dynamics - bergenusers.bergen.org/laumul/kinematics chapter.doc  · web viewthe equals sign with...

105
Goodman and Zavorotniy - 1 Physics An Algebra Based Approach Part I: Mechanics Robert Goodman Yuriy Zavorotniy © Goodman and Zavorotiny 2007 -1-

Upload: others

Post on 21-Mar-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 1

Physics

An Algebra Based Approach

Part I: Mechanics

Robert Goodman

Yuriy Zavorotniy

© Goodman and Zavorotiny 2007

-1-

Page 2: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 2

Kinematics...........................................................................4Introduction.................................................................................................................4Time and Distance......................................................................................................4Constant Speed..........................................................................................................7Problem Solving.........................................................................................................8Instantaneous Speed...............................................................................................12Average Speed..........................................................................................................13Position, Displacement and Velocity......................................................................16Coordinate Systems.................................................................................................19Instantaneous Velocity and Acceleration...............................................................24Free Fall.....................................................................................................................26The Kinematics Equations.......................................................................................29Problem Solving with the Kinematics Equations..................................................41Interpreting Motion Graphs.....................................................................................46

Position versus time graphs for Constant Velocity................................46Velocity versus Time graphs for Constant Acceleration.......................56

Alternative Derivation of the First Kinematics Equation.......................................59Chapter Questions...................................................................................................62Chapter Problems.....................................................................................................63Dynamics...........................................................................78

Introduction...............................................................................................................78Inertial Reference Frames........................................................................................79Force..........................................................................................................................80Newton’s First Law...................................................................................................82Newton’s Second Law..............................................................................................86Newton’s Second Law in Two Dimensions............................................................90Newton’s Third Law..................................................................................................92Sketches and Free Body Diagrams.........................................................................94Some Examples of Forces.......................................................................................99Surface Forces........................................................................................................102

Normal Force............................................................................................103Friction......................................................................................................106Tension Force...........................................................................................110Elastic Force – Hooke’s Law...................................................................112

Chapter Questions.................................................................................................115Chapter Problems...................................................................................................116Uniform Circular Motion.................................................135

Introduction.............................................................................................................135Uniform Circular Motion........................................................................................135Period and Frequency............................................................................................138Multiple forces and circular motion......................................................................142Chapter Problems...................................................................................................150Newton’s Law of Universal Gravitation.........................153

Universal Gravity....................................................................................................153Falling apples: The surface gravity of planets.....................................................156

© Goodman and Zavorotiny 2007

-2-

Page 3: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 3

Gravitational Field..................................................................................................158Orbital Motion.........................................................................................................162Launching a Satellite and Weightlessness..........................................................168Chapter Problems...................................................................................................172Energy..............................................................................175

Introduction.............................................................................................................175Work.........................................................................................................................176Gravitation Potential Energy.................................................................................180Kinetic Energy........................................................................................................182Elastic Potential Energy.........................................................................................185Power.......................................................................................................................190Simple Machines....................................................................................................192Chapter Questions.................................................................................................195Chapter Problems...................................................................................................196Momentum.......................................................................208

Introduction.............................................................................................................208Momentum of a Single Object...............................................................................208Momentum of a Closed System of Objects..........................................................209Conservation of Momentum in a closed system.................................................211Collisions................................................................................................................214Problem Solving Strategies for Collisions...........................................................215Change of Momentum and Impulse......................................................................217Derivation of relationship of velocities before and after an elastic collision....221Chapter Questions.................................................................................................223Chapter Problems...................................................................................................224

© Goodman and Zavorotiny 2007

-3-

Page 4: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 4

Kinematics

Introduction Motion is fundamental to our lives and to our thinking. Moving from place to place in a

given amount of time helps define both who we are and how we see the world. Seeing

other people, objects or animals moving and being able to imagine where they came

from, where they’re going and how long it’ll take them to get there is natural to us.

All animals, not just humans, do calculations about the motion of themselves and the

world around them. Without that ability we could not survive. A basic understanding of

motion is deep in our minds and was there long before we could write or talk about

physics.

It should be no surprise then that the first, and most fundamental, questions of physics

relate to motion. Many of the first writings of physics are on this topic and date back

thousands of years. The study of motion is called kinematics. It comes from the Greek

words kinema, which means motion. Almost everything we learn in physics will involve

the motion of objects. So, kinematics must be understood well if all the other topics we

will be studying later are to make sense.

Time and Distance Everyone knows what time and distance are until they’re asked to define them. Go

ahead; try to define what time is without using the idea of time itself in your definition.

Here are some definitions we’ve heard before. I’m sure you’ll come up with some new

ones as well.

Time is the amount of time that goes by.

Time is how long it takes for something to happen.

Time is how long I have to wait.

© Goodman and Zavorotiny 2007

-4-

Page 5: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 5

The problem with these definitions is that they use the word “time” in the definition, or

imply its use. In the first definition, if you don’t know what time is, how can you use it to

define time? In the second two definitions, the phrase “how long” is just another way for

saying “the amount of time”. They don’t qualify as definitions since if you didn’t know

what time was when you started; you still don’t.

See if you can do any better in formulating a definition for distance. We think you’ll run

into the same problem.

We all believe that we know what these terms mean, but it’s impossible to define them.

We move through time and space as naturally as a fish moves through water. Time and

space are all around us, but we can’t really say what they are. They are too

fundamental to be defined. We have to take them as “givens”. You and I have a sense

that we know what they are. That sense comes directly from our minds and bodies; but

we can’t really define them beyond that.

Our sense of time and distance must have evolved in us long before we could think

about them. All animals need a basic perception about time and distance in order to

survive. The most primitive one celled animals move about through time and space and

surely they don’t have a definition of what those concepts represent. The sense of time

and distance predates our ability to think and perhaps that’s why we can’t use our minds

to define them; but we can work with them.

We can measure the flow of time with clocks and the distance between locations in

space with a ruler. Those don’t represent definitions; but they do allow us to compare

different intervals of time and space with one another. The ability to measure time and

distance represents a starting point for physics.

For instance, let’s say the amount of time it takes for me to run once around a track is 2

minutes. That means that the minute hand of my stop watch will go around two times

while I run around the track one time. That doesn’t tell me what time is, but it does tell

© Goodman and Zavorotiny 2007

-5-

Page 6: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 6

me that those two processes took the same amount of it. So I can compare the time it

takes for something to happen to the time it takes for something else to happen.

Similarly, I don’t need to know what distance is in order to compare the distance

between two objects with the distance between two other objects. I can say that the

distance from the heel to the toe of my foot is the same as the distance from one end to

the other of a one foot ruler. So I can say that my foot is one foot long, even without a

definition of what length means.

Units of Time and DistanceIn order that people can compare their measurements with those taken by others; an

international system of measurements was agreed upon. The Systeme International

(SI) is used by virtually all scientists in the world. In that system, the basic unit of length

is the meter and the basic unit of time is the second.

Distance is measured in meters (m).

Time is measured in seconds (s).

Length measurements are made by comparing the distance between any two locations

to the distance between the two ends of a rod that is defined to be one meter long.

Time measurements are made by measuring the time between events with the time it

takes for a second to tick off on a clock

Scientists use the meter, instead of the foot, for measuring distances because it’s

simpler. Using the SI system to measure lengths in meters, instead of the English

system of measuring lengths in feet, is no more accurate. However, it turns out to be a

lot easier. That’s because the mathematics of dealing with 12 inches in a foot and 5280

feet in a mile is just a lot more difficult than the metric system of 100 centimeters in a

meter and 1000 meters in a kilometer. When you start solving problems, you’ll be

happy not to have to deal with feet, miles and inches.

© Goodman and Zavorotiny 2007

-6-

Page 7: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 7

Constant Speed If everything in the world just stood still, we’d only need to measure time and distance

separately and we’d be done. But that’d be a pretty boring world. Many of the most

interesting things involve motion; objects moving from one location to another in a

certain amount of time. How fast they do this is the speed of the object.

Speed is not a fundamental property of the world, like distance and time, but is a human

invention. It is defined as the ratio of the distance traveled divided by the time it took to

travel that distance.

Speed ≡ Distance / Timeor

s ≡ d/t

The equals sign with three parallel lines just points out that this is a definition. We made

up the word “speed” and then defined it to mean the ratio of distance and time. There’s

no way that this could be proven right or wrong, through experiment or any other

means, since we just made it up. When we use the formula, we’ll usually just write it

with a normal equals sign, but we should remember that it’s just our definition.

Speed and distance don’t depend on the direction traveled. So if you walk two miles to

school and then return back home, the total distance you traveled is four miles. If it took

you one hour to do that, your average speed was four miles per hour. In this section

we’re assuming that your speed is constant. In later sections, we’ll talk about cases

where your speed changes.

Units of SpeedThe units of speed can be derived from its formula:

s = d/t

The SI unit of distance is the meter (m) and of time is the second (s). Therefore, the

unit of speed is m/s.

© Goodman and Zavorotiny 2007

-7-

Page 8: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 8

Problem Solving When solving physics problems there is a series of steps that should be followed. In the

early problems that we’ll be doing, it’ll be possible to skip some steps and still get the

correct answer. But that won’t give you a chance to practice the methods that you’ll

need to solve more difficult problems. It’s wise to learn how to swim in the shallow end

of the pool, but if all you do is stand up there, it won’t be much help when the water gets

deep. So, please use the following approach on all the problems you solve right from

the beginning. It’ll pay off in the end.

1. Read the problem carefully and underline, or make note of, any information that

seems like it may be useful.

2. Read the problem through again, but now start writing down the information that

will be of value to you. Identify what is being asked for and what is being given.

3. If appropriate, draw a sketch.

4. Identify a formula that relates the information that you’ve been given to the

information you’ve been asked for.

5. Rearrange the formula so it’s solved for the variable you’re looking for. This

means, get that variable to be alone on the left side of the equals sign.

6. Substitute in the values you’ve been given, including units.

7. Calculate the numerical result.

8. Solve for the units on the right side of the equation and compare those to the

units that are appropriate for what you’re solving for. For instance, if you’re

solving for distance, the units should be meters not meters per second.

9. Reread the problem and make sure that your answer makes sense. It’s been

shown that successful physics students read each problem at least three times.

________________________________________________________________

Example 1: Riding your bike at a constant speed it takes you 25 seconds to travel a

distance of 1500 meters. What was your speed?

We’ve been given distance and time and we need to find speed.

s = ?

© Goodman and Zavorotiny 2007

-8-

Page 9: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 9

d = 1500 m

t = 25 s

We can directly use the equation s = d/t. That gives the relationship between the three

variables and is already solved for the variable that we’re looking for. After writing down

the formula we just have to substitute in the values with units.

s = d/t

s = 1500m/25s

s = 60 m/s

Note that not only is 1500 divided by 25 equal to 60 but also that m divided by s yields

m/s which is the correct unit for speed. By always doing the same mathematical

operations on the units as well as the numbers you should end up with the correct units

in your answer. That is a good way to check if you did the problem correctly.

________________________________________________________________

Let’s now looks at an example where the formula can’t be used directly.

_____________________________________________________________

Example 2: How far will you travel if you are driving at a constant speed of 25 m/s for a

time of 360s?

We’ve been given speed and time and we need to find distance.

s = 25m/s

d = ?

t = 360s

We’ll use the same formula (s=d/t) since it relates the known values (speed and time) to

the unknown value (distance). But, in this case while we need to solve for distance (d),

the formula that we have (s = d/t) is solved for speed (s). We must first use algebra to

rearrange the formula so that it is solved for d. Only at that point should values be

substituted into the formula.

_____________________________________________________________________

We’ll make use of three rules to rearrange the formula.

© Goodman and Zavorotiny 2007

-9-

Page 10: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 10

1. If the variable that we are solving for is in the numerator and isn’t alone, then it is

mathematically connected to other numbers and/or variables. We can get it

alone by performing the inverse operation on each of the other variables or

numbers. For instance, if d is divided by t; we can get d alone by multiplying by t

(since multiplication is the opposite of division).

2. We can do anything we want to one side of an equation as long as we also do it

to the other side (except dividing by zero). So if we multiply the right side of the

equation, d/t, by t we also have to multiply the left side of the equation, s, by t.

3. We can always switch the right and left sides of an equation.

_____________________________________________________________________

Let’s use this approach to solve the equation, s=d/t, for d.

s = d/t

Since we are solving for d, and d is being divided by t,

we must multiply d/t by t. But we can only do that if

also multiply s by t. So multiply both sides by t.

st = (d/t)t

Cancel t on the right since it’s in the numerator and

the denominator and t/t =1

st = d

Switch the d to the left side

d = st

Substitute in values for s and t

d = (25m/s) (360s)

d = 9000m

Note that not only is 25 times 360 equal to 9000 but also that meters per second times

seconds is equal to meters since the seconds will cancel out. That gives us units of

meters, which makes sense since we are solving for a distance.

______________________________________________________________

© Goodman and Zavorotiny 2007

-10-

Page 11: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 11

Example 3: How much time will it take you to travel 3600 m if you are driving at a

constant speed of 20 m/s?

We’ve been given the distance and the speed, and we need to find the time.

s = 20m/s

d = 3600m

t = ?

In this case we are solving for time (t) but the formula we have (s = d/t) is solved for

speed (s). We must first use algebra to rearrange the formula so that it is solved for t.

Only at that point should values be substituted into the formula.

s = d/t. We need to add one additional rule to rearrange the formula in this case.

___________________________________________________________________

4. The unknown for which we are solving must be in the numerator, not the

denominator. So if we are solving the formula s = d/t for t, our first step must be

to move t to the numerator on the left instead of leaving it in the denominator on

the right. To do this, we need to multiply both sides of the equation by t, giving

us st = d. Then we can proceed just as we did above.

____________________________________________________________________

s = d/t

Multiply both sides by t to cancel the t on the right and

get t on the left

st = (d/t)t

Cancel t on the right since t/t = 1

st = d

Since t is not alone, because it is multiplied by s, we

must divide both sides by s

(st)/s = d/s

Cancel s on the left side since s/s = 1

t = d/s

Substitute in values for d and s

© Goodman and Zavorotiny 2007

-11-

Page 12: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 12

t = (3600m)/(20m/s)

d = 180s

The units may be a bit harder to understand in this case. We have meters divided by

meters per second. But you may recall from fractions that dividing by a fraction is the

same as multiplying by its reciprocal. (Dividing by 1/3 is the same as multiplying by 3.)

So dividing by m/s is the same as multiplying by s/m. This makes it clear that the

meters will cancel out, when we multiply s/m by m, and we are left with seconds, an

appropriate unit for time.

Instantaneous Speed There’s an old joke about a person who’s pulled over for speeding. The police officer

tells the speeder that he was going 60 miles per hour in a forty mile per hour zone. The

speeder’s response is that he couldn’t have been going sixty miles per hour since he’d

only been driving for fifteen minutes.

The reason that argument doesn’t work is that speed is a ratio of distance and time.

There are an infinite number of ways that you can calculate a speed of ten meters per

second. Some are shown in the table below.

Distance Time Speed(m) (s) (m/s)

1000 100 10500 50 10100 10 1010 1 101 0.1 10

0.1 0.01 100.01 0.001 10

0.001 0.0001 10

You can see that at the bottom of the chart that if you travel one thousandth of a meter

in one ten thousandth of a second you are traveling at a speed of ten meters per

second. That time and distance can be made as small as you like. When the time over

© Goodman and Zavorotiny 2007

-12-

Page 13: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 13

which the speed is measured is very small, the speed that is calculated is called the

instantaneous speed. This is the speed that you read on your speedometer or that a

policeman reads on his radar or laser gun.

Average Speed While traveling along, your speed is likely to vary; to go up and down along the way.

You might even stop for a while to have lunch. Your instantaneous speed at some

moment during your trip and your average speed for the total trip are often not the

same. Your average speed is calculated by determining the total distance that you

traveled and dividing by the total time that it took you to travel that distance.

__________________________________________________________________

Example 4:

You ride your bike home from school by way of your friend’s house. It takes you 7

minutes to travel the 2500m to your friend’s house. You then spend 10 minutes there.

You then travel the 3500 m to your house in 9 minutes. What was your average speed

for your total trip home?

Your average speed will be obtained by dividing the total distance traveled by the total

time it took to travel that distance. In this case, the trip consisted of three segments.

The first segment (I) is the ride to your friend’s house, the second segment (II) was the

time at your friend’s house and the third segment (III) was your ride home from your

friend’s house. In the chart below, the speed is calculated for each segment, even

though that is not necessary to get the answer that was requested, the average speed

for your total trip. All calculated figures are shown in bold type.

Segment Distance Time Speed(m) (s) (m/s)

I 2500 420 6.0II 0 600 0.0III 3500 540 6.5

Total / Average 6000 1560 3.8

For instance the speed for the first segment is given by:

© Goodman and Zavorotiny 2007

-13-

Page 14: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 14

s = ?

d = 2500m

t = 7 minutes = 420 seconds

Note that we need to convert the given time in seconds in order to use SI units. Since

there are 60 seconds in a minute, this requires multiplying seven minutes by the fraction

(60 seconds / 1 minute). This leaves us with 420 seconds.

s = d/t

s = 2500m / 420s

s = 6.0 m/s

For the second segment, your speed was zero since you were within the house. But

even though you weren’t moving, time was going by. So the 10 minutes, or 600

seconds, still counts towards the total elapsed time.

The third segment is calculated in the same manner as was the first.

s = ?

d = 3500m

t = 9 minutes = 540 seconds

s = d/t

s = 3500m / 540s

s = 6.5 m/s

The average speed is calculated by taking the total distance, 6000m, and dividing it by

the total time, 1560s, to get an average speed of 3.8 m/s.

While it wasn’t necessary in this case to calculate the speed for each interval, it’s

important to note that the average speed is not the average of the speeds. The average

of 6.0 m/s, 0.0 m/s and 6.5 m/s is 4.2 m/s. But this is not the correct answer. The

correct answer can only be obtained by first finding the total distance and dividing that

by the total time. In this way you get the answer of 3.8 m/s.

© Goodman and Zavorotiny 2007

-14-

Page 15: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 15

_____________________________________________________________________

Example 5:

You run a distance of 210 m at a speed of 7 m/s. You then jog a distance of 200 m in a

time of 40s. Finally, you run for 25s at a speed of 6 m/s. What was the average speed

of your total run?

Your average speed will be obtained by dividing the total distance traveled by the total

time it took to travel that distance. In this case, the trip consisted of three segments. In

the chart below, different calculations are required for each segment in order to obtain

the average speed for your total trip.

Segment Distance Time Speed(m) (s) (m/s)

I 210 30 7.0II 200 40 5.0III 150 25 6.0

Total / Average 550 95 5.8

The time for the first segment is given by:

s = 7.0 m/s

d = 210m

t = ?

s=d/t

st = d

t = d/s

t = (210m) / (7.0 m/s)

t = 30 s

We don’t really need to calculate your speed for the second segment, but we’ll do it

anyway.

s = ?

© Goodman and Zavorotiny 2007

-15-

Page 16: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 16

d = 200m

t = 40s

s = d/t

s = 200m/40s

s= 5.0 m/s

The distance needs to be calculated for the third segment.

s = 6.0 m/s

d = ?

t = 25s

s = d/t

st = d

d = st

d = (6.0 m/s) (25s)

d = 150 m

The average speed is calculated by taking the total distance, 550m, and dividing it by

the total time, 95s, to get 5.8 m/s.

Position, Displacement and Velocity So far our analysis has not required, or even allowed, us to know anything about the

direction of the motion under study. But in real life, direction is usually very important.

Whether you’re driving 60 miles per hour north or 60 miles per hour south makes a

great deal of difference as to where you end up.

Scalars are quantities that are defined only by their magnitude; how big they are.

Speed, time and distance are all examples of scalars. When we speak of 40 m/s, 20

minutes or 3 miles we’re not giving any information about direction.

© Goodman and Zavorotiny 2007

-16-

Page 17: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 17

Vectors are quantities that are defined by both their magnitude and their direction.

So, if instead of saying that I traveled a distance of 400m, I were to say that I traveled

400m north; I am now defining a vector. The vector defined by combining a distance

with a direction is called displacement. The symbol for displacement is “Δx”. We’ll talk

more about that symbol a little later, but you can use it in the meantime. Also, in order

to keep track of what’s a scalar and what’s a vector, we’ll always show vectors in a bold

typeface.

There are important differences between how we work with scalars and vectors. That

can be most easily seen by using distance and displacement as examples. For

instance, while distances are always positive, since they have no direction associated

with them, displacement can be positive or negative. That means that if I were to take a

trip which involved going 200m north and then 200m south I get very different answers

for the total distance I traveled and my total displacement. I get my total distance by

adding 200m to 200m and getting 400m. That’s the total distance that I walked.

On the other hand, my displacement represents the sum of the two displacements. My

initial displacement north is equal and opposite to my final displacement south, so they

will cancel each other out. If I think of north as the positive direction, then that first

displacement is +200m, while my second displacement would be -200m, since it’s to the

south. The sum of +200m and -200m is zero. That’s because the direction of the

motion matters with regard to displacement while it doesn’t with regard to distance. As

a result, displacement tells you how far you are from where you started. In this case, I

am zero distance from where I started, since I end up back where I started off.

__________________________________________________________________

Example 6:

You drive 1500m north and then 500m south. Determine both the total distance you

traveled and your total displacement from where you started.

The distance traveled is just the sum of the two distances, 1500m and 500m, 2000m.

© Goodman and Zavorotiny 2007

-17-

Page 18: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 18

In order to determine your total displacement we need to first define our directions.

Let’s call movement to the north positive and movement to the south negative (which

direction we call positive won’t affect our answer as long as we’re consistent.). That

means that for the first part of the trip your displacement is +1500m and for the second

part of the trip your displacement is -500m. Your total displacement is the sum of those

two, +1000m. Since we decided that we’d call the north direction positive, your final

displacement is 1000m north. The last step of converting from +1000m to 1000m north

is important in that our choice of + or – was arbitrary so we need to translate back to the

original directions we were given in the problem.

The important point here is the answers are different and have different uses. The

distance you traveled, 2000m, tells you something about how tired you may be because

it tells you the total distance you had to move yourself during this trip. Your

displacement, 1000m north, tells you where you are at this point in your travels relative

to where you started.

________________________________________________________________

The same difference exists between speed and velocity. The symbol for velocity is v

and the symbol for average velocity is vavg. The average velocity is determined by

dividing your total displacement by the time it took for that displacement. This is similar

to how we calculated average speed by dividing the total distance traveled by the total

time it took to travel that distance.

s ≡ d/t while vavg ≡ Δx/t

__________________________________________________________________

Example 7:

If the travel in Example 6 was done at constant speed and required a total time of 500s,

determine the average speed and the average velocity.

s = ?

d = 2000m

t = 500s

© Goodman and Zavorotiny 2007

-18-

Page 19: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 19

s = d/t

s = 2000m/1200s

s = 4.0 m/s

vavg = ?

Δx = 1000m north

t = 500s

vavg = Δx/t

v = (1000m north)/500s

v = 2m/s north

Note that the numerical answers are different and that the answer for velocity includes a

direction while the answer for speed does not.

Coordinate Systems The displacement of an object tells us how its position has changed. In order to better

understand what that means we need a way of defining position; we need a coordinate system.

The requirements of any coordinate system are an origin and an orientation. In other

words, you need to pick a zero from which you’ll be making measurements and you

need to know the direction in which you will be measuring. The simplest type of

coordinate system is one-dimensional, in which case the coordinate system becomes a

number line, as shown below.

The origin is located at zero, negative positions are to the left of the origin and positive

positions are to the right. We can identify different locations on the number line as such

© Goodman and Zavorotiny 2007

-19-

Page 20: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 20

as x0, x1 and x2. In the diagram above, x0 is located at 0, x1 is located at +5m and x2 is

located at -5m.

We can now refine our definition of displacement, the change in the position of an

object, as being the difference between an object’s final position, x, and its initial

position, xo. It now becomes clearer why the symbol for displacement is “Δx”. The

Greek letter delta, “Δ”, means “the change in” so “Δx” can be read as “delta x” or “the

change in x”. Symbolically this becomes;

Δx ≡ x - xo

____________________________________________________________________

Example 8:

An object moves from an initial position of +5m to a final position of +10m in a time of

10s. What displacement did it undergo? What was its average velocity?

x = +10m

xo = + 5m

Δx = ?

Δx = x - xo

Δx = (+10m) – (+5m)

Δx = +5m

vavg = ?

Δx = +5m

t = 2 s

vavg = Δx/t

v = +5m/2s

v = +2.5m/s

_______________________________________________________________

Example 9:

© Goodman and Zavorotiny 2007

-20-

Page 21: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 21

An object moves from an initial position of +5m to a final position of -10m in a time of

0.25s. What displacement did it undergo? What was its average velocity?

x = -10m

xo = + 5m

Δx = ?

Δx = x - xo

Δx = (-10m) – (+5m)

Δx = -15m

vavg = ?

Δx = -15m

t = 0.25 s

vavg = Δx/t

vavg = -15m/0.25s

vavg = -60m/s

Once again, notice that the answer includes a magnitude, 15m, as well as a direction,

“-”.

________________________________________________________________

Vectors, such as displacement or velocity, can be depicted as an arrow. The length of

the arrow represents the magnitude of the vector and the direction it is pointed

represents the direction of the vector.

Vectors can be added either graphically or algebraically. (Even if you’re solving a

problem algebraically it’s helpful to also sketch the addition graphically so you can make

certain that your answer makes sense.) The way to add vectors graphically is to draw

the first vector starting at the origin of the problem. It must be drawn to scale and

© Goodman and Zavorotiny 2007

-21-

Page 22: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 22

pointed in the correct direction. The second vector should be drawn in the same

manner, but starting where the first one ended. The sum of the two vectors is simply a

third vector which starts where the first vector started and ends where the last vector

ended. In other words, the solution is a third vector that connects the beginning of the

first to the end of the last vector drawn. The arrow tip of that vector should point away

from the location from which it started.

The following example is solved both graphically and algebraically.

________________________________________________________________

Example 10:

Beginning at a location that’s 400 m east of your home, you travel 500m east and then

300m west. How far are you now from your home? What displacement have you

experienced during your trip? If this travel took a total time of 20s, what was your

average velocity?

The graphical solution, shown below, starts by drawing a sufficiently large east-west

axis. If your home is located at x = 0m, then your initial position, xo, is 400m east of

that. Draw a vector that describes the first part of your trip by drawing an arrow that

begins at the location 400m to the east of your house, is 500m long and points towards

the east. That tip of that arrow should then be 900m east of your house. Then draw the

vector for the second part of your trip by drawing an arrow that begins at the tip of the

first arrow, 900m east of your house, is 300m long and is pointed to the west, towards

your house. The tip of that arrow should now lie at a location 600m to the east of your

house; that is your final location, x.

Your displacement is the difference between your final and initial positions. This is

obtained, graphically, by drawing an arrow that starts at your initial position and ends at

your final position. The length of this arrow, which can be physically measured or read

off the scale, is the magnitude of your displacement. The direction of the arrow is the

direction of your displacement. As is shown below, it can be seen that your

displacement is 200m east.

© Goodman and Zavorotiny 2007

-22-

Page 23: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 23

Your average velocity is your total displacement divided by the total time it took to

undergo that displacement. In this case, we graphically determined that your

displacement is 200m east and we were told that your travel time was 20s. So,

vavg = ?

Δx = 200m east

t = 20s

vavg = Δx/t

vavg = 200m east / 20s

vavg = 10m/s east

The same problem can be solved algebraically, although an initial sketch is still a good

idea. The key step to an algebraic solution is to convert directions to be either positive

or negative. In this case, we can define east as positive and west as negative (The

choice won’t matter as long as we’re consistent throughout the problem.)

Your initial position then becomes +400m (400m east), your initial travel is +500m

(500m east) and the last leg of your trip is -300m (300m west). You can now just add

these together to get your final position, +600m. This translates into a final position of

600m east of your house.

Your displacement is just the change in your position.

x = +600m

xo = +400m

Δx = ?

Δx = x - xo

Δx = +600m – (+400m)

Δx = +200m

© Goodman and Zavorotiny 2007

-23-

Page 24: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 24

Δx = 200m east note that this last step is required since our choice of positive

or negative was arbitrary

The calculation of average velocity can be done just as it was above for the graphical

solution.

Instantaneous Velocity and Acceleration The most boring world would be one in which the positions of all objects were

constant...nothing would move: velocity would have no meaning. Fortunately our world

is a lot more interesting than that. Objects are changing their positions all the time, so

velocity is an important concept.

But our world is even more interesting than that...objects are also changing their velocity

all the time: they are speeding up, changing direction and/or slowing down. Just as

change in position over time leads to the idea of velocity, change in velocity over time

leads to the concept of acceleration.

In the same manner that we defined instantaneous speed as the speed measured

during a very short period of time, we can now define instantaneous velocity as the

velocity measured during a very short period of time. The symbol, “v” will be used for

instantaneous velocity. In a world with acceleration, the idea of instantaneous velocity

is very important since an object’s velocity may often be changing from moment to

moment.

v ≡ Δx/t for a very short period of time...an instant

We can now define acceleration as the change in velocity over time.

a ≡ Δv/t

or

a ≡ (v- vo)/t

© Goodman and Zavorotiny 2007

-24-

Page 25: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 25

Units of AccelerationThe units of acceleration can be derived from its formula:

a ≡ Δv/t

The SI unit of velocity is meters/second (m/s) and of time is the second (s). Therefore,

the unit of acceleration is (m/s)/s or m/s/s.

This is the same as (m/s) x (1/s) since dividing by s is the same as multiplying by 1/s.

This results in m/s2 which, while not having any intuitive meaning, is a lot easier to keep

track of than m/s/s, meters per second per second, the alternative way of writing the

units for acceleration.

Since velocity is a vector, it has a magnitude and a direction. For the rest of this

chapter, we’ll be focused on accelerations that change the magnitude of an object’s

velocity. However, in later chapters a key aspect of acceleration will involve changing

the direction of an object’s velocity. These are both examples of acceleration. But let’s

first start with accelerations that change only the magnitude of an object’s velocity.

_______________________________________________________________

Example 11

An object is traveling at a velocity of 20m/s north when it experiences an acceleration

over 12s that increases its velocity to 40m/s in the same direction. What was the

magnitude and direction of the acceleration?

Let’s solve this algebraically by defining velocities towards the north as positive and

towards the south as negative. Then,

v = +40m/s

vo = +20m/s

t= 12s

a = ?

a ≡ Δv/t

© Goodman and Zavorotiny 2007

-25-

Page 26: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 26

a ≡ (v - vo)/t

a = (+40m/s - (+20m/s))/12s

a = (+20m/s)/12s

a = +1.7m/s2

_______________________________________________________________

Example 12

What will an object’s velocity be at the end of 8.0s if its initial velocity is +35m/s and it is

subject to an acceleration of -2.5m/s2?

v = ?

vo = +35m/s

t= 8.0s

a = -2.5m/s2

a ≡ Δv/t

a ≡ (v - vo)/t

Solve for v: First, multiply both sides by t

at = v - vo

Then add vo to both sides

vo + at = v

Switch so that v is on the left side of the =

v = vo + at

Substitute in values and solve

v = +35m/s + (-2.5m/s2) (8.0s)

v = +35m/s + (-20m/s)

v = +15m/s

Free Fall You now know enough to be able to understand one of the great debates that marked

the beginning of what we now call physics. The term “physics” was being used by the

ancient Greeks more than 2000 years ago. Their philosophy, much of it described in

© Goodman and Zavorotiny 2007

-26-

Page 27: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 27

the book titled “Physics” by Aristotle, included some ideas that stood until Galileo made

some important arguments and measurements that showed the ancient Greek physics

to be of limited value.

The physics of ancient Greece included the idea that all objects were made up of a

combination of four elements (the fifth element was reserved for objects that were

beyond the earth). The four elements to be found in our world were earth, water, air

and fire. Each of these elements had their natural place. If you removed an element

from its natural place, it would, when released, immediately move back to that place;

and it would do so with its natural (constant) velocity.

Their view of the world could be thought of a set of concentric circles with each of the

elements occupying a layer. Earth occupied the center of the circle, so rocks, which are

predominantly made of earth would naturally move down, towards the center of our

world. Above earth was water, which would fill the area above the rocks, like a lake or

an ocean above the land that forms the lake or ocean bed. Above water is air, which is

seen everywhere in our world, above both earth and water. Finally, fire rises up through

the air, searching for its natural location above everything else.

All objects were considered to be a mixture of these four elements. Rocks were

predominantly earth: so if you drop a rock it falls as it tries to get back to its natural

location at the center of the earth. In so doing, it will pass through water and air: If you

drop a rock in a lake, it sinks to the bottom. Fire passes upwards to the highest

location, so if you make a fire, it always passes upwards through the air.

One conclusion that this led to is that objects which were made of a higher percentage

of earth would feel a greater drive to reach their natural location. Since earth is the

heaviest of the elements, this would mean that heavier objects would fall faster than

lighter objects. Also, they would fall with a natural constant velocity.

© Goodman and Zavorotiny 2007

-27-

Page 28: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 28

That philosophy stood for more than 2000 years until Galileo, in the 1600’s made a

series of arguments, and conducted a series of experiments, that proved that neither of

those two conclusions was accurate. He showed that the natural tendency of all

unsupported objects is to fall towards the center of the earth with the same acceleration:

9.8m/s2. That number 9.8m/s2 is used so often that it as given its own symbol: “g”. In

modern terms, his conclusion can be stated as follows.

All unsupported objects fall towards the center of the earth with an acceleration of g: 9.8m/s2.

This statement requires some explanation and some caveats.

1. Unsupported means that nothing is holding the object up. So if you release

something and nothing is stopping it from falling, then it is unsupported. In that

case, all objects will experience the same acceleration downwards. It does not

depend on how heavy the object is: all objects fall with that same acceleration.

2. Support can also come from air resistance. So a parachute provides support by

catching air that slows down the sky diver. In that case, the parachutist is not an

unsupported object: he or she is supported by air resistance. But this is

generally true to a lesser extent. So a feather or an uncrumpled piece of paper

also receives support from the air: so they don’t fall with a constant acceleration

either. Galileo’s conclusion is an idealization, it assumes that we can ignore air

resistance, which is never completely true near the earth (or airplanes and

parachutes would have a hard time of it) but will work for the problems we’ll be

doing.

3. His conclusion does not depend on the motion of the object. So baseballs

thrown toward home plate, dropped, or thrown straight up all fall with the same

acceleration towards the center of the earth. This is an area of great confusion

for students, so you’ll be reminded of it often. Whenever nothing is stopping an

© Goodman and Zavorotiny 2007

-28-

Page 29: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 29

object from falling, it will accelerate downwards at 9.8m/s 2 , regardless of its

overall motion.

In this book, we will assume that air resistance can be ignored unless it is specifically

stated to be a factor.

_______________________________________________________________

Example 13

An object is dropped near the surface of the earth. What will its velocity be after it has

fallen for 6.0s?

v = ?

vo = 0

t= 6.0s

a = g = -9.8m/s2 All unsupported objects have an acceleration of

9.8m/s2 downwards

a ≡ Δv/t

a ≡ (v - vo)/t

Solve for v: First, multiply both sides by t

at = v - vo

Then add vo to both sides

vo + at = v

Switch so that v is on the left side of the =

v = vo + at

Substitute in values and solve

v = 0 + (-9.8m/s2) (6.0s)

v = -59m/s

The Kinematics Equations So far we have two definitions of motion that we will be using the foundation for our

study of motion: vavg ≡ Δx/t and a ≡ Δv/t. We need to add just one more equation to

© Goodman and Zavorotiny 2007

-29-

Page 30: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 30

complete our foundation; and then we can start building the set of equations that we’ll

be using to solve a range of problems throughout this book. The last equation tells how

to calculate an object’s average velocity if we know its initial and final velocity. It turns

out that under the condition of constant acceleration an object’s average velocity is just

the average of its initial and final velocities. This average is computed just by adding

the two velocities, v and v0, together and dividing by 2:

vavg = (v0 + v) / 2

Or, since dividing by 2 is the same as

multiplying by ½

vavg = ½ (v0 + v)

This will be true whenever the acceleration is constant. However, that condition of

constant acceleration will hold true not only for this course, but for most all the high

school or university physics that you will take.

It’d be possible to solve all problems involving the location, velocity and acceleration of

an object just using the two definitions and the computation for average velocity shown

above. However, in physics it’s sometimes best to do some harder work up front so as

to make our work easier later on. In this case, we’ll use the above three equations to

create a set of kinematics equations that are easier to work with. We’ll first derive those

equations algebraically; then we’ll derive them using a graphical approach. Then we’ll

practice working with them.

Let’s start with by using our definition of acceleration to derive an equation that will tell

us an object’s velocity as a function of time.

a ≡ Δv / t

Substitute: Δv = v - vo

a = (v - vo) / t

Multiply both sides by t

at = v - vo

© Goodman and Zavorotiny 2007

-30-

Page 31: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 31

Add vo to both sides

vo + at = v

Rearrange to solve for v

v = vo + at

This equation tells us that an object’s velocity at some later time will be the sum of two

terms: its velocity at the beginning of the problem, vo, and the product of its acceleration,

a, and the amount of time it was acceleration, t. If its acceleration is zero, this just says

that its velocity never changes. If its acceleration is not zero, this equation tells us that

the object’s velocity will change more as more time goes by and it will change faster if

the size of its acceleration is greater. Often in physics we want to know the final

position or velocity of an object after a certain amount of time. The bolded equation

above gives us a direct way of calculating velocities at later times given initial

conditions: This is a key kinematics equation.

_______________________________________________________________

Example 14

What will an object’s velocity be at the end of 15s if its initial velocity is -15m/s and it is

subject to an acceleration of +4.5m/s2?

v = ?

vo = -15m/s

t= 15s

a = +4.5m/s2

v = vo + at

v = -15m/s + (+4.5m/s2) (15s)

v = -15m/s + 68m/s

v = +53m/s

____________________________________________________________

Example 15

© Goodman and Zavorotiny 2007

-31-

Page 32: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 32

How long will it take an object to reach a velocity of 86m/s if its initial velocity is 14m/s

and it experiences an acceleration of 1.5m/s?

v = 86m/s

vo = 14m/s

t= ?

a = +1.5m/s2

v = vo + at

Solve for t: First subtract vo from both sides

v - vo = at

Then divide both sides by a

(v - vo) / a = t

Finally switch sides so t is on the left

t = (v - vo) / a

Now substitute in the values and solve

t = (86m/s – 14m/s) / (1.5m/s2)

t = 72 m/s / 1.5m/s2

t = 48s

Note that just as 72 divided by 14 equals 48, so too does (m/s) / (m/s2) equal seconds.

This can be seen if one remembers that dividing by a fraction is the same a multiplying

by its reciprocal: so (m/s) / (m/s2) is the same as (m/s) (s2/m). In this case, it can be

seen that the meters cancel out as does one of the seconds in the numerator, leaving

only seconds in the numerator; which is the correct unit for time.

_______________________________________________________________

Example 16

What acceleration must an object experience if it is to attain a velocity of 40m/s to the

north in a time of 18s if it’s starts out with a velocity of 24m/s towards the south?

For this problem, let’s define north as positive and south as negative. Then,

v = +40m/s

© Goodman and Zavorotiny 2007

-32-

Page 33: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 33

vo = -24m/s

t= 18s

a = ?

v = vo + at

Solve for t: First subtract vo from both sides

v - vo = at

Then divide both sides by t

(v - vo) / t = a

Finally switch sides so a is on the left

a = (v - vo) / t

Note that this is just our original definition for

acceleration. We could have just used that definition,

but it’s easy enough to recover from the equation we’ll

be using...either way works.

Now substitute in the values and solve

a = (40m/s – (-24m/s)) / (18s) Note that in substituting -24m/s for vo we put it into its

own parentheses. That’s so we don’t lose the

negative sign...a common mistake. Now we can see

that -(-24m/s) equals +24m/s

a = 64 m/s / 18s

a = 3.6 m/s2

Since the answer is positive, the acceleration must be

towards the north based on our original decision that

north was positive

a = 3.6 m/s2 towards the north

Note that just as 64 divided by 18 equals 3.6, so too does (m/s) / s equal m/s2. This can

be seen if one remembers that dividing by a fraction is the same a multiplying by its

© Goodman and Zavorotiny 2007

-33-

Page 34: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 34

reciprocal: so (m/s) / s is the same as (m/s) x (1/s).

____________________________________________________________________

We now have a useful equation for determining how an object’s velocity will vary with

time, given its initial velocity and its acceleration. We need to derive a similar

expression that will tell us where an object is located as a function of time given its initial

position and velocity and its acceleration.

We need to combine three of our equations together to do that

v = vo + at The equation we just derived from the definition of

acceleration

vavg ≡ (x - x0) / t The definition of average velocity

vavg = ½ (v + v0) The equation for average velocity in the case of constant

acceleration

Since we have two equations for average velocity, vavg, they must be equal to each

other.

vavg = vavg

We can then substitute in the two different equations for vavg

from above: one on the left side of the equals sign and the

other on the right

[(x - x0) / t] = [½ (v + v0)]

Let’s solve this for x: first multiply both sides by t to get it out

of the denominator on the left

x - x0 = ½ (v + v0)t

Then add x0 to both sides to get x by itself

x = x0 +½ (v + v0)t

Distribute t into the parentheses on the right

© Goodman and Zavorotiny 2007

-34-

Page 35: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 35

x = x0 + ½ vt + ½v0t

Now substitute in our new equation for v: v = vo + at

x = x0 + ½ (vo + at) t + ½v0t

Distribute ½t into the parentheses

x = x0 + ½ vot + ½at2 + ½v0t

Combine the two ½ vot terms

x = x0 + vot + ½at2

This is another of the key kinematics equations. It allows us to determine where an

object will be as time goes by based on a set of initial conditions. In this case, there are

three terms: x0 tells us where the object started; vot tells us how fast it was moving

initially and how long it’s been traveling; and ½at2, tells us how much its acceleration

has affected the distance it has traveled. The reason that t in the last term is squared is

that not only does it’s velocity change more as time goes by, it also has had more time

for that change in velocity to affect how far it’s gone.

____________________________________________________________

Example 17

A car is at rest when it experiences an acceleration of 2.0m/s2 towards the north for

5.0s. How far will it travel during the time it accelerates?

For this problem, let’s define north as positive and south as negative. Also, since we’re

not told where the car starts, let’s just define its initial position as the origin for this

problem, zero. In that case, the distance it travels will just be its position, x, at the end

of the problem. Then,

x0 = 0

x = ?

vo = 0

t= 5.0s

a = 2.0m/s2

x = x0 + vot + ½at2

© Goodman and Zavorotiny 2007

-35-

Page 36: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 36

The equation is already solved for x so we just have

to substitute in numbers. However, a good first step

is to cross out the terms that will clearly be zero, in

this case the first and second terms. (Since vo = 0,

anything times vo will also be zero.)

x = ½at2

That vastly simplifies the equation and avoids some

algebra mistakes. Now we can substitute numbers in

for the variables.

x = ½(2.0m/s2)( 5.0s) 2

Make sure to square 5.0s before multiplying it by

anything else

x = (1.0m/s2)(25s 2)

x = 25m

The car will travel 25m to the north during the time that it accelerates

_______________________________________________________________

Example 18

An object accelerates from rest. How long will it take for it to travel 40m if its

acceleration is 4m/s2?

Since we’re not told where the object starts, let’s just define its initial position as the

origin for this problem, zero. In that case, the distance it travels, 40m, will just be its

position, x, at the end of the problem. Also, since it’s initial at rest that means that its

initial velocity is zero. Then,

x0 = 0

x = 40m

vo = 0

t= ?

a = 2.0m/s2

© Goodman and Zavorotiny 2007

-36-

Page 37: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 37

x = x0 + vot + ½at2

Let’s cross out the terms that will clearly be zero, in

this case the first and second terms. (Since vo = 0,

anything times vo will also be zero.)

x = ½at2

Now let’s solve this for t: Multiply both sides by 2 and

divide both sides by a

2x/a = t2

Now take the square root of both sides, to get t

instead of t2, and switch t to the left

t = [2x/a]½

Now we can substitute in the values

t = [2(40m)/( 2.0m/s2)]½

t = [80m)/( 2.0m/s2)]½

t = [40s2]½

t = 6.3s

The first equation that we derived allows us to determine the velocity of an object as a

function of time if we know its acceleration. The second equation allows us to

determine the position of an object as a function of time if we know its initial position and

velocity and its acceleration. Sometimes we use both equations to solve one problem.

_______________________________________________________________

Example 19

A plane must reach a speed of 36m/s in order to take off and its maximum acceleration

is 3.0m/s. How long a runway does it require?

Solving this problem requires us to use both our kinematics equation. First, let’s figure

out how much time it must accelerate to reach takeoff velocity. Then, let’s figure out

how far it will travel in that time.

© Goodman and Zavorotiny 2007

-37-

Page 38: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 38

x0 = 0

x = ?

vo = 0

v = 36m/s

t= ?

a = 3.0m/s2

v = vo + at

Solve for t

v - vo = at

t = (v - vo) / a

t = ((36m/s) – 0) / 3.0m/s2

t = 12s

Now we can add that new piece of information to what we knew before:

x0 = 0

x = ?

vo = 0

v = 120m/s

t = 12sa = 3.0m/s2

We can now use the second equation to solve for the location of the plane when it takes

off. That will be the minimum required length of the runway.

x = x0 + vot + ½at2

Eliminating the zero terms

x = ½at2

x = ½(3.0m/s2)(12s)2

x = (1.5m/s2)(144s2)

© Goodman and Zavorotiny 2007

-38-

Page 39: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 39

x = 216m

_______________________________________________________________

The final kinematics equation that we’ll develop combines the first two so that we can

determine the velocity of an object as a function of its position, rather than as a function

of time. That would allow us to have solved Example 18 in just one step. Essentially

we derive this equation by doing exactly what we did in Example 18, but without

inserting in any numbers, we leave everything as variables. The result is a solution that

we can use in the future to save a lot of work.

Let’s first solve our velocity versus time equation for time.

v = vo + at

v - vo = at

at = v - vo

t = (v - vo) / a

Then we’ll use that expression for time in the equation that tells us an object’s position

as a function of time. That will eliminate time from that equation.

x = x0 + vot + ½at2

Now we’ll substitute in [(v - vo) / a] wherever we see a

“t”. The brackets just help us see what we’ve done.

Review this next equation carefully to see that

wherever there used to be “t” there’s now [(v - vo) / a].

x = x0 + vo[(v - vo) / a] + ½a[(v - vo) / a] 2

Let’s subtract x0 from both sides, distribute the vo into

the second bracket and square the contents of the

third bracket.

x - x0 = (vov - vo2) / a] + ½a(v - vo) 2 / a 2

© Goodman and Zavorotiny 2007

-39-

Page 40: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 40

We can now cancel one of the a’s in the last term and

use the fact that

(v - vo) 2 = v2 - 2v vo + vo2

x - x0 = (vov - vo2) / a] + ½(v2 - 2v vo + vo

2) / a

Since a is in the denominator of both terms on the

right we can simplify a bit by multiply all the terms by

a

a(x - x0) = vov - vo2 + ½(v2 - 2v vo + vo

2)

Now let’s distribute the ½ into the last parentheses on

the right

a(x - x0) = vov - vo2 + ½v2 - v vo + ½vo

2

By combining the two vvo terms, they cancel out. At

the same time we can combine - vo2 and ½vo

2 to get -

½vo2

a(x - x0) = ½v2 - ½vo2

Now multiply both sides by 2 to cancel out the ½’s

2a(x - x0) = v2 - vo2

Switching the terms from left to right completes this

derivation

v2 - vo2 = 2a(x - x0)

This is sometimes written by substituting d for (x - x0)

since that is just the distance that the object has

traveled and it’s easier to read

© Goodman and Zavorotiny 2007

-40-

Page 41: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 41

v2 - vo2 = 2ad

This equation lets us determine how the velocity of an object will change as its position

changes. Having done all this work now, will save us work later. In Example 19, let’s

take a look at how we would use this equation to solve the same problem as was posed

in Example 18

________________________________________________________________

Example 20

As was the case in Example 18, a plane must reach a speed of 36m/s in order to take

off and its maximum acceleration is 3.0m/s2. How long a runway does it require?

x0 = 0

x = ?

vo = 0

v = 36m/s

a = 3.0m/s2

v2 - vo2 = 2a(x - x0)

Simplify by eliminating the zero terms, vo & x0

v2 = 2ax

Solve for x by dividing by 2a and switching sides

x = v2 / 2a

x = (36m/s) 2 / [2(3.0m/s2)]

x = 216m

______________________________________________________________

Problem Solving with the Kinematics Equations

The Kinematics Equationsx = x0 + vot + ½at2

v = vo + at

v2 - vo2 = 2a(x - x0)

© Goodman and Zavorotiny 2007

-41-

Page 42: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 42

All kinematics problems can be solved by using either one or two of the above

equations. It is never necessary to use all three equations to answer one question. The

biggest question students have in working with these equations is which one to use?

First, you need to relax and understand that you can’t get the wrong answer by using

the wrong equation; you just won’t get an answer at all. You’ll just find that you’re

missing the information that you need to solve the problem using that equation. At that

point, you should realize that you need to use a different equation, or read the problem

again to see if you’re missing a piece of information that you need but have overlooked.

For instance, if a problem indicates or implies that an object was at rest at the beginning

of the problem that means that its initial velocity was zero. Sometimes this is obvious...

sometimes it isn’t. For instance, if I “drop” something, the implication is that it had a

zero initial velocity, but that isn’t explicitly stated; it’s implied. Physics will help you learn

to read very carefully to understand what the author meant when they wrote the

problem or described the situation.

So, the first step in solving the problem is to read it very carefully.

The second step is to read it again. This time writing down the information you’ve been

given in terms of the variables with which you’ll be working. For instance, translating

“dropped” into “vo = 0”. One of the pieces of information that you’ll be given is what

you’re supposed to be looking for: what’s the question. If the author asks “What is its

final velocity?” that is translated as “v =?” and becomes another of the facts to add to

your list of facts that you’ll use to solve the problem.

The next step is to determine which of the kinematics equations relates your collection

of facts to one another. Each equation represents a relationship between a different set

of facts: picking the correct equation is just a matter of determining which equation

relates to this specific set of facts. If you pick the wrong one, no harm will be done

© Goodman and Zavorotiny 2007

-42-

Page 43: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 43

(except some wasted time) since you’ll find you just don’t have the right facts to use that

equation.

If the problem that you’re working with doesn’t have time as one of its facts, then you’ll

be using the third of the equations listed above: v2 - vo2 = 2a(x - x0); it’s the only one that

doesn’t include time as a factor. If time is included, you’ll be using one of the first two.

In that case, you just need to determine which of those first two equations to use. If the

problem deals with the position of the object as a function of time, then you’d use the

first equation: x = x0 + vot + ½at2. If it is dealing with the velocity of the object as time

goes by, you’ll use the second equation: v = vo + at. It’s really as simple as that.

_______________________________________________________________

Example 21

In this example, we’re just going to decide which equation(s) will be needed to solve

each problem.

1. A ball is subject to an acceleration of -9.8 m/s2. How long after it is dropped does

it take to reach a velocity of -24m/s?

2. A ball is released from rest and subject to an acceleration of -9.8 m/s2. How far

will it travel before it reaches a velocity of 24m/s?

3. A dropped ball is subject to an acceleration of -9.8 m/s2. How far will it travel in

the first 5.0s?

4. You throw an object upwards from the ground with a velocity of 20m/s and it is

subject to a downward acceleration of 9.8 m/s2. How high does it go?

5. You throw an object upwards from the ground with a velocity of 20m/s and it is

subject to a downward acceleration of -9.8 m/s2. How much later does it

momentarily coming to a stop?

6. You throw an object upwards from the ground with a velocity of 20m/s and it is

subject to an downward acceleration of 9.8 m/s2. How high is it after 2.0s?

Take a second to write down the facts in each problem and then determine which

equation you would use. Then compare your results to those shown below.

© Goodman and Zavorotiny 2007

-43-

Page 44: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 44

1. “an acceleration of -9.8 m/s2” means a =-9.8 m/s2

“How long after” means t = ?

“it is dropped” means vo = 0

“to reach a velocity of -24m/s” means v = -24m/s

Since time, t, is a factor, we need to only choose between the first two equations.

Since velocity, v, is a factor, it must be the second equation:

v = vo + at

2. “released from rest” means vo = 0

“an acceleration of -9.8 m/s2” means a =-9.8 m/s2

“How far will it travel” means x0=0 and x=?

“reaches a velocity of 24m/s” means v = -24m/s

Since time, t, is not a factor, we need to use the third equation

v2 - vo2 = 2a(x - x0)

3. “A dropped ball” means vo = 0

“an acceleration of -9.8 m/s2” means a =-9.8 m/s2

“How far will it travel” means x0=0 and x=?

“in the first 5.0s” means t = 5.0s

Since time is a factor, we need to only choose between the first two equations.

Since position, x, is a factor, it must be the first equation:

x = x0 + vot + ½at2

4. “upwards from the ground with

a velocity of 20m/s” means vo = + 20m/s and x0 = 0

“a downward acceleration of

9.8 m/s2” means a = -9.8 m/s2

© Goodman and Zavorotiny 2007

-44-

Page 45: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 45

“How high does it go?” means x = ? and v = 0 (the second fact, v = 0,

is less obvious but is implied by the fact that

when it reaches it’s greatest height it must

momentarily stop...or it would go higher

Since time, t, is not a factor, we need to use the third equation

v2 - vo2 = 2a(x - x0)

5. “upwards from the ground with

a velocity of 20m/s” means vo = + 20m/s and x0 = 0

“a downward acceleration of

9.8 m/s2” means a = -9.8 m/s2

“How much later” means t = ?

“momentarily coming to a stop” means v = 0

Since time, t, is a factor, we need to only choose between the first two equations.

Since velocity, v, is a factor, it must be the second equation:

v = vo + at

6. “upwards from the ground with

a velocity of 20m/s” means vo = + 20m/s and x0 = 0

“a downward acceleration of

9.8 m/s2” means a = -9.8 m/s2

“How high is it” means x = ?

“after 2.0s” means t = 2.0s

Since time is a factor, we need to only choose between the first two equations.

Since position, x, is a factor, it must be the first equation:

x = x0 + vot + ½at2

© Goodman and Zavorotiny 2007

-45-

Page 46: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 46

Interpreting Motion Graphs There are two types of motion graphs that we’ll be considering, “Position versus Time”

and “Velocity versus Time”. In both cases the horizontal axis, the x- axis, is used to

record the time. In a Position versus Time graphs, the vertical axis, the y-axis, is used

to record the position of the object. In a Velocity versus Time graph, the vertical axis,

the y-axis, is used to record the object’s velocity. In this section, we’re going to learn

how to make and interpret these graphs and see their relationship to each other.

Position versus time graphs for Constant VelocityIf while you were moving you were to record your position each second, it’d be easy to

make a position versus time graph. Let’s take the case that you’re walking away from

your house with a constant velocity of +1m/s (note that since velocity is a vector defining

it requires a direction, “+”, and a size, “1m/s”). If you define your house as “zero” and

define your starting time as zero then the first five seconds of your walk would give you

the following data.

To create a position versus time graph all you need to do is graph those points and then

connect them with a straight line.

© Goodman and Zavorotiny 2007

-46-

Page 47: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 47

Position versus Time

0

1

2

3

4

5

0 1 2 3 4 5

Time (seconds)

Posi

tion

(met

ers)

This graph allows you to directly read your position at any given time. In fact, it allows

you to determine your position for times at which you made no measurement, that’s the

meaning of the line connecting the points. For instance, your position at 1.5 seconds

can be seen to be at x = 1.5m. Now this assumes that you were traveling at a constant

velocity, but that’s the assumption that was made in creating this graph.

You can also indirectly read your velocity from this chart. The velocity of an object will be the slope of the line on its Position versus Time graph.

The definition of the slope of a line, m, is m ≡ Δy / Δx. This means that the slope of a

line is determined by how much the vertical value, the y-value, of the line changes for a

given change in its horizontal value, its x-value. If it doesn’t change at all, then the line

is horizontal, it has no tilt. If it has a positive value it is sloping upwards, since that

means that the y-coordinate gets larger as you move to the right along the x-axis. A

negative slope means that the line is tilted downwards, since its y-value decreases as

you move to the right.

© Goodman and Zavorotiny 2007

-47-

Page 48: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 48

If you make a graph of the position versus time for a moving object, with position shown

on the y-axis and time on the x-axis, then the slope of that line is given by m ≡ Δy / Δx,

but in this case the y-values are the position, x, and the x-values are time, t.

This can be confusing since the “x” in the definition of slope is different than the

“x” used in kinematics equations. In the definition of slope, x means the

horizontal axis. In the discussion of motion, x means the position of the object.

When we graph the position of an object versus time, we always put the position

on the vertical, y-axis, and time, t, on the x-axis. This can lead to confusion since

the y-coordinate on the position versus time graph gives the position, which is x

in kinematics equations.

So the slope of a line on that graph becomes:

m ≡ Δy / Δx but since the y-values represent the position, x, and the x-values

give the time, t, this becomes

m ≡ Δx / Δt but the definition for velocity is the same, v ≡ Δx / Δt, therefore

m = v the slope of a line show on the Position versus Time graph give us

its velocity

For the graph shown above, the slope of the line is:

m ≡ Δy / Δx

using the first and last point (any pair of points will work)

m = (5m - 0m) / 5s – 0s)

m = 5m/5s

m = 1 m/s

v = 1 m/s

_________________________________________________________________

Example 22

Determine the location and velocity of the object in the below graph at when t = 2.5s.

© Goodman and Zavorotiny 2007

-48-

Page 49: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 49

Position versus Time

02

46

8

1012

14

0 1 2 3 4 5

Time (seconds)

Posi

tion

(met

ers)

Solution: The location of the object can be read directly off the graph by noting that

when the time is equal to 2.5s then the position is equal to 7 meters. The velocity is

constant during the entire trip (hence the straight line) and so it can be found by

determining the slope of that line between any two points. Usually we pick points that

are easy to read and are as far apart as possible. In this case, let’s use the points (0,0)

and (4,12).

m ≡ Δy / Δx

m = (12m - 0m) / 4s – 0s)

m = 12m/4s

m = 3 m/s

v = 3 m/s

Now it’s possible that the velocity of an object will change during the time it is being

observed. For instance, if you were to walk away from your house at a velocity of 1m/s

for 6 seconds, stop for 3 seconds and then run back to your house in 3 seconds, the

Position versus Time graph for your trip would look like this.

© Goodman and Zavorotiny 2007

-49-

Page 50: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 50

Position versus Time

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10 11 12

Time (seconds)

Posi

tion

(met

ers)

You can read this graph to determine your position at any time during the trip. You can

also see from this that during your trip you had three different velocities.

Your initial velocity is given by the slope of the line during the first 6 seconds.

m ≡ Δy / Δx

m = (6m - 0m) / 6s – 0s)

m = 6m/6s

m = 1 m/s

v = 1 m/s

During the time that you’re standing still, your velocity must be zero. The slope of the

line must be zero if your velocity is zero, so this is the flat portion of the curve between 6

and 9 seconds. Just for completeness, you get the same results analytically.

m ≡ Δy / Δx

m = (6m - 6m) / 9s – 6s)

m = 0m/6s

m = 0 m/s

© Goodman and Zavorotiny 2007

-50-

Page 51: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 51

v = 0 m/s

Finally, during your return trip the slope of the line is negative, meaning that you have a

negative velocity.

m ≡ Δy / Δx

m = (0m - 6m) / 12s – 9s)

m = (-6m)/3s

m = -2 m/s

v = -2 m/s

Velocity versus Time graphs for Constant VelocityAny motion that can be recorded using a Position versus Time graph can also be

recorded using a Velocity versus Time graph. Your choice of graph will have different

benefits, but it’s important that you be able to see how they relate to one another.

Let’s take the first Position versus Time graph that we did above and recast it as a

Velocity versus Time graph. In this case, the vertical axis records velocity; the

horizontal axis continues to indicate the time. In the first graph, you maintained a

constant velocity of 1 m/s for 6 seconds so this becomes:

© Goodman and Zavorotiny 2007

-51-

Page 52: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 52

Velocity versus Time

0

1

2

3

0 1 2 3 4 5 6

Time (s)

Velo

city

(m/s

)

In this case, the object’s velocity can be read directly off the graph, but its displacement

and the distance it has traveled cannot. However, we can determine the object’s

displacement, how far it is from where it started, and the distance it has traveled by

measuring the area under the curve (in this case the horizontal line at v = 1 m/s). (If the

velocity is always positive, the distance traveled and displacement will be the same.)

A rectangle has two pairs of opposing sides. In this case, one side will be the horizontal

line indicating the velocity that the object is traveling and the side opposing that is the

horizontal axis. The second pair of sides is a vertical line drawn straight up from the

time we start measuring and the side opposing that is a vertical line drawn straight up

from the time we stop measuring.

So for an object moving at constant velocity we can define a rectangular shape whose

height is its velocity and whose length is the time interval that we’re studying. The area

of a rectangle is given by its height multiplied by its length, so the area of this rectangle

is it’s velocity, v, multiplied by the elapsed time, t.

Area = (height)(length)

© Goodman and Zavorotiny 2007

-52-

Page 53: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 53

A = (velocity)(time)

A = vt

But early in the chapter we determined that Δx, so

A = Δx

The displacement of an object is determined by the area between its velocity graph and the horizontal axis.

In the current example the horizontal sides are the horizontal line at v = 1 m/s and the

horizontal axis, and the vertical sides are formed by the vertical axis and t = 6s. The

dimensions of that rectangle are 1m/s tall by 6s long. So the object’s displacement is

simply the product of those two, or 6m. This is the same result you would expect, an

object moving at a constant velocity of 1 m/s for 6s would be displaced 6m. It has also

traveled a distance of 6m since no negative motion was involved

If the displacement is only positive, it is equal to the distance that the object has

traveled. While we derived this for constant velocity, it will always be true that the

displacement will be equal to the area under the Velocity versus Time curve and that, if

the velocity is always positive, that the distance traveled will equal the displacement of

the object.

____________________________________________________________________

Example 23

Determine the displacement of the following object, and the distance it has traveled,

during its first 3 seconds of travel.

© Goodman and Zavorotiny 2007

-53-

Page 54: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 54

Velocity versus Time

0

1

2

3

0 1 2 3 4 5 6

Time (s)

Velo

city

(m/s

)

Solution: The area under the curve of its Velocity versus Time graph is its displacement.

Since we are only considering the first 3 seconds of its travel, the height is 2 m/s and

the length is 3 seconds, so its displacement is 6 meters. This is also equal to the

distance it has traveled.

In the case that an object has both a negative and positive velocity, the distance it has

traveled and its displacement will not be the same. This is because distance does not

depend on direction while displacement does.

____________________________________________________________________

Example 24

Determine the distance traveled and the displacement of the following object during its

entire trip. It travels at a velocity of +2m/s for the first six seconds and then a velocity of

-3m/s during the last four seconds.

© Goodman and Zavorotiny 2007

-54-

Page 55: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 55

Velocity versus Time

-5-4-3-2-1012345

0 1 2 3 4 5 6 7 8 9 10

Time (s)

Velo

city

(m/s

)

The object’s displacement during the first six seconds is given by:

Δx = Area

Δx = (+2m/s)(6s)

Δx = 12m

During the last four seconds of its trip its displacement is

Δx = Area

Δx = (-3m/s)(6s)

Δx = -18m

So its total displacement is the sum of those two contributions:

Δx = 12m + (-18m)

Δx = -6m.

On the other hand, the total distance it traveled is given by the sum of the two areas,

treating both as positive numbers since distance traveled can never be negative. So

the distance traveled is the sum of 12m and 18m, or 30m.

d = 12m + 18m

d = 30m

© Goodman and Zavorotiny 2007

-55-

Page 56: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 56

If we take motion to the right as positive and motion to the left as negative, the physical

interpretation of this is that the object traveled 12 m to the right, momentarily stopped

and then traveled 18m to the left. It moved a distance of 30m, but ends up 6 meters to

the left of where it started.

Velocity versus Time graphs for Constant AccelerationSo far we have only considered motion at constant velocity. However, the same

principles apply to motion at constant acceleration. If an object’s velocity is changing

with time, it’s Velocity versus Time graph will have a slope. That slope will give its

acceleration.

The slope of a line on the Velocity versus Time graph is:

m ≡ Δy / Δx but since the y-values represent the velocity, v, and the x-values

give the time, t, this becomes

m ≡ Δv / Δt but the definition for acceleration is the same, a ≡ Δv / Δt, therefore

m = a

The slope of a line on the Velocity versus Time graph for an object give us its acceleration.

Let’s calculate the acceleration of the following object.

Velocity versus Time

0

1

2

3

4

5

6

0 1 2 3 4 5 6

Time (s)

Velo

city

(m/s

)

© Goodman and Zavorotiny 2007

-56-

Page 57: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 57

For the graph shown above, the slope of the line is:

m ≡ Δy / Δx Now use the first and last point (any pair of points will

work)

m = (6m/s - 0m/s) / 6s – 0s)

m = (6m/s)/6s

m = 1 m/s2

a = 1 m/s2

It is still the case that the area under the Velocity versus Time graph will give us the

displacement and the distance traveled. However, the shape is not longer a rectangle,

it’s a triangle. The area of a triangle is given by the formula: Area = ½ (base) (height).

We can use this to determine the displacement and distance traveled; in this case they

will be the same since all motion is positive. The base is given by the elapsed time and

the height is the greatest velocity attained, since that’s the highest point for the triangle.

Let’s determine the object’s displacement during its six seconds of travel.

Δx = Area

Δx = ½ base x height

Δx = ½ vt where v is the velocity at time t

Δx = ½ (+6m/s)(6s)

Δx = 18m since all motion is at positive velocity, this is also the

distance traveled

d = 18m

In the following example we need to divide the motion into two triangles, since one will

have a positive area, below the horizontal axis, and one will have a negative area. That

will give us different answers for displacement and distance.

© Goodman and Zavorotiny 2007

-57-

Page 58: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 58

Velocity versus Time

-6-5-4-3-2-10123456

0 1 2 3 4 5 6 7 8 9 10

Time (s)

Velo

city

(m/s

)

_______________________________________________________________

Example 25

Determine the displacement and distance traveled by the object whose motion is

described in the above graph.

Solution: Since the motion included both negative and positive velocity, we need to

separate out those two parts.

For the motion with positive velocity we need to determine the area of the triangle

formed above the horizontal axis:

Δx = Area

Δx = ½ base x height

Δx = ½ vt where v is the maximum positive velocity and t is the total

time that the object moved with a positive velocity

Δx = ½ (+6m/s)(8s)

Δx = 24m This is the displacement due to positive velocity

© Goodman and Zavorotiny 2007

-58-

Page 59: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 59

For the motion with negative velocity we need to determine the area of the triangle

formed below the horizontal axis:

Δx = Area

Δx = ½ base x height

Δx = ½ vt where v is the maximum negative velocity and t is the total

time that the object moved with a negative velocity

Δx = ½ (-6m/s)(2s)

Δx = -6m This is the displacement due to positive velocity

In this case the displacement and distance traveled will be different. The time spent

traveling with a negative velocity will reduce the displacement, but will add to the total

distance the object moved during its trip.

Δx = +24m + (-6m)

Δx = +18m

To find the distance traveled we just treat the areas of both triangles as positive since

distance is never negative.

d = 24m + 6m since distance is always positive

d = 30m

So after traveling a total distance of 30m, the object is 18m to the right of where it

started.

Alternative Derivation of the First Kinematics Equation

We used a lot of algebra to derive the following equation earlier in this chapter:

x = x0 + vot + ½at2

© Goodman and Zavorotiny 2007

-59-

Page 60: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 60

However, this same equation was also derived graphically in the 1400’s by Oresme

using the approaches that we just developed: recognizing that the displacement of an

object is given by the area under the Velocity versus Time curve.

For those who prefer a great picture to some complicated algebra, it’s worth seeing how

he did it. We’ll also use a similar approach to derive some equations in some later

chapters.

All we have to do is leave variables in our graphs instead of numbers. For instance let’s

start out with an object moving at a constant velocity v0 for a time t. That means that the

graph of its velocity versus time will form a rectangle whose height is v0 and whose

length is t. The area of that rectangle, will give its displacement.

Displacement due to initial velocityΔx = Area

Δx = height x length

Δx = v0t Due to initial velocity alone

Now let’s add onto that the displacement due to a constant acceleration. If the

acceleration is positive, that means it gets a bigger velocity as time goes by and you get

the graph shown below (assuming for simplicity that v0 = 0.). We showed earlier that

the area under this curve is equal to an object’s displacement. In this case, its greatest

velocity will be the height of the triangle and the base of the triangle will be the time of

its acceleration.

Displacement due to accelerationΔx = Area

Δx = ½ base x height

Δx = ½ vt But recall that that v = v0 + at. In this case, v0 is zero, so v =

at. Substituting that in for v we get

Δx = ½ (at)t

© Goodman and Zavorotiny 2007

-60-

Page 61: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 61

Δx = ½ at2 Due to acceleration alone

Total Displacement An object that has an initial velocity and experiences acceleration has a displacement

due to both of these terms. So its total displacement will be

Δx = v0t + ½ at2

But recall that Δx = x - x0, so

x - x0 = v0t + ½ at2 Solving for x yields our kinematics equation

x = x0 + v0t + ½ at2

The position of an object at any time will be given by three terms: where it started, x0,

how far it moved due to its initial velocity, v0t, and how far it moved due to its

acceleration, ½ at2. Adding those terms together gets you the same result we got using

algebra earlier in the chapter: x = x0 + vot + ½at2.

© Goodman and Zavorotiny 2007

-61-

Page 62: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 62

Chapter Questions

1. When you drive a car and take a quick look on the speedometer, what do you see velocity or speed?

2. A ball is thrown vertically up and is caught at the starting point; compare the traveled distance and displacement of the ball.

3. Can an object with a constant acceleration reverse it direction of travel? Explain.

4. Can an object have a varying velocity when its speed is constant? Explain.

5. Is it possible for an object to have average velocity equal to its instantaneous velocity?

6. What quantity describes how quickly you change your speed?

7. Can an object have a southward velocity and a northward acceleration?

8. Is it possible for an object to have average speed equal to the magnitude of its average velocity?

9. If the speedometer of a car reads constant speed 50 mi/h, does it mean that the car has constant velocity?

10.What does the area under the curve on a velocity-versus-time graph represent?

11.What does the slope of the curve on a displacement-versus-time graph represent?

12.What does the slope of the curve on a velocity-versus-time-time graph represent?

© Goodman and Zavorotiny 2007

-62-

Page 63: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 63

Chapter Problems

Motion at Constant Speed

1. A rabbit can cover a distance of 80 m in 5 s. What is the speed of the rabbit?

2. During the first 50 s a truck traveled at constant speed of 25 m/s. Find the distance that it traveled.

3. An elevator ascends at a constant speed of 4 m/s, how much time is required for the elevator in order to travel 120 m upwards?

4. A racing car can complete a 900 m long lap in 15 s. What is the speed of the car?

5. It is known that a shark can travel at a speed of 15 m/s. How far can a shark go in 10 s?

6. How long does it take an airplane to fly 1500 miles if it maintains a speed of 600 miles per hour?

7. A person can run 280 m in 68 s. At what speed are they running?

8. How far does a runner travel if they maintain a speed of 8.5 m/s for 240 s?

9. A sportsman can develop a maximum speed of 12 m/s when he is swimming in a pool. Calculate the time interval that is required to travel a distance of 25 m.

10.A train, of length 200m, with a speed of 30 m/s crosses a bridge that is 850 m long. How much time does it take for the train to completely cross the bridge (from the moment it reaches the bridge until it has completely crossed it)?

11.A train with a length of 150 m crosses a 390 m long bridge in 180 s. Calculate the speed of the train.

12.A battalion of soldiers that extends over a distance of 250 m crosses a 125m long bridge. If they march at a speed of 2.5 m/s, how much time will elapse from when the first soldier reaches the bridge to when the last soldier steps off of it?

13.A car travels at a constant speed of 20 m/s. Convert the speed from m/s into km/h.

14.A train travels at constant speed of 54 km/h. Convert the speed from km/h into m/s.

© Goodman and Zavorotiny 2007

-63-

Page 64: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 64

Non-Uniform Motion and Average Speed

15.A boat travels 40 miles in two hours, speeds up to travel the next 80 miles in three hours then slows down to travel the last 40 miles in three hours. What is the average speed of the boat for the entire trip?

16.A car travels for an hour at a speed of 20 km/hr, the next two hours at a speed of 65 km/hr and the final hour at a speed of 85 km/hr. What is the average speed of the car for the entire trip?

17.A bicyclist travels the first 800 m of a trip with a speed of 10 m/s, the next 500 m with an average speed of 5 m/s and the final 1200 m at a speed of 13 m/s. Find the average speed of the bicyclist for this trip.

18.A bicyclist travels the first 700 m of a trip at an average speed of 8 m/s, travels the next 600 m in 90 s and the last 50s at a speed of 21 m/s. Find the average speed of the bicyclist for this trip.

19.A car travels 100 km in the first two hours, stops for half an hour and then travels 200 km in the next four hours. Find the average speed of the car.

20.An airplane travels at a speed of 300 km/hr for 2 hours, speeds up to 400 km/hr for the next hour and then travels the final four hours at a speed of 500 km/hr. What is the average speed of the plane for this trip?

21.An airplane travels 2800 km at a speed of 700 km/h, decreases its speed to 500 km/h for the next 1500 km and travels the last 1000 km at a speed of 400 km/hr. Find the average speed of the plane for the trip.

22.An airplane travels 2100 km at a speed of 500 km/h, encounters a head wind that decreases its speed to 400 km/h for the next three hours and then travels the last 400 km to complete the trip at an average speed, for the entire trip of 440 km/hr. What was the speed of the plane for the last part of the trip?

23.A runner runs the first 400m of a race in 80s, the second 400m in 70s and the final 800m in 130s. What was her average speed for this run?

24.A train travels from Boston to New York. It travels at a speed of 180 km/hr for two hours, speeds up to 200 km/hr for the next four hours and then slows down to 120 km/hr for the next six hours. What is the average speed of the train for this trip?

25. A train travels 120 km at a speed of 60 km/h, makes a stop for 0.5 hr, and then travels the next180 km at a speed of 90 km/h. What is the average speed of the train for this trip?

© Goodman and Zavorotiny 2007

-64-

Page 65: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 65

26.A train travels a total distance of 600km in eight hours. It travels the first 120 km at a speed of 60 km/h, travels the next 180 km in two hours and then completes the trip at an unknown speed. What was the average speed of the train for the last leg of the trip? What is the average speed of the train for the entire trip?

Position, Displacement and Velocity

27.A polar bear goes 4 miles north and then 7 miles south. Draw a sketch that shows its first displacement; its second displacement; and its total displacement for the entire trip. Find the total distance it traveled as well as its total displacement. Compare those two results.

28.An object moves from the initial position x1 = -3 m to the position x2 = 4 m and then to the position x3 = 8 m (see diagram above). Show both displacement vectors and the vector representing the object’s total displacement. Find the total traveled distance and the total displacement of the object. Compare those two results.

29.An object moves from the initial position x1 = -2 m to the position x2 = 7 m and then to the position x3 = 3 m (see diagram above). Draw the two displacement vectors and the vector representing the total displacement. Find the total distance traveled and the total displacement. Compare those two results.

30.An object moves from the position +16 m to the position +47 m in 12 s. What is its total displacement? What is its average velocity?

31.An object moves from the position +34 m to the position -15 m in 15 s. What is its total displacement? What is its average velocity?

32.A balloon drifts 140 m toward the west in 45 s; then the wind suddenly changes and the balloon flies 90 m toward the east in the next 25 s.

a. What distance did it travel during the first 45 s? b. What distance did it travel during the next 25 s?c. What total distance did it travel?

© Goodman and Zavorotiny 2007

-65-

Page 66: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 66

d. What was its average speed during the first 45 s? e. What was its average speed during the next 25 s? f. What was its average speed for the entire trip?

g. What was its displacement during the first 45 s?h. What was its displacement during the next 25 s? i. What was its total displacement?

j. What was its average velocity during the first 45 s?k. What was its average velocity during the next 25 s?l. What was its average velocity for the entire trip?

33.An object starts at a point +25 m goes 40 m toward +X direction in 5 s then suddenly changes its direction to the opposite and covers 50 m in 10 s.

a. Where is the object after the first 5 s? b. Where is the object after the next 10 s?c. What total distance did it travel?

d. What was its average speed during the first 5 s? e. What was its average speed during the next 10 s? f. What was its average speed for the entire trip?

g. What was its displacement during the first 5 s?h. What was its displacement during the next 10 s? i. What was its total displacement?

j. What was its average velocity during the first 5 s?k. What was its average velocity during the next 10 s?l. What was its average velocity for the entire trip?

© Goodman and Zavorotiny 2007

-66-

Page 67: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 67

Problem Solving with the Kinematics Equations

Using the Equation: v = v0 + at

34. If an object accelerates from rest, with a constant acceleration of 5.4 m/s2, what will its velocity be after 28 s?

35.An object is traveling at a constant velocity of 15 m/s when it experiences a constant acceleration of 3.5 m/s2 for a time of 11 s. What will its velocity be after that acceleration?

36.An object is moving at a velocity of 23 m/s. It accelerates to a velocity of 85 m/s over a time of 8.3 s. What acceleration did it experience?

37.An object initially at rest experiences an acceleration of 9.8 m/s2. How much time will it take it to achieve a velocity of 58 m/s?

38.An object accelerates to a velocity of 34 m/s over a time of 13 s. The acceleration it experienced was 15 m/s2. What was its initial velocity?

39.A car is driving at a velocity of 24 m/s. If its brakes can supply an acceleration of -5.0 m/s2, how much time will be required to bring the car to a stop?

40.A car’s speedometer reads 20 m/s after accelerating, from a standing start, for 25s. What was the magnitude of its acceleration?

41.An object increases its velocity from 22 m/s to 36 m/s in 5 s. What is the acceleration of the object?

42.A bicyclist is traveling at a speed of 5 m/s when it suddenly accelerates, at a constant rate of 0.6 m/s2, for a time of 10s. What is the speed of the bicycle at the end of that 10s?

43.A train departs from its station at a constant acceleration of 5 m/s2. What is the speed of the train at the end of 20s?

44.What is the velocity of a dropped object after it has fallen for 3.0s?

45.What is the velocity of a dropped object after it has fallen for 12s?

46.A ball is thrown straight up with a velocity of 16m/s; what will be its velocity 2.0s after being released?

47.A ball is thrown straight down with a velocity of 12m/s; what will be its velocity 2.0s after being released?

© Goodman and Zavorotiny 2007

-67-

Page 68: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 68

48.A ball is thrown straight up from the ground with an unknown velocity. It returns to the ground after 4.0s. With what velocity did it leave the ground?

49.A ball is thrown straight up from the ground with an unknown velocity. It reaches its highest point after 3.5s. With what velocity did it leave the ground?

Using the Equation: x = x0 + vot + ½at2

50.An object, moving with a constant velocity, travels 274m in 23s. What is its velocity?

51.An object accelerates from rest with a constant acceleration of 2m/s2. How far will it have moved after 9s?

52.An object is traveling with a constant velocity of 5m/s. How far will it have gone after 7s?

53.An object, moving with constant acceleration and zero initial velocity, travels 48 m in 5.2s. What is the magnitude of its acceleration?

54.An object is moving with an initial velocity of 23 m/s. It is then subject to a constant acceleration of 3.5 m/s2 for 12 s. How far will it have traveled during the time of its acceleration?

55.An object is moving with a constant velocity of 278 m/s. How long will it take it to travel 7500 m?

56.An object, initially at rest, is subject to an acceleration of 34 m/s2. How long will it take for that object to travel 3400 m?

57.You are 12 miles north of your base camp when you begin walking north at a speed of 2 miles per hour. What is your location, relative to your base camp, after walking for 5 hours?

58.An object travels at a constant velocity of 15 m/s for 5.0 seconds. How far does it move during that time?

59.An object moves 250 m in 17 s. What is its average velocity?

60.How long will it take a person walking at 2.1 m/s to travel 13 m?

61.You are at a rest stop 250 miles north of New York City. You then travel north at a constant velocity of 65 miles per hour for 2.0 hours. Describe your location relative to New York City.

© Goodman and Zavorotiny 2007

-68-

Page 69: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 69

62.An object is at rest when it undergoes a constant acceleration of 13 m/s2 for 5.0 seconds. How far will it have traveled during this time?

63.An object is shot upwards, from the ground, with an initial velocity of 120 m/s.

How high will it be after 4.0s?

64.An object is shot upwards, from the ground, with an initial velocity of 40 m/s. How high will it be after 2.0s?

65.An object is dropped from the top of a building and strikes the ground 2.0s later. How tall is the building?

66.An object is dropped from a 42m tall building. How long does it take to reach the ground?

Using the Equation: v2 - vo2 = 2a(x - x0)

67.An object accelerates from rest with a constant acceleration of 7.5 m/s2. How fast will it be traveling after it goes 21 m?

68.An object experiences an acceleration of 9.8 m/s2 over a distance of 210 m. After that acceleration it has a velocity of 380 m/s. What was its velocity before being accelerated?

69.An object accelerates from rest to 24 m/s over a distance of 56 m. What acceleration did it experience?

70.An object experiences an acceleration of 6.8 m/s2. As a result, it accelerates from rest to 24 m/s. How much distance did it travel during that acceleration?

71.A car which is traveling at a velocity of 15 m/s undergoes an acceleration of 6.5 m/s2 over a distance of 340 m. How fast is it going after that acceleration?

72.A car slams on its brakes creating an acceleration of -3.2 m/s2. It comes to rest after traveling a distance of 210 m. What was its velocity before it began to accelerate?

73.An object accelerates from rest to 85 m/s over a distance of 36 m. What acceleration did it experience?

74.An object experiences an acceleration of -6.8 m/s2. As a result, it accelerates from 54 m/s to a complete stop. How much distance did it travel during that acceleration?

© Goodman and Zavorotiny 2007

-69-

Page 70: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 70

75.An object is dropped from a 32m tall building. How fast will it be going when it strikes the ground?

76.An object is dropped from a building and strikes the ground with a speed of 31m/s. How tall is the building?

77.A hopper jumps straight up to a height of 1.3m. With what velocity did it leave the floor?

78.A hopper jumps straight up to a height of 0.45m. With what velocity will it return to the table?

Using all three Kinematics Equations

79.An object accelerates from rest, with a constant acceleration of 8.4 m/s2, what will its velocity be after 11 s?

80.An object is traveling with a constant velocity of 3.0 m/s. How far will it have gone after 4.0 s?

81.An object is moving with an initial velocity of 19 m/s. It is then subject to a constant acceleration of 2.5 m/s2 for 15 s. How far will it have traveled during the time of its acceleration?

82.An object accelerates from rest to a velocity of 34 m/s over a distance of 3.5 m. What was its acceleration?

83.A car which is traveling at a velocity of 1.6 m/s undergoes an acceleration of 9.2 m/s2 over a distance of 540 m. How fast is it going after that acceleration?

84.An object is traveling at a constant velocity of 250 m/s when it experiences a constant acceleration of 1.5 m/s2 for a time of 38 s. What will its velocity be after that acceleration?

85.An object accelerates from rest with a constant acceleration of 7.5 m/s2. How fast will it be traveling after it goes 87 m?

86.An object is moving at a velocity of 8.8 m/s. It accelerates to a velocity of 85 m/s over a time of 6.3 s. What acceleration did it experience?

87.An object accelerates from rest, with a constant acceleration of 7.4 m/s2, what will its velocity be after 5.4 s?

88.An object accelerates from rest to a velocity of 44 m/s over a distance of 35 m. What was its acceleration?

© Goodman and Zavorotiny 2007

-70-

Page 71: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 71

89.An object is traveling with a constant velocity of 2.0 m/s. How far will it have gone after 38 s?

90.An object is moving with an initial velocity of 5.5 m/s. It is then subject to a constant acceleration of 2.5 m/s2 for 11 s. How far will it have traveled during the time of its acceleration?

91.An object accelerates from rest with a constant acceleration of 7.5 m/s2. How fast will it be traveling after it goes 12 m?

92.An object is traveling at a constant velocity of 11 m/s when it experiences a constant acceleration of 1.5 m/s2 for a time of 14 s. What will its velocity be after that acceleration?

93.An object is moving at a velocity of 5.8 m/s. It accelerates to a velocity of 25 m/s over a time of 3.3 s. What acceleration did it experience?

94.A car which is traveling at a velocity of 9.6 m/s undergoes an acceleration of 4.2 m/s2 over a distance of 450 m. How fast is it going after that acceleration?

Free Fall

95.A stone is dropped from the roof of a building. It took 5s for the stone to reach the ground. What is the height of the building?

96.An object falls from a height of 490 m. How much time does it take for the object to reach the ground?

97.A ball is thrown vertically down from the edge of a cliff with a speed of 8 m/s, how high is the cliff, if it took 6 s for the ball to reach the ground?

98.What is the landing velocity of an object that is dropped from a height of 49 m?

99.What is the landing velocity of an object that is thrown vertically down with a velocity of 5 m/s from a height of 25m?

100. A water drop falls down from the roof of a house during 3 s, how high is the house?

101. An object is dropped from a height of 100 m, how long is it in the air?

102. A pump can throw a stream of water up to 29.6 m. What is the initial speed of the stream when it leaves a hose nozzle?

© Goodman and Zavorotiny 2007

-71-

Page 72: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 72

103. A stone is thrown vertically up with a speed of 15 m/s. What is the traveled distance during first 4 s?

104. An arrow is projected by a bow vertically up with a velocity of 20 m/s, and reaches a target in 3 s. What is the velocity of the arrow just before it hits the target? How high is the target located?

105. An object is thrown vertically up with a velocity of 35 m/s. What was the maximum height it reached?

106. A boy throws a ball vertically up and catches it after 3 s. What height did the ball reach?

107. A marble is projected vertically up by a spring gun, and reaches the maximum height of 9.8 m. What is the initial speed of the marble? How long was the marble in the air?

108. An arrow is shot vertically up by a bow, and after 8 s returns to the ground level. What is the initial velocity of the arrow? How high did it go?

Graph Problems

109. Starting at the position, x0 = 4, you travel at a velocity of +2m/s for 6s. a. Determine your position at the times of 0s; 2s; 5s; and 6s. b. Draw the Position versus Time for your travel during this time. c. Draw the Velocity versus Time graph for your trip.

110. Starting at the position, x0 = -15, you travel at a velocity of +5m/s for 3s. a. Determine your position at the times of 0s; 1s; 2s; and 3s. b. Draw the Position versus Time for your travel during this time. c. Draw the Velocity versus Time graph for your trip.

© Goodman and Zavorotiny 2007

-72-

Page 73: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 73

111. The Position versus Time graph, below, describes the motion of three different cars moving along the x-axis.

a. Describe, in words, the velocity of each of the cars. Make sure you discuss each car’s speed and direction.

b. Calculate the velocity of each of the cars.c. Draw, on one set of axes, the Velocity versus Time graph for each of the

three cars.

Position versus Time

-15

-10

-5

0

5

10

15

0 1 2 3 4

Time (s)

Velo

city

(m/s

)

Series1 Series2 Series3

© Goodman and Zavorotiny 2007

-73-

Page 74: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 74

112. The Position versus Time graph, below, describes the motion of three different cars moving along the x-axis.

a. Describe, in words, the velocity of each of the cars. Make sure you discuss each car’s speed and direction.

b. Calculate the velocity of each of the cars.c. Draw, on one set of axes, the Velocity versus Time graph for each of the

three cars.

Position versus Time

-12-10

-8-6-4-202468

10121416

0 1 2 3 4 5 6

Time (s)

Velo

city

(m/s

)

Series1 Series2 Series3

© Goodman and Zavorotiny 2007

-74-

Page 75: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 75

113. The Velocity versus Time graph, below, describes the motion of three different cars moving along the x-axis.

a. Describe, in words, the velocity of each of the cars. Make sure you discuss each car’s speed and direction.

b. Calculate the displacement of each car during its trip.c. Calculate the distance traveled by each car during its trip.d. Compare your answers to b and c.

Velocity versus Time

-6-5-4-3-2-10123456

0 1 2 3 4 5 6

Time (s)

Velo

city

(m/s

)

Series1 Series2 Series3

© Goodman and Zavorotiny 2007

-75-

Page 76: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 76

114. The Velocity versus Time graph, below, describes the motion of three different cars moving along the x-axis.

a. Describe, in words, the velocity of each of the cars. Make sure you discuss each car’s speed and direction.

b. Calculate the displacement of each car during its trip.c. Calculate the distance traveled by each car during its trip.d. Compare your answers to b and c.

Velocity versus Time

-6-5-4-3-2-10123456

0 1 2 3 4 5 6

Time (s)

Velo

city

(m/s

)

Series1 Series2 Series3

© Goodman and Zavorotiny 2007

-76-

Page 77: Dynamics - Bergenusers.bergen.org/laumul/Kinematics Chapter.doc  · Web viewThe equals sign with three parallel lines just points out that this is a definition. We made up the word

Goodman and Zavorotniy - 77

115. A graph of the velocity as a function of time for two cars is presented below.

a. What is the initial velocity of each car?b. What is the acceleration of each car?c. What is the traveled distance of the car I at the end of 25 s? d. What is the traveled distance of the car II at the end of 20 se. Sketch graphs, on one set of axes, of each car’s acceleration as a function

of time.

116. A graph of the velocity as a function of time for two objects A and B is presented below.

a. What is the initial velocity of each object?b. What is the acceleration of each object?c. What is the traveled distance of the object A at the end of 6 s? d. What is the traveled distance of the object B at the end of 10 s? e. Sketch clear graphs of the object’s acceleration as a function of time.

© Goodman and Zavorotiny 2007

-77-