dynamic grid equivalent with rei method

16
Dynamic grid equivalent with REI method Josef Stadler Sep 4 th 2012

Upload: others

Post on 30-Jan-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Dynamic Grid Equivalent with REI Method

Dynamic grid equivalent with REI method

Josef Stadler

Sep 4th 2012

Page 2: Dynamic Grid Equivalent with REI Method

Overview

2

Motivation

Ward vs. REI Method

REI Method on “Kundur’s Two Area System”

Outlook

Dynamic grid equivalent with REI method

Page 3: Dynamic Grid Equivalent with REI Method

Motivation

3

Power systems increase in size and complexity

For research: Small area of interest

Internal or study system

Remaining part o External system

o Frontier or border buses

Static network reduction Ward

REI (Radial, Equivalent, Independent)

Dynamic network reduction Heuristic approach

Modal analysis approach

Coherency approach o REI

Dynamic grid equivalent with REI method

Page 4: Dynamic Grid Equivalent with REI Method

Ward vs. REI

4 Dynamic grid equivalent with REI method

Ward

Reduced generators and loads are located at the border buses

Reduced generators and loads represent certain load status

No way to keep single machine characteristics

REI (Radial, equivalent, Independent)

Transform external system into a passive network:

Insert a lossless REI Network

Radial, fictitious lines

Loads and generation are aggregated on a new bus

Characteristic of single machine can be preserved

Page 5: Dynamic Grid Equivalent with REI Method

Kundur‘s „two area system“ Source: P. Kundur, Power System Stability and Control

5 Dynamic grid equivalent with REI method

G1 – G2: S = 900 MVA; Xd = 1.8; Xd‘ = 0.3; D = 15; H = 6.5

G3 – G4: S = 900 MVA; Xd = 1.8; Xd‘ = 0.3; D = 15; H = 6.175

Loads: Bus 7: PL7 = 967 MW; QL7 = 100 MVar; QC7 = 200 MVar;

Bus 9: PL9 = 1767 MW; QL9 = 100 MVar; QC9 = 350MVar;

Transformer: 20 kV / 230 kV; S = 900 MVA; Z = 0 + j0.15

Lines: (0.0001 + j0.001) pu/km

Page 6: Dynamic Grid Equivalent with REI Method

REI Method on Kundur‘s „Two Area System"

6 Dynamic grid equivalent with REI method

1 5 6 7 8 9 10 11 3

2 4

internal buses

border bus

external buses

Page 7: Dynamic Grid Equivalent with REI Method

REI Method on Kundur‘s „Two Area System"

7 Dynamic grid equivalent with REI method

1 5 6 7 8 9 10 11 3

2 4 G

R

~

Page 8: Dynamic Grid Equivalent with REI Method

Reduced network

8 Dynamic grid equivalent with REI method

1 3 4 5 6 7 8 R

2

Page 9: Dynamic Grid Equivalent with REI Method

Comparison load flow results

9 Dynamic grid equivalent with REI method

bus Original network Reduced network

|Un| in pu Ang(Un) in ° |Un| in pu Ang(Un) in °

1 1,030 0,00 1,030 0,00

2 1,010 -9,84 1,010 -9,92

3 1,030 -28,00

4 1,010 -38,23

5 1,004 -6,49 1,003 -6,52

6 0,973 -16,66 0,970 -16,76

7 0,952 -25,18 0,946 -25,36

8 0,931 -39,44 0,918 -39,93

9 0,962 -53,52 0,950 -54,44

10 0,978 -45,01 0,968 -45,74

11 1,006 -34,64

R 1,021 -33,70

Page 10: Dynamic Grid Equivalent with REI Method

Parameter for the equivalent generator

10 Dynamic grid equivalent with REI method

Distribution participation factor:

𝑃𝐹𝑖 = 𝑅𝑒𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 𝑝𝑒𝑟 𝑟𝑎𝑑𝑖𝑎𝑙 𝑓𝑖𝑐𝑡𝑖𝑡𝑜𝑢𝑠 𝑙𝑖𝑛𝑒 𝑖

𝑡𝑜𝑡𝑎𝑙 𝑎𝑐𝑡𝑖𝑣𝑒 𝑝𝑜𝑤𝑒𝑟 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑖

Power base

𝑆𝑁𝑔 = 𝑃𝐹𝑖 ∙ 𝑆𝑁𝑖𝑖

Inertia

𝐻𝑔 =1

𝑆𝑁𝑔 𝑃𝐹𝑖 ∙ 𝐻𝑖 ∙ 𝑆𝑁𝑖𝑖

Synchronous reactance

𝑋𝑑𝑔 =1

𝐻𝑔 𝐻𝑖 ∙ 𝑋𝑑𝑖𝑖

Source: F. Milano, K. Srivastava, Dynamic REI equivalents for short circuit and transient stability analyses

Page 11: Dynamic Grid Equivalent with REI Method

Dynamic simulation

11 Dynamic grid equivalent with REI method

Only motion equations of synchronous generators

No AVR

No PSS

𝜔𝐸

𝜗𝐸 =

−𝐷

𝑇−

𝐾

𝑇

𝜔𝑛 0∙𝜔𝐸

𝜗𝐸 Δ𝑃𝐸 = 𝐾 ∙ 𝜗𝐸

𝐾 calculated with DC load flow

Numerical integration with second-order Runge-Kutta method

Page 12: Dynamic Grid Equivalent with REI Method

Comparison: unreduced generators

12 Dynamic grid equivalent with REI method

0 1 2 3 4 5 6 7 8 9 10-34

-32

-30

-28

-26

-24

-22

-20

-18

-16

original: generator 1

t in s

an

gle

in

de

gre

es

0 1 2 3 4 5 6 7 8 9 10-34

-32

-30

-28

-26

-24

-22

-20

-18

-16

reduced: generator 1

t in s

an

gle

in

de

gre

es

0 1 2 3 4 5 6 7 8 9 10-42

-41

-40

-39

-38

-37

-36

-35

-34

-33

-32

original: generator 2

t in s

an

gle

in

de

gre

es

0 1 2 3 4 5 6 7 8 9 10-43

-42

-41

-40

-39

-38

-37

-36

-35

-34

-33

reduced: generator 2

t in s

an

gle

in

de

gre

es

Page 13: Dynamic Grid Equivalent with REI Method

Modal analysis

13 Dynamic grid equivalent with REI method

Original:

Reduced:

0.5

1

30

210

60

240

90

270

120

300

150

330

180 0

mode shape: 0.96156 Hz

0.5

1

30

210

60

240

90

270

120

300

150

330

180 0

mode shape: 0.93936 Hz

0.5

1

30

210

60

240

90

270

120

300

150

330

180 0

mode shape: 0.62045 Hz

0.5

1

30

210

60

240

90

270

120

300

150

330

180 0

mode shape: 0.61608 Hz

0.5

1

30

210

60

240

90

270

120

300

150

330

180 0

mode shape: 1.0136 Hz

1

2

3

1

2

3

4

Page 14: Dynamic Grid Equivalent with REI Method

Comparison: reduced generators with equivalent generator

14 Dynamic grid equivalent with REI method

0 1 2 3 4 5 6 7 8 9 10-56

-54

-52

-50

-48

-46

-44

original: generator 3

t in s

an

gle

in

de

gre

es

0 1 2 3 4 5 6 7 8 9 10-62

-60

-58

-56

-54

-52

-50

reduced: equivalent generator

t in s

an

gle

in

de

gre

es

0 1 2 3 4 5 6 7 8 9 10-70

-68

-66

-64

-62

-60

-58

-56

-54

-52

original: generator 4

t in s

an

gle

in

de

gre

es

Page 15: Dynamic Grid Equivalent with REI Method

Outlook

15 Dynamic grid equivalent with REI method

Appliance on a major grid

> 1 REI networks

> 1 equivalent machine

E.g. UK Matlab model derived from public data by Herwig

Reduction with retaining one or more important machines

parameterization with WAMS data

Including dynamic loads

Reduction including control units of the machines

AVR

PSS

Page 16: Dynamic Grid Equivalent with REI Method

Thank you for your attention

Josef Stadler

[email protected]