheral

Rutang 2 0.67 0.13 0.10 peripheral

Sedsed 2 0.67 0.13 0.11 peripheral

Stiten 2 0.67 0.00 0.10 peripheral

Teupse 3 1.00 0.00 0.00 peripheral

Thyvul 2 0.67 0.00 0.10 peripheral

Page 130: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Networks of plant-plant co-ocurrence in semiarid steppes

117

APPENDIX 3. Species names for the species codes used through this chapter.

Dominant species are in bold.

Code Species name

Ajuiva Ajuga iva

Antcyt Anthyllis cytisoides

Antter Anthyllis terniflora

Artluc Artemisia lucentica

Aspacu Asparagus acutifolius

Asphor Asparagus horridus

Aspoff Asparagus officinalis

Aspari Asperula aristata subsp. scabra

Aspfis Asphodelus fistulosus

Aspram Asphodelus ramosus

Asthis Astragalus hispanicus

Astinc Astragalus incanus

Atrhum Atractylis humilis

Atrsem Atriplex semibaccata

Balhir Ballota hirsuta

Braret Brachypodium retusum

Bupfru Bupleurum fruticescens

Carhum Carex humilis

Cenasp Centaurea aspera subsp. stenophyla

Cenqua Centaurium quadrifolium subsp. barrelieri

Cersil Ceratonia siliqua

Chahum Chamaerops humilis

Cheint Cheirolophus intybaceus

Chiglu Chiliadenus glutinosus

Cisalb Cistus albidus

Cisclu Cistus clusii

Conalt Convolvulus altaeoides

Conlag Convolvulus lanuginosus

Cormon Coris monspeliensis

Corjun Coronilla juncea

Cormin Coronilla minima subsp. lotoides

Dacglo Dactylis glomerata

Page 131: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 2

118

Diabro Dianthus broteroi

Diphar Diplotaxis harra subsp. lagascana

Dorpen Dorycnium pentaphyllum

Echihum Echium humile

Elaasc Elaeoselinum asclepium

Elaten Elaeoselinum tenuifolium

Ephfra Ephedra fragilis

Erimul Erica multiflora

Erycam Eryngium campestre

Fagcre Fagonia cretica

Fumeri Fumana ericoides

Fumlae Fumana laevipes

Fumthy Fumana thymifolia

Galset Galium setaceum

Gloaly Globularia alypum

Haplin Haplophyllum linifolium

Hedbov Hedysarum boveanum

Helcin Helianthemum cinereum

Helsyr Helianthemum syriacum

Helvio Helianthemum violaceum

Helsto Helichrysum stoechas

Hetcon Heteropogon contortus

Hyphir Hyparrhenia hirta

Hypsin Hyparrhenia sinaica

Hyperi Hypericum ericoides

Junoxy Juniperus oxycedrus

Lavden Lavandula dentata

Linsuf Linum suffruticosum

Litfru Lithodora fruticosa

Lobmar Lobularia maritima

Lonetr Lonicera etrusca

Matfru Matthiola fruticulosa

Onomin Ononis minutissima

Osylan Osyris lanceolata

Palspi Pallenis spinosa

Parsuf Paronychia suffruticosa

Page 132: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Networks of plant-plant co-ocurrence in semiarid steppes

119

Pharup Phagnalon rupestre

Phasax Phagnalon saxatile

Phiang Phillyrea angustifolia

Phllyc Phlomis lychinitis

Pinhal Pinus halepensis

Pislen Pistacia lentiscus

Plaalb Plantago albicans

Polrup Polygala rupestris

Quecoc Quercus coccifera

Retsph Retama sphaerocarpa

Rhaala Rhamnus alaternus

Rhalyc Rhamnus lycioides

Rosoff Rosmarinus officinalis

Rublon Rubia longifolia

Rubper Rubia peregrina

Rutang Ruta angustifolia

Salgen Salsola genistoides

Sancha Santolina chamaecyparisus subsp. squarrosa

Sataov Satureja obovata

Sedalb Sedum album

Sedsed Sedum sediforme

Sidleu Sideritis leucantha

Stadub Staehelina dubia

Stipar Stipa parviflora

Stiten Stipa tenacissima

Teubux Teucrium buxifolium subsp. rivasii

Teucap Teucrium capitatum

Teucar Teucrium carolipaui

Teupse Teucrium pseudochamaepitys

Teuron Teucrium ronnigeri

Thyarg Thymelaea argentata

Thyhir Thymelaea hirsuta

Thymor Thymus moroderi

Thyvul Thymus vulgaris

Vioarb Viola arborescens

Page 133: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos
Page 134: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

CHAPTER 3

Endogenous and exogenous drivers of network structure in woody patches of

semiarid steppes

Page 135: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos
Page 136: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Endogenous and exogenous drivers of network structure

123

INTRODUCTION

Network theory provides powerful tools to understand community

structure by revealing interaction patterns and emergent properties of the whole

community (Jordano et al., 2003; Montoya et al., 2006; Estrada, 2007; Verdú and

Valiente-Banuet, 2008; Thébault and Fontaine, 2010). In Chapter 2 of this

dissertation, I used network theory to describe plant communities formed by

woody patches in semiarid steppes. In these communities, I differentiated

dominant and accompanying species and studied co-occurrence networks using a

bipartite perspective. Taking into account the presence and the intensity of co-

occurrence links, I found that these communities are highly connected, poorly

nested, scarcely specialized, and showed moderate modularity, with few sub-

communities. Dominant species emerged as key species for the maintenance of

network structure, as they played the role of network hubs in most communities.

This role may be associated to their ability to create patches and facilitate the

establishment of new individuals (Amat et al., 2015; Chapter 4). The presence and

abundance of accompanying species varied across communities as did the indices

of network structure. Variation in network indices may depend on endogenous

and exogenous factors. Increasing our knowledge of the drivers of network

structure can significantly improve our understanding of community functioning,

and contribute to the implementation of sound management practices (Devoto et

al., 2012).

Studies on the factors controlling mutualistic networks and food webs

have largely focused on endogenous factors (e.g., community age, species

morpho-functional traits and species richness), while exogenous factors have

received less attention (Heleno et al., 2010; Devoto et al., 2012). Yet, several

studies have examined the role of climatic conditions, disturbance regime, size

and density of neighboring vegetation, and the structure of understory vegetation

on network structure of mutualistic networks (Memmot et al., 2007; Devoto et al.,

2012). Conversely, drivers of plant community networks have seldom been

studied (Saiz and Alados, 2011a, 2014). It has been found that the abundance of a

key plant species directly affects the number of links they establish in the network

(Saiz and Alados, 2011a) and the stocking rate may influence the complexity of a

plant community (Saiz and Alados, 2014).

Page 137: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 3

124

Network indices describe the global structure of a network in terms of

cohesion, specificity of link establishment, and community segregation (Fortuna

et al., 2010), and they are also associated with important network properties. For

example, connectance has been related to network robustness (Dunne et al.,

2002), nestedness has been associated to stability against disturbances and

extinctions (Okuyama and Holland, 2008; Verdú and Valiente-Banuet, 2008;

Thébault and Fontaine, 2010), and modularity strongly influences the spread of

disturbances (Krause et al., 2003; Fontaine et al., 2011). Network architecture is

also related to network functioning, in terms of the performance of their

populations (Gómez et al., 2011). Increasing our knowledge on network

properties and the drivers of those properties may help us understand community

assembly rules and community variability in time and space, optimize

management decisions, and improve the efficiency of conservation and

restoration actions (Jordán and Scheuring, 2002; Henson et al. 2009; Heleno et al.

2010; Devoto et al., 2012).

In this chapter, I assess the exogenous and endogenous drivers of the

structure of woody patch communities in semiarid Stipa tenacissima steppes. I

studied 27 plant co-occurrence networks, and related them to climatic variables,

and physical and biotic attributes of sites and woody patches.

MATERIALS AND METHODS

Co-occurrence networks

I studied the bipartite co-occurrence networks described in Chapter 2. As

previously explained, each network was built by considering species forming

woody patches present in 27 environmental units. Nodes corresponded to

species, and interactions to species co-occurrences in woody patches. Interaction

strength was estimated as the frequency of co-occurrence between two species

weighted by their respective abundance. Dominant and accompanying species

formed the two levels of the bipartite networks. I used the values of connectance,

nestedness and modularity estimated in Chapter 2 as network structure indices

(Fig. 1 and Table 1).

Page 138: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Endogenous and exogenous drivers of network structure

125

Connectance Nestedness Modularity

Rela

tive v

alu

e

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1. Network structure indices in communities of woody patches in semiarid steppes.

The horizontal line within each box is the median of 27 bipartite quantitative networks of

dominant and accompanying species forming patches. The bottom and top limits of each

box represent the 25th and 75th percentiles, respectively. Error bars represent the 10th and

90th percentiles.

Page 139: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Table 1. Descriptors and indices of the surveyed plant-plant co-occurrence quantitative networks. All modularity values were statistically significant (p-value <0.05). Significant p-values for nestedness are shown in bold.

Network (unit)

Catch-ment

Unit area (m2)

Number of patches

Network size

Connectance Modularity Number of

modules Nestedness

1 1 11100 20 42 0.704 0.276 3 0.242 2 1 15100 10 26 0.608 0.317 3 -0.079 3 2 15600 15 34 0.667 0.353 3 0.269 4 2 11500 15 33 0.855 0.176 2 0.362 5 3 9700 30 35 0.729 0.289 3 0.351 6 4 1900 4 16 0.667 0.301 3 0.533 7 4 17700 26 24 0.763 0.249 3 0.054 8 5 29100 30 34 0.642 0.340 3 -0.019 9 6 75900 30 43 0.637 0.326 3 0.430

10 7 9900 16 29 0.782 0.218 3 0.266 11 7 6500 14 38 0.638 0.362 2 0.504 12 8 16700 6 24 0.818 0.205 2 0.197 13 8 22800 24 41 0.667 0.324 3 0.178 14 9 25200 30 44 0.497 0.410 3 0.551 15 10 24400 13 32 0.759 0.303 2 0.186 16 10 10000 12 45 0.812 0.216 3 -0.061 17 10 6300 5 29 0.775 0.240 3 -0.269 18 11 77800 30 43 0.865 0.211 3 0.113 19 12 34100 23 42 0.676 0.272 4 0.257 20 12 7200 7 26 0.725 0.220 3 0.130 21 13 5900 5 22 0.653 0.327 3 -0.142 22 13 17500 21 33 0.722 0.235 4 -0.096 23 13 4800 4 21 0.888 0.103 3 -0.334 24 14 34200 30 43 0.674 0.290 4 0.253 25 15 8200 9 32 0.679 0.240 4 0.415 26 15 14900 14 33 0.672 0.333 3 0.079 27 15 5900 7 30 0.728 0.305 2 0.364

Page 140: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Endogenous and exogenous drivers of network structure

127

Patch characterization and site variables

We measured patch size (canopy projected area) and patch species

composition (weighed by the cover of each species present) to test the influence

of these variables on network structure (see further details on the methodology in

Chapter 1, Patch characterization).

For each network (homogeneous environmental unit) we estimated the

richness of vascular plant species, woody patch density, total plant cover, loose

rock cover, rock outcrop cover and indicators of slope functionality such as mean

patch width, density of patches, total patch area and the average interpatch

length (LFA; Tongway and Hidley, 2004). Because of the significant correlation

between these indicators, and between interpatch length and rock outcrop cover

(Table 4), I only kept interpatch length for further analyses. In addition, interpatch

length has been described as an accurate indicator of slope functionality

(Tongway and Hindley, 2004). I used published records to estimate local mean

annual precipitation and mean annual air temperature in each unit (Ninyerola et

al., 2005). For methodological details see Catchment characterization and Unit

characterization in Chapter 1.

Statistical analyses

I used Non-metric Multi Dimensional Scaling (NMDS) to analyze species

composition in patches. NMDS has been recommended over other ordination

techniques for community analysis because it does not ignore community

structure that is unrelated to environmental variables and it does not assume

multivariate normality (McCune and Grace, 2002). I performed NMDS to reduce

dimensionality of the species composition matrix using cover of dominant and

accompanying species. I used Bray-Curtis distance measure with random starting

configurations for NMDS. The scores of the first two NMDS axis were averaged for

patches from the same unit. Explanatory variables were tested for correlation at

unit level using Pearson correlation coefficients.

Ten environmental and biotic variables were included in the models to

evaluate their effect on network structure (Table 2). I built a beta-regression

model for connectance and modularity because these variables are restricted to

Page 141: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 3

128

the interval (0-1). Beta-regression is a flexible analysis that allows us to interpret

results in terms of the variable of interest; instead of transformations, it accounts

for heteroskedasticity and easily accommodates asymmetries (Ferrari and Cribari-

Nieto, 2004). I conducted a general linear model (GLM) for nestedness, as this

variable was not constrained to any interval.

Table 2. Site and patch descriptors included in the models to explain network structure. Interpatch length is a measure of the distance between consecutive sinks to surface resource flow. Patch values correspond to the average of studied patches present in a given unit. na = not applicable.

Site Range Mean ± SE

Mean annual precipitation (mm) 282 - 525 353 ± 14

Mean annual air temperature (°C) 15 - 18 17 ± 0

Plant cover (%) 38 - 154 70 ± 6

Rock cover (%) 0 - 24 10 ± 1

Interpatch length (m) 0.7 - 2.3 1.6 ± 0.1

Woody patches

Patch density (woody patches 100 m-2

) 0.04 - 0.31 0.11 ± 0.01

Species richness (species 100 m-2) 0.06 - 0.84 0.29 ± 0.04

Patch size (m2) 4.1 - 23.9 10.5 ± 1.0

NMDS axis 1 -0.1294 - 0.1451 na

NMDS axis 2 0.0921 - 0.1135 na

I simplified the models by removing the least significant covariates one by

one. For each model, I estimated Akaike’s information criterion corrected for

small samples (AICc), as the relation between sample size (N=27) and the number

of estimated parameters (K=10) was less than 40 (Burnham and Anderson, 2002).

Then, I selected the model having the highest relative Akaike weight (Table 3). It is

important to note that for each response variable, there were similar models with

relatively high relative Akaike weights, and thus with a high probability to be the

best models; however, I only chose and discussed the model with the highest

weight for each response variable, following a commonly used criterion (Burnham

and Anderson, 2002). All analyses were performed using R 3.1.1 statistics

software (R Development Core Team, 2011). Network indices were estimated

with bipartite package. NMDS was performed with vegan package, and beta-

regression with betareg package.

Page 142: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Table 3. Model selection process using Akaike’s information criterion corrected for small samples (AICc) and relative Akaike weights. For each response variable, the model with the maximum relative Akaike weight (in bold) was selected for discussion. ΔAICc is the difference between each AICc and the smallest AICc.

CONNECTANCE Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10

Number of parameters 10 9 8 7 6 5 4 3 2 1

AICc -29.79 -34.94 -39.48 -43.50 -46.90 -49.69 -50.24 -49.96 -51.45 -50.05

ΔAICc 21.66 16.51 11.97 7.94 4.55 1.76 1.21 1.49 0.00 1.40

Relative Akaike weight <0.01 <0.01 <0.01 0.01 0.03 0.14 0.18 0.16 0.33 0.16

MODULARITY Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

Number of parameters 10 9 8 7 6 5 4 3

AICc -48.19 -53.06 -57.07 -60.57 -63.66 -65.72 -67.40 -67.56

ΔAICc 19.37 14.50 10.49 6.99 3.90 1.84 0.16 0.00

Relative Akaike weight <0.01 <0.01 <0.01 0.01 0.06 0.16 0.37 0.40

NESTEDNESS Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Number of parameters 10 9 8 7 6 5 4

AICc 11.42 6.28 1.88 -1.81 -4.75 -7.00 -8.37

ΔAICc 19.79 14.65 10.24 6.55 3.61 1.36 0.00

Relative Akaike weight <0.01 <0.01 <0.01 0.02 0.10 0.29 0.58

Page 143: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 3

130

RESULTS

Large resprouting shrubs were the most influential species for community

ordination in woody patches of S. tenacissima steppes (See Appendix in Chapter

1). NMDS stress was 0.3, and Shepard’s regression showed a non-metric fit of R2=

0.91 between the distances of each pair of patches in the final configuration and

their original dissimilarities. Axis 1 of the NMDS analysis was positively correlated

to Rhamnus lycioides cover, and negatively correlated to Quercus coccifera cover.

Dominant species Ephedra fragilis and Pistacia lentiscus showed the strongest

positive and negative correlation with NMDS axis 2, respectively. The three

accompanying species that were more correlated to NMDS axis 1 were Sideritis

leucantha, Teucrium capitatum and Plantago albicans (all of them positively

correlated). The three accompanying species that were more correlated to NMDS

axis 2 were Sedum sediforme, Helianthemum violaceum and S. tenacissima.

Mean annual temperature was strongly and negatively correlated to

altitude and woody patch size (Table 4). Mean annual precipitation was positively

correlated to plant cover. Interpatch length was positively correlated to rock

cover and rock outcrop cover. Various LFA indices were correlated. Thus, resource

sink cover and resource sink length were negatively correlated to interpatch

length, and positively correlated to resource sink width. Resource sink cover was

negatively correlated to altitude and woody patch size. Scores of NMDS axis 1

were positively correlated to mean annual temperature and negatively correlated

to altitude and woody patch size.

Page 144: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Table 4. Pearson correlation of the measured variables. N=27 for all cases except resource sink cover and resource sink width (n=26). P-values are shown in parentheses. Significant correlations (p<0.05) are in bold.

Pre

cipi

tati

on

Tem

per

atu

re

Alt

itu

de

Wo

od

y p

atch

si

ze

Ro

ck c

ove

r

Ro

ck o

utc

rop

co

ver

Pla

nt

cove

r

Inte

rpat

ch

len

gth

Res

ou

rce

sink

co

ver

Res

ou

rce

sink

le

ngt

h

Res

ou

rce

sink

w

idth

NM

DS

axis

1

Temperature -0.148 - - - - - - - - - - - (0.461) - - - - - - - - - - -

Altitude -0.069 -0.913 - - - - - - - - - - (0.732) (<0.001) - - - - - - - - - -

Woody patch size

-0.162 -0.694 0.762 - - - - - - - - - (0.418) (<0.001) (<0.001) - - - - - - - - -

Rock cover -0.292 0.121 -0.027 -0.063 - - - - - - - - (0.140) (0.547) (0.892) (0.753) - - - - - - - -

Rock outcrop cover

-0.132 0.101 -0.051 -0.048 0.315 - - - - - - - (0.513) (0.617) (0.799) (0.814) (0.110) - - - - - - -

Plant cover 0.680 0.043 -0.107 -0.118 -0.089 -0.005 - - - - - -

(<0.001) (0.832) (0.595) (0.558) (0.659) (0.981) - - - - - - Interpatch length

-0.307 -0.074 0.225 0.275 0.386 0.467 -0.321 - - - - - (0.120) (0.714) (0.259) (0.165) (0.046) (0.014) (0.103) - - - - -

Resource sink cover

-0.010 0.348 -0.400 -0.422 -0.249 -0.036 0.146 -0.568 - - - - (0.960) (0.082) (0.043) (0.032) (0.221) (0.863) (0.477) (0.002) - - - -

Resource sink length

0.302 0.311 -0.420 -0.266 -0.235 -0.121 0.610 -0.530 0.740 - - - (0.125) (0.114) (0.029) (0.180) (0.239) (0.547) (0.001) (0.005) (<0.001) - - -

Resource sink width

0.176 0.370 -0.385 -0.414 -0.181 -0.172 0.422 -0.387 0.818 0.695 - - (0.391) (0.063) (0.052) (0.036) (0.377) (0.401) (0.032) (0.051) (<0.001) (<0.001) - -

NMDS axis 1 -0.370 0.646 -0.458 -0.584 0.314 0.224 -0.299 0.149 0.116 -0.166 0.040 - (0.058) (<0.001) (0.016) (0.001) (0.110) (0.262) (0.130) (0.460) (0.574) (0.408) (0.845) -

NMDS axis 2 0.017 -0.043 0.138 -0.180 0.225 0.263 0.130 0.224 -0.206 -0.041 -0.167 0.251

(0.933) (0.832) (0.494) (0.368) (0.259) (0.186) (0.518) (0.261) (0.313) (0.840) (0.416) (0.207)

Page 145: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 3

132

According to the beta-regression model, mean annual air temperature

was positively related to connectance. Average patch size was also positively

related to connectance, but this effect was marginally significant (Table 5). This

model explained 16% of the variability in connectance. Modularity was negatively

related to mean annual air temperature and average patch size, and positively

related to rock cover (Table 5). The beta-regression model explained 31% of the

variability in modularity. Nestedness was negatively related to mean annual air

temperature and NMDS axis 2, positively related to NMDS axis 1, and marginally

and positively related to species richness (Table 5). The GLM explained 52% of the

variability in nestedness.

Table 5. Parameter estimates of regression models to evaluate the effect of biotic and abiotic factors on three network indices. Z-value is given for beta-regression models and t-value is given for GLM. Model selection was made according to the highest relative Akaike weights.

Estimate Standard error z value/ t value

p-value

Connectance (beta regression model)

(Intercept) -3.462 2.019 -1.715 0.0864

Air temperture 0.229 0.108 2.126 0.0335

Average woody patch size 0.041 0.021 1.918 0.0551

Phi (precision coefficient) 29.976 8.051 3.723 0.0002

Pseudo R2 0.155

Modularity (beta regression model)

(Intercept) 2.829 1.460 1.938 0.0526

Air temperture -0.208 0.078 -2.662 0.0078

Rock cover 0.018 0.009 2.033 0.0420

Average woody patch size -0.038 0.016 -2.408 0.0160

Phi (precision coefficient) 60.080 16.24 3.699 0.0002

Pseudo R2 0.306

Nestedness (GLM)

(Intercept) 3.215 0.835 3.850 0.0009

Air temperture -0.181 0.049 -3.719 0.0012

Species richness density 0.004 0.002 2.051 0.0524

NMDS axis 1 2.639 0.566 4.665 0.0001

NMDS axis 2 -1.764 0.752 -2.346 0.0284

Deviance explained 0.522

Page 146: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Endogenous and exogenous drivers of network structure

133

DISCUSSION

Both endogenous and exogenous factors affected community structure.

Bigger patches favored highly connected networks. This may be explained in two

ways. Firstly, as patch size increases, space and niche diversity also increase, and

so does the probability that an increasing number of accompanying species will

co-occur. Secondly, biggest patches are also the oldest (L. De Soto, University of

Coimbra and V. Rolo, Mendel University, pers. comm.), and time increases the

chances of new accompanying species getting established. Surprisingly, patch

composition did not affect connectance, despite its correlation to patch size and

the contrasted ability of different dominant species to accept new individuals

(Amat et al., 2015). This suggests that patch size effect on connectance is not

related to dominant species composition. Bigger patches also reduced modularity,

which is in agreement with the positive effect of patch size on connectance, as

higher connected communities hamper species segregation. In addition, the

higher probability that less species will co-occur in smaller patches than in bigger

ones also explains the increase in modularity when average patch size is low, as

the pool of species results inevitably segregated.

High rock cover promoted modularity. Species in less rocky sites were

present in most patches, but in rocky sites, species pool was segregated resulting

in different community assemblages. The presence of rock fragments may affect

community structure in various ways. On the one hand, plant dispersal and

establishment may be hampered by soil stoniness (Poesen and Lavee, 1994;

Maestre et al., 2003b) and thus rock fragments may hinder species colonization of

nearby patches. On the other hand, heterogeneity in soil stoniness may affect

micro-scale species assemblages (Noy-Meir, 1973; Peters et al., 2008), and

increase beta diversity.

In contrast to what I found for connectance and modularity, patch

composition strongly affected network nestedness. Patches dominated by

Rhamnus lyciodes and Pistacia lentiscus were the most nested. Nestedness

reflects the way species are related to each other and reveal specificities in these

relationships. In our study, species relations were asymmetrical when R. lyciodes

and P. lentiscus dominated patch composition: some accompanying species co-

occurred with all dominant species, while other species only appeared under

Page 147: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 3

134

specific dominant species. In contrast, most accompanying species co-occurred

with all dominant species (low nestedness) in units where Quercus coccifera and

Ephedra fragilis dominated. Explanation for the relation between species

composition and nestedness is not straightforward. The first NMDS axis (R.

lycioides – Q. coccifera gradient) showed a correlation to mean annual

temperature, altitude and woody patch size, which makes sense as patches

dominated by R. lycioides are smaller than those dominated by Q. coccifera, and

are associated to warmer and lower sites. The relationship between climatic

variables and nestedness is not trivial, and has been scarcely addressed in the

bibliography, particularly for plant co-occurrence networks (Selva and Fortuna,

2007). In contrast, the second NMDS axis (P. lentiscus – E. fragilis gradient) was

not related to any environmental variable. Morphofunctional attributes of

patches dominated by different species may partially explain differences in

nestedness. For example, R. lycioides increased nestedness while Q. coccifera

decreased it (first NMDS axis). The physiognomy of these two types of patches

differs substantially. Patches dominated by R. lycioides are frequently small

(average projected area 6.4 ± 0.3 m2, N=199), they have funnel-like and sparse

canopies (Leaf Area Index=1.9 ± 0.2 m2 m-2, N=10), and they do not accumulate

thick litter layers (0.9 ± 0.2 cm, N=8). In contrast, patches dominated by Q.

coccifera are commonly bigger (average projected area 27.1 ± 2.5 m2, N=76), their

dense canopies absorb most photosynthetic active radiation (Leaf Area Index=2.6

± 0.2 m2 m-2, N=19), and they accumulate thick litter layers (6.1 ± 0.8 cm, N=8),

which may hamper seed germination (Rotundo and Aguiar, 2005; Chapter 5 of the

present dissertation). Thus, in units where R. lycioides dominated, most

accompanying species thrived under their canopies, and patches with small

number of species represented subsets of those. In contrast, the presence of Q.

coccifera may act as a stronger filter for species establishment, either increasing

randomness in species composition or selecting for a few accompanying species.

In a random subset of 50 woody patches dominated by R. lyciodes there were

more accompanying species (1.1 ± 0.1 species m-1) than in a similar subset of

patches dominated by Q. coccifera (0.6 ± 0.1 species m-1). However, this argument

is not valid when we look at the second NMDS axis: E. fragilis patches, whose

physiognomy is similar to R. lycioides patches, decreased nestedness, while P.

lentiscus patches, whose physiognomy is similar to Q. coccifera patches, increased

it. This suggests that the effect of composition on nestedness goes beyond the

Page 148: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Endogenous and exogenous drivers of network structure

135

dominant species composition of patches, even when dominant species were the

most influential for patch composition. These results support previous

observations of a two-level organization of patch communities, dominant and

accompanying species, on the basis of their role in patch formation and their

contribution to patch structure (Maestre and Cortina, 2005; Amat et al., 2015).

The accompanying species that were correlated to NMDS axes did not share easily

recognizable morphological or functional attributes that may affect their potential

to affect nestedness. Unfortunately, no studies have explored the relationship

between species traits and network attributes in plant co-occurrence networks.

Our results suggest that the importance of patch composition in structuring

nested communities relies on the whole pool of species and not on the attributes

of particular species, even if certain species have a stronger influence than others

in community ordination.

Species richness around woody patches positively affected community

nestedness. This result suggests a positive relation between the size of species

pool and community structure, and may reflect the increased probability of

occurrence of accompanying species requiring specific dominant species as

species pool enlarges. It is important to note that network size (number of

species) was not related to any network index (see Chapter 2), suggesting that

high species richness around the patches may promote nestedness by increasing

the probability of patches incorporating specialists, but not by increasing network

size. In addition, high species richness around woody patches suggests high

microenvironment heterogeneity, which may also favor community structuring.

These results are in agreement with those of Saiz and Alados (2014) where low

richness, promoted by high stocking rate, decreased network complexity in plant-

plant networks in a semiarid Mediterranean area.

Mean annual air temperature affected the three network indices. These

relationships were somewhat surprising, as the range of air temperature in the 27

units was rather narrow. Higher temperatures favored species co-occurrence, and

hampered modularity and nestedness. A direct relationship between network

indices and small variations in air temperature is not straightforward. On one

hand, increases in average air temperature are associated with increases in

evaporative demand, which can be crucial for plant survival in semiarid areas

Page 149: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 3

136

(Valiente-Banuet and Ezcurra, 1991; Vallejo et al., 2012). However, in this case,

we would expect water stress to be primarily reflected in average precipitation,

and I found no relationship between average rainfall and network indices. On the

other hand, small changes in average air temperature may indeed reflect

significant changes in extreme temperatures. These may affect network structure,

albeit in non-linear ways. Average air temperature was strongly correlated to

altitude, and probably to the risk of freezing. These extreme events may act as

filters, decreasing the probability of co-occurrence, favoring specialization and

promoting the segregation of different dominant-accompanying species

assemblages. Our results suggest that the structure of plant communities is

strongly related to air temperature, and thus it may be sensitive to climate

change. Aridity will increase in semiarid areas over the next decades (IPCC, 2013).

Considering current species pool, warming may promote connectance, while

reducing network nestedness and modularity. These changes may increase the

vulnerability of woody patches to further disturbances, and deeply modify the

composition and function of semiarid steppes (Maestre et al., 2009b).

CONCLUSION

Plant communities showed higher levels of connectance and lower levels

of nestedness and modularity than mutualistic and trophic networks, which is

congruent with the complex and weakly structured nature of most plant-plant

interactions. Furthermore, I found that both endogenous and exogenous factors

were major drivers of network structure in woody patches of semiarid steppes.

Patch size, rock cover, average air temperature and the composition of patch-

forming species were related to various aspects of community organization.

Information about drivers on network structure of plant communities can be

crucial to assess community ability to withstand disturbances and to prescribe

management practices to foster biodiversity and the provision of ecosystem

services.

Page 150: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

CHAPTER 4 Community attributes determine facilitation

potential in a semiarid steppe

Page 151: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos
Page 152: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Community attributes determine facilitation potential

139

INTRODUCTION

Biotic interactions determine community assembly and ecosystem

functioning. Competition has been traditionally considered as the main driver in

structuring plant communities (Grime, 1974). However, over the last decades, an

increasing number of studies have emphasized the importance of facilitation as a

major ecological interaction (Bertness and Callaway, 1994; Callaway, 1995, 2007;

Brooker et al., 2008). Studies on plant-plant relations have traditionally focused

on pair-wise interactions, paying scarce attention to other co-existing species

(Brooker et al., 2008). This topic was reviewed by Jones and Callaway (2007),

where they discussed the context-dependency of plant interactions and

emphasized the role of third species. When many benefactor and beneficiary

species co-occur, a complex network of interactions arises, leading to indirect

effects, such as indirect facilitation (Callaway, 2007; Brooker et al., 2008; Gross,

2008). Thus, the net outcome of multi-species interactions may not necessarily be

the additive effect of pair-wise relationships (Weigelt et al., 2007; Zhang et al.,

2011).

In recent years, there has been an increasing number of studies

employing the community approach to study facilitation (Verdú and Valiente-

Banuet, 2008; Cavieres and Badano, 2009; Gilbert et al., 2009; Soliveres et al.,

2011a; Granda et al., 2012). However, most of those studies are either

extrapolations of individual responses to a community scale, or studies focused

on the effect of nurse species on biodiversity, but not on the opposite, i.e., on the

capacity of species assemblages to act as nurses (but see Castillo et al., 2010 for

an analysis of the effect of phylogenetic distance of the nurse community on

seedling establishment). Drylands are not the exception and pairwise approaches

dominate the study of positive interactions (Pugnaire et al., 2011). However,

species in drylands do not occur in isolation. Harsh conditions, especially water

scarcity, promote spatially aggregated vegetation patterns (Aguiar and Sala,

1999).

In drylands, vegetation is frequently arranged in multi-species patches

where direct and indirect facilitation promotes species coexistence (Flores and

Jurado, 2003; Callaway, 2007). Attributes defining the physical and biotic

structure of these patches, such as patch size, litter accumulation, canopy

structure, and species number and identity may affect seedling establishment.

Page 153: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 4

140

Communities of putative benefactor species in vegetation patches may promote

species coexistence by favoring seedling performance. As not all species co-

occurring in a patch act as nurses, patches with high species richness are more

likely to contain benefactor species than those with fewer species (i.e., sampling

effect), and thus species richness may enhance the recruitment of new

individuals. Conversely, as species richness increases, the probability that species

with contrasted functional traits co-occur may also increase. Due to niche

saturation, patch biotic and physical dimensions may be limited, and the

establishment of new individuals may be hindered by patch size and age

(MacArthur and Levins, 1967; Case, 1991). In this case, increased species richness

would reduce patch potential to accept new individuals. The positive and negative

relationship between species richness and community capacity to accept further

species, together with the influence of spatial scale, has been discussed around

the theory of the invasion paradox (Levine, 2000; Stohlgren et al., 2003; Friedley

et al., 2007). According to this theory, community diversity and invasibility should

be negatively related at small spatial scales. However, facilitation often promotes

invasive species richness (Von Holle, 2005; Friedley et al., 2007; Vellend, 2008;

Altieri et al., 2010), and accordingly, we would expect increased establishment

rates in species-rich patches, particularly under the stressful conditions of

semiarid areas (Von Holle, 2005).

Species identity may also be crucial for the establishment of new

individuals, because of the similarity of ecological niches, species competitive

ability and species capacity to enhance microclimate conditions for the

newcomers. Phylogenetic distance between species may directly affect the net

outcome of the interaction, as closely related species are likely to share important

ecological traits and therefore compete among each other (Webb et al., 2002;

Valiente-Banuet and Verdú, 2007). However, in multi-specific assemblages,

phylogenetic composition of the entire community, rather than the phylogeny of

a dominant species, may control seedling establishment. The mechanisms of

competition in multi-species communities in dry grasslands showed that non-

additive effects of pairwise interactions drive the net outcome of the interaction

(Weigelt et al., 2007). However, to our knowledge, no study has evaluated the

facilitative effect of whole communities in seedling establishment in drylands.

Neither the attributes of communities that are involved in seedling recruitment

Page 154: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Community attributes determine facilitation potential

141

have been explored. Still, species identity, patch composition and the physical

structure of woody vegetation patches may be crucial for seedling establishment.

Woody patches may affect seedling establishment in various ways,

including microclimate regulation, changes in water and nutrient availability, and

the presence of symbiotic fungi, to mention a few (Vetaas, 1992; Nara and

Hogetsu, 2004; Smith and Reed, 2008; Cable et al., 2009; Soliveres et al., 2011a;

Anthelme et al., 2012). Their combined effect cannot be easily predicted, as

interactions are common and complex. For example, nutrient and organic matter

accumulation, and the formation of a thick litter layer depend on plant size and

species identity (Vivanco and Austin, 2006). However, whilst higher soil fertility

may enhance seedling establishment, litter frequently hinders seed germination

and rooting (Rotundo and Aguiar, 2005; Chapter 5). The outcome of the

interaction between established patches and seedlings may also depend on the

particular location within the patch where the new individual thrives. For

example, the relative importance of aboveground interactions (e.g., competition

for light, excess radiation, herbivory) vs. belowground interactions (allelopathy,

competition for nutrients and water, mycorrhizae) may substantially change if

seedlings germinate underneath the patches or on their periphery.

I studied the facilitative potential of whole communities of woody

vegetation patches on the establishment of a keystone species in Stipa

tenacissima L. steppes. These semiarid steppes show a combination of bare soil,

S. tenacissima tussocks and woody patches, formed by large resprouting shrubs

(dominant species), accompanied by small shrubs and perennial grasses

(accompanying species). These woody patches improve ecosystem functionality,

and favor the presence of frugivorous birds and vascular plants (López and Moro,

1997; Maestre and Cortina, 2004b; Maestre et al., 2009). Positive interactions

between S. tenacissima and large woody species have been widely described

(Maestre et al., 2001, 2003a; Soliveres et al., 2011a), and dominant species of

woody patches act as benefactors in other areas (Castro et al., 2004), but little is

known about the facilitative potential of patch forming species and patch

communities in these semiarid steppes. As woody patches in S. tenacissima

steppes form spatially delimited plant communities, they are suitable

environments to test the facilitative effects of communities and explore the role

of different community attributes in that interaction. The aims of our study are (1)

Page 155: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 4

142

to evaluate how patches modify their immediate environment, (2) to assess the

net effect of woody patches on the performance of new individuals, (3) to

quantify the relative importance of physical and biotic community (patch)

attributes as drivers of seedling recruitment, and (4) to explore the underlying

mechanisms of such interactions. To achieve this, I characterized biotic and

physical attributes of multi-specific woody vegetation patches in S. tenacissima

steppes, and evaluated the performance of shrub seedlings planted underneath

them compared to seedlings planted in open areas. I expected substantial

differences in aboveground and belowground interactions in different parts of the

patch. To take this into account, I evaluated seedling performance in three

different locations within the patch.

MATERIALS AND METHODS

Study site

This study was established in a semiarid area in southeastern Spain. Mean

annual temperature is 18ºC and mean annual precipitation ranges between 286

and 330 mm (Ninyerola et al., 2005). Soil is Lithic Calciorthid developed from marl

and limestone (Soil Survey Staff, 1994). The area is covered by Stipa tenacissima

steppes with sparse patches of woody vegetation. I selected 8 to 13 patches in

five independent sites (53 patches in total). Patches were selected to provide a

balanced representation of number and identity of dominant species.

Seedling plantation and monitoring

In November 2008 we planted 1-year-old seedlings of P. lentiscus in four

locations per patch (212 seedlings in total): (1) underneath the patch, where

aboveground and belowground interactions take place, (2) south of the patch,

outside the canopy projection, where only belowground interactions are

expected, (3) north of the patch, outside the canopy projection area where

belowground interactions occur and seedlings are partially shaded; and (4) in

open areas, at least 2 m apart from any woody patch (Fig. 1). Seedlings in this

location (open areas) were independent from each other and from any woody

patch, but we sampled them as “belonging” to a patch only for logistic purposes.

In this way, we took spatial heterogeneity in biotic and abiotic conditions

Page 156: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Community attributes determine facilitation potential

143

occurring within the patches into account. Planting holes were dug manually with

a 5 x 5 x 20 cm soil auger to minimize soil disturbance. We recorded seedling

survival and stem height 2 months after planting, before and after summer 2009

and 2010. During the first survey, we noticed that almost all seedlings from one of

the study sites were dug up or eaten by rabbits, thus we replaced those plants,

and protected all seedlings with plastic mesh cages. These cages have a negligible

effect on seedling microclimate. I considered these records as baseline survival

(191 alive seedlings: 51 seedlings underneath, 48 seedlings north, 48 seedlings

south, 44 seedlings in open areas), once transplant shock was excluded and

predated seedlings were replaced. We assessed water use efficiency (WUE),

integrated transpiration rate and N source using 13C, 18O and 15N enrichment,

respectively, from leaf samples collected during first pre-summer survey (June

2009). The number of (alive) seedlings for this survey at each location of

plantation was: 38 seedlings underneath, 41 seedlings north, 37 seedlings south,

35 seedlings in open areas. Leaf samples were ground in a MM200 Retsch ball mill

and isotope concentration together with foliar C and N concentration were

determined at the University of California-Davis Stable Isotope Facility (CA, USA)

using a continuous flow isotope ratio mass spectrometer (Europa 20-20 Scientific,

Sercon Ltd., Cheshire, UK) in the dual-isotope mode, interfaced with a CN

elemental analyzer and Hekatech HT Oxygen Analyzer. Results for isotopes

enrichment are expressed as δ13C, δ15N, δ18O, relative to the Pee Dee Belemnite

(PDB), atmospheric N2 and Vienna-Standard Mean Ocean Water (V-SMOW),

respectively.

Page 157: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 4

144

Figure 1. Schematic representation of the experimental unit. Seedlings (solid black) were

planted in three locations per woody patch (octagon): underneath them and on their

northern and southern edges, all of them being putatively affected by underground

interactions with the patch (in grey). Northern seedlings were under the shade for part of

the day (hatched area). One additional seedling was planted in an adjacent open area

(Open), separated at least 2 m from any woody patch.

Patch characterization

Patch biotic structure was described by characterizing community

composition and measuring species richness of dominant and accompanying

species under the canopy of each patch, and determining the phylogenetic

distance between P. lentiscus seedlings and the patch community. Dominant

species composition was estimated in terms of species cover within the patch, by

measuring two orthogonal diameters of the canopy of each species, and

estimating canopy projected area as an ellipse. The cover of each accompanying

species was estimated by using transects of consecutive 50 cm-quadrats

underneath each patch along the canopy projected area, in upslope-downslope

direction (see Methods in Chapter 1). An abundance weighted measure (M) of

phylogenetic distance between dominant species present in a patch and P.

lentiscus was estimated according to Violle et al. (2007). This measure estimates

the mean trait value of the community weighted by the relative abundance of

Page 158: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Community attributes determine facilitation potential

145

each species present in the community: M = . Where pi is the abundance

of species i and Ti is the phylogenetic distance between P. lentiscus and each

patch-forming species i obtained from the TimeTree database (Hedges et al.,

2006).

I estimated patch size (area and maximum height), patch canopy density,

litter accumulation and total cover of accompanying species under the patches to

describe patch physical structure. Patch area was estimated as described for the

estimation of the cover of dominant species. As a measure of canopy density, I

estimated the leaf area index (LAI) with a plant canopy analyzer LAI2000 (Li-Cor

Inc., Nebraska, USA) in the same four locations where seedlings were planted. We

measured litter depth in 6-10 points underneath patch canopy, depending on

patch size.

We also evaluated soil fertility in the same four locations per patch where

seedlings were planted by analyzing oxidable C and total N. We collected 5 x 5 x 5

cm soil samples in the four locations, ground them in a MM200 Retsch ball mill,

and analyzed them for oxidable C (modified Moebius method, P. Rovira, Centre

Tecnològic Forestal de Catalunya, pers. comm.) and total N content (semi-micro-

Kjeldahl distillation in a Tecator Kjeltec Auto 1030 analyzer, Hogana, Sweden). We

recorded soil moisture at 0-10 cm depth underneath 7 patches in a size gradient

from 4 to 30 m2 of canopy projection and in nearby areas beyond the influence of

the patches. Soil moisture was recorded every hour by soil moisture sensors

(10HS) and Decagon ECH2O data-logger (ECHO-10, Decagon Devices, Inc.,

Pullman, Washington, USA) from July 2009 to June 2011.

Statistical analyses

I performed Non-metric Multi-Dimensional Scaling (NMDS) to reduce the

dimensionality of the species composition matrix. NMDS has been recommended

over other ordination techniques for community analysis because it does not

ignore community structure that is unrelated to environmental variables and it

does not assume multivariate normality (McCune and Grace, 2002). I used Bray-

Curtis distance measure with random starting configurations. I performed NMDS

analyses for dominant and accompanying species separately and used the first

two axes of each for the next analyses.

Page 159: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 4

146

I evaluated the effect of location on soil organic C, total N and C:N ratio in

samples from the four locations by using General Linear Mixed Models (GLMM)

with site as random effect and location as fixed effect. To avoid data dependence,

I selected a random dataset that included only one patch-dependent location per

patch (underneath, north or south), plus the 53 independent samples from open

locations. I used the same procedure to analyze the effect of location on seedling

performance (survival, relative growth rate, and stable isotope enrichment, C and

N concentration in leaves of alive seedlings). For all dependent variables except

for survival, samples in the four locations were selected to optimize the number

of experimental units, while ensuring sample independence.

Short-term seedling survival and relative growth rate (RGR) were low,

thus, I only kept seedling survival as a measure of seedling performance to

evaluate its relationship with the physical and biotic structure of woody patches. I

used GLMM with site and patch nested within site as random effects with a

binomial error distribution. Patch size, LAI, patch composition (NMDS axes), cover

and richness of dominant and accompanying species, soil organic C, soil total N,

phylogenetic distance of the community of dominant species, and litter depth

were included as covariates in the initial model. I made a simplification of the

maximal model by removing the least significant covariates one by one. For each

model, I estimated Akaike’s information criterion corrected for small samples

(AICc) as the relation between sample size (N=159) and the number of estimated

parameters (K=13) was less than 40 (Burnham and Anderson, 2002). Then, I

selected the GLMM having the lowest AICc to determine the best model (model 9,

Appendix). Only seedlings affected by patch properties (i.e., those planted under

or close to the patch), were included in this analysis. Location could not be

included in this analysis as a result of the lack of replication at this level. Thus, I fit

one GLMM for each location (N=53) with site as random factor, to examine the

drivers of seedling establishment in further detail. The model that minimized AICc

was selected for each location. All analyses were performed in R 3.1.0 statistics

software, package vegan for NMDS analyses and package lme4 for GLMMs (R

Development Core Team, 2014).

Page 160: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Community attributes determine facilitation potential

147

RESULTS

Patch attributes

Patch area ranged from 3 to 44 m2 and 72% of the patches were smaller

than 20 m2. Soil organic C and total N were significantly higher underneath the

patches than in other locations (Fig. 2, Table 1). In contrast, I found no effect of

location on the C:N ratio.

C:N

C:N

ra

tio

0

2

4

6

8

10

12

14

16

Organic C

So

il C

co

nce

ntr

atio

n (

%)

0

1

2

3

4

5

6 Underneath

Open

North

South

Total N

So

il N

co

nce

ntr

atio

n (

%)

0.0

0.1

0.2

0.3

0.4

0.5

Figure 2. Organic C, total N and C:N ratio in soil samples taken at different locations within

woody patches (underneath, north and south) and in open areas in Stipa tenacissima

steppes. The number of analyzed patches was 53. Mean and standard error bars are

shown. Soil sampled underneath the patches differed from soil sampled on other

locations for C and N, but not for the C:N ratio (p<0.05).

Page 161: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 4

148

Table 1. Parameter estimates of the GLMM to estimate the effect of location within woody patches on soil organic C, soil total N and the C:N ratio. LocationU, locationN and locationS correspond to underneath, north and south edges of the patch, respectively.

Fixed effects Estimate Std. error d.f. t-value p-value

C (Intercept) 4.942 0.552 98 8.948 <0.001

locationU -2.154 0.401 98 -5.375 <0.001

locationN -2.223 0.499 98 -4.454 <0.001

locationS -1.667 0.496 98 -3.362 0.001

N (Intercept) 0.347 0.043 98 8.108 <0.001

locationU -0.126 0.022 98 -5.679 <0.001

locationN -0.129 0.028 98 -4.658 <0.001

locationS -0.084 0.028 98 -3.057 0.003

C:N (Intercept) 14.046 1.374 98 10.220 <0.001

locationU -0.780 1.420 98 -0.550 0.584

locationN -1.338 1.757 98 -0.761 0.448

locationS -1.537 1.758 98 -0.874 0.384 Random effects: site Std. deviation

C (Intercept) 0.961

Residual 1.453

N (Intercept) 0.085

Residual 0.081

C:N (Intercept) 1.377 Residual 5.167

Soil water content was consistently higher in open areas than inside the

patches (Fig. 3). Average litter depth ranged from 0 to 6.4 cm and LAI values from

0 to 3.8. Phylogenetic distance of the dominant species ranged from zero (where

the only dominant species was Pistacia lentiscus) to 331 million years (where

Juniperus oxycedrus and Ephedra fragilis were the dominant species).

Page 162: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Community attributes determine facilitation potential

149

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35S

oil

vo

lum

etri

c w

ate

r co

nte

nt (

m3m

-3)

UnderneathNorthSouthOpen

Figure 3. Temporal changes in soil water content in different locations with respect to

woody patches. Measurements were taken daily at 12:00 pm at 0-10 cm depth. Lines

correspond to means of 7 patches.

Patches hosted between 4 and 20 species. Each patch was formed by up

to 5 dominant species, and 1 to 18 accompanying species. Of the six patch-

forming species, Osyris lanceolata was not dominant in any patch. Patch

community composition was strongly influenced by the dominant species (Table

2). NMDS axis 1 was strongly and positively correlated with P. lentiscus cover, and

negatively correlated with J. oxycedrus cover. NMDS axis 2 was strongly and

positively correlated with Rhamnus lycioides cover and negatively correlated with

Quercus coccifera cover. Fifteen accompanying species showed a significant

correlation with NMDS axes (p<0.05; Table 2), but correlations were strong for

only five of them (Pearson correlation coefficients r>0.5). Thus, Avenula murcica

Holub, Helichrysum stoechas (L.) Moench and Globularia alypum L. correlated

with NMDS axis 1, and Brachypodium retusum (Pers.) P. Beauv. and Stipa

tenacissima correlated with NMDS axis 2.

Page 163: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 4

150

Table 2. Pearson correlation coefficients between species cover and NMDS axes 1 and 2. NMDS analyses for dominant and accompanying species were performed separately. Significant p-values (p<0.05) are in bold.

NMDS axis 1

NMDS axis 2

p-value NMDS1

p-value NMDS2

DOMINANT SPECIES Quercus coccifera -0.441 -0.773 0.001 0.000

Rhamnus lycioides 0.094 0.629 0.532 0.000 Pistacia lentiscus 0.757 -0.198 0.000 0.158 Juniperus oxycedrus -0.615 0.384 0.001 0.005 Ephedra fragilis 0.376 0.389 0.008 0.004 Osyris lanceolata 0.261 0.212 0.061 0.145

ACCOMPANYING SPECIES

Rosmarinus officinalis -0.100 -0.101 0.478 0.472 Avenula murcica -0.582 0.271 0.000 0.050 Thymus vulgaris 0.426 0.325 0.001 0.017 Brachypodium retusum 0.194 0.534 0.163 0.000 Teucrium capitatum -0.061 -0.128 0.666 0.362 Fumana ericoides -0.250 0.214 0.071 0.123 Asparragus horridus 0.171 0.078 0.221 0.580 Dorycnium pentaphyllum 0.034 0.090 0.808 0.523 Helichrysum stoechas 0.543 0.013 0.000 0.928 Sedum sediforme 0.408 0.171 0.002 0.222 Helianthemum violaceum -0.227 0.073 0.102 0.606 Sideritis leucantha -0.097 -0.268 0.490 0.052 Phagnalon saxatile 0.133 -0.437 0.342 0.001 Globularia alypum -0.538 -0.164 0.000 0.239 Anthyllis cytisoides 0.341 -0.144 0.013 0.303 Stipa tenacissima -0.081 -0.604 0.564 0.000 Teucrium carolipaui -0.268 0.204 0.052 0.143 Teucrium pseudochamaepitys 0.166 0.156 0.236 0.265 Coronilla minima -0.036 0.285 0.800 0.038 Rubia peregrina 0.203 -0.017 0.144 0.905 Bupleurum fruticescens 0.296 -0.119 0.031 0.397 Carex humilis -0.109 0.103 0.435 0.462 Erica multiflora -0.113 0.245 0.419 0.077 Polygala rupestris 0.337 0.229 0.014 0.099 Cistus clusii -0.065 -0.066 0.646 0.641 Asparagus acutifolius 0.248 -0.073 0.073 0.605 Lapiedra martinezii -0.002 -0.281 0.988 0.042 Satureja obovata 0.422 0.230 0.002 0.097 Fumana laevipes -0.305 0.279 0.027 0.043

Page 164: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Community attributes determine facilitation potential

151

Seedling performance

Patches had a positive effect on seedling survival as only open areas

significantly decreased its probability (Fig. 3, Table 3). This effect was stronger

after the first summer (10 months after planting). Two years after planting,

seedling survival underneath the patches was 55% compared to 18% in open

areas. Relative growth rate (RGR) was estimated in 151, 72 and 65 seedlings in

total, corresponding to surveys at 5, 8 and 22 months after plantation. RGR was

highly variable and showed no significant location effect in any of the surveys (Fig.

4, Table 3).

Page 165: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 4

152

0 5 10 15 20 25

Su

rviv

al (%

)

0

20

40

60

80

100Underneath

North

South

Open

Time after planting (months)

0 5 10 15 20 25

Re

lative

Gro

wth

Ra

te (

ste

m h

eig

ht, c

m m

on

th-1

)

-0.04

-0.02

0.00

0.02

0.04

Figure 4. Survival and growth of Pistacia lentiscus seedlings planted on different locations

within woody patches (underneath, north and south) and in open areas in Stipa

tenacissima steppes. Survival baseline was considered 2.5 months after planting, once

transplant shock was excluded and seedlings predated immediately after planting were

replaced. RGR was only measured in those seedlings that were alive 22 months after

planting. Means ± 1 SE are shown for seedling growth of living individuals.

Page 166: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Community attributes determine facilitation potential

153

Seedlings planted underneath the patches showed lower integrated WUE

and higher foliar 15N enrichment than seedlings planted in open locations (Fig. 5,

Table 4). Integrated transpiration rates, as estimated by 18O analysis, were similar

in all locations. There were no differences between seedlings planted in the

northern and southern parts of the patches compared to seedlings planted

underneath patches for the three stable isotopes analyzed. Seedlings planted

underneath the patches showed higher foliar N concentration than seedlings

planted on their northern edge, whereas there were no significant differences in

N concentration between the former and seedlings planted in other locations (Fig.

5, Table 4). Foliar C concentration was similar in all locations.

Table 3. Parameter estimates of the GLMM to estimate the effect of location on seedling survival and relative growth rate (RGR) 22 months after planting. Z-values and t-values are given for survival and RGR, respectively. LocationU, locationN and locationS correspond to underneath, north and south edges of the patch, respectively.

Fixed effects Estimate Std. error d.f. z/t-value p-value

Survival (Intercept) 0.397 0.751 - 0.528 0.598

locationU -2.472 0.711 - -3.477 0.001

locationN -1.024 0.824 - -1.243 0.214

locationS -1.144 0.791 - -1.447 0.148

RGR (Intercept) 0.012 0.009 34 1.352 0.185

locationU -0.007 0.013 34 -0.554 0.584

locationN -0.015 0.012 34 -1.292 0.205

locationS -0.019 0.012 34 -1.531 0.135

Random effects: site Std. deviation

Survival (Intercept) 1.088

Residual 0.931

RGR (Intercept) 0.005 Residual 0.028

Page 167: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 4

154

d13C d18O

13C

and 1

8O

isoto

pe e

nrichm

ent (

valu

e)

-30

-20

-10

0

10

20

30

Underneath

Open

North

South

d15N

15N

isoto

pe e

nric

hm

ent (

valu

e)

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

13C 15 N18O

Nitrogen

Folia

r N

concentr

ation (

%)

0.0

0.5

1.0

1.5

2.0

*

Carbon

Folia

r C c

oncentra

tion (%

)

0

10

20

30

40

50

*

*

Figure 5. Foliar C and N concentration and isotope enrichment of Pistacia lentiscus

seedlings planted on different locations within woody patches (underneath, north and

south) and in open areas in Stipa tenacissima steppes. Only seedlings that were alive 7

months after planting were analyzed. Asterisks indicate significant differences with

seedlings planted underneath the patches for a given element or isotope. Note the

different scale for different axes.

Page 168: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Community attributes determine facilitation potential

155

Table 4. Parameter estimates of the GLMM to estimate the effect of location on isotope enrichment and foliar concentration of C and N. LocationU, locationN and locationS correspond to underneath, north and south edges of the patch, respectively.

Fixed effects Estimate Std. error t-value p-value

δ13C (Intercept) -28.733 0.497 -57.801 <0.001

locationU 1.256 0.435 2.888 0.005

locationN 0.452 0.508 0.888 0.377

locationS 0.696 0.505 1.378 0.172

δ15

N (Intercept) 0.503 0.555 0.906 0.368

locationU -1.052 0.450 -2.338 0.022

locationN -0.156 0.526 -0.296 0.768

locationS -0.552 0.523 -1.056 0.294

δ18

O (Intercept) 30.105 0.662 45.460 <0.001

locationU 0.914 0.582 1.569 0.121

locationN -0.244 0.681 -0.358 0.722

locationS 0.316 0.676 0.467 0.642

C (Intercept) 47.693 1.457 32.740 <0.001

locationU 0.604 1.740 0.347 0.730

locationN -2.702 1.978 -1.366 0.176

locationS 1.002 2.009 0.499 0.619

N (Intercept) 1.404 0.133 10.530 <0.001

locationU -0.158 0.125 -1.271 0.208

locationN -0.364 0.142 -2.573 0.012

locationS -0.184 0.144 -1.277 0.206

Random effects: site Std. deviation

δ13C (Intercept) 0.775

Residual 1.442

δ15

N (Intercept) 0.927

Residual 1.491

δ18O (Intercept) 1.027

Residual 1.931

C (Intercept) 0.455

Residual 5.571

N (Intercept) 0.188 Residual 0.391

Page 169: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 4

156

Drivers of seedling performance

Seedling survival was predicted by both physical and biotic patch

attributes. Composition of the community of accompanying species affected

seedling survival (Fig. 6, Table 5). The increase in NMDS axis 2 (and thus, the

increase in Brachypodium retusum cover and decrease in Stipa tenacissima cover)

decreased the probability of survival. In addition, phylogenetic distance to the

dominant species, cover of accompanying species and litter depth increased the

probability of seedling survival, (Fig. 6, Table 5). Dominant species composition

was included in the final model, but its effect was not statistically significant

(Table 5). For each patch nested within site, the estimates of the model increased

and decreased by a random value with expected mean of zero and variance of

0.2928.

Table 5. Parameter estimates for GLMM to evaluate the effect of community attributes on seedling survival (N=159). Sites (5) and patches (53) were included as random effects. The additional variance in estimates ascribed to sites was 0.1292. Considering patches nested within sites the variance was 0.2928.

Fixed effects Estimate Std. Error z value p-value

(Intercept) -2.629 0.465 -5.654 <0.001

Cover accompanying species 0.016 0.004 4.480 <0.001

Litter depth 0.980 0.374 2.619 0.009

NMDS axis 1 dominant species 0.633 0.405 1.564 0.118

NMDS axis 2 accompanying species -6.602 2.164 -3.051 0.002

Phylogenetic distance of dominant species 0.006 0.002 3.010 0.003

Page 170: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Community attributes determine facilitation potential

157

Figure 6. Survival probability of Pistacia lentiscus seedlings (N=159) against accompanying

species composition, phylogenetic distance to dominant species, litter depth and cover of

accompanying species in woody patches in Stipa tenacissima steppes. Histograms show

number of seedlings (right axis) of alive (superior histograms) or dead (inferior

histograms) individuals. Data range for both alive and dead seedlings is represented by

the dotted lines, and the box plots represent data between the first and third quartiles,

and the median (black line within the box). Solid line is the logistic regression fit of survival

probability against each variable of X-axis.

Considering only seedlings planted underneath the patches, the

composition of accompanying species and soil organic C successfully predicted

seedling survival (Table 6). As for the whole dataset, as NMDS axis 2 of

Page 171: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 4

158

accompanying species increased, the probability of seedling survival under the

patches decreased. An increase in soil organic C increased the probability of

survival. Comparatively, survival probability in seedlings planted in the northern

edge of the patches depended on a larger number of explanatory variables:

number of accompanying species, both NMDS axes of dominant species, NMDS

axis 2 of accompanying species and phylogenetic distance of the dominant

species (Table 6). This second NMDS axis of accompanying species decreased the

probability of survival. In addition, an increase in the number of accompanying

species decreased seedling survival. The identity of the dominant species also

affected seedling performance in this location: NMDS axis 1 increased and NMDS

axis 2 decreased the probability of survival. I found a direct relationship between

phylogenetic distance of the dominant species and the probability of survival in

seedlings planted in the northern edge of patches. Finally, the probability of

survival of seedlings planted in the south of the patches was not significantly

predicted by any patch attribute, but the number of accompanying species and

the NMDS axis 2 of dominant species were included in the best model (Table 6).

Table 6. Parameter estimates of GLMM on the effect of community attributes on seedling survival planted in three different locations within woody patches (N=53). Only models with the lowest AICc are shown. Fixed effects Estimate Std. Error z value p-value

Underneath (Intercept) -1.493 0.869 -1.718 0.086

NMDS axis 2 accompanying species -7.741 3.137 -2.468 0.014

Soil organic C 0.302 0.147 2.060 0.039

North (Intercept) -1.270 1.694 -0.749 0.454

Number accompanying species -0.628 0.309 -2.036 0.042

NMDS axis 1 dominant species 2.130 0.985 2.163 0.031

NMDS axis 2 dominant species -2.092 1.208 -1.731 0.083

NMDS axis 2 accompanying species -16.150 6.268 -2.577 0.010

Phylogenetic distance of dominant species 0.025 0.009 2.796 0.005

South (Intercept) -2.447 1.095 -2.234 0.026

Number accompanying species 0.231 0.149 1.551 0.121

NMDS axis 2 dominant species 0.829 0.506 1.639 0.101

Random effects: site Std. deviation

Underneath (Intercept) 0.274 North (Intercept) 0.328 South (Intercept) 0.000

Page 172: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Community attributes determine facilitation potential

159

DISCUSSION

Patch effect on seedling performance

I found evidence that patches positively affected seedling survival. This

effect was more intense during the first summer, when mortality was higher, and

it was larger in seedlings planted underneath the patches than in seedlings

planted on their periphery. The restricted spatial extent of facilitation illustrates

the spatial-temporal dynamics of the interaction, as slight modifications in

environmental conditions may shift the relationship from positive to neutral or

negative. This is in agreement with the temporal variability of positive

interactions observed in S. tenacissima steppes (Maestre and Cortina, 2004a). On

the other hand, the limited span of the interaction has strong implications for the

spatial distribution of plant cover and the functioning of S. tenacissima steppes,

and the restoration of degraded steppes (Puigdefábregas, 2005; Cortina et al.,

2011).

Seedlings planted under the patches were less efficient in using water

than those planted outside them, suggesting that water stress was lower in the

former. However, I found that the decrease in water use efficiency (WUE)

resulted from a decrease in photosynthetic rate rather than an increase in

transpiration rate, as 18O enrichment was not affected by location. Thus, the

reduction in evaporative demand under the patches was probably offset by the

decrease in soil water availability and, as a result, competition for light was

indeed the main responsible for the decrease in WUE. The combination of shade

and water stress may have deleterious effects on seedling survival (Valladares and

Pearcy, 2002). However, this was not the case in Pistacia lentiscus seedlings,

probably because other factors, including the reduction in irradiance stress,

compensated for low water availability.

Higher 15N enrichment in seedlings planted near patches may indicate

rapid N cycling and relatively high N losses, as major pathways of N loss such as

nitrification, denitrification and ammonia volatilization promote soil 15N

enrichment (Shearer et al., 1974; Peñuelas et al., 1999). In agreement with this, I

found higher foliar N concentration in seedlings planted underneath the patches

than in seedlings planted north of them, suggesting that N availability was higher

in the former. In addition, soil total N and organic C were higher underneath the

Page 173: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 4

160

patches than in any other location. Thus, the positive effect of patches on

seedling performance was probably the result of amelioration in microsite

conditions resulting from both the reduction in irradiance and the improvement

in soil fertility. This is in agreement with studies in semiarid areas where microsite

has been identified as one of the major drivers of facilitation (Barberá et al., 2006;

Soliveres et al., 2011a). On the other hand, the reduction in photosynthetic rate

may partly explain the lack of a significant effect of patches on seedling growth.

Seedling protection against predation was not evident, as two months

after planting rabbits affected some seedlings regardless of their location. This

observation contrasts with Soliveres et al. (2011a), as these authors found that

tussocks provided protection against rabbit predation in a Stipa tenacissima

steppe in central Spain. Soliveres et al. (2012) also showed that protection against

predation was more likely below 450 mm annual average precipitation.

Community attributes driving seedling survival

Our study showed that the physical and biotic structure of woody patch

communities and, particularly, their composition, explained their potential for

facilitation. It also showed that the importance of community attributes as drivers

of seedling performance depended on location within the patch. The general

model, that included seedlings from all locations, identified the composition and

cover of accompanying species, litter depth and phylogenetic distance of the

dominant species as major drivers of facilitation. The composition of dominant

patch species completed the model, but its effect was not statistically significant.

The relatively high variance ascribed to the random effects of patches nested in

sites emphasizes the importance of site conditions, above microsite properties, as

determinant of seedling performance (Maestre et al., 2003b; Cortina et al., 2011).

The second axis of the NMDS for accompanying species had a negative

effect on seedling survival, and thus on patch potential for facilitation. This axis

was correlated with the cover of several species. For example, NMDS axis 2 was

correlated with the cover of Brachypodium retusum, a species that may interfere

with P. lentiscus seedlings by reducing irradiance and competing for soil resources

(Maestre et al., 2004). The second axis of the NMDS analysis of accompanying

species was also related to S. tenacissima. The cover of this species was related

Page 174: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Community attributes determine facilitation potential

161

with an increase in seedling survival, which may be associated to the facilitative

effect of S. tenacissima on P. lentiscus that has been previously described in the

literature (Maestre et al., 2003a). The cover of accompanying species also

increased survival probability. The positive effect of plant cover on seedling

performance has been associated to protection from excessive radiation (Rey-

Benayas et al., 2002; Sánchez-Gómez et al., 2006; Soliveres et al., 2011b), which

may disappear under mesic conditions (George and Bazzaz, 1999; Beckage and

Clark, 2003).

The positive effect of litter on the probability of seedling survival may

result from its capacity to act as mulch. Litter increases soil moisture by reducing

runoff, increasing water infiltration and reducing evaporative losses through

shading and lowering soil temperatures (Facelli and Pickett, 1991; Guevara-

Escobar et al., 2007; Goldin and Brookhouse, 2014). Phylogenetic distance of the

dominant species also increased the probability of survival, which is in agreement

with studies suggesting that closely related species are likely to share important

ecological traits, and thus compete more severely than distant species (Webb et

al., 2002). In addition, phylogenetically distant species frequently differ in their

ecological traits and the environmental conditions they can cope with, and thus

facilitative interactions among them are more likely to occur (Valiente-Banuet et

al. 2006, Valiente-Banuet and Verdú 2007, Castillo et al. 2010).

The analysis of community attributes affecting patch potential for

facilitation at each of the three patch locations was consistent with the general

analysis, and revealed different sensitivity to community attributes. While survival

of seedlings planted underneath or in the northern edge of the patches was

driven by one or several biotic community attributes, respectively, no community

attribute was related to the survival of seedlings planted in the southern edge of

the patches. As overall seedling performance underneath the patches was better

than in their periphery, our results suggest that seedlings planted in the latter

experienced higher level of stress than those planted under the patches, but they

also indicate that the source of stress differed at the different locations. Thus,

biotic factors related to the composition of the communities of dominant and

accompanying species were major drivers of the performance of seedlings

planted in the northern edge. In contrast, biotic factors did not affect the survival

of seedlings planted in the southern edge, suggesting that the source of stress

Page 175: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 4

162

may have been predominantly abiotic in this location. The composition of the

accompanying species community and soil organic C affected the potential for

facilitation underneath the patches. In models where the former variable

emerged (the general model, and the models for seedlings planted underneath

and in the northern edge of the patches), it had a negative effect on seedling

survival. The mechanisms underlying this effect may be similar to those described

for the general model. There is no clear ascription of NMDS axes for

accompanying species to single species, thus I consider the effect of species

composition on facilitative potential as a global effect of the community.

The composition of the community of dominant species was only included

in the model for seedlings planted on the northern edge of the patches. There,

high cover of P. lentiscus and low cover of J. oxycedrus positively affected seedling

survival. This result contrasts with the positive effect of phylogenetic distance of

the dominant species on seedling survival described above, as P. lentiscus and J.

oxycedrus are the phylogenetically closest and most distant species to planted

seedlings, respectively. There are some potential explanations for this apparent

mismatch. On the one hand, the effect of community composition was not

significant in other locations, and it may disappear when all locations are pooled.

On the other hand, patches were not monospecific, and differences in the cover

of dominant species, other than P. lentiscus, may have been indeed responsible

for this effect.

A high number of accompanying species decreased the potential for

facilitation in the northern edge of the patches. These results support the

hypothesis that in this location, patches act as finite communities, in which niche

saturation occurs (MacArthur and Levins, 1967; Case, 1991), and are in agreement

with the low invasibility of species-rich native communities observed at small

spatial scales (Levine, 2000; Stohlgren et al., 2003; Friedley et al., 2007), but not

with studies emphasizing the prevalence of positive interactions in species-rich

communities (Von Holle, 2005). Thus, a high number of accompanying species

may increase the probability that existing species occupy a similar niche as P.

lentiscus seedlings and outcompete them, compared to the probability that a

number of species in the extant pool facilitate P. lentiscus.

Finally, we should bear in mind that I have evaluated the short-term

effects of communities on facilitation. Ecological niches may change with

Page 176: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Community attributes determine facilitation potential

163

ontogenic development (Mediavilla and Escudero, 2004), and so may do the net

outcome of the interactions. I have demonstrated important ecological

interactions, but we should be careful extrapolating our results to predict long-

term dynamics.

CONCLUSIONS

Woody patches had positive effects on the incorporation of new

individuals of a keystone species in S. tenacissima steppes. The potential of

woody patches to behave as benefactor communities was mainly determined by

the cover and composition of the community of accompanying species, litter

depth and phylogenetic distance of the dominant species. Furthermore, within-

patch differences in the drivers of seedling survival revealed the existence of

spatial heterogeneity in stress type and intensity, and facilitation potential, at this

scale. Our study highlights the importance of taking into consideration community

attributes over pair-wise interactions to predict facilitation potential in multi-

specific communities. Community-wide interactions and within-patch

heterogeneity should be taken into account when evaluating the outcome of

ecological interactions, as they may have profound implications for the

composition, function and management of these semiarid steppes.

Page 177: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

APPENDIX

Significance (p-value) of the effect of community attributes on seedling survival for each GLMM tested. Degrees of freedom (Df) and Akaike's Information Criterion corrected for small samples (AICc), AICc differences (Delta AICc) and Akaike weights for each model are shown. Significant p-values of the covariates are in bold (p<0.05).

Model

Community attributes 1 2 3 4 5 6 7 8 9 10 11 12 13 (Intercept) 0.0092 0.0087 0.0082 0.0063 0.0113 0.0155 0.0142 0.0003 <0.0001 <0.0001 0.0055 0.0060 0.0223 Litter depth 0.3687 0.3662 0.3494 0.3667 0.1782 0.1181 0.1073 0.1147 0.0088 <0.0001 0.0112 0.0064 0.0078 NMDS axis 2 accompanying spp

0.0498 0.0489 0.0496 0.0445 0.0139 0.0131 0.0169 0.0098 0.0023 <0.0001 0.0357 0.0507 -

Cover accompanying spp

0.1598 0.1596 0.1594 0.1691 0.1216 0.1212 0.1308 0.1178 <0.0001 <0.0001 0.1524 - -

Phylogenetic distance of dominant species

0.0716 0.0264 0.0275 0.0292 0.0238 0.0140 0.0117 0.0185 0.0026 0.0100 - - -

NMDS axis 1 dominant spp

0.1715 0.1637 0.1683 0.1530 0.1642 0.1167 0.0936 0.1421 0.1179 - - - -

Soil organic C 0.2378 0.2371 0.2368 0.1660 0.1551 0.2543 0.2758 0.2795 - - - - - Number dominant spp 0.1529 0.1543 0.1587 0.1521 0.2060 0.1509 0.3224 - - - - - - Patch size 0.2708 0.2460 0.2488 0.2488 0.2414 0.2581 - - - - - - - NMDS axis 1 accompanying spp

0.2916 0.2906 0.2946 0.2778 0.3214 - - - - - - - -

Number accompanying spp

0.3609 0.3494 0.3558 0.3826 - - - - - - - - -

Soil total N 0.7270 0.7362 0.7248 - - - - - - - - - - Leaf area index 0.8673 0.8650 - - - - - - - - - - - NMDS axis 2 dominant spp

0.9475 - - - - - - - - - - - -

Df 16 15 14 13 12 11 10 9 8 7 6 5 4 AICc 201.3 198.9 196.6 194.5 193.0 191.7 190.8 189.6 189.2 189.4 191.7 191.7 193.5 Delta AICc 12.1 9.8 7.4 5.3 3.8 2.5 1.6 0.4 0.0 0.2 2.5 2.5 4.3 Akaike weights 0.00 0.00 0.01 0.02 0.03 0.06 0.10 0.19 0.23 0.21 0.06 0.06 0.03

Page 178: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

CHAPTER 5 Litter as a filter for the recruitment of keystone species in Stipa tenacissima

steppes

Page 179: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos
Page 180: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Litter as a filter for the recruitment of keystone species

167

INTRODUCTION

Litter accumulation and ecosystem functioning

Carbon accumulation in organic horizons is highly variable. It may

represent 10-25% of the organic C accumulated in vegetation in Mediterranean

ecosystems (Fons, 1995; García-Cano, 1998). However, heterogeneity in the

spatial distribution of litter can be substantial, since it is affected by species

distribution, faunal activity, wind, runoff and landform (Welbourn et al., 1981;

Boeken and Orenstein, 2001).

Soil litter accumulation and the buildup of organic horizons result from

the dynamic balance between litterfall inputs and organic matter decomposition

and transport. Primary productivity and its drivers, as water availability and soil

fertility, are the main determinants of litter deposition at a large scale

(Meentemeyer et al., 1982). The main factors controlling litter decomposition are

climate, litter quality and activity of soil fauna (Aerts, 1997; Wardle and Lavelle,

1997; Austin and Vitousek, 2000). Climatic factors such as temperature, water

availability and radiation directly and indirectly control decomposition rate

(Austin and Vivanco, 2006; Kurz-Besson et al., 2006). Litter quality, which has

been often associated with lignin, cellulose and N content, also affects

decomposition rate (Taylor et al., 1989; Hobbie, 1992; Northup et al, 1995; Talbot

and Treseder, 2012; Walela et al., 2014). Finally, soil fauna contributes to litter

decomposition and transport by fragmenting plant debris, mixing soil and

affecting microorganism activity (Hanlon and Anderson, 1980; Hassall et al, 1987;

Fons, 1995; Garcia-Pausas et al, 2004). In fact, recent studies have demonstrated

that the stability of soil organic matter depends predominantly on environmental

and biological factors more than its molecular structure (Schmidt et al., 2011).

Litter is involved in various functional processes such as soil protection,

water infiltration and retention, carbon sequestration and nutrient cycling. The

litter layer protects the soil surface from raindrop impact (Geddes and Durkeley,

1999), it improves water infiltration and reduces surface runoff and sediment

yield (Benkobi et al., 1993, France, 1997; Guevara-Escobar et al., 2007).

Moreover, litter is a major source of organic matter, it affects the structure,

stability, porosity and aeration of the soil surface (Marshall et al., 1996), and it is a

source of carbon, energy and nutrients for soil fauna (González and Zou, 1999;

Page 181: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 5

168

García-Pausas et al., 2004). Litter also controls soil respiration, and the

composition and biomass of the microbial community (Fontaine, 2003; Sayer,

2006). Nutrient cycling through litterfall may account for over 90% of plant

nitrogen and phosphorus demand (Chapin et al., 2002). Nitrogen and phosphorus

concentration in litter may be strongly reduced by retraslocation and leaching in

late stages of leaf and needle lifespan, and thus it is highly dependent on species

identity and site fertility (Vitousek, 1982; Del Arco et al., 1991; Aerts, 1996). Low

nutrient concentration hampers saprophytic activity and slows down

decomposition. Nutrient depleted litter immobilizes nutrients, delays nutrient

flow and hinders nutrient losses (Schlesinger et al., 1999).

The litter layer may also affect wildfire intensity and severity by either

protecting the soil or acting as fuel (Burgan and Rothermel, 1984; Fulé and

Covington, 1994; Williams and Wardle, 2007). Litter protection against erosion

depends on fire severity, species identity and their interaction, and litterfall

recovery rate (García-Cano, 1998; Maestre and Cortina, 2005; Maret and Wilson,

2005; Laughlin and Fulé, 2008).

Litter effects on vegetation

Litter accumulation may have different effects on plants, depending on

the amount and type of litter, on the species involved, ecosystem type and

latitude. In general, short-term effects of litter on vegetation are usually negative

(Xiong and Nilsson, 1999). Litter may inhibit seed germination and seedling

emergence by reducing radiation amount and quality (Vázquez-Yanes et al., 1990;

Facelli and Pickett, 1991c). Litter induces latency of seeds requiring certain

wavelengths for germination, and this may affect the composition of the soil seed

bank (Vázquez-Yanes and Orozco-Segovia, 1992; Metcalfe and Turner, 1998;

Milberg et al., 2000). Litter can also hamper seed-soil contact and imbibition

required for germination (Rotundo and Aguiar, 2005). By contrast, in shade-

tolerant species with larger seeds, litter may enhance germination and seedling

establishment by protecting seeds from excessive radiation, reducing evaporation

and water stress, and protecting seeds against predation (Reader, 1993; Cintra,

1997; López-Barrera and González-Espinosa, 2001).

Seedling survival and growth may be favored by nutrient mineralization,

shade and water retention, especially in dry areas (Ginter et al., 1979; Facelli et

Page 182: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Litter as a filter for the recruitment of keystone species

169

al., 1999; Xiong and Nilsson, 1999; Boeken and Orenstein, 2001; Lopez-Zamora et

al., 2001; Brearley et al., 2003). In contrast, nutrient immobilization in

decomposing litter may impair seedling nutritional balance (Noble and Randall,

1999). Furthermore, litter modifies the radiation regime, which may represent a

strong filter for seedling emergence, particularly for plants with scarce seed

resources (Vázquez-Yanes and Orozco-Segovia, 1992; Eckstein and Donath, 2005;

Navarro-Cano, 2007). Litter may be the habitat of herbivorous fauna and create

suitable environments for pathogenic fungi (García-Guzmán and Benitez-Malvido,

2003). Finally, litter may release phytotoxic compounds with deleterious effects

on both seed germination and seedling establishment (Inderjit and Duke, 2003;

Bonanomi et al., 2006; Herranz et al., 2006).

At a community level, litter affects species diversity and community

structure by favoring some species and inhibiting others (Facelli and Pickett,

1991a, 1991b; Xiong and Nilsson, 1999; Lamb, 2008; Gazol and Ibáñez, 2010).

Moreover, disturbances affecting the litter layer, such as changes in litterfall

inputs and quality, litter removal, erosion and burning, affect community

composition (Tilman, 1993; Sayer, 2006; Ruprecht et al., 2010). Litter also allows

plant interactions. Its effect may be either direct (i.e., when litter from one

species affects the performance of another species), or indirect, when litter

produced by one species influences the outcome of the interaction between two

different species (Facelli and Pickett, 1991a, 1991b; Wardle et al., 2004). The

balance between facilitation and inhibition can be determined by the quantity

and quality of accumulated litter (Xiong and Nilsson, 1999; Eckstein and Donath,

2005). Therefore, plants, by depositing litter, act as ecosystem engineers,

physically and chemically modifying the environment, and directly and indirectly

controlling the availability of resources for other organisms (Jones et al., 1994).

Thus, litter accumulation represents an evolutionary pressure (Stinchcombe and

Schmitt, 2006), and may be considered part of the expanded phenotype, since

they exert a genetic control beyond the individuals themselves and their life span

(Dawkins, 1982; Whitham et al., 2003; Hastings et al., 2007).

Litter accumulation in Mediterranean ecosystems

Several studies have described litter accumulation in temperate and

tropical areas (Covington, 1981; Vitousek et al., 1995; Xiong and Nilsson, 1997;

Dames et al., 1998; Schlatter et al., 2006). Conversely, few studies have

Page 183: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 5

170

comprehensively quantified litter accumulation in drylands (but see Cañellas and

San Miguel, 1998; Kavvadias et al., 2001; Descheemaeker et al., 2006). In regions

with arid and semiarid climate, vegetation cover is patchy and largely dominated

by herbaceous species, shrubs and small trees (Valentin et al., 1999; Whitford,

2002). In these areas, litter accumulation is commonly low due to low litterfall

inputs, and relatively high rates of decomposition and vertical transfer (Vallejo et

al., 1998; but see Casals et al., 2000 for exceptions). Litter accumulation in humid

and dry sub-humid Mediterranean areas is somewhat higher, particularly under

species such as pines (Pinus halepensis, P. pinaster Ait., P. nigra Arn.), cork oak

(Quercus suber L.), oak (Q. ilex), kermes oak (Q. coccifera), rockrose (Cistus albidus

L.) and rosemary (Rosmarinus officinalis L.; Kavvadias et al., 2001; Maestre and

Cortina, 2005; Baeza et al., unpublished data).

In Mediterranean areas, litter decomposition is strongly driven by water

availability and exposition to direct solar radiation (Vallejo et al., 1998; Kemp et

al., 2003; Vivanco and Austin, 2006). As a result, decomposition rates can be

higher in deep soil horizons than in the soil surface (Rovira and Vallejo, 1997).

These differences have been attributed to increased water content and stability

at lower soil horizons. There, litter quality may be a major driver of organic matter

decomposition (Cortina and Vallejo, 1994; Austin and Ballaré, 2010). Species from

arid and semiarid areas often show high mechanical resistance (Méndez-Alonso et

al., 2013), which hampers decomposition (Gallardo and Merino, 1993).

As discussed above, under Mediterranean conditions, litter may increase

water availability by promoting infiltration and reducing evaporation, thus

improving plant establishment and growth (Facelli and Pickett, 1991b). Yet, when

rainfall becomes too scarce, rainfall events are small and evaporation is high, a

large proportion of incoming rainwater may be intercepted by litter, and litter

accumulation may have a negative effect on plant performance (Navarro et al.,

2009; Villegas et al., 2010). However, few studies have evaluated the effects of

litter on recruitment in Mediterranean arid and semiarid areas. For example,

Rebollo et al. (2001) found a negative effect of litter on germination and

emergence of annual species in a semiarid Mediterranean area. This effect was

inversely related to seed size, suggesting the existence of a physical filter. In

similar areas, the experimental addition of litter promoted an increase in species

richness, annual biomass production and animal activity, and a decrease in runoff

Page 184: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Litter as a filter for the recruitment of keystone species

171

(Boeken and Orenstein, 2001). Navarro et al. (2009) found that germination and

early growth of Stipa tenacissima was affected by the amount of P. halepensis

litter and the location of the seed within this layer. In addition, allelopathic effects

of litter on seed germination and seedling growth have been described in woody

Mediterranean species as P. halepensis, Quercus douglasii Hook & Am., Q.

coccifera, C. ladanifer L., Adenostoma fasciculatum Hook. & Arn. and some

ericaceous species (Christensen and Muller, 1975; Hobbs, 1984; Callaway et al.,

1991; Chaves and Escudero, 1997; Fernández et al., 2008;. Alrababah et al., 2009).

In previous chapters, I have discussed the key role of resprouting shrub

species in S. tenacissima steppes. Despite of their low cover, their presence has

been associated with significant changes in ecosystem functioning and

community composition. I have shown that community composition, complexity

and facilitation ability are affected by the presence and composition of woody

patches. Spatial heterogeneity in the performance of accompanying species and

the recruitment of patch-forming species suggest that interactions between

dominant and accompanying species are more complex than suggested by the

competition-facilitation theory.

Litter may play an important role in plant-plant interactions in woody

patches, as patch-forming species show strong contrasts in their ability to build up

organic layers. The outcome of these interactions is hardly predictable, as physical

and chemical processes may act concurrently at the various stages of plant

establishment. Thus, thick and compacted litter layers, may hinder seed contact

with the mineral soil and subject seeds to strong fluctuations in temperature and

moisture, and expose seeds to direct radiation, while reducing contact with

allelopathic compounds, compared to seeds lying on the mineral soil (Fig. 1). In

addition, litter may favor pathogen growth because of its higher moisture, but it

may reduce the probability of predation.

Page 185: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 5

172

Figure 1. Schematic representation of the biotic and abiotic drivers of germination in

seeds located in different soil microhabitats. Yellow ellipses represent seeds, dark brown

elements represent litter and light brown rectangles represent mineral soil.

In this chapter I evaluate the effect of a range of litter types on the

germination of two key widespread species in S. tenacissima steppes: a patch-

forming woody species and a perennial grass. My objective is to deepen our

understanding on litter accumulation under Mediterranean woody species, assess

its role in plant-plant interactions, and discuss its importance as part of the

expanded phenotype of these species. I evaluated mechanical and chemical

effects of litter by performing three laboratory experiments in which I evaluated

1) seed germination on top of the litter layer, 2) seed germination underneath the

litter layer, and 3) the effect of litter extracts on seed germination.

Allelochemical impact Pathogen contact

Protection from predation - +

Exposure to radiation Moisture variability

Temperature variability

+ -

Distance to topsoil

+ - -

Page 186: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Litter as a filter for the recruitment of keystone species

173

MATERIAL AND METHODS

Study site and species

I characterized and collected litter samples under five common woody

species with contrasted litter accumulation patterns: Quercus coccifera L., Pistacia

lentiscus L., Rosmarinus officinalis L., Pinus halepensis Mill and Rhamnus lyciodes

L. For each species, I selected 8 adults of average size forming monospecific

patches, in order to achieve homogeneity in litter composition. The selected

individuals were spaced at least 50 m, and were scattered in slopes and

abandoned crop fields in an area covering 10 km2 in Alicante (southeast Spain).

This area has semiarid Mediterranean climate, with an average annual rainfall of

332 mm and an average temperature of 17.1ºC (San Vicente del Raspeig Station;

Rivas-Martínez and Rivas-Sáenz, 2002).

For the germination experiments, I selected two common species with

contrasting morphology and functionality, both during seed and in adult stages.

The two species, Brachypodium retusum Pers. (Beauv.) and P. lentiscus (Fig. 2),

were obtained from local provenances (Intersemillas S.A. and Forest Seed Bank,

Generalitat Valenciana, respectively). Brachypodium retusum is a perennial grass

that produces rhizomes. It is distributed in the central and western

Mediterranean basin, forming open grasslands and under low shrubland and pine

forests in thermo- and meso-Mediterranean areas, and abandoned crop fields

(Bolós, 2001). It is very abundant in S. tenacissima steppes, where it may form

dense mats in the vicinity of patches of woody vegetation. Brachypodium retusum

is a barochorous species, which seeds are elongated with an average length of 9

mm and an average width of 1.5 mm. Pistacia lentiscus is a dioecious, perennial

resprouting shrub, common in shrublands and abandoned crop fields in thermo-

and meso-Mediterranean areas (Verdú and García-Fayos, 1996). It is one of the

most abundant patch-forming species in S. tenacissima steppes (Chapter 1). Fruits

of P. lentiscus are round and fleshy, containing one 4 mm diameter seed, and they

are usually dispersed by birds.

Page 187: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 5

174

Figure 2. Seeds used for the germination experiment: Pistacia lentiscus (left) and

Brachypodium retusum (right). A centimeter scale is shown.

Effects of litter on germination

Between December 2007 and January 2008, we collected two samples of

organic horizons and four samples of mineral soil under 8 individuals per species.

Organic horizons were defined as the litter layer and the underlying layer formed

by decomposing organic debris. The organic-mineral transition was easily

identifiable by changes in texture and color, due to high carbonate content and

low organic matter content of the mineral soil. Organic horizons were removed

intact by using PVC cylinders of 5 cm high and 9 cm in diameter. Once the mineral

soil was reached, the cylinder containing the organic layers on the inside was

removed with a spatula, depositing the assembly in a plastic bag, and transported

to the laboratory. We used 8 cm high cylinders to collect organic horizons of P.

halepensis as litter depth was larger under this species. Finally, we dug the

underlying mineral soil with a shovel, to a depth of 15 cm, and transported the

samples in plastic bags to the laboratory, where soil was air-dried.

Additionally to the previous samples, we collected 10 cylinders of litter

per species from different individuals and combined all litter samples from a given

species for allelopathical tests. Litter was transported to the laboratory and air-

dried.

Page 188: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Litter as a filter for the recruitment of keystone species

175

In the laboratory, we filled 32 PVC cylinders of 5 cm high and 9 cm in

diameter for each species with the collected mineral soil. On 16 of them, we

deposited the cylinders containing the organic horizons of the corresponding

individuals on top of the mineral soil. Cylinders containing mineral soil and

organic horizons were attached with tape. On the additional 16 cylinders, empty

cylinders were attached on top. All cylinders were placed on plastic trays and its

position was changed over the course of the experiment. Two consecutive

experiments were conducted to assess the prevalence of physical or chemical

litter effects:

1. Germination on litter layer. Brachypodium retusum was sown on half of

the cylinders of each type (with and without litter), and P. lentiscus was sown on

the rest. Fifty seeds per cylinder were placed directly on the surface of the

mineral soil or litter layer. At the onset of the experiment, all cylinders were

watered with distilled water to saturation. During the experiment, they were kept

moist by spraying distilled water daily during the first three days, and every 2-3

days thereafter. The experiment lasted eight weeks and was conducted under

laboratory conditions: temperature ranged from 18.5 to 24.0ºC and relative

humidity between 34-63%. At the end of this period, the number of germinated

seeds per cylinder was recorded. I considered germinated seeds when the radicle

exceeded 0.5 cm in length.

2. Germination under litter layer. Once the previous experiment

concluded, I removed seedlings and seeds from each cylinder, and separated the

litter layer from the mineral soil with a spatula. Then, I sowed 50 seeds of the

same two species per cylinder, and placed the litter layer back on top of the

mineral soil and the seeds. I also sowed the cylinders containing no litter. Due to a

lack of B. retusum seeds from the same batch, the number of cylinders with

mineral soil used in this experiment was halved (4 cylinders per litter species). At

the onset of the experiment all cylinders were watered with distilled water to

saturation. During the experiment, they were kept moist by spraying distilled

water daily during the first two weeks, and every two days during the following

two weeks. The experiment lasted for four weeks, and was conducted under

laboratory conditions: temperature ranged from 24.9 to 30.1ºC and relative

humidity between 42-54%. At the end of this period the number of germinated

seeds was counted in each cylinder.

Page 189: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 5

176

Effects of litter extracts on germination

When the second experiment ended, I removed all seeds and seedlings

from the cylinders. I used 20 cylinders with mineral soil per species, and sowed 20

seeds per cylinder of either B. retusum or P. lentiscus. Half of the cylinders sown

with each species were watered with distilled water, and the other half were

watered with a litter extract every 2-3 days. The extract was obtained by shaking

a mixture of litter and distilled water for 48h in an orbital shaker (Garnett et al.,

2004). The amount of litter used was proportional to litter accumulation under

each species. Proportions ranged between 0.02 and 0.2 g litter l-1. The resulting

solution was filtered through Whatman filters Nº4 and stored at 4ºC until use.

The solution was prepared along the experiment as needed, to avoid storage for

more than 5 days. The number of germinated seeds was recorded daily. The

experiment lasted for seven weeks, when germinations finished, and it was

conducted in an incubation chamber with 12-h photoperiod, 18-24ºC

temperature and 62-79% relative humidity. Extracts were less concentrated than

in other studies on allelopathical interactions (100-200 g l-1) but closer to natural

conditions. Other methods extract allelochemical compounds more efficiently

and exhaustively (Inderjit and Nilsen, 2003), but they are less suitable for

simulating natural conditions.

Characterization of organic horizons

We quantified the area covered by litter under each individual in the field

(N=8) by measuring the largest diameter and its perpendicular diameter and

approximated it to an ellipse. In these environments, litter accumulates mostly

under the projection of the canopy. We measured litter depth in the center of the

litter patches, in their periphery and in the intermediate area (N=4 sampling

points per location).

After the germination experiments, we inserted a 1.3 mm-plastic mesh,

with the help of a spatula, underneath the litter layer to facilitate repeated

weighting. This setting allowed measuring water-holding capacity and short-term

evaporation rate of litter. Cylinders were watered to saturation and weighed.

Then, they were placed in an incubation chamber in the dark, where temperature

was 19-23ºC and relative humidity 60-80%. Cylinders were weighed at increasing

time intervals, from 1 h to 132 h, when weight stabilized. Water retention

Page 190: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Litter as a filter for the recruitment of keystone species

177

capacity was estimated as the difference between the weight to saturation of the

litter layer and its dry weight. Short-term evaporation rate was estimated as the

ratio of the negative exponential equation for the adjusted water content over

time for each type of litter.

Carbon content of the litter was estimated as half their dry weight

(Nelson and Sommers, 1982), considering litter density measured in laboratory

samples. Finally, I estimated hydrophobicity of the organic horizons by the water

drop penetration time test (Dekker and Ritsema, 1994). I put three drops of

distilled water on different parts of the litter surface chosen at random, and

recorded the time for the second drop to infiltrate.

Statistical analysis

The effect of species on litter properties and germination rate was tested

by analysis of variance (ANOVA) with one fixed factor and five levels. Differences

between means were compared using Tukey-HSD test. Litter depth and carbon

content were logarithmically transformed to meet criteria of normality and

homoscedasticity.

The net effect of litter on germination rate was evaluated in both

experiments by estimating the relative interaction intensity index, RII = (Gh - Gs ) /

(Gh + Gs), where Gh is the number of germinated seeds in the presence of litter

and Gs is the number of germinated seeds without litter (Armas et al., 2004). This

ratio quantifies the extent of an interaction, with defined boundaries between -1

and 1, and it is symmetrical on zero. In this study, the effect of litter on

germination is either positive or negative as RII approaches 1 and -1, respectively.

Student’s t-test was used to assess the significance of differences between RII and

zero. Germination percentages were arcsine transformed prior to analysis. All

analyses were performed with the R statistical package for Windows 3.1.0 (R

Development Core Team, 2014).

Page 191: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 5

178

RESULTS

Characterization of organic horizons

Litter accumulation and properties differed across the five studied

species. Litter depth in the inner, middle and outer part of the litter surface under

all species showed a similar pattern (Fig. 3). Rhamnus lyciodes had less litter than

the other species, whereas Q. coccifera and P. halepensis showed the highest

accumulation. Carbon density was higher under Q. coccifera and P. halepensis

than under other species, exceeding by more than twice the amount of carbon

accumulated underneath R. lycioides and R. officinalis (Table 1).

Species

P. halepensis P. lentiscus Q. coccifera R. lycioides R. officinalis

Litte

r d

ep

th (

cm

)

0

2

4

6

8

10

inner

middle

outer

c

bb

a

a

Figure 3. Litter depth measured in the inner, middle and outer part of litter patches.

Means ± 1SE for N=8 individuals are shown. Different letters indicate significant

differences between species for the middle location, while inner and outer locations

showed the same pattern (ANOVA and post-hoc Tukey HSD test, p<0.05).

Page 192: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Litter as a filter for the recruitment of keystone species

179

Table 1. Litter properties of five Mediterranean woody species. Means ± 1SE, number of

samples (N) and results of ANOVA are shown. Different letters indicate significant

differences between species for the same variable (post-hoc Tukey HSD test, p<0.05).

d.f.=degrees of freedom.

Species

Litter surface

area per

individual (m2)

Litter

accumulation

(g C m-2

)

Moisture

content at

saturation (g g-1

)

Hydropho-

bicity (min)

Rosmarinus officinalis 1.5±0.3 a 859±870 bc 0.83±0.07 b 49±14 ab

Quercus coccifera 14.8±3.6 b 2335±240 a 1.02±0.10 b 113±11 a

Pinus halepensis 28.2±4.0 c 2321±397 a 0.92±0.09 b 113±18 a

Rhamnus lyciodes 3.1±0.7 a 616±119 b 1.44±0.16 a 5±10 b

Pistacia lentiscus 7.8±1.3 ab 1541±133 ac 1.14±0.09 a 35±10 b

N 8 8 10 10*

F 18.790 15.574 5.098 11.885

d.f. 4 4 4 4

p-value <0.001 <0.001 0.0018 <0.001

* Except for R. lyciodes where N=6.

Page 193: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 5

180

Water retention capacity also varied between species. Rhamnus lycioides

and P. lentiscus litter retained more water and showed less hydrophobicity than

other species. The highest hydrophobicity was observed in Q. coccifera and P.

halepensis. On the other hand, short-term evaporation rate was highest in R.

lycioides and R. officinalis, and lowest in P. halepensis (Fig. 4, Table 2).

Time after water saturation (hours)

0 20 40 60 80 100 120

Wate

r conte

nt (g

wate

r) (

g litte

r)-1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

R. officinalis

R. lycioides

Q. coccifera

P. halepensis

P. lentiscus

Figure 4. Reduction in water content of different types of litter at 19-23ºC and HR = 60-

80%. Curve fitting parameters and estimated short-term evaporation rate are shown in

Table 2.

Page 194: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Litter as a filter for the recruitment of keystone species

181

Table 2. Short-term evaporation rate of different litter types estimated from the

equation y=a·e-kt, where y is water content (g·g-1), t is drying time (hours), k is

evaporation coefficient and a is a constant. The goodness of fit and its probability are

also shown. N=10 in all cases.

Species Evaporation coefficient (k) R2 F1,18 p-value

Rosmarinus officinalis 0.0173 0.977 776.847 <0.001

Rhamnus lycioides 0.0285 0.843 96.687 <0.001

Quercus coccifera 0.0056 0.892 148.951 <0.001

Pinus halepensis 0.0030 0.926 223.857 <0.001

Pistacia lentiscus 0.0084 0.969 570.601 <0.001

Litter effects on germination: seeds on litter layer

Germination was higher when seeds of both species were sown on R.

lycioides litter than on litter of other species (Fig. 5A, Table S1). Brachypodium

retusum germination was also higher on P. lentiscus litter than on litter of other

species. I observed no effect of the mineral soil on germination, except for a

reduction in P. lentiscus germination when sown on P. halepensis soil compared

to other types of soil (Fig. 5B).

Page 195: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 5

182

Sown species

Pistacia lentiscus Brachypodium retusum

Se

ed

ge

rmin

atio

n (

%)

0

20

40

60

80

100R. officinalis

Q. coccifera

P. halepensis

R. lycioides

P. lentiscus

Sown species

Pistacia lentiscus Brachypodium retusum

Se

ed

ge

rmin

atio

n (

%)

0

20

40

60

80

100

A)

B)

cc

a

a

b

b

b

b

bc

aa a

a

b

Figure 5. Germination of Pistacia lentiscus and Brachypodium retusum on the litter layer

(A) and on the mineral soil (B) collected under five woody species. Means ± 1SE for N = 8

are shown. Different letters indicate significant differences for each sown species and

seed location (ANOVA and Tukey-HSD test, p <0.05).

Page 196: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Litter as a filter for the recruitment of keystone species

183

The net effect of litter of R. officinalis, Q. coccifera and P. halepensis on P.

lentiscus germination was negative when seeds were sown on the litter layer (Fig.

6, Table S2). In contrast, the effect of R. lycioides litter on P. lentiscus germination

was positive. Litter had a negative effect on B. retusum germination, except for R.

lycioides litter, which had no effect. Moreover, the negative effect of litter on the

germination of B. retusum was greater when seeds were sown on litter of R.

officinalis, Q. coccifera and P. halepensis than litter of P. lentiscus.

Sown species

Pistacia lentiscus Brachypodium retusum

RII

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

R. officinalis

Q.coccifera

P. halepensis

R. lycioides

P. lentiscus

b

b

ab

a

a

a

*

*

b

a

a

a *

*

*

*

*

*

Figure 6. Net effect (RII) of litter on germination of Pistacia lentiscus and Brachypodium

retusum when seeds were sown on top of the litter layer. Means ± 1SE for N=8 are shown.

Different letters indicate significant differences for each sown species and seed location

(ANOVA and Tukey-HSD test, p <0.05). Asterisks indicate significant differences from zero

(Student’s t-test, p <0.05).

Page 197: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 5

184

Litter depth and weight were negatively correlated to the number of

seedlings for both seeded species (Fig. 7).

Litter depth (cm)

0 1 2 3 4 5 6 7 8

Germ

inatio

n o

n litte

r

of

Bra

ch

yp

od

ium

re

tusu

m (

%)

0

20

40

60

80

100P. halepensis

P. lentiscus

Q. coccifera

R. lycioides

R. officinalis

Litter depth (cm)

0 1 2 3 4 5 6 7G

erm

inatio

n o

n litte

r

of

Pis

tacia

le

ntiscu

s (

%)

0

20

40

60

80

100

A) B)

Litter weight (g)

0 10 20 30 40 50 60 70

Germ

inatio

n o

n litte

r

of

Bra

ch

yp

od

ium

re

tusu

m (

%)

0

20

40

60

80

100

Litter weight (g)

0 10 20 30 40 50 60

Germ

inatio

n o

n litte

r

of

Pis

tacia

le

ntiscu

s (

%)

0

20

40

60

80

100

C) D)

R2

= 0.26p = 0.002

R2

= 0.21p = 0.059

R2

= 0.13p = 0.082

R2

= 0.28p < 0.001

Figure 7. Relationship between litter accumulation (litter depth A-B and litter weight C-D)

and seed germination when seeds were sown on the litter layer. Linear regression

parameters correspond to the ensemble of all litter types for a given seeded species.

Litter effects on germination: seeds under litter layer

I observed no effect of litter type on B. retusum germination when seeds

were sown under litter layer (Fig. 8A, Table S1). The number of germinated P.

lentiscus seeds was lower under P. halepensis litter than under R. lycioides litter.

Other species showed no differences in their effect on P. lentiscus germination. In

this experiment, I found no effect of the type of mineral soil on the germination of

P. lentiscus and B. retusum (Figure 8B).

Page 198: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Litter as a filter for the recruitment of keystone species

185

Sown species

Pistacia lentiscus Brachypodium retusum

Se

ed

ge

rmin

atio

n (

%)

0

20

40

60

80

100

R. officinalis

Q. coccifera

P. halepensis

R. lycioides

P. lentiscus

Sown species

Pistacia lentiscus Brachypodium retusum

Se

ed

ge

rmin

atio

n (

%)

0

20

40

60

80

100

A)

B)

aab

ab abb

Figure 8. Germination of Pistacia lentiscus and Brachypodium retusum under the litter

layer (A) and on mineral soil (B), collected under five woody species. Means ± 1SE for N =

8 are shown. Different letters indicate significant differences for each sown species and

seed location (ANOVA and Tukey-HSD test, p <0.05).

Page 199: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 5

186

The net effect of litter on the germination of both species was negative,

except for R. lycioides litter, which had no effect on any species, and P. halepensis

litter, that had no effect on B. retusum (Fig. 9, Table S2). The magnitude of the

negative effect was similar among the different types of litter (ANOVA, p> 0.05).

The relation between the net effect when seeds were sown on and under the

litter layer was positive but weak (R2=0.147, p-value=0.014 for P. lentiscus

seedlings, and R2=0.083, p-value 0.219 for B. retusum).

Sown species

Pistacia lentiscus Brachypodium retusum

RII

-1.0

-0.5

0.0

0.5

1.0R. officinalis

Q. coccifera

P. halepensis

R. lycioides

P. lentiscus

*(*)

(*)

(*)(*)

(*)

*

Figure 9. Net effect (RII) of litter on germination of Pistacia lentiscus and Brachypodium

retusum when seeds were sown under the litter layer. Means ± 1SE for N=8 are shown.

Asterisks indicate significant differences from zero (Student’s t-test, p <0.05) or marginally

significant differences (Student’s t-test, p <0.15, in parenthesis).

Page 200: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Litter as a filter for the recruitment of keystone species

187

There was a significant relationship between the number of germinated

seeds and litter accumulation (litter depth and weight) when seeds were sown

under the litter layer for both seeded species (Fig. 10).

Litter depth (cm)

0 1 2 3 4 5 6 7 8

Germ

inatio

n o

n litte

r

of

Bra

ch

yp

od

ium

re

tusu

m (

%)

0

20

40

60

80

100P. halepensis

P. lentiscus

Q. coccifera

R. lycioides

R. officinalis

Litter depth (cm)

0 1 2 3 4 5 6 7

Germ

inatio

n o

n litte

r

of

Pis

tacia

le

ntiscu

s (

%)

0

20

40

60

80

100

A) B)

Litter weight (g)

0 10 20 30 40 50 60 70

Germ

inatio

n o

n litte

r

of

Bra

ch

yp

od

ium

re

tusu

m (

%)

0

20

40

60

80

100

Litter weight (g)

0 10 20 30 40 50 60

Germ

inatio

n o

n litte

r

of

Pis

tacia

le

ntiscu

s (

%)

0

20

40

60

80

100

C) D)

R2

= 0.11p = 0.047

R2

= 0.40p = 0.005

R2

= 0.16p = 0.051

R2

= 0.49p < 0.001

Figure 10. Relationship between litter accumulation (litter depth A-B and litter weight C-

D) and seed germination when seeds were sown under the litter layer. Linear regression

parameters correspond to the ensemble of all litter types for a given seeded species.

Page 201: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 5

188

Litter effects on germination: non-physical effects

Germination was very high when seeds of both sown species where

watered with litter extract (Fig. 11). These values were higher than those

recorded in the previous experiments. In this case, I found no effect of litter type

on seed germination (ANOVA p>0.05, Table S1).

Sown species

Pistacia lentiscus Brachypodium retusum

See

d g

erm

ination (

%)

0

20

40

60

80

100R. officinalis

Q. coccifera

P. halepensis

R. lycioides

P. lentiscus

Figure 11. Germination of Pistacia lentiscus and Brachypodium retusum sown on mineral

soil and watered with litter extract from five woody species. Means ± 1SE for N = 8 are

shown.

Page 202: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Litter as a filter for the recruitment of keystone species

189

The net effect of watering with litter extract with respect to distilled

water was negligible for all types of litter extract and for both sown species (Fig.

12, Table S2).

Sown species

Pistacia lentiscus Brachypodium retusum

RII

-1.0

-0.5

0.0

0.5

1.0

R. officinalis

Q. coccifera

P. halepensis

R. lycioides

P. lentiscus

Figure 12. Net effect (RII) of litter extract from five woody species on germination of

Pistacia lentiscus and Brachypodium retusum. Means ± 1SE for N=8 are shown.

DISCUSSION

Litter accumulation

Litter accumulation was higher than observed in other Mediterranean

areas (Ferran, 1996; Cañellas and San Miguel, 1998). For example, Ferran (1996)

found 1.7 kg m-2 of litter in communities dominated by Q. coccifera, which

contrasts with the 4.7 kg m-2 observed in this study. Discrepancies may partly

result from differences in the sampling method. I estimated organic matter

accumulation by considering litter density and volume under each individual

Page 203: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 5

190

patch, while in other studies, litter sampled from known surface areas is directly

weighted. The later approach integrates spatial heterogeneity at a larger scale.

My results are, however, in agreement with studies using similar methods (Fons,

1995; Baeza et al. Fundación CEAM, unpublished data).

Interspecific differences in litter accumulation may reflect differences in

age and balance between litterfall and litter decay. For example, R. officinalis, one

of the species with less litter accumulation, as other small shrubs, has a shorter

lifespan (Capitanio and Carcaillet, 2008; Eugenio et al., 2012) than Q. coccifera

and P. halepensis, the two species showing highest ability to build up thick litter

layers. Furthermore, the balance between inputs and outputs may differ for each

species. For example, R. lycioides, which is a resprouting and conspicuous species,

shows low litter accumulation, which may be related to low litterfall inputs and

relatively high decomposition rates. In contrast, P. lentiscus may accumulate more

litter because litterfall inputs are higher in this species than in R. lycioides (Lavado

et al., 1989). The decay rate of R. officinalis litter is higher than that of P.

halepensis (Almagro and Martinez-Mena, 2012).

Effects of litter on germination

The effect of litter on germination was strongly dependent on litter type.

In species with high litter accumulation, as P. halepensis and Q. coccifera, litter

had a negative effect on the germination of seeds located either on top or

underneath the litter layer, which suggests the presence of a physical barrier for

germination. The litter layer may hamper soil-seed contact and seed imbibition

needed to initiate this process (Rotundo and Aguiar, 2005). In contrast, in species

with lower litter accumulation as R. officinalis, P. lentiscus and R. lycioides, the

effect of litter on germination was heterogeneous. I found a negative relationship

between litter accumulation and seed germination. However, the relationship

was weak, suggesting that other factors may be more important in controlling

seed germination. For example, the physical structure of the litter layer may

affect seed germination (Donath and Eckstein, 2008). This probably explains the

contrasted effect of litter on seed germination in R. lycioides vs. R. officinalis and

P. lentiscus. Thus, unlike R. lycioides, litter of R. officinalis and P. lentiscus showed

a negative effect on seed germination. Rosmarinus officinalis litter is strongly

compacted, forming an intertwined network of litter fragments at different stages

of decomposition. Similarly, Pistacia lentiscus develops a dense litter mat. In

Page 204: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Litter as a filter for the recruitment of keystone species

191

contrast, the litter layer of R. lycioides is loose. Thus, despite low levels of litter

accumulation under these species, litter density may hinder seed movement and

prevent contact with the mineral soil in R. officinalis and P. lentiscus, compared to

R. lycioides. Furthermore, the scarce abundance and loose morphology of the

litter layer under R. lycioides may allow seedling contact with the mineral soil, and

protect germinating seeds from desiccation.

In addition to the physical effect associated with litter accumulation and

structure, water retention capacity may also influence seed germination. One

would expect that a wet litter layer constitutes an optimal environment for

germination. However, this layer may also have negative effects on seed

germination by modifying radiation income and quality, and intercepting rainfall.

This later effect depends on rainfall amount and distribution, and seed location

(Navarro-Cano et al., 2009; Villegas et al., 2010). As observed in this study, R.

lycioides litter is highly hydrophilic and has great water-holding capacity, but

moisture accumulation in this type of litter is scarce. In contrast, P. halepensis and

Q. coccifera litter, show low water-holding capacity, high hydrophobicity, and high

water accumulation capacity. In general, germination was negatively related to

litter accumulation and positively related to water-holding capacity. However, it

must be noted that in this study, litter was regularly watered, and seeds located

under the litter layer never dried out. These results contrast with studies showing

no effect of litter cover on seed germination under constant humidity (Eckstein

and Donath, 2005). Other authors have reported a negative effect of litter on field

germination (intermittent drought) and a positive effect in the laboratory

(constant humidity), which they attributed to water interception under conditions

of low water availability (Navarro-Cano et al., 2009). I cannot infer the effect of

litter under low water availability from my data, but my results show a negative

effect of litter on germination, and suggest that the effect is predominantly

mechanical, and related to litter abundance and structure. These two factors,

together with litter water-holding capacity may be critical for germination in the

absence of regular water inputs.

Allelopathic effects on seed germination depend on seed species and may

be proportional to litter abundance (Alrababah et al., 2009). Allelopathic effects

of P. halepensis and Q. coccifera on germination have been previously described

(Fernández et al., 2008; Alrababah et al., 2009; Navarro-Cano et al., 2009).

Page 205: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 5

192

However, the negative effect of litter on seed germination observed in this study

was apparently unrelated to allelopathy. Indeed, the effect of litter was more

intense when seeds were sown on top of the litter, compared to seeds sown

under this layer or watered with litter extracts. My results agree with other

studies showing no allelopathic effects of P. halepensis litter on P. lentiscus

growth (Maestre et al. 2004). Moreover, in this study I evaluated seed

germination from a patch forming species (P. lentiscus) and an accompanying

species (B. retusum), whose seeds are morphologically distinct and with different

germination requirements (García-Fayos et al., 2001; Espejo, 2007). Yet, the

observed effects were similar for both types of seeds, suggesting that the effect

of litter of the studied species does not depend on seed type. In addition, the

weak correlation between the net effect of litter when seeds were sown on top

and under the litter layer for both seed species suggests that the effect of the

litter species on germination is not independent of seed location and there may

be an interaction between these factors.

Implications on population dynamics, community composition and

management

The negative effect of litter on the recruitment of new individuals may

have important consequences on population dynamics, species evolution and

community composition. As a result of this interference, the progeny of those

species lacking mechanisms for long-distance seed dispersal may be reduced

under adult individuals. Moreover, a negative effect of litter may represent a filter

for the establishment of other species (Tilman, 1993; Gazol and Ibáñez, 2010).

According to my results, the studied woody plants have the ability to modulate

resource flow and ecological conditions by means of litter accumulation, affecting

seed germination. Hence, the studied species behave as ecosystem engineers

(sensu Jones et al., 1994) and litter accumulation contributes to their expanded

phenotype (Hastings et al., 2007).

In addition, litter interference may have significant implications on

competitive exclusion and the spatial distribution of vegetation. My results

contrast with studies showing a direct and positive relationship between woody

resprouting plants and richness of vascular plants in Mediterranean steppes and

shrublands (Verdú and García-Fayos, 1996; Maestre and Cortina, 2004b; Chapter

1). Various processes may explain this disagreement. On the one hand,

Page 206: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Litter as a filter for the recruitment of keystone species

193

germination and recruitment could precede litter accumulation. For example, fire,

wildlife and humans may remove litter from a given microsite for months to

decades (Lavado et al., 1989; Serrasolsas et al., 1989; Cañellas and San Miguel,

1998; Gutiérrez et al., 1997; Sayer, 2006; Dunham, 2011), and open windows for

germination and seedling establishment. If this was the case, and if the

disturbance was intense enough to remove the aboveground parts of resprouting

woody species, the age of resprouts and accompanying vegetation should be

correlated, which is not common (Capitanio and Carcaillet, 2008). On the other

hand, the negative effect of litter accumulation on germination described in this

chapter could be offset by a positive effect of woody species on other phases of

plant establishment (Amat et al., 2015; Chapter 4). Thus, woody species promote

seed rain, particularly from ornitochorous species (A. Castillo, pers. comm.), and

generate favorable microenvironments for seedling establishment (Verdú and

García-Fayos, 1996; Amat et al., 2015; Chapter 4).

The impact of woody vegetation patches on community composition and

ecosystem functioning has been a major argument to justify their use in

restoration programs in semiarid areas (Castro et al., 2004; Cortina et al., 2004;

Gómez-Aparicio, 2004; Cortina et al., 2011). I have shown that litter does not

contribute to this interaction and, indeed, it could have a negative effect on

germination of the introduced species. The negative effect of litter may help to

explain the idiosyncratic nature of plant-plant interactions in arid and semiarid

areas (Maestre et al., 2009a). According to my results, mulch, a widely used eco-

technological tool to restore degraded arid and semiarid areas, should be

employed with caution, particularly when applied in combination with seeding. In

general, and regardless of mulch structure and composition, application doses

should not exceed 1700 g m-2 to avoid deleterious effects on germination. It is

noteworthy that these doses are well above common recommended doses for

commercial products (between 100 and 400 g m-2).

Page 207: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Chapter 5

194

CONCLUSIONS

The effect of litter on germination depends on the abundance and

structure of the litter layer, rather than the seeded species. Results from this

study highlight the important role that litter of woody species may play on seed

germination and recruitment in semiarid areas. The negative relationship

between litter and germination may be attributed to a physical filter, which

prevents soil-seed contact, and not to an allelochemical filter. This physical filter,

together with the existence of multi-specific patches, and the positive relationship

observed between patches and richness of vascular plants suggest that litter

accumulation and seed germination are spatially or temporally segregated, or the

existence of positive interactions in other phases of plant establishment. These

results have important implications on population and community dynamics in S.

tenacissima steppes and on restoration techniques aimed at the establishment of

vascular plants in these areas.

Page 208: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Litter as a filter for the recruitment of keystone species

195

APPENDIX

Table S1. Results from one-way ANOVAs with 5 levels (litter species) to assess the effect of litter on seed germination. Seeds of Pistacia lentiscus and Brachypodium retusum were sown on top of the litter layer, underneath it and watered with litter extract. RII corresponds to the net effect of each treatment on germination. Significant values (p<0.05) are in bold. Degrees of freedom = 4.

Analysis Sown species F p-value

Germination on litter Pistacia lentiscus 9.169 <0.001

Brachypodium retusum 21.388 <0.001

Germination on mineral soil (experiment 1)*

Pistacia lentiscus 5.527 0.002

Brachypodium retusum 1.550 0.210

RII germination on litter Pistacia lentiscus 5.413 0.002

Brachypodium retusum 17.361 <0.001

Germination under litter Pistacia lentiscus 3.530 0.016

Brachypodium retusum 0.857 0.499

Germination on mineral soil (experiment 2)*

Pistacia lentiscus 1.483 0.228

Brachypodium retusum 1.665 0.210

RII germination under litter

Pistacia lentiscus 1.487 0.227

Brachypodium retusum 2.381 0.098

Germination with litter extract

Pistacia lentiscus 0.313 0.866

Brachypodium retusum 0.557 0.696

Germination on mineral soil (experiment 3)*

Pistacia lentiscus 1.188 0.346

Brachypodium retusum 0.277 0.889

RII germination with litter extract

Pistacia lentiscus 0.497 0.738

Brachypodium retusum 0.665 0.624

*Controls (only mineral soil) of three independent experiments.

Page 209: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Table S2. Results of Student’s t-tests to assess if the net effect (RII) of litter or litter extracts on germination differed from zero. Significant values (p<0.05) are in bold. d.f.= degrees of freedom.

Sown species Litter species RII germination on litter RII germination under litter

RII germination with litter extract

d.f. t p-value d.f. t p-value d.f. t p-value

Pistacia lentiscus

Pinus halepensis 7 -1.857 0.106 7 -3.319 0.013 4 -0.583 0.591

Quercus coccifera 7 -6.151 <0.001 7 -2.171 0.067 4 -1.117 0.327

Pistacia lentiscus 7 -1.376 0.211 7 -2.127 0.071 4 0.391 0.716

Rhamnus lycioides 7 3.023 0.019 7 -1.282 0.241 4 -2.113 0.102

Rosmarinus officinalis 7 -4.853 0.002 7 -2.172 0.066 4 -1.242 0.282

Brachypodium retusum

Pinus halepensis 7 -6.872 <0.001 3 -1.239 0.304 4 -1.746 0.156

Quercus coccifera 7 -7.426 <0.001 3 -4.216 0.024 4 -0.868 0.434

Pistacia lentiscus 7 -4.012 0.005 3 -2.995 0.058 4 0.400 0.710

Rhamnus lycioides 7 -0.581 0.580 3 -1.440 0.245 4 0.000 1.000

Rosmarinus officinalis 7 -8.358 <0.001 3 -2.567 0.083 4 0.266 0.803

Page 210: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

GENERAL DISCUSSION AND CONCLUSSIONS

Page 211: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos
Page 212: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Discussion

199

GENERAL DISCUSSION

Along the five Chapters of this thesis I have described woody patches of S.

tenacissima steppes and their ecological context, explored their functional role

and discussed the implications of these findings on steppe management. My

research adds to the increasing knowledge on the composition, dynamics and

function of S. tenacissima steppes accumulated over the past decades, and

contributes to complete the picture of these vast western Mediterranean

landscapes. In this section, I summarize and integrate the information contained

in each chapter, and identify knowledge gaps.

1. What is a woody patch?

Owing to their extent and their socio-economic, cultural and ecological

importance, Stipa tenacissima steppes have been the subject of numerous studies

(Le Houérou, 1986, 2001; Maestre and Cortina, 2004a, 2004b; Alados et al., 2006;

Mayor et al., 2008; Cortina et al., 2009; Ramírez and Bellot, 2009; Rey et al., 2011;

to mention a few). Comparatively, the woody component of S. tenacissima

steppes has received less attention. Yet, some studies suggest that resprouting

shrubs may play an important role in these ecosystems (Maestre et al., 2003,

2006; Maestre and Cortina, 2005), acting as true keystone species (Eldridge et al.,

2011). In previous sections, I have shown that these shrubs form heterogeneous

communities with specific attributes, they have an impact in their immediate

environment and community, and their properties are modulated by internal and

external factors. But what is inside a patch?

Species in woody patches can be ascribed to two groups, according to

their morpho-functional traits: (i) a few dominant large resprouting shrubs and (ii)

a larger set of smaller woody and herbaceous species that we identified as

accompanying species. The canopy area of woody patches is dominated by one of

six dominant patch-forming species. Patches dominated by Rhamnus lycioides are

the most abundant. Yet, despite the dominance of one or a few species, patches

are commonly multispecific: dominant and accompanying species forming

communities of 2-29 co-occurring species. Woody patches can be considered

independent communities, forming separated entities of interacting species in a

well-defined space, usually determined by the size of the dominant species. Patch

attributes described through this dissertation, such as richness and cover of

Page 213: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Discussion

200

accompanying species, soil properties, soil water content, incident radiation and

litter accumulation, support the idea of spatially-delimited patches, as they show

sharp contrasts between the canopy projection area and its surroundings. This

gradient has significant implications on patch growth and the incorporation of

new individuals.

Patch composition is primarily determined by the dominant species

(Chapter 1). Two major gradients emerge from multivariate analyses of patch

composition which are mostly related to the abundance of four species: R.

lycioides – Quercus coccifera and Pistacia lentiscus – Ephedra fragilis. In addition,

the most influent accompanying species in patch composition are S. tenacissima

and Brachypodium retusum, which appear in opposite ends of a third gradient.

We have found that species richness within a patch increases with its

area. However, the increase is not linear. Smaller patches are relatively richer

than big ones, suggesting the existence of species saturation in large patches.

Various factors may explain differences in the slope of the species-area

relationship (Drakare et al., 2006). We forward the hypothesis that in S.

tenacissima steppes, this is probably due to the asymptotic decrease in patch

capacity to create new microhabitats (i.e., the limits of their ability for ecological

engineering), and not to depletion of the species pool. Clearly, the discussion on

the spatial segregation of woody patches (i.e., patches as islands) and its effects

on patch composition and community assembly deserve further attention.

2. How is a patch community structured?

Dominant species can be much older than most accompanying species (L.

De Soto, UNCROACH project†; Patón et al., 1998; Olano et al., 2011; Eugenio et al.,

2012). Thus, patch community may organize in two phases. In the first phase, a

dominant species gets established. Then, additional patch-forming species and a

set of accompanying species may colonize under the canopy of the founding † This dissertation has been developed under the framework of project UNCROACH

(CGL2011-30581-C02-01; Dynamics of woody vegetation in dry and semi-arid landscapes

facing global change. Implications for the provision of ecosystem services). This project was

funded by the Spanish Ministry of Economy and Finance, and carried out at the University

of Alicante from 2012 to 2015, by various researchers who are referenced along the text.

Page 214: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Discussion

201

species. The probability of germination and establishment during the first phase

may be very low under current pedo-climatic conditions and disturbance regime,

as evidenced by the low density of recruits of most species (only R. lycioides

showed relatively high recruitment rates and high density of adults), and

numerous field observations (Herrera et al., 1994; García-Fayos and Verdú, 1998;

Rey and Alcántara, 2000; Vilagrosa et al., 2001; Barberá et al., 2006). Still, we

observed evidences of regular recruitment in all patch-forming species, including

Q. coccifera (L. De Soto, UNCROACH project).

The strong and positive relationship between the density of R. lycioides

adults and mean air temperature, and the negative relationship between mean

air temperature and the density of Q. coccifera and P. lentiscus, suggest that this

factor represents a major filter for the recruitment of patch-forming species. In

addition, seed dispersal may limit their establishment, particularly in areas that

are distant from propagule sources. The dispersal of seeds of patch-forming

species is mainly carried out by gravity, birds, small rodents and, to a lesser

extent, big mammals as foxes and martens (Herrera, 1995; G. López and E. Rico,

UNCROACH project). The lack of woody patches in recently abandoned steppes

and the identity of the patch-forming species probably explain low colonization

rates observed in some areas (V. Rolo, UNCROACH project).

Patch-forming species are all resprouters and thus, both germination and

resprouting may contribute to patch expansion. In addition, once a founding

species gets established, other species may follow. Establishment must overcome

several filters, which overall may be less stringent than those experimented by

the founder. Filters may act sequentially along the successive establishment

phases. First, seed rain may be limited by the availability of seed dispersers, and

these in turn may be limited by the presence of safe sites as shelters and resting

places. An ongoing study has found that disperser bird species visit woody

patches and comparable physical structures, and disperse seeds of P. lentiscus

and R. lycioides (A. Castillo, UNCROACH project). In most cases, dispersal may

occur at relatively short distances, particularly for Q. coccifera. Indeed, K. Disante

(U. Alicante) has found high levels of consanguinity in individuals of Q. coccifera

from one of our study catchments (Porxa), higher than those of P. lentiscus in the

same area. Seeds from dominant species (namely R. lycioides) are present in

faeces of Vulpes vulpes, Martes foina and Meles meles (E. Rico and A. Bonet,

Page 215: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Discussion

202

UNCROACH project), and, albeit at a lower rate, they may be dispersed at longer

distances.

Second, species must overcome the germination filter. This requires high

and sustained levels of moisture. Jaume Tormo (U. Alicante) found that P.

lentiscus may be more sensitive than R. lycioides, Q. coccifera or S. tenacissima to

low water availability. The former species may need long (>7 days) and abundant

(>100 mm) rain events to germinate, which are quite uncommon in S. tenacissima

steppes (García-Fayos and Verdú, 1998). S. tenacissima tussocks may favor

germination as they create favorable microsites for seed germination of the

dominant species R. lycioides and Q. coccifera, by increasing soil moisture and

protecting seeds against predation (Barberá et al., 2006)

Microenvironments favoring runoff concentration and water holding

capacity, and hampering evaporation may increase the probability of germination

of dominant and accompanying species. As shown in Chapter 5, litter

accumulation is a major driver of germination. Water retention capacity in litter is

positively related to germination rate, R. lycioides and P. lentiscus being the two

species with the highest moisture retention capacity. However, the impact of

litter on water availability depends on other factors such as hydrophobicity and

short-term evaporation rate. Highly hydrophobic litter (such as that of Q.

coccifera and Pinus halepensis), and high short-term evaporation rate (such as

that of R. lycioides and Rosmarinus officinalis) limit litter ability to improve

moisture conditions for germination.

In addition to its role in the hydrological cycle, litter represents a physical

obstacle for soil-seed contact (Rotundo and Aguiar, 2005). As described in

Chapter 5, higher litter accumulation decreased germination rate. The effect was

especially significant when seedlings were deposited on top of the litter layer,

resembling natural conditions. Woody patches with thick litter layers such as

those dominated by Q. coccifera and P. lentiscus may hinder germination of

further or the same species. This limitation may be offset by segregating litter

accumulation and seed germination in space or time. For example, seed

germination will be more likely to occur early in patch life, when the litter layer is

still sparse, or following disturbances that remove litter (e.g., wildlife trampling).

In addition to the effect of litter, patches may affect seed germination by reducing

irradiance, modifying the radiative spectrum and reducing evaporative demand

Page 216: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Discussion

203

(Sánchez-Gómez et al., 2006; Puerta-Piñero et al., 2007; Valladares and

Niinemets, 2008).

The third filter concerns seedling rooting and establishment. As

mentioned above, patch periphery is the most suitable area for seed dispersal.

Abiotic and biotic conditions are substantially different beyond the canopy

projection area (Chapter 4). I found that seedling establishment was favored

underneath woody patches, but the positive effect declined sharply in their

periphery. I also found that survival depended on patch attributes, including soil

fertility, which may be considered a part of the extended phenotype. The

presence of the two most abundant accompanying species affected seedling

survival both underneath the patches and in the northern side of their periphery.

Specifically, high cover of S. tenacissima and low cover of B. retusum patches

promoted establishment success. This is in agreement with studies showing that

S. tenacissima improves the survival and physiological status of nearby P. lentiscus

seedlings (Maestre et al., 2001; Maestre et al., 2003), and favors the survival of

woody species (García-Fayos and Gasque, 2002). However, differences in other

factors affecting seedling establishment in both microsites, underneath the

patches and in their periphery, suggest that plants are subject to different stress

types and intensities. Underneath the patches, plants experimented lower stress,

and competition for water and nutrients may be offset by the benefits provided

by low evaporative demand and high soil fertility (Chapter 4). Indeed, richness

and cover of accompanying species were higher under the patches than in their

periphery. Conversely, seedling establishment on the northern edge of the

patches was driven by species composition and richness, and phylogenetic

distance of the community, suggesting that biotic interactions play a major role in

this microsite. Finally, on the southern edge of the patches, only abiotic factors

modulated seedling survival.

Rooting may also be affected by the presence of soil crusts. Litter

accumulation under woody patches preclude the formation of smooth biological

and physical crusts, dominated by lichens and cyanobacteria (Eldridge and

Greene, 1994). They do not affect seed germination, but may hamper seedling

rooting (Mendoza-Aguilar et al., 2014). Thus, woody patches may facilitate

rooting by improving soil surface conditions for root penetration.

Page 217: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Discussion

204

Once seedlings get established, a new community is formed, and

interspecific interaction may intensify. Changes in patch composition and size

may be driven by various factors, including herbivory. For example, in S.

tenacissima steppes, rabbit population may attack new seedlings (see the

Materials and Methods section in Chapter 4; Soliveres et al., 2011). Patch size

may also increase as a result of individual growth. Victor Rolo (Univ. Alicante)

found that average increase in the surface area covered by the projection of the

canopy was 0.24 m2 y-1. Information on the limits of patch growth is anecdotal.

The largest patches found in our study cover 104 m2, but the relationship

between age and canopy cover is linear, providing no clear signs of saturation of

patch growth (V. Rolo, Univ. Alicante, unpublished data).

3. Emergent properties and community drivers

Interspecific interactions within a patch occur at all life stages, from seeds

to mature adults. The effect of individual interactions may be positive, negative or

neutral. The outcome of the whole array of interactions taking place within a

community may configure species co-occurrence patterns. Thus, by evaluating

species co-occurrence, we obtain an integrated view of the entire community and

the interactions therein. Most species in woody patches are generalists which co-

occur with many other species. This is the case of the patch-forming species R.

lycioides, which is also the most abundant resprouting species in these steppes,

and the dominant species in 44% of the patches. A few species in the community

only occur in the vicinity of particular species. For example, we only found

Polygala rupestris, Viola arborescens and Teucrium buxifolium, under

monospecific patches of J. oxycedrus. Patches dominated by the less abundant

dominant species (O. lanceolata, J. oxycedrus and E. fragilis) were the ones

holding the most specialized accompanying species. We may hypothesize that

these patch-forming species create particular microclimatic conditions benefiting

more demanding species. Thus, O. lanceolata only appears in the less arid areas.

Similarly, soil organic matter composition under E. fragilis largely differs from the

composition under other patch-forming species (J. Jordá, UNCROACH project).

Plant communities are usually studied in terms of species composition

and abundance, and this information is commonly integrated in diversity indices,

as Shannon-Wiener’s information index, standardized diversity indices,

estimations of sampling effort, and rarefaction curves (Sanders, 1968; Shannon

Page 218: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Discussion

205

and Weaver, 1949; Gotelli and Colwell, 2001). In previous Chapters I described

species composition and abundance, paying special attention to species

interactions and their role in structuring plant communities. I assessed emergent

properties of woody patches by using network theory, a suitable tool for

analyzing community structure (Chapter 2). The generalist character of these

communities was evidenced by high levels of network connectance and low levels

of nestedness and specialization. These attributes are commonly related to

robustness (Dunne et al., 2002; Kaiser-Bunbury et al., 2010). In addition, woody

patches were poorly segregated into sub-communities, supporting the generalist

character of these communities.

I also evaluated the contribution of every species to its community, in

terms of interaction within the entire network (Chapter 2). Specifically, I

evaluated their connectance and specialization along the different networks, and

discussed their role within the network. This analysis revealed that the two

dominant species, R. lycioides and P. lentiscus, acted as hubs in their respective

communities, with many species interacting with them. This observation is in

agreement with the high abundance and low levels of specialization of the former

species, and the large number of species found under patches dominated by the

later.

To our knowledge, this is the first time that network analysis has been

used to evaluate plant composition and structure in physical well-defined

communities, such as woody patches. Only Saiz and Alados (2011a, 2011b, 2014)

evaluated plant communities by means of network analysis, employing species

co-occurrence along lineal transects in slopes covered by S. tenacissima steppes.

In addition, I used a bipartite approach, allowing for the study of the interactions

between two sets of species. This approach provided complementary insights to

the ones offered by ordination techniques (Non-metric Multi-Dimensional Scaling,

Chapter 1), which showed that dominant species had a much larger influence on

patch composition than accompanying species. For example, R. lycioides is the

most abundant patch-forming species, and showed the highest rates of

recruitment (Chapter 1). This species favors germination of both accompanying

and dominant species (Chapter 5). As an adult, it acts as a network hub,

interacting with many other species (Chapter 2). Finally, when R. lycioides is the

dominant species in a patch, its nestedness increases and so does patch

Page 219: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Discussion

206

complexity (Chapter 3). Similarly, two abundant accompanying species such as S.

tenacissima and B. retusum, showed a high number of co-occurrences with all

dominant species, and acted as potential hubs for the maintenance of network

structure (Chapter 2). Yet, they played contrasted roles in community ordination

(Chapter 1), and differed widely in their interaction with seedlings, by either

favoring (S. tenacissima) or hampering (B. retusum) their establishment (Chapter

4).

Many ecological network studies have focused on describing community

attributes as nestedness, compartmentalization and specialization (Jordano et al.,

2003; Montoya et al., 2006; Pascual and Dunne, 2006; Bascompte and Jordano,

2007; Estrada, 2007; Thébault and Fontaine, 2010). In contrast, drivers of

community structure have received less attention (but see Memmot et al., 2007;

Heleno et al., 2010; Devoto et al., 2012; Saiz and Alados, 2011a). In Chapter 3, I

assessed the factors modulating patch emergent properties. I found that both

exogenous factors (air temperature and rock cover) and endogenous factors

(patch size, species identity and richness) explained community structure. These

results have strong implications on community dynamics and their response to

disturbances. Firstly, these results support the theory that R. lycioides and P.

lentiscus largely affect species composition and promote community complexity

by increasing nestedness, and overall link heterogeneity. This may be related to

their ability to act as network hubs, interacting with many species and thus

promoting link heterogeneity when other dominant species are present in the

same patch. Secondly, the component of network complexity which is related to

modularity was related to patch size rather than to dominant species, despite the

strong relationship between these two variables. And thirdly, mean annual air

temperature was a major driver of community structure, despite its apparently

narrow range of variation. This reveals community sensitivity to climatic

conditions, and the important consequences that small changes in climate could

have on community composition and functioning (see below).

Litter accumulation also affected community structure. In Chapter 5, we

described a significant (and largely negative) effect of litter on seed germination.

Conversely, in Chapter 4, we showed that litter accumulation had a positive effect

on the performance of planted seedlings. Finally, litter was not included in models

explaining network features. Ontogenic and sinecological factors may explain the

Page 220: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Discussion

207

contrasted effects of litter on germination and seedling establishment. On one

hand, different life stages may be constrained by different limiting factors. Our

results suggest that litter may be more relevant for plant establishment during

the germination process than once a seedling has germinated and rooted. On the

other hand, in Chapter 5 we evaluated the effect of litter species separately, while

in Chapter 4 we considered the effect of the whole community. Litter mixtures

may differ in structure and impact on plant performance from mono-specific litter

(Peterson and Facelli, 1992; Myster, 1994).

Even if network analysis has mostly been used to evaluate mutualistic

networks and food webs in Ecology, its potential for the analysis of plant co-

occurrence networks has been underestimated. This is particularly true if we take

into consideration the vast amount of data available on plant co-occurrence at

different scales. The use of network analysis for the study of these communities

may reveal emergent properties of plant communities, and may deepen our

knowledge on the functional role of plant species.

4. Ecological role of woody patches

Woody patches have the ability to modify their immediate environment

and thus affect biotic and abiotic processes at the community and ecosystem

levels. Colonization of woody species on grasslands has been considered an

indicator of desertification, as it may negatively affect carbon storage,

ecohydrological status, soil protection, forage production, species diversity,

community stability, (Schlesinger et al., 1996; Jackson et al., 2002; Huxman et al,

2005; Jackson et al, 2005; Zarovali et al., 2007; Baez and Collins, 2008; Brudvig,

2010). Recent studies showed that this negative effect cannot be generalized, and

contributed to provide a more complex and comprehensive view of this

phenomenon and its consequences (Maestre et al., 2009b; Eldridge et al., 2011;

Petrie et al., 2014). Through the present dissertation, I have described various

dynamic factors in the patch-dominated space that are affected by the presence

of woody patches, and may ultimately affect ecosystem functioning.

Woody patches increased soil fertility through an increase in soil organic

C and total N (Jackson et al., 2002; Chapter 4). This change was mostly restricted

to the canopy projection area. Also, 15N enrichment was higher in plants thriving

underneath the patches than outside them, suggesting rapid N cycling and

Page 221: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Discussion

208

relatively high N losses underneath the patches, as nitrification, denitrification

and ammonia volatilization promote soil 15N enrichment (Shearer et al., 1974;

Peñuelas et al., 1999).

Soil water content was lower under woody patches than in their

surroundings (Chapter 4). This result was unanticipated, as one would expect that

litter accumulation and canopy shade would create wetter conditions (Guevara-

Escobar et al., 2007). Indeed, S. tenacissima tussocks and small shrubs commonly

have positive or neutral effects on moisture availability compared to open areas

(Maestre and Cortina, 2003; Cantón et al., 2004; Rey et al., 2011), but these

studies also show that soil water content is very dynamic, and it may change

depending on evaporative demand, amount and intensity of rainfall events, and

plant water-use strategy. Other studies have found decreases in soil moisture

content underneath woody patches compared to open areas (Breshears et al.,

1997). Our results suggest that water uptake by woody vegetation under the

patches, together with rainfall interception by the canopy and the litter may

offset the increase in water infiltration and retention, and the reduction in

evaporative demand. Other studies have emphasized the importance of water

uptake to explain soil moisture dynamics under grass tussocks and shrubs in semi-

arid areas (Parker and Martin, 1952; Breshears et al., 1997; Maestre et al., 2003a).

Our results suggest that shrub encroachment may reduce water reserves, and are

in agreement with Bellot et al., (2001), who suggested that the increase in woody

vegetation in semi-arid steppes reduces groundwater inputs. We may note,

however, that the impact of woody encroachment on water availability is

complex, cannot be easily ascertained, and predictions should be made with care

(Huxman et al., 2005).

Woody patches affect the presence and abundance of many taxa,

including plants. Indeed, facilitation probably favored the presence of Tertiary

flora in the Mediterranean, and may promote phylogenetic diversity (Valiente-

Banuet et al., 2006; Valiente-Banuet and Verdú, 2007. Plant-plant interactions

may be positive, negative or neutral, depending on biotic and abiotic factors,

including the identity of the involved species (Maestre et al., 2009a; Chapter 4).

As shown in Chapter 4, the increase in soil fertility may positively affect the

performance of other plant species. This was supported with the higher foliar N

concentration found in seedlings planted underneath the patches compared to

Page 222: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Discussion

209

seedlings planted on their northern edge. Conversely, the reduction in soil water

content underneath the canopy may promote competition and water stress.

Nevertheless, the relatively low water use efficiency levels in plants growing

underneath the patches suggest that water stress was still lower underneath the

patches than outside them. In addition, shade tolerant species may thrive

underneath patches with higher probability than in open areas. Although solar

radiation was not selected as a factor to explain seedling survival (Chapter 4), its

effects may occur in an earlier stage of plant development (Lockhart, 1961;

Valiente-Banuet and Ezcurra, 1991). The effect of patches on other vegetation is

governed by the same factors that affect the different plant stages for patch

formation and extension described above.

Specific interactions have been described between vascular plants and

soil organisms such as lichens, cyanobacteria, mosses and fungi (Zaady et al.,

1997; DeFalco et al., 2001; Maestre and Cortina, 2002; Escudero et al., 2007). The

distribution of biological crusts is affected by the presence of woody patches

(Dougill and Thomas, 2004), which may have further consequences on ecosystem

functioning (Delgado-Baquerizo et al., 2010; Mendoza-Aguilar et al., 2014).

Woody patches may also act as shelter, resting and feeding places for

animals. The fruits of most dominant species in woody patches are eaten by birds,

rodents and small mammals (Pausas et al., 2006; Zapata et al., 2014). Insects may

also benefit from fruits. Stipa tenacissima fruits are predated by ants and birds

(Haase et al., 1995; Schöning et al., 2004; Belda et al., 2010), acorns are predated

by mammals and birds (Herrera, 1995; Santos and Tellería, 1997). Also, the

annelid community may be more abundant in the vicinity of woody vegetation

(González and Zou, 1999; García-Pausas et al., 2004). The presence of fauna

underneath and around patches may affect other processes such as pollination,

seed dispersal, soil structure, soil fertility and water infiltration as a result of feed-

back interactions (Verdú and García-Fayos, 1996; Bronick and Lal, 2005; Pausas et

al., 2006).

According to our results, woody patches create suitable microsites for

plants. These may favor the establishment of further plant species, as long as

their water requirements are not too high and the litter layer is not too thick.

Page 223: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Discussion

210

5. Restrospective view of woody patches. Insights on the response to climate

change

As it has been reported in the literature, shrub cover and density have

increased over the last 150 years in drylands worldwide (Van Auken, 2009). The

semiarid southeast Spain is not an exception, and an increase in shrub cover has

been reported in S. tenacissima steppes, especially since 1985 (Alados et. al,

2004). Indeed, an ongoing research carried out by V. Rolo (University of Alicante)

in the same 15 catchments studied in the present dissertation, has found that

shrub density has significantly increased over the last decades, doubling on

average the density estimated in 1956. Similarly, patch canopy projected area has

significantly increased over the same period, suggesting continuous patch

growing (V. Rolo, unpublished data).

Climatic conditions in the study area have been particularly harsh over

the last decades, and will likely change in the near future. Global warming

projections for Europe predict an increase of temperature both in winter (2.5-3ºC)

and summer (>4ºC), in relation to the reference period 1980-1999 (Christensen et

al., 2007). In addition, over the last 60 years, there has been a significant

reduction in summer precipitation and, to a lesser extent, in spring and autumn

precipitation (Machado et. al, 2011). This decreasing trend in precipitation is

projected to continue in southeastern Spain at a rate of 0-20% by the end of the

21st Century (deviation from reference period 1961-1990; AEMET, 2008).

Considering recent modifications in land use patterns and predicted

changes in climatic conditions, S. tenacissima steppes will probably show

substantial alterations in vegetation cover and ecosystem functioning.

Considering the relationship between mean annual temperature and

precipitation, and dominant species cover (Chapter 1 and 3), I hypothesize that

patches dominated by R. lycioides and E. fragilis will increase at the expense of

those dominated by Q. coccifera and J. oxycedrus. Leafless species, such as E.

fragilis, are especially successful in harsh environments due to their efficiency in

obtaining resources while minimizing water loses, and their ability for rooting

deep and fast (Padilla et. al, 2009). Thus, patches dominated by P. lentiscus, Q.

coccifera, O. lanceolata and J. oxycedrus will face difficulties to increase in

number and size. It must be noted that these species evolved under Tertiary,

semi-tropical conditions (Palmarev, 1989; Herrera, 1992; Verdú et al., 2003), and

Page 224: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Discussion

211

plasticity plus facilitative interactions allowed them to thrive under current

Mediterranean climate (Jump and Peñuelas, 2005; Valiente-Banuet et al., 2006).

Patches dominated by these species may be confined to favorable microsites of

lower temperature and higher moisture availability, such as lower parts of the

catchments, north facing slopes, deep soils and the under-canopy of larger

individuals.

This trend is supported by observations on current recruitment of

dominant species. Rhamnus lycioides showed the highest seedling density in our

study areas, followed by E. fragilis (Chapter 1). However, in relation with the

abundance of adult individuals, J. oxycedrus also had high recruitment. Taking into

account that patches dominated by Q. coccifera and P. lentiscus, were the most

abundant after R. lycioides, we may bring forward the following hypothesis: (1)

recruits measured in the field had a stem perimeter lower than 5 cm, which

corresponds to individuals under 10 years old (L. De Soto, UNCROACH project).

Thus, if we take recruit density as an estimation of recent recruitment rates, we

may conclude that recruitment rates of Q. coccifera and P. lentiscus after

abandonment were higher than nowadays. (2) We may also conclude that past

and present recruitment rates of R. lycioides were high. (3) Ephedra fragilis

populations may be expanding, as present recruitment rates are relatively high,

compared to its current abundance. (4) Juniperus oxycedrus populations may be

relatively stable because population turnover rate was high. (5) Osyris lanceolata

was not abundant in the past and is not widespread now; its recruitment rate is

limited and suggests no further expansion of this species. Hypotheses (1) and (2)

should be validated in an ongoing study carried out by L. De Soto (U. Coimbra)

and K. Disante (U. Alicante) where patch dynamics will be studied in detail in the

experimental catchment Porxa using dendroecological and phylogenetic

techniques.

The change in abundance and patch composition may have important

implications on ecosystem biodiversity and community complexity, affecting plant

and animal species. Studies on the effects of climate change on biodiversity

predict a high species turnover over the next 100 years in Europe (Bakkenes et al.,

2002; Benito-Garzón et al., 2008; Alkemade et al., 2011). This effect is especially

dramatic in semiarid areas in southeast Spain, as those authors pointed out that

there is not an existing pool of species able to deal with forecasted climate

Page 225: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Discussion

212

conditions for the next decades. This fact may have strong consequences on

community impoverishment and the expansion of alien species.

6. Woody patches and steppe management

Our results have profound implications on the management of S.

tenacissima steppes. As a general rule, any measure aimed at favoring the

conservation and expansion of patch-forming species (i.e., dominant species)

should be recommended as a way to promote biodiversity and functionality.

Given that R. lycioides and P. lentiscus co-occur with many other species,

acting as network and module hubs (Chapter 2), it may be worth to focus on

these species. On the other hand, highly connected species are suitable

candidates for restoration projects aimed at increasing biodiversity (Pocock et al.,

2012). In addition, the two dominant species, together with S. tenacissima are

drivers of community complexity as they all increased network nestedness

(Chapter 3). Yet, I have shown that R. lycioides recruits successfully and may

thrive under the severe conditions of these semiarid steppes. So does S.

tenacissima, which is the most abundant species in theses steppes. Conversely,

the low abundance of P. lentiscus and its low recruitment ability contrasts with its

key role in the maintenance of community biodiversity and complexity. Measures

aimed at promoting P. lentiscus establishment and survival may be encouraged to

preserve the diversity of woody patches. It is important to note here that,

according to the models of species distributions under predicted climate for

Europe (Bekkenes et al., 2002), P. lentiscus will hardly thrive under drier and

warmer conditions and its distribution may be restricted in semiarid areas. In

consequence, this may increase its value as community-forming species.

Conversely, R. lycioides populations seem to not have problems under future

climatic conditions, and its inclusion in restoration programs should be only

restricted to specific sites or places, for example, where propagule source is far or

when the need to quickly incorporate patch-forming species to the community is

urgent.

Thus, taking into account climate change scenarios for southeast Spain,

one may expect that only R. lycioides and E. fragilis will successfully thrive under

future climatic conditions. However, in order to keep inter-patch diversity, the

recruitment of other species is desirable. Promoting spatial heterogeneity and

Page 226: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Discussion

213

creating favorable microenvironments for plant establishment and growth may

achieve this suggestion. Various techniques and tools aimed at creating suitable

microenvironments for plant establishment have been described (Cortina et al.,

2012). For example, the creation of microcatchments to increase water, nutrients

and soil availability (Boeken and Shachk, 1994; Whisenant et al., 1995), the use of

mulches to reduce soil temperature, attenuate evaporation and increase water

and propagule availability (Ludwig and Tongway, 1996; Tongway and Ludwig,

1996), the use of various devices to capture and store available water (Bainbridge,

2007; Valiente et al., 2011; Vasudevan et al., 2011; Valdecantos et al., 2014), the

establishment of resting sites for birds (Wunderlee, 1997; Bonet, 2004) and the

use of the nurse plants (Maestre et al., 2001; Castro et al., 2004; Gómez-Aparicio

et al., 2004). With regard to the use of preexisting vegetation to enhance seedling

success, in Chapter 4 I have emphasized some aspects of the identity of the

interacting species that increase seedling survival. Thus, the selection of patches

with high cover of S. tenaccisima and low cover of B. retusum under their

canopies, patches formed by phylogenetically distant species as nurses for new

seedlings, or patches that are relatively poor in accompanying species, would

increase seedling success. However, differences in the establishment of each

patch-forming species are expected (Vilagrosa et al., 2003; Trubat et al., 2008,

2011) and the specific factors controlling their establishment must be tested.

Furthermore, given the possible species extinction forecasted for the next

decades, the lack of turnover species able to deal with future climate and the

increasing likelihood of alien species input (Bakkenes et al., 2002; Benito-Garzón

et al., 2008; Alkemade et al., 2011), the selection of species for restoration

programs becomes a really challenging task. To choose an adequate pool of

species should be made carefully. Further research must be carried out to

evaluate the appropriate techniques, species and sites to match the restoration

objectives and effectiveness of management actions.

To our knowledge, this is the first study focusing on the composition and

functioning of woody patch communities in semiarid steppes. Research compiled

in this dissertation provides a global view of the dynamics of these communities

and their main drivers. Throughout this work, I have evaluated various processes

affecting different stages of plant lifespan, and described how community

assemblage is made. This information is crucial for the management of S.

Page 227: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Discussion

214

tenacissima steppes under a changing socio-economic and biophysical scenario.

This is also a pioneer work on the use of network theory for the analysis of plant

communities.

Page 228: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Conclusions

215

CONCLUSIONS

Along the chapters of the present dissertation, I have mentioned the

conclusions of each study. Here I present the global conclusions of the thesis.

Species in woody vegetation patches of semiarid Stipa tenacissima steppes

are organized in two levels, according to their morpho-functional traits and

their ability to form patches: dominant (large patch-forming resprouting

species) and accompanying species (smaller species).

Patch composition is mainly determined by the most dominant species and

their distribution is related to mean annual temperature and precipitation.

According to climatic predictions, patches dominated by R. lyciodes and E.

fragilis will likely increase their dominance in future decades at the expense

of patches dominated by Q. coccifera and J. oxycedrus.

When considering woody patches as communities of interactions, most

species are generalists, as they are highly connected to each other and the

structure of their interactions is barely nested. In addition, these

communities usually form 2-4 subcommunities of species more connected

between them than to other subcommunities.

The most generalist species in patch communities are Rhamnus lycioides,

Stipa tenacissima and Brachypodium retusum, but only R. lycioides and

Pistacia lentiscus acted as network and module hubs, which makes them key

species in woody patch communities.

Emergent properties of co-occurrence networks of woody patch communities

were modulated by endogenous and exogenous factors. Mean annual

temperature affected the three indices of network structure, and only

nestedness was affected by patch composition. High rock cover and the

presence of patches dominated by Rhamnus lycioides and Pistacia lentiscus

increased community structure by increasing modularity and nestedness,

respectively. Increased patch size was a determinant of low-structured

communities.

The modification of the microenvironment by woody patches is restricted to

the limits of the canopy projection area. Drivers of seedling survival and the

type and intensity of stress differ within a patch; these differences should be

Page 229: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Conclusions

216

taken into account when evaluating the outcome of ecological interactions in

woody patches.

Woody patches had positive effects on the incorporation of new individuals

in S. tenacissima steppes, and this effect was mainly determined by the cover

and composition of the community of accompanying species, litter depth and

phylogenetic distance between dominant and colonizing species.

Litter of woody species exerts a predominantly negative effect on the

germination of dominant and accompanying species, either when seeds are

located on or under the litter layer. This effect depends on litter

accumulation which, in turn, depends on dominant species. Thus, R.

lycioides, which accumulates low amounts of litter, has neutral or even

positive effects on germination.

Our results have strong implications on steppe composition and function, and

on its capacity to provide goods and services. They provide essential

information for the management of Stipa tenacissima steppes.

Page 230: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

REFERENCES

Page 231: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos
Page 232: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

References

219

Abanades, J.C., Cuadrat, J.M., de Castro, M., Fernández, F., Gallastegui, C.,

Garrote, L., Jiménez, L., Juliá, R., Losada, I., Monzón, A., Moreno, J.M., Pérez, J.I.,

Ruiz, V., Sanz, M.J. and Vallejo, R. 2007. El Cambio Climático en España. Estado de

situación. Madrid: Ministerio de Medio Ambiente.

AEMET.

Aerts, R. 1996. Nutrient resorption from senescing leaves of perennials: are there

general patterns? Journal of Ecology 84: 597-608.

Aerts, R. 1997. Climate, Leaf litter chemistry and leaf litter decomposition in

terrestrial ecosystems: a triangular relationship. Oikos 79(3): 439-449.

Aguiar, M.R. and Sala, O.E. 1999. Patch structure, dynamics and implications for

the functioning of arid ecosystems. Trends in Ecology and Evolution 14: 273-277.

Alados, C.L., Pueyo, Y., Barrantes, J., Escos, J., Giner, L. and Robles, A.B. 2004.

Variations in landscape patterns and vegetation cover between 1957 and 1994 in

a semiarid Mediterranean ecosystem. Landscape Ecology 19: 543-559.

Alados, C. L., Gotor, P., Ballester, P., Navas, D., Escos, J. M., Navarro, T., and

Cabezudo, B. 2006. Association between competition and facilitation processes

and vegetation spatial patterns in alpha steppes. Biological Journal of the Linnean

Society, 87(1): 103-113.

Albaladejo, J., Martínez-Mena, M., Roldan, A. and Castillo, V. 1998. Soil

degradation and desertification induced by vegetation removal in a semiarid

environment. Soil Use and Management 14: 1-5.

Alkemade, R., Bakkenes, M. and Eickhout, B. 2011. Towards a general relationship

between climate change and biodiversity: an example for plant species in Europe.

Regional Environmental Change, 11(1): 143-150.

Almagro, M. and Martínez-Mena, M. 2012. Exploring short-term leaf-litter

decomposition dynamics in a Mediterranean ecosystem: dependence on litter

type and site conditions. Plant and soil, 358(1-2): 323-335.

Almeida-Neto, M., Guimarães P.R. Jr. and Lewinsohn, T.M. 2007. On nestedness

analyses: rethinking matrix temperature and anti-nestedness. Oikos 116: 716–

722.

Page 233: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

References

220

Alrababah, MA., Tadros, MJ., Samarah, NH. and Ghosheh, H. 2009. Allelopathic

effects of Pinus halepensis and Quercus coccifera on the germination of

Mediterranean crop seeds. New Forests 38: 261-272.

Altieri, A.H., van Wesenbeeck, B.K., Bertness, M.D. and Silliman, B.R., 2010.

Facilitation cascade drives positive relationship between native biodiversity and

invasion success. Ecology 91: 1269-1275.

Amat, B., Cortina, J. and Zubcoff, J.J. 2015. Community attributes determine

facilitation potential in a semi-arid steppe. Perspectives in Plant Ecology, Evolution

and Systematics, 17: 24-33.

Anthelme, F., Buendia, B., Mazoyer , C. and Dangles, O. 2012. Unexpected

mechanisms sustain the stress gradient hypothesis in a tropical alpine

environment. J. Veg. Sci. 23: 62–72.

Armas, C. and Pugnaire, F. I. 2005. Plant interactions govern population dynamics

in a semi‐arid plant community. Journal of Ecology, 93(5): 978-989.

Armas, C., Ordiales, R. and Pugnaire, F. 2004. Measuring plant interactions: a new

comparative index. Ecology 85(10): 2682-2686.

Armesto, J.J., Vidiella, P. and Gutiérrez, J.R. 1993 Plant communities of the fog-

free coastal desert of Chile: plant strategies in a fluctuating environment. Revista

Chilena de Historia Natural, 66: 271–282.

Asner, G.P. and Martin, R.E. 2004. Biogeochemistry of desertification and woody

encroachment in grazing systems. Ecosystems and Land Use Change. Geophysical

Monograph Series 13: 99-116.

Austin, A.T. and Vitousek, P.M. 2000. Precipitation, decomposition and litter

decomposability of Metrosideros polymorpha in native forests on Hawai’i. Journal

of Ecology 88: 129-138.

Austin, A.T. and Vivanco, L. 2006. Plant litter decomposition in a semi-arid

ecosystem controlled by photodegradation. Nature 442: 555-558.

Austin, A.T. and Ballaré, C.L. 2010. Dual role of lignin in plant litter decomposition

in terrestrial ecosystems. PNAS 107(10): 4618-4622.

Page 234: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

References

221

Baez, S. and Collins, S.L. 2008. Shrub invasion decreases diversity and alters

community stability in northern Chihuahuan desert plant communities, PLoS One

3(6), e2332.

Bainbridge, D. A. 2007. A guide for desert and dryland restoration: new hope for

arid lands. Island Press, Washington, DC.

Bakkenes, M., Alkemade, J. R. M., Ihle, F., Leemans, R. and Latour, J. B. 2002.

Assessing effects of forecasted climate change on the diversity and distribution of

European higher plants for 2050. Global Change Biology, 8(4): 390-407.

Balvanera, P., Daily, G.C., Ehrlich, P.R., Ricketts, T.H., Bailey, S.A., Kark, S., Kremen,

C. and Pereira, H. 2001. Conserving biodiversity and ecosystem services. Science

291: 2047.

Barber, A., Cabrera, M.R. and Guardiola, I. 1997. Sobre la cultura de l’espart al

territori valencià. Bancaixa, Valencia.

Barberá, G.G., Navarro-Cano, J.A. and Castillo, V.M. 2006. Seedling recruitment in

a semiarid steppe: The role of microsite and post-dispersal seed predation.

Journal of Arid Environments 67: 701-714.

Bascompte, J. and Jordano, P. 2007. Plant-animal mutualistic networks: the

architecture of biodiversity. Annual Review of Ecology, Evolution and Systematics,

38: 567-593.

Bascompte, J., Jordano, P., Melián, C.J. and Olesen, J.M. 2003. The nested

assembly of plant–animal mutualistic networks. PNAS 100: 9383-9387.

Bastolla, U., Fortuna, M., Pascual-Garcia, A., Ferrera, A., Luque, B. and Bascompte,

J. 2009. The architecture of mutualistic networks minimizes competition and

increases biodiversity. Nature 458: 1018-1020.

Batagelj, V., Mrvar, A. 1998. Pajek- Program for Large Network Analysis.

Connections 21: 47-57.

Beckage, B. and Clark, J.S., 2003. Seedling survival and growth of three forest tree

species: the role of spatial heterogeneity. Ecology 84: 1849-1861.

Page 235: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

References

222

Beckage, B., Clark, J.S., Clinton, B.D. and Haines, B.L. 2000. A long-term study of

tree seedling recruitment in southern Appalachian forests: the effects of canopy

gaps and shrub understories. Canadian Journal of Forest Research 30: 1617-1631.

Belda, A., Martínez-Pérez, J. E., Martín, C., Peiró, V. and Seva, E. 2010. Plants Used

to Capture and Sustain Wild Finches (Fringillidae) in Southeast Spain?. Economic

Botany, 64(4): 367-373.

Bellot, J., Bonet, A., Sánchez, J.R. and Chirino, E. 2001. Likely effects of land use

changes on the runoff and aquifer recharge in a semiarid landscape using a

hydrological model. Landscape and Urban Planning 55: 41-53

Benito-Garzón, M., Sánchez-de-Dios, R. and Sainz-Ollero, H. 2008. Effects of

climate change on the distribution of Iberian tree species. Applied Vegetation

Science, 11(2): 169-178.

Benkobi, L., Trlica, M.J. and Smith, J.L. 1993. Soil loss as affected by different

combinations of surface litter and rock. Journal of Environmental Quality 22: 657-

661.

Bertness, M.D. and Callaway, R.M. 1994. Positive interactions in communities.

Trends in Ecology and Evolution 9: 191-193.

Blank, L., and Carmel, Y. 2012. Woody vegetation patch types affect herbaceous

species richness and composition in a Mediterranean ecosystem. Community

Ecology, 13(1): 72-81.

Blondel, V.D., Guillaume, J.L., Lambiotte, R. and Lefebvre, E. 2008. Fast unfolding

of communities in large networks. Journal of Statistical Mechanics: Theory and

Experiment 10, P10008.

Blüthgen, N., Menzel, F. and Blüthgen, N. 2006. Measuring specialization in

species interaction networks. Ecology 6: 9.

Bochet, E., P. Garcia-Fayos, Alborch, B. and Tormo, J. 2007. Soil water availability

effects on seed germination account for species segregation in semiarid

roadslopes. Plant and Soil 295(1): 179-191.

Boeken, B. and Orenstein, D. 2001. The Effect of Plant Litter on Ecosystem

Properties in a Mediterranean Semi-Arid Shrubland. Journal of Vegetation Science

12(6): 825-832.

Page 236: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

References

223

Boeken, B. and Shachak, M. 1994. Desert plant communities in human-made

patches-Implications for management. Ecological Applications 4: 702-716.

Bolòs, O. and Vigo, J. 2001. Flora dels Països Catalans. Vol. IV. Barcino. Barcelona,

750 pp.

Bonanomi, G., Sicurezza, M.G., Caporaso, S., Esposito, A. and Mazzoleni, S. 2006.

Phytotoxicity dynamics of decaying plant materials. New Phytologist 169: 571-

578.

Bonet, A. 2004. Secondary succession of semi-arid Mediterranean old-fields in

south-eastern Spain: insights for conservation and restoration of degraded lands.

Journal of Arid Environments 56: 213-233.

Bowers, J. E., Webb, R. H. and Rondeau, R. J. 1995. Longevity, recruitment and

mortality of desert plants in Grand Canyon, Arizona, USA. Journal of Vegetation

Science, 6(4): 551-564.

Brearley, F.Q., Press, M.C. and Scholes, J.D. 2003. Nutrients obtained from leaf

litter can improve the growth of dipterocarp seedlings. New Phytologist 160: 101-

110.

Breshears, D.D., Rich, P.M., Barnes, F.J. and Campbell, K. 1997. Overstory-imposed

heterogeneity in solar radiation and soil moisture in a semiarid woodland.

Ecological Applications, 7(4): 1201-1215.

Briggs, J.M., Knapp, A.K., Blair, J.M., Heisler, J.L., Hoch, G.A., Lett, M.S. and

McCarron, J.K. 2005. An Ecosystem in Transition: Causes and Consequences of the

Conversion of Mesic Grassland to Shrubland. BioScience 55: 243-254.

Bronick, C. J. and Lal, R. 2005. Soil structure and management: a review.

Geoderma, 124(1): 3-22.

Brooker, R.W., Maestre, F.T., Callaway, R.M., Lortie, C.L., Cavieres, L.A., Kunstler,

G., Liancourt, P., Tielbörger, K., Travis, J.M.J., Anthelme, F., Armas, C., Coll, L.,

Corcket, E., Delzon, S., Forey, E., Kikvidze, Z., Olofsson, J., Pugnaire, F., Quiroz, C.L.,

Saccone, P., Schiffers, K., Seifan, M., Touzard, B. and Michalet, R., 2008.

Facilitation in plant communities: the past, the present, and the future. J. Ecol. 96:

18-34.

Page 237: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

References

224

Brudwig, L.A. 2010. Woody encroachment removal from Midwestern oak

Savannas alters understory diversity across space and time. Restoration Ecology

18: 74-84.

Burgan, R.E. and Rothermel, R.C. 1984. BEHAVE: Fire behavior prediction and fuel

modeling system-FUEL subsystem. United States Department of Agriculture,

Forest Service, General Technical Report INT-167. Intermountain Forest and

Range Experiment Station, Ogden, Utah. 126 pp.

Burnham, K.P. and Anderson, D.R., 2002. Model selection and multimodel

inference: a practical information-theoretic approach. 2nd ed. New York, Springer.

Cabido, M., González, C., Acosta, A. and Díaz, S. 1993 Vegetation changes along a

precipitation gradient in Central Argentina. Plant Ecology, 109: 5–14.

Cable, J.M., Ogle, K. Tyler, A.P. Pavao-Zuckerman, M.A. and Huxman T.E. 2009.

Woody plant encroachment impacts on soil carbon and microbial processes:

Results from a hierarchical Bayesian analysis of soil incubation data. Plant Soil

320: 153-167.

Callaway, R.M. and Walker, L.R. 1997. Competition and facilitation: a synthetic

approach to interactions in plant communities. Ecology 78: 1958-1965.

Callaway, R.M. 1995. Positive interactions among plants. Bot. Rev. 61: 306-349.

Callaway, R.M. 2007. Positive interactions and interdependence in plant

communities. Springer, Dordrecht, The Netherlands.

Callaway, R.M., Nadkarni, N.M. and Mahall, B.E. 1991. Facilitation and

interference of Quercus douglasii on understorey productivity in central

California. Ecology 72: 1484-1499.

Cantón, Y., Solé-Benet, A. and Domingo, F. 2004. Temporal and spatial patterns of

soil moisture in semiarid badlands of SE Spain. Journal of Hydrology, 285(1): 199-

214.

Cañellas, I. and San Miguel, A. 1998. Litter fall and nutrient turnover in Kermes

oak (Quercus coccifera L.) shrublands in Valencia (eastern Spain). Annales des

Sciences Forestières 55: 589-597.

Page 238: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

References

225

Capitanio, R. and Carcaillet, C. 2008. Post-fire Mediterranean vegetation dynamics

and diversity: a discussion of succession models. Forest Ecology and

Management, 255(3): 431-439.

Caravaca, F., Figueroa, D., Barea, J.M., Azcón-Aguilar, C., Palenzuela, J. and

Roldán, A. 2003. The role of relict vegetation in maintaining physical, chemical,

and biological properties in an abandoned Stipa-grass agroecosystem. Arid Land

Research and Management 17: 103-111.

Case, T.J. 1991. Invasion resistance, species build-up and community collapse in

metapopulation models with interspecies competition. Biol. J. Linn. Soc. 42: 239-

266.

Castillo, J.P., Verdú, M. and Valiente-Banuet, A., 2010. Neighborhood

phylodiversity affects plant performance. Ecology 91: 3656-3663.

Castro-Urgal, R., Tur, C., Albrecht, M. and Traveset, A. 2012. How different link

weights affect the structure of quantitative flower–visitation networks. Basic Appl.

Ecol. 13: 500-508.

Castro, J., Zamora, R., Hódar, J. A. and Gómez, J. M. 2002. Use of shrubs as nurse

plants: a new technique for reforestation in Mediterranean mountains.

Restoration Ecology, 10(2): 297-305.

Castro, J., Zamora, R., Hódar, J.A., Gómez, J.M. and Gómez-Aparicio, L., 2004.

Benefits of using shrubs as nurse plants for reforestation in Mediterranean

mountains: a 4-year study. Restor. Ecol. 12: 352-358.

Cavieres, L. and Badano, E.I., 2009. Do facilitative interactions increase species

richness at the entire community level? J. Ecol. 97: 1181–1191.

Cerván, C.M. and Pardo, F. 1997. Dispersión de semillas de retama (Retama

spaherocarpa, L. Boiss) por el conejo (Oryctolagus cuniculus) en el centro de

España. Doñana Acta Vertebrata 21: 143-154.

Chagnon, P.L., Bradley, R.L. and Klironomos, J.N. 2012. Using ecological network

theory to evaluate the causes and consequences of arbuscular mycorrhizal

community structure. New Phytologist, 194(2): 307-312.

Chapin, F.S., Matson, P.A. and Mooney, H.A. 2002. Principles of terrestrial

ecosystem ecology. Springer, Nueva York. USA.

Page 239: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

References

226

Chaves, N. and Escudero, J.C. 1997. Allelopathic effect of Cistus ladanifer on seed

germination. Functional Ecology 11: 432-440.

Christensen, J.H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I., Jones, R.,

Kolli, R.K., Kwon, W.-T., Laprise, R., Rueda, V

Regional climate

projections. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt,

K.B., Tignor, M., Miller, H.L. (Eds.), Climate Change 2007: The Physical Science

Basis. Contribution of Working Group I to the Fourth Assessment Report of the

Intergovernmental Panel on Climate Change. Cambridge University Press,

Cambridge, United Kingdom and New York, NY, USA, pp. 847-940.

Christensen, N.L. and Muller, C.H. 1975. Relative importance of factors controlling

germination and seedling survival in Adenostoma chaparral. American Midland

Naturalist 93: 71-78.

Cintra, R. 1997. Leaf litter effects on seed and seedling predation of the palm

Astrocaryum murumuru and the legume tree Diptryx micrantha in Amazonian

forest. Journal of Tropical Ecology 13: 709-725.

Cortina, J. and Maestre, F.T. 2005. Plant effects on soils in drylands. Implications

for community dynamics and dryland restoration. En: Binkley, D. y Menyailo, O.

(Eds.) Tree Species Effects on Soils: Implications for Global Change. NATO Science

Series Kluwer Academic Publishers, Dordrecht.

Cortina, J. and Vallejo, V.R. 1994. Effects of clearfelling on forest floor

accumulation and litter decomposition in a radiata pine plantation. Forest Ecology

Management 70: 299-310.

Cortina, J., Amat, B., Castillo, V., Fuentes, D., Maestre, F.T., Padilla, F.M., and Rojo,

L. 2011. The restoration of vegetation cover in the semi-arid Iberian southeast.

Journal of Arid Environments, 75(12): 1377-1384.

Cortina, J., Bellot, J., Vilagrosa, A., Caturla, R.N., Maestre, F., Rubio, E., Martínez,

J.M. and Bonet, A. 2004. Restauración en semiárido. In: Vallejo, R.M. (Ed.)

Restauración de Ecosistemas Degradados. Valencia, España: CEAM-CMA

Generalitat Valenciana.

Cortina, J., Maestre, F. T. and Ramírez, D. 2009. Innovations in semiarid

restoration. The case of Stipa tenacissima L. grass steppes. In: S. Bautista, J.

Page 240: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

References

227

Aronson and R. Vallejo (ed.). Land Restoration to Combat Desertification:

Innovative Approaches, Quality Control and Project Evaluation. Fundación CEAM.

Valencia, 121-144.

Cortina, J., Martín, N., Maestre, F.T. and Bautista, S. 2010. Disturbance of the

biological soil crusts and performance of Stipa tenacissima in a semiarid

Mediterranean steppe. Plant and Soil 334: 311-322.

Cortina, J., Navarro, R.M. and Del Campo, A.D. 2006. Evaluación del éxito de la

reintroducción de especies leñosas en ambientes Mediterráneos. En: Cortina, J.,

Peñuelas, J.L., Puértolas, J., Vilagrosa, A., y Savé, R. (Coord.). Calidad de planta

forestal para la restauración en ambientes Mediterráneos. Estado actual de

conocimientos. Organismo Autónomo Parques Nacionales. Ministerio de Medio

Ambiente. Madrid.

Cortina, J., Ruiz-Mirazo, J., Amat, B., Amghar, F., Bautista, S., Chirino, E., Derak, M.,

Fuentes, D., Maestre, F.T., Valdecantos, A. and Vilagrosa, A. 2012. Bases para la

restauración ecológica de espartales. UICN, Gland, Suiza y Málaga, España. VI + 26

p. ISBN: 978-2-8317-1566-7.

Costa, M. 1973. Datos ecológicos y fitosociológicos sobre los espartales de la

provincia de Madrid. Anales del Instituto Botánico Cavanilles 30: 233-255.

Costa, M. 1999. La Vegetación y el Paisaje en las Tierras Valencianas. Editorial

Rueda. Madrid.

Covington, W.W. 1981. Changes in forest floor organic matter and nutrient

content following clear cutting in northern hardwoods. Ecology 62(1): 41-48.

Cuesta, B., Villar-Salvador, P., Puértolas, J., Rey-Benayas, J.M. and Michalet, R.

2010. Facilitation of Quercus ilex in Mediterranean shrubland is explained by both

direct and indirect interactions mediated by herbs. J Ecol 98: 687–96.

Dames, J.F., Scholes, M.C. and Straker, C.J. 1998. Litter production and

accumulation in Pinus patula plantations of the Mpumalanga Province, South

Africa. Plant and Soil 203: 183-190.

Dawkins, R. 1982. The extended phenotype: the gene as the unit of selection.

W.H. Freeman, Oxford.

Page 241: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

References

228

De Soto, L., Olano, J.M., Rozas, V. and De la Cruz, M. 2010. Release of Juniperus

thurifera woodlands from herbivore-mediated arrested succession in Spain

Applied Vegetation Science 13: 15-25.

Debussche, M., Escarré, J. and Lepart, J. 1982. Ornithochory and plant succession

in Mediterranean abandoned orchards. Vegetatio 48: 255-266.

DeFalco, L.A., Detling, J.K., Richard Tracy, C. and Warren, S.D. 2001. Physiological

variation among native and exotic winter annual plants associated with

microbiotic crusts in the Mojave Desert. Plant and Soil 234: 1-14

Dekker, L.W. and Ritsema, C.J. 1994. How water moves in a water repellent sandy

soil. I. Potential and actual water repellency. Water Resources Research 30(9):

2507-2517.

Del Arco, J.M., Escudero, A. and Garrido, M.V. 1991. Effects of site characteristics

on nitrogen retranslocation from senescing leaves. Ecology 72: 701-708.

Delgado-Baquerizo, M., Castillo-Monroy, A.P., Maestre, F.T., and Gallardo, A.

2010. Plants and biological soil crusts modulate the dominance of N forms in a

semi-arid grassland. Soil Biology and Biochemistry, 42(2): 376-378.

Delibes-Mateos, M., Delibes, M., Ferreras, P. and Villafuerte, R. 2008. The key role

of European rabbits in the conservation of the western Mediterranean basin

hotspot. Conservation Biology 22: 1106-1117.

Delitti, W., Ferran, A., Trabaud, L. and Vallejo, V.R. 2005. Effects of fire recurrence

in Quercus coccifera L. shrublands of the Valencia Region (Spain): I. plant

composition and productivity. Plant Ecology, 177(1): 57-70.

Dellafiore, C.M., Muñoz, S. and Gallego, J.B. 2006. Rabbits (Oryctolagus cuniculus)

as dispersers of Retama monosperma seeds in a coastal dune system. EcoScience

13: 5-10

Derak, M. and Cortina, J. 2014. Multi-criteria participative evaluation of Pinus

halepensis plantations in a semiarid area of southeast Spain. Ecological Indicators

43: 56-68.

Descheemaeker, K., Muys, B., Nyssen, J., Poesen, J., Raes, D., Haile, M. and

Deckers, J. 2006. Litter production and organic matter accumulation in exclosures

of the Tigray highlands, Ethiopía. Forest Ecology and Management 233: 21-35.

Page 242: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

References

229

Devoto, M., Bailey, S. Craze, P. and Memmott, J.. 2012. Understanding and

planning ecological restoration of plant – pollinator networks. Ecology Letters 15:

319-328.

Doblas-Miranda, E., Sánchez-Piñero, P. and González-Megías, A. 2009. Different

microhabitats affect soil macroinvertebrate assemblages in a Mediterranean arid

ecosystem Applied Soil Ecology 41: 329-335.

Donath, T.W. and Eckstein, R.L. 2008. Grass and oak litter exert different effects

on seedling emergence of herbaceous perennials from grasslands and woodlands.

Journal of Ecology 96: 272–280

Dormann, C.F. and Strauss, R. 2014. A method for detecting modules in

quantitative bipartite networks. Methods in Ecology and Evolution 5: 90-98.

Dougill, A. J. and Thomas, A.D. 2004. Kalahari sand soils: spatial heterogeneity,

biological soil crusts and land degradation. Land Degradation & Development,

15(3): 233-242.

Drakare, S., Lennon, J. J. and Hillebrand, H. 2006. The imprint of the geographical,

evolutionary and ecological context on species–area relationships. Ecology letters,

9(2): 215-227.

Dunham, A. E. 2011. Soil disturbance by vertebrates alters seed predation,

movement and germination in an African rain forest. Journal of Tropical Ecology,

27(06): 581-589.

Dunne, J.A., Williams, R.J. and Martínez, N.D. 2002. Network structure and

biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett.,

5: 558-567.

Eckstein, R.L. and Donath, T.W. 2005. Interactions between litter and water

availability affect seedling emergence in four familial pairs of floodplain species.

Journal of Ecology 93: 807-816.

El-Bana, M.I., Li, Z.Q. and Nijs, I. 2007. Role of host identity in effects of

phytogenic mounds on plant assemblages and species richness on coastal arid

dunes. J. Veg. Sci 18: 635-644.

Page 243: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

References

230

Eldridge, D.J. and Greene, R.S.B. 1994. Microbiotic soil crusts-a review of their

roles in soil and ecological processes in the rangelands of Australia. Soil Research,

32(3): 389-415.

Eldridge, D.J., Bowker, M.A., Maestre, F.T., Roger, E., Reynolds, J.F. and Whitford,

W.G. 2011. Impacts of shrub encroachment on ecosystem structure and

functioning: towards a global synthesis. Ecology Letters 14: 709-722.

Escudero, A., Martínez, I., de la Cruz, A., Otálora, M.A.G. and Maestre, F.T. 2007.

Soil lichens have species-specific effects on the seedling emergence of three

gypsophile plant species. Journal of Arid Environments 70: 18-28.

Espejo, D. 2007. Brachypodium retusum (Pers.) Beauv. (Poaceae), una espècie

d’interès per a la recuperació d’espais degradats mediterranis. Quaderns Agraris

31: 85-107.

Estrada, E. 2007. Characterization of topological keystone species. Local, global

and "meso-scale" centralities in food webs. Ecological Complexity 4: 48-57.

Eugenio, M., Olano, J. M., Ferrandis, P., Martínez-Duro, E. and Escudero, A. 2012.

Population structure of two dominant gypsophyte shrubs through a secondary

plant succession. Journal of Arid Environments 76: 30-35.

Facelli, J.M and Pickett, S.T.A. 1991a. Indirect effects of litter on woody seedlings

subject to herb competition. Oikos 62: 129-138.

Facelli, J.M and Pickett, S.T.A. 1991b. Plant litter: Its dynamics and effects on plant

community structure. The Botanical Review 57: 1-32.

Facelli, J.M and Pickett, S.T.A. 1991c. Plant litter: Light interception and effects on

an old-field plant community. Ecology 12(3): 1024-1031.

Facelli, J.M., Williams, R., Fricker, S. and Ladd, B. 1999. Establishment and growth

of seedlings of Eucalyptus obliqua: interactive effects of litter, water, and

pathogens. Austral Ecology 24: 484-494.

FAO, 2005. Forests and floods. Drowning in fiction or thriving on facts?. Center for

International Forestry Research and Food and Agriculture Organization of the

United Nations. RAP Publication 2005/03. Forest Perspectives 2. 30 pp.

Page 244: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

References

231

Fernández-Palazón, G. 1974. Aspectos socioeconómicos de la explotación del

esparto en España. Revista de Geografía VIII(1-2): 203-212.

Fernández, C., Voiriot, S., Mévy, J.-P., Vila, B., Ormeño, E., Dupouyet, S. and

Bousquet-Mélou, A. 2008. Regeneration failure of Pinus halepensis Mill.: The role

of autotoxicity and some abiotic environmental parameters. Forest Ecology and

Management 255: 2928-2936.

Ferran A. 1996. La fertilitat de sòls forestals en la regeneració després del foc de

diferents ecosistemes mediterranis. Ph.D. Thesis, University of Barcelona,

Barcelona, Spain.

Ferrari, S.L.P. and Cribari-Neto, F. 2004. Beta regression for modelling rates and

proportions. Journal of Applied Statistics, 31: 799-815.

Flores, J. and Jurado, E. 2003. Are nurse-protégé interactions more common

among plants from arid environments? J. Veg. Sci. 14: 911-916.

Fons, J. 1995. Avaluació de la fertilitat de sòls forestals mediterranis. El cas de les

pinedes de pi blanc (Pinus halepensis Mill.). Tesis doctoral. Universitat de

Barcelona.

Fontaine, C., Guimarães Jr., P.R., Kefi, S., Loeuille, N., Memmott, J., van der

Putten, W.H., van Veen, F.J.F. and Thébault, E. 2011. The ecological and

evolutionary implications of merging different types of networks. Ecology Letters

14, p. 1170

Fontaine, S., Mariotti, A. and Abbadie, L. 2003. The priming effect of organic

matter: a question of microbial competition? Soil Biology and Biochemistry 35:

837-843.

Fortuna, M.A., Stouffer, D., Olesen, J., Jordano, P., Mouillot, D., Krasnov, B.,

Poulin, R. and Bascompte, J. 2010. Nestedness versus modularity in ecological

networks: two sides of the same coin? Journal of Animal Ecology 79: 811-817.

France, R.L. 1997. Potential for soil erosion from decreased litterfall due to

riparian clearcutting: Implications for boreal forestry and warm- and cool-water

fisheries. Journal of Soil and Water Conservation 52(6): 452-455.

Freeman, L.C. 1979. Centrality in social networks conceptual clarification. Social

networks 1(3): 215-239.

Page 245: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

References

232

Fridley, J.D., Stachowicz, J.J., Naeem, S., Sax, D.F., Seabloom, E.W., Smith, M. D.,

Stohlgren, T.J., Tilman, D. and Von Holle, B., 2007. The invasion paradox:

reconciling pattern and process in species invasions. Ecology 88: 3-17.

Fulé, P.Z. and Covington, W.W. 1994. Double Sampling Increases the Efficiency of

Forest Floor Inventories for Arizona Ponderosa Pine Forests. International Journal

of Wildland Fire 4(1): 3-10.

Galeano, J., Pastor, J.M. and Iriondo, J.M. 2008. Weighted-Interaction Nestedness

Estimator (WINE): A new estimator to calculate over frequency matrices.

Environmental Modelling and Software 24 (11): 1342-1346.

Gallardo, A. 2003. Effect of tree canopy on the spatial distribution of soil nutrients

in a Mediterranean Dehesa. Pedobiologia, 47(2): 117-125.

Gallardo, A. and Merino, J. 1993. Leaf decomposition in two Mediterranean

ecosystems of Southwest Spain: Influence of substrate quality. Ecology 74(1): 152-

161.

García-Cano, M.F. 1998. Avaluació de la pèrdua de nutrients i dels canvis en la

fertilitat del sòl en un matollar de Ulex parviflorus afectat pel foc i la pluja

torrencial. Tesi de Llicenciatura. Universitat d’Alacant.

García-Fayos, P. and Gasque, M. 2002. Consequences of a severe drought on

spatial patterns of woody plants in a two-phase mosaic steppe of Stipa

tenacissima L. Journal of Arid Environments, 52(2): 199-208.

García-Fayos, P., Gulias, J., Martínez, J., Marzo, A., Melero, J.P., Traveset, A.,

Veintinilla, P., Verdú, M., Cerdán, V., Gasque, M. and Medrano, H. 2001. Bases

ecológicas para la recolección, almacenamiento y germinación de semillas de

especies de uso forestal de la Comunidad Valenciana. Banc de Llavors Forestals

(Conselleria de Medi Ambiente, Generalitat Valenciana), Valencia.

García-Fayos, P. and Verdú, M. 1998. Soil seed bank, factors controlling

germination and establishment of a Mediterranean shrub: Pistacia lentiscus L.

Acta Oecologica 19(4): 357-366.

García-Guzmán, G. and Benítez-Malvido, J. 2003. Effect of litter on the incidence

of leaf-fungal pathogens and herbivory in seedlings of the tropical tree Nectandra

ambigens. Journal of Tropical Ecology 19: 171-177.

Page 246: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

References

233

García-Pausas, J., Casals, P. and Romanyà, J. 2004. Litter decomposition and faunal

activity in Mediterranean forest soils: effects of N content and the moss layer. Soil

Biology and Biochemistry 36: 989-997.

Garnett, E., Jonsson, L. M., Dighton, J. and Murnen, K. 2004. Control of pitch pine

seed germination and initial growth exerted by leaf litters and polyphenolic

compounds. Biology and fertility of soils, 40(6): 421-426.

Gazol, A. and Ibáñez, R. 2010. Variation of plant diversity in a temperate

unmanaged forest in northern Spain: behind the environmental and spatial

explanation. Plant Ecology 207: 1-11.

Geddes, N. and Dunkerley, D. 1999. The influence of organic litter on the erosive

effects of raindrops and of gravity drops released from desert shrubs. Catena 36:

303-313.

George, L.O. and Bazzaz, F. A., 1999. The fern understory as an ecological filter:

growth and survival of canopy-tree seedlings. Ecology 80: 846-856.

Gilad, E., von Hardenberg, J., Provenzale, A., Shachak, M. and Meron, E. 2004.

Ecosystem engineers: from pattern formation to habitat creation. Physical Review

Letters 93(9): 098105-1-098105-4.

Gilbert, B., Turkington, R. and Srivastava, D.S., 2009. Dominant species and

diversity: linking relative abundance to controls of species establishment. Am.

Nat. 174: 850-862.

Ginter, D.L., Mcleod, K.W. and Sherrod, C. 1979. Water stress in longleaf pine

induced by litter removal. Forest Ecology and Management 2: 13-20.

Goldin, S.R. and Brookhouse, M.T., 2014. Effects of coarse woody debris on

understorey plants in a temperate Australian woodland. Applied Vegetation

Science. doi: 10.1111/avsc.12120

Gómez-Aparicio, L., Zamora, R., Gómez, J., Hodar, J.A., Castro, J. and Baraza, E.

2004. Applying plant facilitation to forest restoration: A meta-analysis of the use

of shrubs as nurse plants. Ecological Applications 14(4): 1128-1138.

Gómez, J.M., Jordano, P. and Perfectti, F. 2011. The functional consequences of

mutualistic network architecture. PLoS One 6, e16143.

Page 247: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

References

234

Gonzalez, G. and Zou, X. 1999. Plant and litter influences on earthworm

abundance and community structure in a tropical wet forest. Biotropica 31: 486-

493.

Gotelli, N.J. 2000. Null model analysis of species co-occurrence patterns. Ecology

81(9): 2606–2621

Gotelli, N.J. and Colwell, R.K., 2001. Quantifying biodiversity: procedures and

pitfalls in the measurement and comparison of species richness. Ecology Letters 4:

379–391.

Granda, E., Escudero, A., de la Cruz, M. and Valladares, F., 2012. Juvenile–adult

tree associations in a continental Mediterranean ecosystem: no evidence for

sustained and general facilitation at increased aridity. J Veg Sci. 23: 164-175.

Grime J. P., 1974. Vegetation classification by reference to strategies. Nature 250:

26-31.

Gross, K. 2008. Positive interactions among competitors can produce species-rich

communities. Ecol. Lett. 11: 929-936.

Guevara-Escobar, A., González-Sosa, E., Ramos-Salinas, M. and Hernández-

Delgado, G.D. 2007. Experimental analysis of drainage and water storage of litter

layers Hydrology and Earth System Science 11: 1703-1716.

Guimera, R. and Amaral, L.A.N. 2005. Cartography of complex networks: modules

and universal roles, J. Stat. Mech.-Theory Exp., P02001.

Gutiérrez, J.R., Meserve, P.L., Herrera, S., Contreras, L.C. and Jaksic, F.M. 1997.

Effects of small mammals and vertebrate predators on vegetation in the Chilean

semiarid zone. Oecologia 109: 398-406.

Haase, P., Pugnaire, F. I, and Incoll, L. D. 1995. Seed production and dispersal in

the semi-arid tussock grassStipa tenacissimaL. during masting. Journal of Arid

Environments, 31(1): 55-65.

Hanlon, R.D.G. and Anderson, J.M. 1980. Influence of macroarthropod feeding

activities on microflora in decomposing oak leaves. Soil Biology and Biochemistry

12: 255-261.

Page 248: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

References

235

Hassall, M., Turner, J.G. and Rands, M.R.W. 1987. Effects of terrestrial isopods on

the decomposition of woodland leaf litter. Oecologia 72: 597-604.

Hastings, A., Byers, J.E., Crooks, J.A., Cuddington, K., Jones, C.G., Lambrinos, J.G.,

Talley, T.S. and Wilson, W.G. 2007. Ecosystem engineering in space and time.

Ecology Letters 10 (2): 153-164.

Heleno, R. H., Olesen, J. M., Nogales, M., Vargas, P. and Traveset, A. 2013. Seed

dispersal networks in the Galápagos and the consequences of alien plant

invasions. Proceedings of the Royal Society B: Biological Sciences, 280(1750):

2012-2112.

Heleno, R., Lacerda, I., Ramos, J.A. and Memmott, J. 2010. Evaluation of

restoration effectiveness: community response to the removal of alien plants.

Ecol. Appl. 20: 1191–1203.

Henson, K.S.E., Craze, P.G. and Memmott, J. 2009. The restoration of parasites,

parasitoids, and pathogens to heathland communities. Ecology, 90: 1840-1851.

Herranz, J.M., Ferrandis, P., Copete, M.A., Duro, E.M. and Zalacain, A. 2006.

Effects of allelopathic compounds produced by Cistus ladanifer on germination of

20 Mediterranean taxa. Plant Ecology 184: 259-272.

Herrera, C.M. 1992. Historical effects and sorting processes as explanations for

contemporary ecological patterns: character syndromes in Mediterranean woody

plants. American Naturalist, 421-446.

Herrera, C.M. 1995a. Plant-vertebrate seed dispersal systems in the

Mediterranean: ecological, evolutionary, and historical determinants. Annual

Review of Ecology and Systematics, 705-727.

Herrera, C.M. 1989 Frugivory and seed dispersal by carnivorous mammals, and

associated fruit characteristics, in undisturbed Mediterranean habitats, Oikos 55:

250-262.

Herrera, J. 1995b. Acorn predation and seedling production in a low-density

population of cork oak (Quercus suber L.). Forest Ecology and Management, 76(1):

197-201.

Page 249: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

References

236

Herrera, C.M., Jordano, P., Lopez-Soria, L. and Amat, J. A. 1994. Recruitment of a

mast-fruiting, bird-dispersed tree: bridging frugivore activity and seedling

establishment. Ecological Monographs 64(3): 315-344.

Hobbs, R.J. 1984. Possible chemical interactions among heathland plants. Oikos

43: 23-29.

Holmgren, M., Scheffer, M., Ezcurra, E., Gutiérrez, J.R. and Mohren, G.M.J. 2001.

El Niño effects on the dynamics of terresrial ecosystems. Trends in Ecology and

Evolution 16: 89-94.

Hughes, A.R., Byrnes, J.E., Kimbro, D.L. and Stachowicz, J.J. 2007. Reciprocal

relationships and potential feedbacks between biodiversity and disturbance.

Ecology Letters 10: 849-864.

Hulbert, S.H. 1997. Functional importance vs. keystoneness: reformulating some

questions in theoretical biocenology. Aust. J. Ecol. 22: 369-382.

Huxman, T.E., Wilcox, B.P., Breshears, D.D., Scott, R.L., Snyder, K.A., Small, E.E.,

Hultine, K., Pockman, W.T. and Jackson, R.B. 2005. Ecohydrological implications of

woody plant encroachment. Ecology 86(2): 308-319.

Inderjit, and Nilsen, E. T. 2003. Bioassays and field studies for allelopathy in

terrestrial plants: progress and problems. Critical Reviews in Plant Sciences, 22(3-

4): 221-238.

Inderjit, and Duke, S.O. 2003. Ecophysiological Aspects of Allelopathy. Planta 217:

529-539.

IPCC, 2007. Intergovernmental Panel on Climate Change, Climate Change 2007:

Synthesis Report, Contribution of Working Groups I, II and III to the Fourth

Assessment Report of the Intergovernmental Panel on Climate Change. IPCC,

Geneva [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)].

IPCC, 2013. Long-term Climate Change: Projections, Commitments and

Irreversibility. In: Collins, M., Knutti, R. (Eds.). Report of the Intergovernmental

Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, 1136 pp.

Jackson, R.B., Banner, J.B., Jobbagy, E.G., Pockman, W.T., Diana, H. and Wall, D.H.

2002. Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418:

623-626.

Page 250: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

References

237

Jackson, R.B., Jobbagy, E.G., Avissar, R., Roy, S.B., Barrett, D.J., Cook, C.W., Farley,

K.A., le Maitre, D.C., McCarl, B.A. and Murray, B.C. 2005. Trading water for carbon

with biological sequestration. Science 310: 1944-1947.

Jones, C.G. and Callaway, R.M., 2007. The third party. J. Veg. Sci. 18: 771-776.

Jones, C.G., Lawton, J.H. and Shachak, M. 1994. Organisms as ecosystem

engineers. Oikos 69: 373-386.

Jones, C.G., Lawton, J.H. and Shachak, M. 1997. Positive and negative effects of

organisms as ecosystem engineers. Ecology 78: 1946-1957.

Jordán, F. and Scheuring, I. 2002. Searching for keystones in ecological networks.

Oikos 99: 607-612.

Jordano, P., Bascompte, J. and Olesen, J.M. 2003. Invariant properties in

coevolutionary networks of plant-animal interactions. Ecol. Lett. 6: 69-81.

Jordano, P., García, C., Godoy, J.A. and García-Castano, J.L. 2007. Differential

contribution of frugivores to complex seed dispersal patterns. PNAS 104(9): 3278–

3282.

Jump, A.S. and Peñuelas, J. 2005. Running to stand still: adaptation and the

response of plants to rapid climate change. Ecology Letters, 8(9): 1010-1020.

Kavvadias, V.A., Alifragis, D., Tsiontsis, A., Brofas, G. and Stamatelos, G. 2001.

Litterfall, litter accumulation and litter decomposition rates in four forest

ecosystems in northern Greece. Forest Ecology and Management 144: 113-127.

Kemp, P.R., Reynolds, J.F., Virginia, R.A. and Whitford, W.G. 2003. Decomposition

of leaf and root litter of Chihuahuan desert shrubs: effects of three years of

summer drought. Journal of Arid Environments 53(1): 21-39.

Konings, A., Dekker, S., Rietkerk, M. and Katul, G. 2011. Drought sensitivity of

patterned vegetation determined by rainfall-land surface feedbacks. J. Geophys.

Res. 116: G04008.

Koorem, K. and Moora, M. 2010. Positive association between understory species

richness and a dominant shrub species (Corylus avellana) in a boreonemoral

spruce forest. Forest Ecology and Management 260: 1407-1413.

Page 251: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

References

238

Krause, A.E., Frank, K.J., Mason, D.M., Ulanowicz, R.E. and Taylor, W.W. 2003.

Compartments revealed in food web structure. Nature 426: 282-285.

Kurz-Besson, C., Coûteaux, M.M., Berg, B., Remacle, J., Ribeiro, C., Romanyà, J.

and Thiéry, J.M. 2006. A climate response function explaining most of the

variation of the forest floor needle mass and the needle decomposition in pine

forests across Europe. Plant Soil 285: 97-114.

Kutiel, P., Kutiel, H. and Lavee, H. 2000 Vegetation response to possible scenarios

of rainfall variations along a Mediterranean-extreme arid climatic transect.

Journal of Arid Environments 44: 277-290.

Lamb, E.G. 2008. Direct and indirect control of grassland community structure by

litter, resources, and biomass. Ecology 89(1): 216-225.

Laughlin, D.C. and Fulé, P.Z. 2008. Wildland fire effects on understory plant

communities in two fire-prone forests. Canadian Journal of Forest Restoration 38:

133-142.

Lavado, M., Núñez, E. and Escudero, J.C. 1989. Variaciones mensuales en el aporte

de biomasa al suelo por distintas especies de matorral mediterráneo. Options

Méditerranéennes - Série Séminaires 3: 167-172.

Le Houérou, H.N. 1986. The desert and arid zones of northern Africa. En: Evenari,

M., Noy-Meir, I. y Goodall, D.W. (Eds.) The ecosystems of the world. Volume 12 B.

Hot deserts and arid shrublands. Elsevier Science, Amsterdam, The Netherlands.

Le Houérou, H.N. 2001. Biogeography of the arid stepplands north of the Sahara.

Journal of Arid Environments 48: 103-128.

Levine, J.M. 2000. Species diversity and biological invasions: relating local process

to community pattern. Science 288: 852-854.

Lockhart, J. A. 1961. Photoinhibition of stem elongation by full solar radiation.

American Journal of Botany 387-392.

López-Barrera, F. and González-Espinosa, M. 2001. Influence of litter on

emergence and early growth of Quercus rugosa: a laboratory study. New Forests

21: 59-70.

Page 252: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

References

239

López-Zamora, I., Duryea, M.L., McCormac Wild, C., Comerford, N.B. and Neary,

D.G. 2001. Effect of pine needle removal and fertilization on tree growth and soil

P availability in a Pinus elliotii Englem. var. elliotii stand. Forest Ecology and

Management 148: 125-134.

López, G. and Moro, M.J. 1997. Birds of Aleppo pine plantations in south-east

Spain in relation to vegetation composition and structure. Journal of Applied

Ecology 34: 1257-1272.

Ludwig, J. A. and Tongway, D. J. 1996. Rehabilitation of semiarid landscapes in

Australia. II. Restoring vegetation patches. Restoration Ecology, 4(4): 398-406.

Ludwig, J.A., Wilcox, B.P., Breshears, D.D., Tongway, D.J. and Imeson, A.C. 2005.

Vegetation patches and runoff–erosion as interacting ecohydrological processes in

semiarid landscapes. Ecology 86(2): 288-297.

MacArthur, R.H. and Levins, R., 1967. The limiting similarity, convergence, and

divergence of coexisting species. Am. Nat. 101: 377-385.

Machado, M.J., Benito, G., Barriendos, M., and Rodrigo, F.S. 2011. 500 years of

rainfall variability and extreme hydrological events in southeastern Spain

drylands. Journal of Arid Environments, 75(12): 1244-1253.

Maestre, F.T. and Cortina, J. 2004a. Do positive interactions increase with abiotic

stress? A test from a semi-arid steppe. Proceedings of the Royal Society of

London. Series B (Supplement) 271: S331-S333.

Maestre, F.T. and Cortina, J. 2004b. Insights on ecosystem composition and

function in a sequence of degraded semiarid steppes. Restoration Ecology 12:

494-502.

Maestre, F.T. and Cortina, J. 2005. Remnant shrubs in Mediterranean semi-arid

steppes: effects of shrub size, abiotic factors and species identity on understorey

richness and occurrence. Acta Oecologica 27: 161-169.

Maestre, F.T. and Cortina, J. 2003. Small-scale spatial variation in soil CO2 efflux in

a Mediterranean semiarid steppe. Applied Soil Ecology, 23(3): 199-209.

Maestre, F.T. and Cortina, J. 2002. Spatial patterns of surface soil properties and

vegetation in a Mediterranean semi-arid steppe. Plant and Soil 241: 279-291.

Page 253: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

References

240

Maestre, F. T., Bautista, S. and Cortina, J., 2003a. Positive, negative and net effects

in grass-shrub interactions in Mediterranean semiarid grasslands. Ecology 84,

3186-3197.

Maestre, F.T., Cortina, J., Bautista, S., Bellot, J. and Vallejo, V.R., 2003b. Small-

scale environmental heterogeneity and spatio-temporal dynamics of seedling

establishment in a semiarid degraded ecosystem. Ecosystems 6: 630-643.

Maestre, F.T., Callaway, R.M., Valladares, F. and Lortie, C.J. 2009a. Refining the

stress-gradient hypothesis for competition and facilitation in plant communities.

Journal of Ecology 97(2): 199-205

Maestre, F. T., Bowker, M. A., Puche, M. D., Hinojosa, M.B., Martínez, I.,

García‐Palacios, P., Castillo, A.P., Soliveres, S., Luzuriaga, A.L., Sánchez, A.M.,

Carreira, J.A., Gallardo, A. and Escudero, A. 2009b. Shrub encroachment can

reverse desertification in semi‐arid Mediterranean grasslands. Ecology Letters

12(9): 930-941.

Maestre, F.T., Bautista, S and Cortina, J. 2006. Stipa tenacissima does not affect

the foliar d13C and d15N of introduced shrub seedlings in a Mediterranean

semiarid steppe. Journal of Integrative Plant Biology 48: 897-905.

Maestre, F.T. 2004. On the importance of patch attributes, abiotic factors and

past human impacts as determinants of plant species richness and diversity in

Mediterranean semiarid steppes. Diversity and Distributions 10: 21-29.

Maestre, F.T., Bautista, S., Cortina, J. and Bellot, J. 2001. Potential of using

facilitation by grasses to establish shrubs on a semiarid degraded steppe.

Ecological Applications 11: 1641-1655.

Maestre, F.T., Bautista, S., Cortina, J., Díaz, G., Honrubia, M. and Vallejo. V.R.

2002. Microsite and mycorrhizal inoculum effects on the establishment of

Quercus coccifera in a semiarid degraded steppe. Ecological Engineering 19: 289-

295.

Maestre, F.T., Cortina, J. and Bautista, S. 2004. Mechanisms underlying the

interaction between Pinus halepensis and the native late-successional shrub

Pistacia lentiscus in a semiarid plantation. Ecography 27: 1-11.

Page 254: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

References

241

Maret, M.P. and Wilson, M.V. 2005. Fire and Litter Effects on Seedling

Establishment in Western Oregon Upland Prairies. Restoration Ecology 13(3):

562–568.

Marshall, T.J., Holmes, J.W. and Rose, C.W. 1996. Soil Physics. 3rd edn. Cambridge

University Press, Cambridge.

Martens, S. N., Breshears, D. D. and Meyer, C. W. 2000. Spatial distributions of

understory light along the grassland/forest continuum: effects of cover, height,

and spatial pattern of tree canopies. Ecological Modelling 126(1): 79-93.

Martín-González, A.M., Dalsgaard, B. and Olesen, J.M. 2010. Centrality measures

and the importance of generalist species in pollination networks. Ecological

Complexity 7: 36–41

Matías, L., Zamora, R., Mendoza, I. and Hódar, J.A. 2008. Seed Dispersal Patterns

by Large Frugivorous Mammals in a Degraded Mosaic Landscape. Restoration

Ecology 18(5): 1-9.

Mayor, Á.G., Bautista, S., Small, E.E., Dixon, M. and Bellot, J. 2008. Measurement

of the connectivity of runoff source areas as determined by vegetation pattern

and topography: a tool for assessing potential water and soil losses in drylands.

Water Resources Research 44(10) W10423.

McCune, B. and Grace, J.B. 2002. Analysis of ecological communities. MjM

Software Design, Gleneden Beach, Oregon, USA.

MEA (Millennium Ecosystem Assessment), 2005. Ecosystems and Human Well-

being: Desertification Synthesis. World Resources Institute, Washington, DC.

Mediavilla, S. and Escudero, A., 2004. Stomatal responses to drought of mature

trees and seedlings of two co-occurring Mediterranean oaks. Forest Ecol. Manag.

187: 281-294.

Meentemeyer, V., Box, E.O. and Thompson, R. 1982. World patterns and amounts

of terrestrial plant litter production. BioScience 32: 125-128.

Memmott, J., Craze, P.G., Waser, N.M. and Price, M.V. 2007. Global warming and

the disruption of plant–pollinator interactions. Ecol. Lett. 10: 710-717.

Page 255: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

References

242

Memmott, J., Waser, N.M. and Price, M.V. 2004. Tolerance of pollination

networks to species extinctions. Proc. R Soc. Lond. B 271: 2605–2611.

Méndez‐Alonzo, R., Ewers, F. W. and Sack, L. 2013. Ecological variation in leaf

biomechanics and its scaling with tissue structure across three

mediterranean‐climate plant communities. Functional Ecology, 27(2): 544-554.

Mendoza-Aguilar, D. O., Cortina, J. and Pando-Moreno, M. 2014. Biological soil

crust influence on germination and rooting of two key species in a Stipa

tenacissima steppe. Plant and soil, 375(1-2): 267-274.

Mendoza, I., Zamora, R. and Castro, J.A. 2009. Seeding experiment for testing

tree-community recruitment under variable environments: Implications for forest

regeneration and conservation in Mediterranean habitats. Biological Conservation

142(7): 1491-1499.

Metcalfe, D.J. and Turner, I.M. 1998. Soil seed bank from lowland rain forest in

Singapore: canopy-gap and litter-gap demanders. Journal of Tropical Ecology 14:

103-108.

Milberg, P., Andersson, L. and Thompson, K. 2000. Large-seeded species are less

dependent on light for germination than small-seeded. Seed Science Research 10:

99-104.

Montané, F., Rovira, P. and Casals, P. 2007. Shrub encroachment into mesic

mountain grasslands in the Iberian peninsula: Effects of plant quality and

temperature on soil C and N stocks. Global Biogeochemical Cycles 21 (4016): 1-10.

Montoya, J.M., Pimm, S.L. and Solé, R.V. 2006. Ecological networks and their

fragility. Nature 442: 259-264.

Morris, W. F. and Wood, D. M. 1989. The role of lupine in succession on Mount St.

Helens: Facilitation or inhibition? Ecology 70(3): 697-703.

Muñoz-Reinoso, J.C. 1993. Consumo de gálbulos de sabina (Juniperus phoenicea

spp. turbinata Guss, 1981) y dispersión de semillas por el conejo (Oryctolagus

cuniculus) en el Parque Nacional de Doñana. Doñana Acta Vertebrata 20: 49-58.

Myster, R.W. 1994. Contrasting litter effects on old field tree germination and

emergence. Vegetatio, 114(2): 169-174.

Page 256: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

References

243

Nara, H. and Hogetsu, K., 2004. Ectomycorrhizal fungi on established shrubs

facilitate subsequent seedling establishment of successional plant species. Ecology

85: 1700-1707.

Navarro R.M., del Campo A. and Cortina J. 2006. Factores que afectan al éxito de

una repoblación y su relación con la calidad de la planta. In Calidad de planta

forestal para la restauración en ambientes Mediterráneos. Estado actual de

conocimientos. Cortina, J., Peñuelas, J.L., Puértolas, J., Vilagrosa, A. and Savé, R.

(Coord.). Organismo Autónomo Parques Nacionales. Ministerio de Medio

Ambiente. Madrid

Navarro-Cano, J.A. 2007. Reclutamiento vegetal en pinares de repoblación y

espartales en ambientes semiáridos: aplicaciones a la restauración ecológica.

Tesis Doctoral. Universidad de Murcia.

Navarro-Cano, J.A., Barberá, G.G., Ruiz-Navarro, A. and Castillo, V.M. 2009. Pine

plantation bands limit seedling recruitment of a perennial grass Ander semiarid

conditions. Journal of Arid Environments 73: 120-126.

Nelson, D.W. and Sommers, L.E. 1982. Total carbon, organic carbon and organic

matter. En: Page, A.L. (Ed). Methods of soil analysis. Part 2. Chemical and

Microbiological Properties. Second edition. American Society of Agronomy,

Madison, Wisconsin, USA.

Newman, M.E.J. 2004. Analysis of weighted networks. Physical Review E 70:

056131.

Ninyerola, M., Pons, X. and Roure, J.M. 2005. Atlas Climático Digital de la

Península Ibérica. Metodología y aplicaciones en bioclimatología y geobotánica.

ISBN 932860-8-7. Universidad Autónoma de Barcelona, Bellaterra, Spain.

Noble, A.D. and Randall, P.J. 1999. Alkalinity effects of different tree litters

incubated in an acid soil of N.S.W. Australia. Agroforestry 46: 147-160.

Northup, R.R., Yu, Z., Dahlgren, R.A. and Vogt, K.A. 1995. Polyphenol control of

nitrogen release from pine litter. Nature 377: 227-229.

Noy-Meir, I. 1973. Desert ecosystems: Environment and producers. Annual

Review of Ecology and Systistematics 4: 25-51

Page 257: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

References

244

O’Connell, P.E., Beven, K.J., Carney, J.N., Clements, R. O., Ewen, J., Fowler, H.,

Harris, G.L., Hollis, L., Morris, J., O’Donnell, G.M., Packman, J.C., Parkin, A., Quinn,

P.F., Rose, S.C., Shepherd, M. and Tellier, S. 2005. Review of impacts of rural land

use and management on flood generation. Impact study report. RandD Technical

Report FD2114/TR. Defra - Flood Management Division. London. Available at:

www.defra.gov.uk/environ/fcd.

Okuyama, T. and Holland, J. 2008. Network structural properties mediate the

stability of mutualistic communities. Ecol. Lett. 11: 208-216.

Olano, J. M., Eugenio, M. and Escudero, A. 2011. Site effect is stronger than

species identity in driving demographic responses of Helianthemum (Cistaceae)

shrubs in gypsum environments. American journal of botany 98(6): 1016-1023.

Olesen, J. M., Bascompte, J., Dupont, Y. L. and Jordano, P. 2007. The modularity of

pollination networks. Proceedings of the National Academy of Sciences, 104(50):

19891-19896.

Padilla, F.M., Ortega, R., Sánchez, J. and Pugnaire, F.I. 2009. Rethinking species

selection for restoration of arid shrublands. Basic Appl. Ecol. 10: 640-647.

Palamarev, E. 1989. Paleobotanical evidences of the Tertiary history and origin of

the Mediterranean sclerophyll dendroflora. Plant Systematics and Evolution,

162(1-4): 93-107.

Parker, K. W. and Martin, S. C. 1952. Mesquite problem on southern Arizona

ranges. U. S. Dep. Agr. Circ. No. 908. 70 p.

Pascual, M. and Dunne, J. A. 2006. Ecological networks: linking dynamics in food

webs. Oxford, UK: Oxford University Press.

Patón, D., Azocar, P. and Tovar, J. 1998. Growth and productivity in forage

biomass in relation to the age assessed by dendrochronology in the evergreen

shrub Cistus ladanifer (L.) using different regression models. Journal of Arid

Environments, 38(2): 221-235.

Pausas, J., Bonet, A., Maestre, F.T. and Climent, A. 2006. The role of the perch

effect on the nucleation process in Mediterranean semiarid oldfields. Acta

Oecologica 29(3): 346-352.

Page 258: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

References

245

Pausas, J.G., Bladé, C., Valdecantos, A., Seva, J.P., Fuentes, D., Alloza, J.A.,

Vilagrosa, A., Bautista, S., Cortina, J. and Vallejo, R., 2004. Pines and oaks in the

restoration of Mediterranean landscapes: new perspectives for an old practice.

Plant Ecology 171: 209-220.

Peñuelas, J., Filella, I. and Terradas, J. 1999. Variability of plant nitrogen and water

use in a 100-m transect of a subdesertic depression of the Ebro valley (Spain)

characterized by leaf δ13C and δ15N. Acta Oecol. 20: 119-123.

Peñuelas, J., Lloret, F. and Montoya, R. 2001. Severe drought effects on

Mediterranean woody flora in Spain. Forest Science 47(2): 214-218.

Peñuelas, J.L and Ocaña, L. 1996. Cultivo de plantas forestales en contenedor.

Principios y fundamentos. Ministerio de Agricultura, Pesca y Alimentación. Mundi-

Prensa, Madrid.

Peters, E. M., Martorell, C. and Ezcurra, E. 2008. Nurse rocks are more important

than nurse plants in determining the distribution and establishment of globose

cacti (Mammillaria) in the Tehuacán Valley, Mexico. Journal of Arid

Environments, 72(5): 593-601.

Peterson, C. J. and Facelli, J. M. 1992. Contrasting germination and seedling

growth of Betula alleghaniensis and Rhus typhina subjected to various amounts

and types of plant litter. American Journal of Botany 79: 1209-1216.

Pocock, M.J., Evans, D.M., and Memmott, J. 2012. The robustness and restoration

of a network of ecological networks. Science 335(6071): 973-977.

Poesen, J. and Lavee, H. 1994. Rock fragments in top soils: significance and

processes. Catena, 23(1): 1-28.

Puerta-Piñero, C., Gómez, J. M. and Valladares, F. 2007. Irradiance and oak

seedling survival and growth in a heterogeneous environment. Forest Ecology and

Management 242(2): 462-469.

Pueyo, Y. and Alados, C.L. 2007. Abiotic factors determining vegetation patterns in

a semiarid Mediterranean landscape: Different responses on gypsum and non-

gypsum substrates. Journal of Arid Environments 69(3): 490-505.

Page 259: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

References

246

Pugnaire, F. I., Armas, C. and Maestre, F. T. 2011. Positive plant interactions in the

Iberian Southeast: mechanisms, environmental gradients, and ecosystem

function. Journal of Arid Environments 75(12): 1310-1320.

Pugnaire, F.I. and Lázaro, R. 2000. Seed bank and understorey species

composition in a semiarid environment: The effect of shrub age and rainfall.

Annals of Botany 86: 807-813.

Pugnaire, F.I., Armas, C. and Maestre, F.T., 2011. Positive plant interactions in the

Iberian Southeast: Mechanisms, environmental gradients, and ecosystem

function. J. Arid Environ. 75: 1310-1320.

Pugnaire, F.I., Haase, P. and Puigdefábregas, J. 1996. Facilitation between higher

plant species in a semiarid environment. Ecology 77: 1420-1426.

Puigdefábregas, J. and Mendizábal, T. 1998. Perspectives on desertification:

western Mediterranean. Journal of Arid Environments 39: 209-224.

Puigdefábregas, J. 2005. The role of vegetation patterns in structuring runoff and

sediment fluxes in drylands. Earth Surf. Proc. Land. 30 : 133-147.

Quézel, P. and Médail, F. 2003. Écologie et biogéographie des forêts du basin

méditerranéen. Elsevier. Paris.

R Development Core Team, 2014. R: A language and environment for statistical

computing. R Foundation for Statistical Computing, Vienna, Austria. URL

http://www.R-project.org/.

Ramírez, D. A. and Bellot, J. 2009. Linking population density and habitat structure

to ecophysiological responses in semiarid Spanish steppes. Plant Ecology 200(2):

191-204.

Ramírez, J.A. and Diaz, M., 2008. The role of temporal shrub encroachment for the

maintenance of Spanish holm oak Quercus ilex dehesas. Forest Ecology and

Management 255: 1976-1983.

Reader, R.J. 1993. Control of seedling emergence by ground cover and seed

predation in relation to seed size for some old-field species. Journal of Ecology 81:

169-175.

Page 260: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

References

247

Rebollo, S., Pérez-Camacho, L., García-de-Juan, M.T., Rey-Benayas, J.M. and

Gómez-Sal, A. 2001. Recruitment in a Mediterranean annual plant community:

seed bank, emergente, litter, and intra- and Inter.-specific interactions. Oikos 95:

485-495.

Rey-Benayas, J.M., López-Pintor, A., García, C., de la Cámara, N., Strasser, R. and

Gómez-Sal, A., 2002. Early establishment of planted Retama sphaerocarpa

seedlings under different levels of light, water and weed competition. Plant

Ecology 159: 201-209.

Rey-Benayas, J.M., Newton, A.C., Diaz, A. and Bullock, J.M. 2009. Enhancement of

biodiversity and ecosystem services by ecological restoration: a meta-analysis.

Science 325: 1121-1124.

Rey, A., Pegoraro, E., Oyonarte, C., Were, A., Escribano, P. and Raimundo, J. 2011.

Impact of land degradation on soil respiration in a steppe (Stipa tenacissima L.)

semi-arid ecosystem in the SE of Spain. Soil Biology and Biochemistry 43(2): 393-

403.

Rey, P.J. and Alcantara, J.M. 2000.Recruitment Dynamics of a Fleshy-Fruited Plant

(Olea europaea): Connecting Patterns of Seed Dispersal to Seedling Establishment.

Journal of Ecology 88: 622-633.

Rey, P.J., Garrido, J.L, Alcántara, J.M., Ramírez, J.M., Aguilera, A., García, L.,

Manzaneda, A.J. and Fernández, R. 2002. Spatial variation in ant and rodent post-

dispersal predation of vertebrate-dispersed seeds. Functional Ecology 16(6): 773-

781.

Reynolds, J.F. 2001. Desertification. En: Levin, S. (Ed.) Enciclopedia of Biodiversity.

2. San Diego: Academic.

Reynolds, J.F., Virginia, R.A., Kemp, P.R., de Soyza, A.G. and Tremmel, D.C. 1999.

Impact of drought on desert shrubs: effects of seasonality and degree of resource

island development. Ecological Monographs 69: 69-106.

Rivas-Martínez, S. 1987. Memoria del mapa de series de vegetación de España.

Instituto para la Conservación de la Naturaleza, Madrid.

Rivas-Martínez, S., and Rivas-Sáenz, S. 2002. Worldwide bioclimatic classification

system. Backhuys Pub.

Page 261: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

References

248

Rodríguez-Calcerrada, J., Nanos, N., del Rey, MC., López de Heredia, U., Escribano,

R. and Gil, L. 2011. Small-scale variation of vegetation in a mixed forest

understorey is partly controlled by the effect of overstory composition on litter

accumulation. Journal of Forest Research 16(6): 473-483.

Rodríguez‐Gironés, M. A. and Santamaría, L. 2006. A new algorithm to calculate

the nestedness temperature of presence–absence matrices. Journal of

Biogeography 33(5): 924-935.

Roques, K.G., O’Connor, T.G. and Watkinson, A.R. 2001. Dynamics of shrub

encroachment in an African savanna: relative influences of fire, herbivory, rainfall

and density dependence. Journal of Applied Ecology 38: 268-280.

Rosalino, L. and Santos-Reis, M. 2009. Fruit consumption by carnivores in

Mediterranean Europe. Mammal Review 39: 67-78

Rotundo, J.L. and Aguiar, M.R. 2005. Litter effects on plant regeneration in arid

lands: a complex balance between seed retention, seed longevity and soil-seed

contact. Journal of Ecology 93: 829-838.

Rovira, P. and Vallejo, V.R. 1997. Organic carbon and nitrogen mineralization

under Mediterranean climatic conditions: The effects of incubation depth. Soil

Biology and Biochemistry 29(9-10): 1509-1520

Ruppert, J. C., Harmoney, K., Henkin, Z., Snyman, H. A., Sternberg, M., Willms, W.

and Linstädter, A. 2014. Quantifying drylands' drought resistance and recovery:

the importance of drought intensity, dominant life history and grazing regime.

Global Change Biology. doi: 10.1111/gcb.12777

Ruprecht, E., Enyedi, M.Z., Eckstein, R.L. and Donath, T.W. 2010. Restorative

removal of plant litter and vegetation 40 years after abandonment enhances re-

emergence of steppe grassland vegetation. Biological Conservation 143: 449-456.

Saiz, H. and Alados, C.L. 2011a. Effect of Stipa tenacissima L. on the structure of

plant co-occurrence networks in a semi-arid community. Ecological Research 26:

595-603.

Saiz, H. and Alados, C.L. 2011b. Structure and spatial self-organization of semi-

arid communities through plant–plant co-occurrence networks. Ecological

Complexity 8: 184-191.

Page 262: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

References

249

Saiz, H., and Alados, C.L. 2014. Effect of livestock grazing in the partitions of a

semiarid plant–plant spatial signed network. Acta Oecologica 59: 18-25.

Sánchez-Gómez, D., Zavala, M.A. and Valladares, F. 2006. Seedling survival

responses to irradiance are differentially influenced by low-water availability in

four tree species of the Iberian cool temperate–Mediterranean ecotone. Acta

Oecologica 30: 322-332.

Sanders, H.L., 1968. Marine benthic diversity: a comparative study. American

Naturalist 102: 243–282.

Santos, T. and Tellería, J. 1997. Vertebrate predation on Holm Oak, Quercus ilex,

acorns in a fragmented habitat: effects on seedling recruitment. Forest Ecology

and Management 98(2): 181-187.

Sayer, E.J. 2006. Using experimental manipulation to assess the roles of leaf litter

in the functioning of forest ecosystems. Biological Review 81: 1-31.

Schlatter, J.E. Gerding, V. and Calderón, S. 2006. Aporte de la hojarasca al ciclo

biogeoquímico en plantaciones de Eucalyptus nitens, X Región, Chile. Bosque

27(2): 115-125.

Schlesinger, W.H. and Pilmanis, A.M. 1998. Plant-soil interactions in deserts.

Biogeochemistry 42: 169-187.

Schlesinger, W.H., Abrahams, A.D., Parsons, A.J. and Wainwright, J. 1999. Nutrient

losses in runoff from grassland and shrubland habitats in southern New Mexico:

rainfall simulation experiments. Biogeochemistry 45: 21-34.

Schmidt, M.W.I., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens,

I.A., Kleber, M., Koegel-Knabner, I., Lehmann, J., Manning, D.A.C., Nannipieri, P.,

Rasse, D.P., Weiner, S. and Trumbore, S.E., 2011. Persistence of soil organic

matter as an ecosystem property. Nature 478: 49-56.

Schöning, C., Espadaler, X., Hensen, I. and Roces, F. 2004. Seed predation of the

tussock-grass Stipa tenacissima L. by ants (Messor spp.) in south-eastern Spain:

the adaptive value of trypanocarpy. Journal of Arid Environments 56(1): 43-61.

Schütz, W., Milberg, P. and Lamont, B.B. 2002. Germination requirements and

seedling responses to water availability and soil type in four eucalypt species. Acta

Oecologica 23(1): 23-30.

Page 263: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

References

250

Scotti, M., Podani, J. and Jordan, F. 2007. Weighting, scale dependence and

indirect effects in ecological networks: a comparative study. Ecological Complexity

4: 148-159.

Serrasolas, I., Ferran, A. and Valleyo, V. R. 1989. Recostruccion de los horizontes

organicos tras el incendio en la garriga del macizo de Garraf (Barcelona). Options

Méditerranéennes, Série Séminaires, 3, 107-110.

Servicio del Esparto. 1953. Estudios y experiencias sobre el esparto, vol. II.

Ministerios de Industria y Comercio y de Agricultura, Madrid.

Shannon, C.E. and Weaver, W., 1949. The Mathematical theory of

Communication. University of Illinois Press, Urbana.

Shearer, G., Duffy, J., Kohl. D.H. and Commoner, B., 1974. A steady state model of

isotopic fractionation accompanying nitrogen transformations in soil. Soil Sci. Soc.

Am. Proc. 38: 315-322.

Smith, S. and Read, D. 2008. Mycorrhizal Symbiosis. Academic Press. (3rd ed.)

Soil Survey Staff. 1994. Keys to Soil Taxonomy, Sixth Edition. USDA Soil

Conservation Service, Pocahontas Press, Blacksburg, USA. 524 pp.

Soliveres, S. Eldridge, D.J., Hemmings, F. and Maestre, F.T. 2012. Nurse plant

effects on plant species richness in drylands: The role of grazing, rainfall and

species specificity. Perspect. Plant Ecol. Evol. Syst. 14: 402-410.

Soliveres, S., Eldridge, D., Maestre, F.T., Bowker, M.A., Tighe M. and Escudero, A.,

2011a. Microhabitat amelioration and reduced competition among understorey

plants as drivers of facilitation across environmental gradients: towards a unifying

framework. Perspect. Plant Ecol. Evol. Syst. 13: 247-258.

Soliveres, S., García-Palacios, P., Castillo-Monroy, A.P., Maestre, F.T., Escudero, A.

and Valladares, F. 2011b. Temporal dynamics of herbivory and water availability

interactively modulate the outcome of a grass–shrub interaction in a semiarid

ecosystem. Oikos 120: 710-719.

Stinchcombe, J.R. and Schmitt, J. 2006. Ecosystem engineers as selective agents:

the effects of leaf litter on emergence time and early growth in Impatiens

capensis. Ecology letters 9: 258-270.

Page 264: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

References

251

Stohlgren, T.J., Barnett, D.T. and Kartesz, J.T. 2003. The rich get richer: patterns of

plant invasions in the United States. Front. Ecol. Environ. 1: 11-14.

Talbot, J.M. and Treseder, K.K. 2012. Interactions among lignin, cellulose, and

nitrogen drive litter chemistry-decay relationships. Ecology 93(2): 345-354.

Taylor, B.R., Parkinson, D. and Parsons, W.F.J. 1989. Nitrogen and Lignin Content

as Predictors of Litter Decay Rates: A Microcosm Test. Ecology 70(1): 97-104.

Tews, J., Esther, A., Milton, S.J. and Jeltsch, F. 2006. Linking a population model

with an ecosystem model: Assessing the impact of land use and climate change on

savanna shrub cover dynamics. Ecol. Model. 95: 219-228.

Thébault, E. and Fontaine, C. 2010. Stability of ecological communities and the

architecture of mutualistic and trophic networks. Science 329: 853-856.

Thompson, S.E., Katul, G.G. and MacMahon, S. 2008. Role of biomass spread in

vegetation pattern formation within arid ecosystems. Water Resour. Res. 44:

E10421.

Tighe, M., Reid, N., Wilson, B. and Briggs, S.V. 2009. Invasive native scrub and soil

condition in semiarid south-eastern Australia. Agriculture, Ecosystems and

Environment 132(3-4): 212-222.

Tilman, D. 1993. Species richness of experimental productivity gradients: how

important is colonization limitation?. Ecology 74(8): 2179-2191.

Timmermann, A., Oberhuber, J., Bacher, A., Esch, M., Latif, M. and Roeckner,

1999. Increased El Nino frequency in a climate model forced by future greenhouse

warming. Nature 398: 694.697.

Tirado, R. and Pugnaire, F.I. 2005. Community structure and positive interactions

in constraining environments. Oikos 111: 437-444.

Tongway, D. J. and Hindley, N. L. 2004. Landscape function analysis manual:

procedures for monitoring and assessing landscapes with special reference to

minesites and rangelands. CSIRO Sustainable Ecosystems, Canberra, Australia.

Tongway, D. J., and Ludwig, J. A. 1996. Rehabilitation of semiarid landscapes in

Australia. I. Restoring productive soil patches. Restoration Ecology 4(4): 388-397.

Page 265: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

References

252

Tongway, D.J. and Ludwig, J.A. 1994. Small scale resource heterogeneity in

semiarid landscapes. Pacific Conservation Biology 1: 201-208.

Traveset, A., Heleno, R., Chamorro, S., Vargas, P., McMullen,C.K., Castro-Urgal, R.,

Nogales, M., Herrera, H.W. and Olesen, J.M. 2013 Invaders of pollination networks

in the Galápagos Islands: emergence of novel communities. Proceedings of the

Royal Society B: Biological Sciences 280: 20123040.

Trubat, R., Cortina, J. and Vilagrosa, A. 2008. Short-term nitrogen deprivation

increases field performance in nursery seedlings of Mediterranean woody species.

Journal of Arid Environments 72(6): 879-890.

Trubat, R., Cortina, J. and Vilagrosa, A. 2011. Nutrient deprivation improves field

performance of woody seedlings in a degraded semi-arid shrubland.Ecological

Engineering 37(8): 1164-1173.

Tylianakis, J.M., Laliberté, E., Nielsen, A. and Bascompte, J. 2010. Conservation of

species interaction networks. Biol. Conserv. 143: 2270-2279.

UNCCD. 1994. United Nations Earth Summit. Convention on Desertification. UN

Conf. on Environmental and Development, Rio de Janeiro, Brazil, June 3-14, 1992.

DPI/SD/1576. New York: United Nations.

UNESCO. 1997. World Map of Arid Regions. United Nations Educational, Scientific

and Cultural Organization, Paris.

Valdecantos, A. 2001. Aplicación de fertilizantes orgánicos e inorgánicos en la

repoblación de zonas forestales degradadas de la Comunidad Valenciana. Tesis

doctoral. Universitat d’Alacant.

Valdecantos, A., Fuentes, D., Smanis, A., Llovet, J., Morcillo, L. and Bautista, S.

2014. Effectiveness of Low‐Cost Planting Techniques for Improving Water

Availability to Olea europaea Seedlings in Degraded Drylands. Restoration

ecology 22(3): 327-335.

Valentin, C., d’Herbès, J.M. and Poesen, J. 1999. Soil and water components of

banded vegetation pattern. Catena 37: 1-24.

Valiente-Banuet, A. and E. Ezcurra. 1991. Shade as a cause of association between

the cactus Neobuxbaumia tetetzo and the nurse plant Mimosa luisana in the

Tehuacán Valley, Mexico. Journal of Ecology 79: 961–971

Page 266: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

References

253

Valiente-Banuet, A., Rumebe, A. V., Verdú, M. and Callaway, R. M. 2006. Modern

Quaternary plant lineages promote diversity through facilitation of ancient

Tertiary lineages. Proceedings of the National Academy of Sciences 103(45):

16812-16817.

-

diversity of plant communities. Ecology Letters 10(11): 1029-1036.

Valiente, J. A., Estrela, M. J., Corell, D., Fuentes, D., Valdecantos, A. and Baeza, M.

J. 2011. Fog water collection and reforestation at a mountain location in a

western Mediterranean basin region: Air-mass origins and synoptic analysis.

Erdkunde 65, 277-290.

Valladares, F. and Pearcy, R.W., 2002. Drought can be more critical in the shade

than in the sun: a field study of carbon gain and photo-inhibition in a Californian

shrub during a dry El Niño year. Plant Cell Environ. 25: 749-759.

Valladares, F. and Niinemets, Ü. 2008. Shade tolerance, a key plant feature of

complex nature and consequences. Annual Review of Ecology, Evolution, and

Systematics: 237-257.

Vallejo, V.R., Allen, E.B., Aronson, J., Pausas, J.G., Cortina, J. and Gutiérrez, J.R.

2012. Restoration of mediterranean-type woodlands and shrublands. Chapter 11

in Restoration Ecology: The New Frontier (2nd Edition). Pp. 130-144. J. Van Andel

and J. Aronson (Eds.). John Wiley and Sons Ltd-Blackwell. Bognor Regis.

Vallejo, V.R., Cortina, J., Ferrán, A., Fons, J., Romanyà, J. and Serrasolsas, I. 1998.

Sobre els trets distintius dels sòls mediterranis. Acta Botanica Barcinonensia 45

(Homenatge a Oriol de Bolòs): 603-632.

Van Auken, O. W. 2009. Causes and consequences of woody plant encroachment

into western North American grasslands. Journal of Environmental Management

90(10): 2931-2942.

Van Auken, O.W. 2000. Shrub invasions of North American semiarid grasslands.

Annual Review of Ecology and Systematics 31: 197-215.

Van Dijk, A.I.J.M. and Keenan. R. 2007. Planted forests and water in perspective.

Forest Ecology and Management 251(1-2): 1-9

Page 267: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

References

254

Vasudevan, P., Thlapiyal, A., Sen, P.K., Dastidar, M.G. and Davies, P. 2011. Buried

clay pot irrigation for efficient and controlled water delivery. Journal of Scientific

and Industrial Research 70: 645–652.

Vázquez-Yanes, C. and Orozco-Segovia, A. 1992. Effects of litter from a tropical

rainforest on tree seed germination and establishment under controlled

conditions. Tree Physiology 11: 391-400.

Vázquez-Yanes, C., Orozco-Segovia, A., Rincón, E., Sanchezcoronado, M.E.,

Huante, P., Toledo, J.R. and Barradas, V.L. 1990. Light beneath the litter in a

tropical forest : effect on seed germination. Ecology 71: 1952-1958.

Vázquez, D.P., Morris, W.F. and Jordano, P. 2005, Interaction frequency as a

surrogate for the total effect of animal mutualists on plants. Ecology Letters 8:

1088–1094.

Vellend, M. 2008. Effects of diversity on diversity: consequences of competition

and facilitation. Oikos 117: 1075-1085.

Verdú M. and García-Fayos, P. 1996. Nucleation processes in a Mediterranean

bird-dispersed plant. Functional Ecology 10(2): 275-280.

Verdu, M. and Garcia-Fayos, P. 2002. Ecología reproductiva de Pistacia lentiscus L.

(Anacardiaceae): un anacronismo evolutivo en el matorral mediterráneo. Revista

Chilena de Historia Natural 75(1): 57-65.

Verdú, M. and Valiente-Banuet, A. 2008. The nested assembly of plant facilitation

networks prevents species extinctions. American Naturalist 172: 751-760.

Verdú, M. and García-Fayos, P. 2003. Frugivorous birds mediate sex-biased

facilitation in a dioecious nurse plant. Journal of Vegetation Science 14(1): 35-42.

Verdú, M., Dávila, P., García‐Fayos, P., Flores‐Hernández, N., and Valiente‐Banuet,

A. 2003. ‘Convergent’ traits of mediterranean woody plants belong to

pre‐mediterranean lineages. Biological Journal of the Linnean Society 78(3): 415-

427.

Verdú, M., Jordano, P. and Valiente-Banuet, A. 2010. The phylogenetic structure

of plant facilitation networks changes with competition. Journal of Ecology 98:

1454–1461.

Page 268: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

References

255

Vetaas, O.R. 1992. Micro-site effects of trees and shrubs in dry savannas. J. Veg.

Sci. 3_ 337-344.

Vilagrosa, A., Cortina, J., Gil‐Pelegrín, E. and Bellot, J. 2003. Suitability of

drought‐preconditioning techniques in Mediterranean climate. Restoration

Ecology 11(2): 208-216.

Vilagrosa, A., Caturla, R. N., Hernández, N., Cortina, J., Bellot, J. and Vallejo, V. R.

2001. Reforestación en ambiente semiárido del sureste peninsular. Resultados de

las investigaciones desarrolladas para optimizar la supervicencia y el crecimiento

de especies autóctonas. In SECF-Junta de Andalucía (Eds.), Actas del III Congreso

Forestal Español. Montes para la sociedad del nuevo milenio (Volume 2, pp. 213-

219). Sevilla, Spain.

Villegas, J.C., Breshears, D.D., Zou, Z.B. and Law, D.J. 2010. Ecohydrological

controls of soil evaporation in deciduous drylands: How hierarchical effects of

litter, patch and vegetation mosaic cover interact with phenology and season.

Journal of Arid Environments 74: 595-602.

Violle, C., Navas, M.L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I. and Garnier,

E. 2007. Let the concept of trait be functional! Oikos 116: 882-892.

Vitousek, P.M. 1982. Nutrient cycling and nutrient-use efficiency. American

Naturalist 119: 553-572.

Vitousek, P.M., Gerrish, G., Turner, D.R., Walker, L.R. and Mueller-Dumbois, D.

1995. Litterfall and nutrient cycling in four Hawaiian montane rainforest. Journal

of Tropical Ecology 11: 189-203.

Vivanco, L. and Austin, A.T. 2006. Intrinsic effects of species on leaf litter and root

decomposition: a comparison of temperate grasses from North and South

America. Oecologia 150: 97-107.

Von Holle, B., 2005. Biotic resistance to invader establishment of a southern

Appalachian plant community is determined by environmental conditions. J. Ecol.

93: 16-26.

Walela, C., Daniel, H., Wilson, B., Lockwood, P., Cowie, A. and Harden, S. 2014.

The initial lignin: nitrogen ratio of litter from above and below ground sources

Page 269: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

References

256

strongly and negatively influenced decay rates of slowly decomposing litter

carbon pools. Soil Biology and Biochemistry 77: 268-275.

Wardle, D.A. and Lavelle, P. 1997. Linkages between soil biota, plant litter quality

and decomposition. En: Cadish, G. y0Giller, K.E. (Eds.). Driven by Nature: Plant

Litter Quality and Decomposition. CAB International.

Wardle, D.A., Bardgett, R.D., Klironomos, J.N., Setala, H., van der Putten, W.H. and

Wall, D.H. 2004. Ecological Linkages Between Aboveground and Belowground

Biota. Science 304(5677): 1629-1633.

Webb, C. O., Ackerly, D.D., McPeek, M.A. and Donoghue, M.J. 2002. Phylogenies

and community ecology. Annu. Rev. Ecol. Syst. 33: 475-505.

Weigelt, A., Schumacher, J., Walther, T., Bartelheimer, M., Steinlein, T. and

Beyschlag, W., 2007. Identifying mechanisms of competition in multi-species

communities. J. Ecol. 95: 53-64.

Welbourn, M.L., Stone, E.L. and Lassoie, J.P. 1981. Distribution of net litter inputs

with respect to slope position and wind direction. Forest Scienc 27: 651-659.

Whisenant, S. G., Thurow, T. L. and Maranz, S. J. 1995, Initiating Autogenic

Restoration on Shallow Semiarid Sites. Restoration Ecology 3: 61-67.

Whitford, W.G. 2002. Ecology of desert systems. London: Academic.

Whitham, T.G., Young, W.P., Martinsen, G.D., Gehring, C.A., Schweitzer, J.A.,

Shuster S.M., Wimp, G.M., Fischbr, D.G., Bailey J.K., Lindroth, R.L., Woolbright, S.

and Kuske, C.R. 2003. Community and ecosystem genetics: A consequence of the

extended phenotype: Community Genetics. Ecology 84(3): 559-573.

Williams M.C. and Wardle G.M. 2007. Pine and eucalypt litterfall in a pine-invaded

eucalypt woodland: the role of fire and canopy cover. Forest Ecology

Management 253: 1-10.

Wunderlee, J.M. 1997. The role of animal seed dispersal in accelerating native

forest regeneration on degraded tropical lands. Forest Ecology and Management

99: 223-235.

Xiong, S. and Nilsson, C. 1997. Dynamics of leaf litter accumulation and its effects

on riparian vegetation: a review. Botanical Review 63: 240-264.

Page 270: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

References

257

Xiong, S. and Nilsson, C. 1999. The effects of plant litter on vegetation: a meta-

analysis. Journal of Ecology 87: 984-994.

Zaady, E., Gutterman, Y. and Boeken, B.,1997. The germination of mucilaginous

seeds of Plantago coronopus, Reboudia pinnata, and Carrichtera annua on

cyanobacterial soil crust from the Negev Desert. Plant and Soil 190: 247-252.

Zapata, V. M., Robledano, F., Ramos, V. and Martínez-López, V. 2014. Bird-

mediated seed dispersal of fleshy fruits of mediterranean shrubs in semiarid

forest patches: the role of Pinus halepensis Miller trees as seed receptors. Plant

Ecology 215(11): 1337-1350.

Zarovalli, M.P. Yiakoulaki, M.D. and Papanastasis, V.P. 2007. Effects of shrub

encroachment on herbage production and nutritive value in semiarid

Mediterranean grasslands. Grass and Forage Science 62: 355-363.

Zhang, M.J., Liu, M., Li, Y., Xu, C. and An, S. 2011. The combined positive effects of

two dominant species in an arid shrub-herbaceous community: implications from

the performance of two associate species. Plant Ecol. 212: 1419-1428.

Page 271: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos
Page 272: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

RESUMEN

Page 273: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos
Page 274: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Dinámica de parches de vegetación leñosa en ecosistemas semiáridos

261

DINÁMICA DE PARCHES DE VEGETACIÓN LEÑOSA EN ECOSISTEMAS SEMIÁRIDOS

DEL SURESTE DE LA PENÍNSULA IBÉRICA

Los ecosistemas áridos y semiáridos cubren más del 30% de las tierras

emergidas del planeta y dan cobijo a más de un tercio de su población. La

vegetación en estos ecosistemas con frecuencia se organiza en un mosaico de

parches de vegetación herbácea y leñosa inmersos en una matriz de suelo

desnudo, costra biológica y plantas herbáceas. La dinámica de estos ecosistemas

depende principalmente de los pulsos de agua, escasos y espaciados en el tiempo,

y de las interacciones entre las especies. En los últimos 150 años se ha registrado

un incremento en la cobertura y densidad de especies leñosas en diversos

ecosistemas semiáridos. Este fenómeno, conocido como matorralización (shrub

encroachment), tiene importantes implicaciones en el funcionamiento del

ecosistema y la provisión de bienes y servicios, por lo que ha sido ampliamente

estudiado. No obstante, no hay un claro consenso sobre las causas y

consecuencias de este fenómeno a gran escala. Por ejemplo, la matorralización se

ha relacionado con un incremento en la evapotranspiración y una reducción en la

producción de forraje y de la biodiversidad. Por el contrario, el incremento en la

cobertura de especies leñosas también se ha asociado a un aumento de la riqueza

de plantas vasculares, aves y microorganismos del suelo, así como a una mayor

fertilidad del suelo. A pesar de la importancia de la matorralización, nuestro

conocimiento de este proceso en zonas mediterráneas es escaso. Hay evidencias

de que la presencia de especies leñosas en estas zonas tiene un efecto positivo en

la composición de la comunidad y el funcionamiento del ecosistema. Por ello, en

las últimas décadas las políticas de restauración de zonas degradadas se han

dirigido a reforzar las poblaciones de especies leñosas, especialmente especies

arbóreas y arbustivas de gran porte. Sin embargo, la composición y la dinámica de

parches de vegetación leñosa y su impacto en el reclutamiento de especies clave

son aún desconocidos.

Los ecosistemas semiáridos mediterráneos están formados por plantas

herbáceas perennes, matorral y bosque abierto de especies de Pinus sp., Quercus

sp. y Olea europea L. En la parte oeste de la cuenca Mediterránea las zonas

semiáridas están cubiertas principalmente por esparto (Stipa tenacissima L.)

ocupando un total de 70 000 km2. En el sureste de la Península Ibérica, los

Page 275: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Resumen

262

espartales cubren 6 000 km2, y desde hace siglos han sido utilizados por las

sociedades humanas. Hasta mediados del siglo XX la mayor parte de tierra apta

para la agricultura era cultivada con especies de secano, o bien se explotaba el

propio esparto como fuente de fibra. En consecuencia, las especies leñosas eran

extraídas o utilizadas como combustible relegando a sus poblaciones a

desarrollarse en los márgenes de los cultivos o en áreas no cultivables como

afloramientos rocosos. Más tarde, cuando el cultivo de estas zonas y la

explotación del esparto fueron abandonados, la recuperación de la cubierta

leñosa fue heterogénea. En las terrazas de cultivo situadas en las partes más bajas

de los valles, procesos de nucleación han favorecido el reclutamiento de especies

leñosas. Por el contrario, el reclutamiento espontáneo de estas especies en las

laderas cubiertas por esparto ha sido muy bajo. Esta historia de uso del suelo ha

dado lugar a la actual configuración de los espartales: una matriz de suelo

desnudo y matas de esparto con parches de vegetación leñosa y pequeños

arbustos dispersos. La colonización de las laderas por especies arbustivas depende

principalmente de la disponibilidad de agua, pero también de la presencia de

fauna dispersadora, mayormente aves y mamíferos.

Los parches de vegetación leñosa son grupos de arbustos de gran tamaño

cuya fisionomía es diferente a la del resto de la matriz en espartales. Estos

parches están formados por hasta seis especies rebrotadoras (en adelante

especies dominantes) Rhamnus lycioides L., Pistacia lentiscus L., Quercus coccifera,

Juniperus oxycedrus, Osyris lanceolata y Ephedra fragilis L. Desf. y un conjunto de

especies herbáceas y arbustos de menor tamaño (en adelante especies

acompañantes). A pesar de la relativamente baja cobertura de las especies

dominantes, éstas tienen un papel clave en la composición, funcionamiento y

estabilidad de espartales semiáridos mediterráneos. La presencia de estos

arbustos ha sido positivamente relacionada con la riqueza y diversidad de plantas

vasculares, de aves y de pequeños invertebrados. Asimismo, los parches de

vegetación leñosa se han asociado a altos niveles de C orgánico, N total y N

disponible en suelo, mayor infiltración hídrica y reciclado de nutrientes, y una

mejora de las propiedades del suelo. Por todo ello, recientemente se ha

potenciado el uso de estas especies en programas de restauración. La formación

espontánea de estos parches podría darse gracias a interacciones positivas

(facilitación) entre especies, fenómeno frecuente en ecosistemas semiáridos. La

Page 276: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Dinámica de parches de vegetación leñosa en ecosistemas semiáridos

263

facilitación es dependiente de la identidad de las especies que interactúan, y

puede ser función de la composición y estructura del parche, de la disponibilidad

de recursos y del estrés abiótico. Los parches de vegetación leñosa pueden por

tanto actuar como comunidades facilitadoras, cuya capacidad para la facilitación o

la interferencia neta dependerá de las propiedades emergentes de la comunidad.

Por lo tanto, los parches de vegetación leñosa pueden considerarse redes de

interacciones entre especies, generando distintos patrones de biodiversidad

según la localización geográfica, condiciones ambientales, historia de uso del

suelo, y factores propios de la comunidad. El análisis de los patrones de

coocurrencias de estas especies proporciona información relevante sobre

interacciones específicas a largo plazo y los factores que modulan la composición

de estas comunidades y su capacidad para perdurar en diversos escenarios.

A pesar de la importancia de los arbustos rebrotadores en ecosistemas

semiáridos y su creciente uso en programas de restauración, existe muy poca

información sobre la estructura y dinámica de sus poblaciones en la Península

Ibérica. La distribución y composición de parches de vegetación leñosa en el

sureste ibérico o los patrones de ensamblaje de especies y las propiedades

emergentes de las comunidades que forman siguen siendo desconocidas.

Igualmente, tampoco se ha evaluado la relación entre las características de estos

parches y su capacidad para modificar el ambiente que los rodea y modular la

interacción entre especies. Para abordar estas cuestiones, he realizado diversos

estudios que conforman esta tesis con el PRINCIPAL OBJETIVO de evaluar la

composición y dinámica de los parches de vegetación leñosa en espartales

semiáridos del sureste de la Península Ibérica. Para alcanzar este objetivo general

he establecido los siguientes OBJETIVOS PARCIALES:

1) Describir las principales características de los parches de vegetación leñosa.

2) Utilizar la teoría de redes para estudiar la composición de parches y sus

propiedades emergentes como comunidades.

3) Explorar los factores bióticos y abióticos que afectan a las estructura de la red

y sus implicaciones en la gestión.

4) Evaluar la capacidad de los parches como comunidades para facilitar el

establecimiento de nuevos individuos y los factores que la regulan.

Page 277: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Resumen

264

5) Analizar el efecto de la acumulación de horizontes orgánicos de especies

leñosas en la germinación de dos especies clave en espartales.

La tesis se estructura en cinco capítulos que abordan los objetivos 1 a 5

respectivamente, y finalmente, en una última sección se hace una discusión global

y se enumeran las principales conclusiones.

En el CAPÍTULO 1 se describe la principal estructura física y biológica de

450 parches de vegetación leñosa distribuidos en 15 cuencas de espartales

semiáridos en el sur de la provincia de Alicante. Además, en este capítulo se

explica la metodología general utilizada para medir variables bióticas y abióticas

utilizada en este y sucesivos capítulos de la tesis, para la caracterización de las

zonas a nivel de cuenca, unidad homogénea de laderas, terraza de cultivo

abandonado y parche.

En este capítulo se comprueba que las especies en los parches pueden

identificarse como dominantes o acompañantes, de acuerdo a rasgos morfo-

funcionales y a su capacidad para formar parches por ellas mismas. Los parches

están formados por 1-26 especies acompañantes y 1-5 especies dominantes

siendo siempre una de estas más abundante que el resto. Además, las especies

dominantes son las que más influyen en la composición del parche dando lugar a

dos gradientes principales relacionados con la abundancia de cuatro especies: el

gradiente R. lycioides - Q. coccifera y el gradiente P. lentiscus - E. fragilis. Además,

existe un tercer gradiente formado por las dos especies acompañantes de mayor

influencia: S. tenacissima y Brachypodium retusum. La riqueza y cobertura de

especies acompañantes debajo de los parches es mayor o igual que en su periferia

inmediata, dependiendo de la especie dominante, lo que sugiere que las

diferencias en las condiciones creadas por los parches podrían ser suficientes para

fomentar la diversidad y el desarrollo de otras especies. Los parches dominados

por Q. coccifera y P. lentiscus son los más grandes, con un área de copa de entre

15-30 m2, sin embargo, los parches más pequeños son relativamente más ricos

que los parches más grandes, sugiriendo una saturación de especies en parches

grandes debida, probablemente, a una disminución en su capacidad para crear

nuevos microhábitats. Los parches dominados por R. lycioides son los más

abundantes, tanto en laderas como en terrazas de cultivo, y especialmente bajo

temperaturas elevadas y precipitaciones escasas. Por el contrario, en los sitios

Page 278: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Dinámica de parches de vegetación leñosa en ecosistemas semiáridos

265

más fríos, los parches dominados por Q. coccifera y J. oxycedrus son los que

predominan. La relación entre los factores climáticos cuyo rango no es muy

amplio, y la abundancia de uno u otro tipo de parches indica que las especies

formadoras de parches pueden ser muy sensibles a pequeñas variaciones

climáticas. Teniendo en cuenta esta relación y las predicciones climáticas para el

sureste de la Península Ibérica en las próximas décadas, pequeños cambios

climáticos conducirían a modificaciones graduales en la composición de especies

de los espartales semiáridos hacia una mayor abundancia de parches dominados

por R. lycioides y E. fragilis, en detrimento de parches dominados por Q. coccifera

y J. oxycedrus. Además, esta teoría se ve apoyada por el hecho de que R. lycioides

es la especie dominante con mayor reclutamiento.

En el CAPÍTULO 2 se aborda el estudio de la composición de parches de

vegetación leñosa desde una perspectiva de redes de interacciones entre

especies. Para ello consideramos los parches como comunidades donde especies

dominantes y acompañantes interaccionan con distinta intensidad según su

frecuencia de coocurrencia en los parches. Obtuvimos índices propios de la

estructura de las redes para evaluar las propiedades emergentes de 27

comunidades de parches de vegetación leñosa, correspondientes a unidades

homogéneas de vegetación de laderas de espartales. Así, estas comunidades se

caracterizaron por tener una elevada conectividad, una moderada modularidad,

una baja especialización y una baja estructura anidada, en comparación con otras

redes ecológicas como las mutualistas o las tróficas. Estos resultados sugieren que

las especies que forman las comunidades de parches son generalistas, con menos

restricciones morfológicas, fenológicas y fisiológicas para establecer redes que

aquellas, y por tanto son más robustas en el mantenimiento de su estructura. Las

redes de coocurrencias estudiadas alcanzaron un tamaño de entre 16 y 45

especies, y entre 2 y 4 módulos (subcomunidades).

En este capítulo se analizó también el grado de conectividad y

especialización de cada especie y su papel en la estructura de la comunidad como

especies centrales (las más generalistas), conectoras de módulos o periféricas (las

más especialistas). Las especies más conectadas y menos especializadas fueron la

especie dominante R. lycioides y las especies acompañnates S. tenacissima y B.

retusum, aunque hubo bastante heterogeneidad entre las redes estudiadas. Por

Page 279: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Resumen

266

otro lado, J. oxycedrus, E. fragilis, O. lanceolata y la mayor parte de especies

acompañantes tuvieron un alto nivel de especialización y, en general, su papel en

las redes fue de especies periféricas o conectoras de módulos, apareciendo sólo

en presencia de otras especies. Rhamnus lycioides y P. lentiscus fueron las

especies que mostraron un papel más céntrico en la comunidad o en las

subcomunidades de una comunidad, estableciendo mayor número de conexiones

con el resto de especies. Estas especies clave, pueden ser especialmente

importantes cuando se pretenda potenciar la biodiversidad. Otras especies

dominantes también actuaron como especies clave centrales, y por el contrario

las especies acompañantes nunca ejercieron este papel.

El estudio de las redes de coocurrencias de plantas se profundizó en el

CAPÍTULO 3, explorando los factores endógenos y exógenos que afectan a su

estructura y composición. Se analizaron variables climáticas y factores bióticos y

abióticos de los sitios de estudio y de los parches de vegetación, y su relación con

tres índices de estructura de las redes: conectividad, modularidad y anidamiento.

Tanto factores exógenos (temperatura y cobertura de rocas) como endógenos

(tamaño de parches, composición y riqueza de la comunidad) afectaron a la

estructura de las redes. La temperatura media anual afectó a los tres índices

estudiados, incrementando la conectividad y reduciendo la modularidad y el

anidamiento. La modularidad también se vio afectada por la cobertura de rocas

(positivamente) y por el tamaño medio de los parches (negativamente). Las

especies de los parches se mostraron más conectadas cuando los parches eran de

mayor tamaño. El anidamiento en la estructura de interacciones de las redes fue

el único índice afectado por la composición de los parches, incrementado por la

presencia de R. lycioides, P. lentiscus y S. tenacissima y por una mayor riqueza

específica en parches.

La información obtenida en los capítulos 2 y 3 es relevante para evaluar la

capacidad de estas comunidades de soportar perturbaciones o nuevos escenarios

de cambio climático, y para diseñar prácticas adecuadas de gestión que

promuevan la biodiversidad y la provisión de servicios ecosistémicos.

En el CAPÍTULO 4 se evaluó la capacidad de los parches de vegetación

leñosa para facilitar la entrada de nuevos individuos desde una perspectiva de

efecto conjunto de la comunidad. Para ello se utilizaron brinzales de Pistacia

Page 280: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Dinámica de parches de vegetación leñosa en ecosistemas semiáridos

267

lentiscus que fueron plantados en tres localizaciones respecto a cada parche:

debajo de la copa, en el borde norte y en el borde sur de la periferia de la

proyección de la copa. Durante dos años comparamos su supervivencia y

crecimiento con el de brinzales introducidos en áreas libres de la influencia de los

parches. Además se analizaron las características de la comunidad implicadas en

el establecimiento de los nuevos individuos.

Tanto la concentración de carbono orgánico en suelo como la de

nitrógeno total fueron mas elevadas en el área inmediantamente subyacente a la

copa de los parches, comparadas con la zona periférica o con zonas abiertas. Por

el contrario, el contenido hídrico del suelo fue mayor en espacios abiertos que

bajo los parches. La supervivencia de brinzales después de dos años fue

notablemente mayor bajo los parches que en zonas abiertas. Las plántulas

situadas debajo de los parches mostraron un mayor contenido de nitrógeno foliar

y un mayor enriquecimiento en 15N en comparación con el resto de localizaciones,

y su eficiencia en el uso del agua (medida mediante el enriquecimiento foliar en el

isótopo estable 13C) fue menor. Estos resultados indican que debajo de los

parches de vegetación leñosa se concentra una elevada fertilidad edáfica, y se

presenta una tasa de reciclado de nutrientes elevada, una baja demanda

evaporativa y un nivel de estrés hídrico bajo. El hecho de que estos valores

cambien drásticamente en la periferia de los parches sugiere que el efecto de los

parches está estrictamente restringido por el área de copa, no prolongándose más

allá de ésta.

La supervivencia de brinzales estuvo determinada por los atributos físicos

y bióticos de los parches. La composición de la comunidad de especies

acompañantes, concretamente una mayor cobertura de S. tenacissima y una

menor cobertura de B. retusum, favorecieron la supervivencia de los brinzales. La

distancia filogenética de la comunidad a la especie plantada, la cobertura de

especies acompañantes y la profundidad de horizontes orgánicos también

tuvieron un efecto positivo en la supervivencia. No obstante, la importancia de los

atributos de la comunidad en la supervivencia de brinzales y el tipo de estrés que

éstas sufrieron dependió de la localización de plantación. Así, las plántulas

situadas debajo de los parches sufrieron menor estrés y su supervivencia

dependió principalmente de la concentración de carbono orgánico en el suelo y

Page 281: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Resumen

268

de la composición de especies acompañantes. Por otro lado, la supervivencia de

las plántulas situadas en el borde norte de los parches pareció estar sujeta a

mayor estrés, principalmente de tipo biótico. Los factores que afectaron a su

supervivencia fueron todos de tipo biótico como la composición y riqueza de

especies acompañantes, y la composición y distancia filogenética de especies

dominantes. No se detectaron factores que afectaran significativamente a las

plántulas situadas en el borde sur de los parches, por lo que su supervivencia

podría verse afectada por agentes de estrés de tipo abiótico. Los resultados de

este estudio demostraron la heterogeneidad existente dentro de un mismo

parche y la importancia de considerar el conjunto de la comunidad en la

evaluación de interacciones ecológicas.

El objetivo del CAPÍTULO 5 fue evaluar el papel de los horizontes

orgánicos en las interacciones planta-planta en los parches de vegetación leñosa.

Los horizontes orgánicos pueden jugar un papel importante en las interacciones

que se producen en el seno de los parches, ya que las especies dominantes en

estos parches con frecuencia muestran una contrastada capacidad para acumular

horizontes orgánicos. Esto, unido a la heterogeneidad espacial en el desarrollo de

las especies acompañantes y en el reclutamiento de las especies dominantes,

sugiere que las interacciones entre especies dominantes y acompañantes son

complejas y los horizontes orgánicos podrían tener un papel relevante en los

primeros estadios de vida de los nuevos individuos. Por ello, en este capítulo se

evaluó el efecto de cinco tipos diferentes de horizontes orgánicos de especies

leñosas sobre la germinación de dos especies abundantes e importantes en los

espartales de S. tenacissima: una especie dominante (P. lentiscus) y una

acompañante (B. retusum). Se hicieron tres experimentos de laboratorio en el que

se combinaron los efectos mecánicos y aleloquímicos de los horizontes orgánicos,

situando las semillas (i) por encima de estos, (ii) entre estos y el suelo mineral, y

(iii) sobre suelo mineral pero regadas con extractos de horizontes orgánicos.

Quercus coccifera y P. halepensis acumulan mayor cantidad de horizontes

orgánicos que R. lycioides. Esto puede responder, por una parte, a la edad de los

individuos, ya que frecuentemente es mayor en Q. coccifera y P. halepensis que

en R. lycioides. Y por otra parte, a que el balance de entrada de hojarasca y

descomposición de horizontes orgánicos, probablemente baja, como en otras

Page 282: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Dinámica de parches de vegetación leñosa en ecosistemas semiáridos

269

zonas semiáridas, favorezca la acumulación de horizontes orgánicos en algunas

especies. Sin embargo, el contenido hídrico de estos horizontes en las especies R.

lycioides y P. lentiscus fue mayor que en el resto de especies, e inversamente

relacionado con la hidrofobicidad de los mismos.

De los tres experimentos de germinación descritos en este capítulo, el

mayor efecto de horizontes orgánicos apareció cuando las semillas fueron

sembradas sobre éstos, lo cual podría reflejar la existencia de una barrera física

para la germinación. En general observamos un efecto negativo de los horizontes

orgánicos de todas las especies sobre la capacidad de germinación de ambas

especies sembradas, excepto para los horizontes orgánicos de R. lycioides, que

tuvieron un efecto positivo sobre la germinación de semillas de P. lentiscus al

compararlo con la siembra realizada directamente sobre el suelo mineral. El

efecto de los horizontes orgánicos de R. lycioides sobre la germinación de semillas

de B. retusum fue neutro, al igual que el efecto de los horizontes de P. lentiscus

sobre la germinación de semillas de la misma especie.

Cuando las semillas fueron sembradas entre los horizontes orgánicos y el

suelo mineral, el efecto de estos horizontes sobre la germinación fue negativo en

cuatro de las cinco especies, y neutro en el caso de horizontes orgánicos de R.

lyciodes. En el experimento en el que las semillas fueron sembradas sobre suelo

mineral y regadas con extractos de hojarasca de las distintas especies no se

observó ningún efecto de estos extractos, lo que sugiere que no existen efectos

alelopáticos significativos que afecten a la germinación de P. lentiscus y B.

retusum en estos ecosistemas. Las implicaciones de estos resultados a nivel de

comunidad afectarían principalmente a especies cuya dispersión es a corta

distancia. No obstante, como se ha demostrado en capítulos anteriores, los

parches de vegetación leñosa ejercen un efecto positivo en los individuos,

desarrollándose en sus inmediaciones en fases posteriores. Esto sugiere que el

efecto negativo de los horizontes orgánicos de especies leñosas sobre la

germinación podría ser compensado por ese efecto positivo, y la germinación

ocurriría en momentos de baja acumulación de horizontes orgánicos o tras

perturbaciones que removieran estos horizontes.

Los resultados presentados en esta tesis tienen implicaciones en la

gestión de los espartales semiáridos. Por un lado, se ha identificado especies clave

Page 283: Dynamics of woody vegetation patches in semiarid ecosystems in … · 2016. 4. 27. · Que el trabajo descrito en la presente memoria, titulado: ... terminado bautizándolo, por esos

Resumen

270

en la diversidad y complejidad de comunidades, como R. lycioides, P. lentiscus o S.

tenacissima, deseables cuando el objetivo de las prácticas de gestión sea

incrementar la biodiversidad y mejorar la estructura de la comunidad. Por otro

lado, se ha destacado la baja capacidad de alguna de estas especies clave para

reclutar de manera espontánea, aspecto a tener en cuenta en la selección de

especies para reforzar las poblaciones de especies clave. Además, se ha descrito el

potencial facilitador de parches de vegetación leñosa para el establecimiento de

nuevos individuos, pudiendo por tanto ser utilizados en prácticas de restauración.

Asimismo, se ha destacado la heterogeneidad a nivel de parche, identificando las

características a tener en cuenta en la selección del tipo de parche a utilizar como

comunidad benefactora, y la importancia de la localización exacta de plantación

en el desarrollo de nuevos individuos. Finalmente, se ha discutido la tendencia en

la composición de especies formadoras de parches en un contexto de cambio

climático, aspecto a tener en cuenta en actuaciones de restauración a largo plazo.

En esta tesis he realizado un estudio global sobre el estado de los parches

de vegetación leñosa en ecosistemas semiáridos de la Península Ibérica. Los

resultados presentados en esta tesis, pueden ser comparables con otros estudios

en ecosistemas similares de otras partes del mundo, donde la existencia de

parches de vegetación leñosa y el aumento de su cobertura es materia actual de

estudio. Por otro lado, la descripción de la composición y estructura de estos

parches, sirve como punto de partida para futuros estudios que profundicen en el

papel de los mismos en el ecosistema y en dinámicas a más largo plazo.