duplicacion del material genetico. the eukaryotic cell cycle dna synthesis restriction point mitosis...

100
DUPLICACION DEL MATERIAL GENETICO

Upload: lewis-willis

Post on 22-Dec-2015

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

DUPLICACION DEL MATERIAL GENETICO

Page 2: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

The Eukaryotic Cell Cycle

DNASynthesis

RestrictionPoint

Mitosis

Quiescence

SS

SG1

SM

SG2SG1

Page 3: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

II. Historical Background

A. 1953 Watson and Crick: DNA Structure Predicts a Mechanism of Replication“It has no escaped our notice that the specific pair we have postulated immediately suggests a possible copying mechanism for the genetic material.”

B. 1958 Meselson and Stahl: DNA Replication is Conservative

Page 4: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

The Meselson-Stahl Experiment“the most beautiful experiment in biology.”

Three potential DNA replication models and their predicted outcomes The actual data!

1/4 old:3/4 new

1/2 hybids:1/2 new

Allhybrids

1/2 old:1/2 new

Allhybrids

Page 5: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

III. General Features of DNA Replication

1. requires a DNA template and a primer with a 3’ OH end. (DNA synthesis cannot initiate de novo)

2. requires dNTPs.

3. occurs in a 5’ to 3’ direction.

DNA Synthesis:

Short RNA moleculesact as primersin vivo

Page 6: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1
Page 7: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

DNA replication is extremely accurate

Error rates of ~1 in 109 to 1010 for cellular DNA replication

This would allow approximately 1 human genome to bereplicated with only a few errors!!

How can this happen if the intrinsic error rate of the bestpolymerases is only ~1 per 104 to 105 nucleotides?

Proofreading – additional 102 to 103-fold increased fidelity

Uses 3´ to 5´ exonuclease activity

Mismatch repair – final 102 to 103-fold increased fidelity

Page 8: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

IV. DNA Polymerases of E. coli

The first DNA polymerase was discovered by Arthur Kornberg in 1957 DNAPolymerase I

A. E. coli DNA Pol I has 3 enzymatic activities:

1) 5’ 3’ DNA polymeraseKlenow Fragment

2) 3’ 5’ exoncuclease (For proofreading)

3) 5’ 3’ DNA exonuclease (To edit out sections of damaged DNA)

1 323

Hans Klenow showed that limited proteolysis with either subtilisin or trypsin will cleavePol I into two biologically active fragments.

Facts about DNA Synthesis Error Rates:—DNA polymerase inserts one incorrect nucleotide for every 105 nucleotides added.—Proofreading exonucleases decrease the appearance of an incorrect paired base to onein every 107 nucleotides added.—Actual error rate observed in a typical cell is one mistake in every 1010 nucleotidesadded.—Error rate for RNA Polymerase is 1/105 nucleotides.

aa 928Klenow Fragment

5’ to 3’ Exo.5’ to 3’ Pol & 3’ to 5’ Exo

Page 9: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Model for the Interaction of Klenow Fragment with DNA

Page 10: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

How the Proofreading Activity of Klenow Fragment Works

Page 11: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1
Page 12: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Aplicación de la Polimerización

Traslado del Corte o “Nick Translation”

Page 13: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1
Page 14: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

DNA Polymerase I can Perform “Nick Translation”

They act together to edit out

sections of damaged DNA

Page 15: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

The 5’ to 3’ Exonuclease and 5’ to 3 Polymerase of Pol I Result in “NickTranslation”:

5’ 3’ 3’ 5’

I

5’ 3’ 3’ 5’

5’ 3’ exonuclease edits damaged DNA

Newly synthesized. DNA

DNA Polymerase I

+

5’-dNMPs

nick

nick

Page 16: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1
Page 17: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1
Page 18: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Procesividad de la Duplicación del DNA

Page 19: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1
Page 20: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

B. Processivity

DNA Polymerases Can be Processive or Distributive

Processivity is continuous synthesis by polymerase without dissociationfrom the template.

A DNA polymerase that is Distributive will dissociate from the templateafter each nucleotide addition.

Processive Polymerization

Distributive Polymerization

1 nucleotide

Used inDNAReplication

Suitable forDNA Repair

Page 21: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Proc. Dist.

How to Measure Processivity

dATPdCTP

dGTP[32P]-dTTP

ssDNAtemplate

M13Mg2+

5 min. @ 37oC

STOP w/ EDTA

DNA Pol

Polyacrylamide Gel

Processivity experimentsrequire a large excess oftemplate to Pol to preventreassociation to the sametemplate.

primer

Page 22: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

DNA replication is highly processive

Pol III holoenzyme of E. coli can synthesize hundreds ofthousands of nucleotides before falling off the template.

Processivity is effected by the beta subunit of the polymerase,called the sliding clamp.

Page 23: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1
Page 24: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Replication in Eukaryotes

Replication in eukaryotes (~50 nucleotides/sec) is much slower

than in prokaryotes (~1,000 nucleotides/sec).

Function E. coli Human

Genomic replication pol III pol delta

Primer synthesis (RNA/DNA) Primase pol alpha

Sliding clamp beta-subunit of pol III proliferating cell nuclear antigen (PCNA)

PCNA originally discovered in sera of patients with theautoimmune disorder, SLE (systemic lupus erythematosis).

It is a highly-regulated marker of cell proliferation.

Page 25: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

The problem of replication of the ends of linear chromosomes

3´5´

DNA replication cannot complete the 3´ endof linear chromosomes

The cell addresses this issue by generating hundreds

to thousands of simple repeats (5´TTAGGG)n at the ends

of chromosomes of all vertebrates - telomeres

The enzyme, telomerase, is an RNA-directed DNA polymerase.

Page 26: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

DNA Pol I y DNA Pol III trabajan juntas

Page 27: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

DNA Pol I

RNA

Okazaki fragment

>10 kb

1 kb

Roles of DNA Pol III and Pol I in E. coli

Pol III—main DNA replication enzyme. It exists as a dimer to coordinate the synthesis of both the leading and lagging strands at the replication fork.

Pol I—repair enzyme to remove RNA primers that initiate DNA synthesis on both strands. It is need predominantly for maturation of Okazaki fragments.

1) Removes RNA primers (5’3’ Exo)2) Replaces the RNA primers with DNA (5’3’ Pol & 3’5’ Exo proofreading)

RNA primer replaced withDNA by Pol I’s nick translatiton activity

Okazaki fragment

Page 28: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

DNA Pol III is highly “processive” DNA Pol I is” distributive”

Pol I & II – main DNA repair enzymePol III – main DNA replication enzyme

Page 29: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Dirección de la Replicación

Page 30: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Initiation of replication

Prokaryotic and eukaryoticcellular replication

Some viruses

In higher eukaryotes, number and characteristics of origins are not well defined.

Origin activation is extremely complex, and involves both sequence (cis) elements and protein (trans) elements.

Page 31: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1
Page 32: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Replication of the E. coli Chromosome is Bidirectional

Page 33: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1
Page 34: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1
Page 35: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

DNA mitocondrial

Un ejemplo de replicación alternativa

Page 36: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Mammalian Mitochondrial DNA (MtDNA)

Multi-copy, circular molecule of ~16,000 bp.

2. Encodes genes for respiration (13 proteins) and translation (22 tRNAs, 2

rRNAs).

3. 2 promoters (1 on each strand); the STOP codons for the protein genes,

UAA, created post-transcriptionally by polyadenylation

4. Some genetic diseases caused by mutations in mtDNA. MtDNA mutations

accumulate during aging.

5. MtDNA used to define phylogenetic relationships between species,

subspecies, etc., or define breeding populations.

Page 37: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Mammalian Mt DNA

Page 38: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Mt DNA replication

Page 39: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Mammalian (mouse) mtDNA Replication

Two origins of replication: H (for heavy strand) and L (for light strand) that are used sequentially for unidirectional replication.

Persistent D-loop at H ori, which is extended to start replication of the H strand.

Once ~2/3 of H strand is replicated, L ori is exposed and replication of L strand

starts.

The lagging L strand replication gives 2 type of molecules: and is gapped

on L strand.

L strand finishes replicating, and then both and are converted to supercoiled forms.

Page 40: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

En la replicación del DNA participan otras enzimas además de las DNA

polimerasas

Page 41: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1
Page 42: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

DNA replication is semi-discontinuous

Lagging strand synthesis MUST besemi-discontinuous

Page 43: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Functional aspects of DNA replication

Function ProteinsUnwind helix DNA helicasesRelieve torsional stress TopoisomeraseDNA polymerization DNA polymerasePrimer (RNA) synthesis PrimaseElimination of RNA primers 5´-3´ exonucleaseProofreading 3´-5´ exonucleaseJoining DNA strands following DNA ligase

primer eliminationProtect local single-strand regions Single-strand binding

proteins

Page 44: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Replication of the E. coli Chromosome is Semidiscontinuous

Replicates continuously

DNA synthesis is going in same direction as replication fork

Because of the anti-parallel structure of the DNA duplex, new DNA must be synthesized in the direction of fork movement in both the 5’ to 3’ and 3’ to 5’ directions overall.

Replicates discontinuously

DNA synthesis is going in opposite direction as replication fork

However all known DNA polymerases synthesize DNA in the 5’ to 3’ direction only.

The solution is semidiscontinuous DNA replication.

Joined by DNA ligase

Page 45: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Review of DNA synthesis – E. coli as paradigm

Page 46: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

At Each Replication Fork is A Replisome

Page 47: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

LAS TOPOISOMERASAS

Page 48: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Additional Terms Used To Describe Topology

The Linking Number Difference = L = L – L0

It is a measure of the number of writhes

For a relaxed molecule: L = 0

The difference between the linking number of a DNA molecule (L)and the linking number of its relaxed form (L0)

The superhelical density ( )= L – L0

It is a measure of supercoiling that is independent of length.

For a relaxed molecule: = 0

DNA in cells has a of –0.06

Page 49: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

What Topoisomerases Do

1. Change the linking number of a DNA molecule by:A) Breaking one or both strands thenB) Winding them tighter or looser, and rejoining the ends.

2. Usually relax supercoiled DNA

Page 50: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Type I TopoisomerasesThey relax DNA by nicking then closing one strand of duplex DNA. They cut one strand of thedouble helix, pass the other strand through, then rejoin the cut ends. They change the linkingnumber by increments of +1 or –1.

Topo I from E. coli 1) acts to relax only negative supercoils2) increases linking number by +1 increments

Topo I from eukaryotes 1) acts to relax positive or negative supercoils2) changes linking number by –1 or +1 increments

Page 51: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Maximumsupercoiled

3 min.Topo I

25 min. Topo I

Relaxation of SV40 DNA by Topo I

Page 52: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Type II Topoisomerases

They relax or underwind DNA by cutting then closing both strands. They change the linkingnumber by increments of +2 or –2.

All Type II Topoisomerases Can Catenate and Decatenate cccDNA molecules

Circular DNA molecules that use type II topoisomerases:

E. coli Eukaryotes-plasmids -mitochondrial DNA-E. coli chromosome -circular dsDNA viruses (SV40)

Page 53: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

An E. coli Type II Topoisomerase: DNA Gyrase

Topo II (DNA Gyrase) from E. coli 1) Acts on both neg. and pos. supercoiled DNA2) Increases the # of neg. supercoils by increments of 23) Requires ATP

Page 54: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

DNA Gyrase Adds Negative Supercoils to DNA

Page 55: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Topo II from Eukaryotes1) Relaxes only negatively supercoiled DNA2) Increases the linking number by increments of +23) Requires ATP

Page 56: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

The Role of Topoisomerases in DNA Replication

DNA gyrase

Example 1: DNA gyrase (a type II topo of E. coli removes positive supercoilsthat normally form ahead of the growing replication fork

Page 57: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Example 2: Replicated circular DNA molecules are separated by type II topoisomerase

Page 58: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

A Review of the Different TopoisomerasesType E. coli Eukaryotic

I Topo I Topo I

cleaves Relaxes only - supercoils Relaxes – and +supercoils1 strand(nicks) Changes linking # by +1 Changes linking # by +1or -1

Requires no cofactors Requires no cofactors

II DNA Gyrase Topo II

cleaves Acts on – or + supercoils Relaxes only -supercoils2 strands(ds cut) Changes linking # in steps of –2 Changes linking # by +2

Introduces net neg. supercoils Requires ATP

Requires ATP

Needed to introduce neg. supercoils near the OriC sitebecause DnaA can initiate replication only on a negativelysupercoiled template

Can catenate and decatenate DNA

If eukaryotic topoisomerasescannot introduce netsupercoils, how caneukaryotic DNA becomenegatively supercoiled?

+1 or –1

supercoils

Cleaves1 strand(nicks)

Cleaves2 strands(ds cut)

Can catenate and decatenate DNA

Page 59: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

How Does Eukaryotic DNA Become Neg. Supecoiled?

PlectonemicToroidal (Solenoidal)

Q: What happens when you remove the histone core? A: The negative supercoil adopts a plectonemic conformation

Page 60: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Aplicación del conocimiento de las Topoisomerasas

Page 61: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

At Each Replication Fork is A Replisome

Page 62: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

different agents used in Bacterial infection or cancer chemotherapy

Targeting DNA Replication: Topoisomerase Inhibitors

Page 63: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

nick DNA, pass other strand through nickATP-independent; change linking number in steps of 1

Inhibitors (e.g., camptothecin)can freeze enzyme-DNA covalent complex

Type I Topoisomerase

Page 64: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

break DS DNA, pass DS DNA through enzyme-bound nickrequire ATP; change linking number in steps of 2

bacterial DNA gyrase uses ATP to increase linking number

Type II Topoisomerases

Page 65: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

N N

O

COOH

CH3

CH2CH3

Nalidixic acid

12

364

7

5

• Quinolones and fluoroquinolones bind to two enzymes needed for bacterial replication, DNA gyrase (A subunit mainly) and topoisomerase IV, causing inhibition of DNA replication and cell death. Mammalian homologues show 100-1000 times less affinity for these drugs.

N

O

COOH

CH2CH3

O

O

Cinoxacin

• Resistance developed due to gyrase mutations.

• Nalidixic acid and cinoxacin are well absorbed from GI tract and rapidly metabolized in the liver (one metabolite, OH-nalidixic acid is active). They only reach effective concentration in urine.

Early Quinolones Used for UTI

Page 66: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

• Fluoroquinolones are active against most urinary tract pathogens: E. coli and Klebsiella. Also most bacteria that cause enteritis: Salmonella, Shigella, E. coli. Inactive against anaerobes: Clostridium difficile

• Rapidly and incompletely absorbed from the GI tract. Widely distributed to body fluids but concentrations in CSF are low. Plasma lifetime varies from 4-11 hours.

N

O

COOHF

N

NH CH2CH3

CH3

F

lomefloxacin

N

O

COOHF

N

NH

ciprofloxacin

N

O

COOHF

N

NH CH2CH3

norfloxacin

N

O

COOHF

N

NHCH3

OCH3

ofloxacin

• Ciprofloxacin reaches high concentration in respiratory, urinary and GI tract, bones, joints, skin, and soft tissues. It is eliminated mostly by renal clearance.

• Newer derivatives Grepafloxacin, Levofloxacin, Gatifloxacin, Clinafloxacin Moxifloxacin, Trovafloxacin can have increased activity against gram (+) and anaerobic bacteria, but are not generally first line drugs for these organisms.

Fluoroquinolones

Page 67: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

•Fluoroquinolone resistance mutations: DNA gyrase is the primary target in E. coli and other gram-negative organisms topoisomerase IV is primary target for S. aureus and other gram-positive bacteria.

Page 68: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Patología por falla de Helicasa

Page 69: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Sindrome de Werner

Page 70: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Genes implicated in progerias:

Werner’sWerner’s::

found gene implicated in Werner’s

Werner’s gene appears to be responsible for making a protein

• helicase is responsible for unwinding dsDNAhelicase is responsible for unwinding dsDNA

• The genetic sequence of Werner’s gene closely resembles a sequence of genes that code for helicaseshelicases in normal cells

Page 71: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

DNA ReplicationDNA Replication

Mutations of helicasesmay affect unwindingof DNA

Could affect following:- DNA repair- DNA repair- DNA replication- DNA replication- gene expression- gene expression- chromosome- chromosome recombinationrecombination

Helicase enzyme isresponsible forunwinding the DNAstrand

Page 72: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Aging Hypothesis:

With age there are a # of defects# of defects in genes that code for helicases in the cell This produces abnormal proteinsabnormal proteins that can’t unwind ds DNA Result in a in the efficiency of above cellular functions Ultimately leads to a in functional capacity.

Page 73: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1
Page 74: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Quimioterapia Anti-viral basado en el conocimiento de la replicación

Page 75: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1
Page 76: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Viral enzymesNucleic acid polymerases

• DNA-dependent DNA polymerase - DNA viruses

• RNA-dependent RNA polymerase - RNA viruses

• RNA dependent DNA polymerase (RT) - Retroviruses

• Protease (retrovirus)

• Integrase (retrovirus)

• Neuraminidase (orthomyxovirus)

Anti-Viral ChemotherapyAnti-Viral Chemotherapy

Page 77: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

1962 Idoxuridine

• Pyrimidine analog

• Toxic

• Topical - Epithelial herpetic keratitis

1983 Acyclovir

• Purine analog

• Sugar modification

• Chain terminator

• Anti-herpes

• Selective to virus-infected cells1990’s Protease inhibitors

Anti-Viral ChemotherapyAnti-Viral Chemotherapy

Page 78: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Binding

FusionReverse transcription

Nuclear localization

Uncoating

Integration

Transcription

SplicingRNA export

Genomic RNA

mRNA

Translation

ModificationBuddingAssembly

Maturation

Endocytosis

Lysosome

Page 79: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Nucleic Acid Synthesis

Polymerases are often virally encoded

Other enzymes in nucleic acid synthesis

e.g. THYMIDINE KINASE in Herpes Simplex

Anti-Viral ChemotherapyAnti-Viral Chemotherapy

Page 80: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Thymidine Kinase

Deoxy-thymidine

Deoxy-thymidine triphosphate

Intracellular viral or cellular thymidine kinase adds first phosphate

PO4PO4PO4Cellular kinases add two more phosphates to form TTP

Anti-Viral ChemotherapyAnti-Viral Chemotherapy

Page 81: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Why does Herpes simplex code for its own thymidine kinase?

TK- virus cannot grow in neural cells because they are not proliferating (not making DNA)

Although purine/pyrimidines are present, levels of phosphorylated nucleosides are low

Allows virus to grow in cells that are not making DNA

“Thymidine kinase” is a misnomer

Deoxynucleoside kinaseNON-SPECIFIC

Anti-Viral ChemotherapyAnti-Viral Chemotherapy

Page 82: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Herpes thymidine kinase will phosphorylate any deoxynucleoside including drugs – as a result of its necessary non-specificity

Nucleoside analog may be given in non-phosphorylated form

• Gets drugs across membrane

• Allows selectivity as only infected cell has enzyme to phosphorylate the drug

ACG P P P

Anti-Viral ChemotherapyAnti-Viral Chemotherapy

Cellular TK (where expressed) does not phosphorylate (activate) the drug

Page 83: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Need for activation restricts drug to:

• Viruses such as HSV that code for own thymidine kinase

• Virus such as cytomegalovirus and Epstein-Barr virus that induce cells to overproduce their own

thymidine kinase

• In either case it is the VIRUS-INFECTED cell that activates the drug

Anti-Viral ChemotherapyAnti-Viral Chemotherapy

Page 84: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Thymidine kinase activates drug but phosphorylated drug inhibits the polymerase

Nucleotide analogs

Sugar modifications

Base modifications

Selectivity

• Viral thymidine kinase better activator

• Cellular enzyme may not be present in non-proliferating cells

• Activated drug is more active against viral DNA polymerase that against cell polymerase

Anti-Viral ChemotherapyAnti-Viral Chemotherapy

Page 85: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Guanine analogs

Acyclovir = acycloguanosine = Zovirax

Ganciclovir = Cytovene

• Activated by viral TK

• Activated ACV is better (10x) inhibitor of viral DNA polymerase than inhibitor of cell DNA polymerase

Excellent anti-herpes drug

Acyclovir Ganciclovir

Anti-Viral ChemotherapyAnti-Viral Chemotherapy

Page 86: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Acyclovir:

• Chain terminator

Good anti-herpes drug

T P

PG

PC

PA

Normal DNA synthesis

Anti-Viral ChemotherapyAnti-Viral Chemotherapy

Page 87: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

T P

PG

PC

PA

PA

ACGP-P-P

Termination

Also inhibits:

• Epstein Barr

• Cytomegalovirus

Acyclovir:

• Chain terminator

Selective:

• Virus phosphorylates drug

• Polymerase more sensitive

Anti-Viral ChemotherapyAnti-Viral Chemotherapy

Page 88: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Acyclovir very effective against:

• Herpes simplex keratitis (topical)

• Latent HSV (iv)

• Fever blisters – Herpes labialis (topical)

• Genital herpes (topical, oral, iv)

Resistant mutants in thymidine kinase or DNA polymerase

Appears not to be teratogenic or carcinogenic

Ganciclovir very effective against cytomegalovirus – viral DNA polymerase is very sensitive to drug activated by cell TK

Anti-Viral ChemotherapyAnti-Viral Chemotherapy

Page 89: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Adenine arabinoside (Ara-A)

Problems : Severe side effects

• Resistant mutants (altered polymerase)

• Chromosome breaks (mutagenic)

• Tumorigenic in rats

• Teratogenic in rabbits

• Insoluble

Use: topical applications in ocular herpes simplex

Competitive inhibitor of virus DNA polymerase which is much more sensitive than host polymerase

Anti-Viral ChemotherapyAnti-Viral Chemotherapy

Page 90: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Adenine arabinoside• HSV encephalitis

• Neonatal herpes

• Disseminated herpes zoster

• Hepatitis B

Poor in vivo efficacy:

DEAMINATION

Anti-Viral ChemotherapyAnti-Viral Chemotherapy

Page 91: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Other sugar modifications:

AZTazidothymidin

e

DDIdideoxyinosin

e

DDCdideoxycytidin

e

Anti-Viral ChemotherapyAnti-Viral Chemotherapy

Page 92: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Base change analogs

Altered base pairing

Mutant DNA

Resistant mutants

TrifluorouridineViroptic

anti-HSV

Idoxuridine

Anti-Viral ChemotherapyAnti-Viral Chemotherapy

Page 93: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Fluoroiodo aracytosine has both a base and a sugar alteration

OHOCH2

O

NH2

I

F

Anti-Viral ChemotherapyAnti-Viral Chemotherapy

Page 94: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Prodrugse.g. Famciclovir

Taken orally Converted bypatient’s metabolism

HSV thymidine kinase

P

Host kinase

PP

Penciclovir: Available as topical cream

Glaxo-SmithKlein

Page 95: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Non-nucleoside Non-competitive RT inhibitors

Combination therapy with AZT

Resistance mutations will be at different sites

The most potent and selective RT inhibitors

Nanomolar range

Minimal toxicity (T.I. 10,000-100,000)

Synergistic with nucleoside analogs (AZT)

Good bio-availability

Resistant mutants - little use in monotherapy

Anti-Viral ChemotherapyAnti-Viral Chemotherapy

Page 96: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Sustiva(S) -6- chloro-4-(cyclopropylethynyl)-1,4-dihydro-4-(trifluoromethyl)-2H-3, 1-benzoxazin-2-one.

DuPont

Anti-Viral ChemotherapyAnti-Viral Chemotherapy

Page 97: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Nevirapine: Approved for AIDS patientsGood blocker of mother to child transmission

peri-natal - breast feeding

• Single dose at delivery reduced HIV transmission by 50%

• Single dose to baby by 72 hours

Efavirenz (Sustiva, DMP266)

In combination therapy will suppress viral load as well as HAART and may be better – Approved for

AIDS patients

Anti-Viral ChemotherapyAnti-Viral Chemotherapy

Page 98: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Phosphono acetic acid (PAA)

Phosphono formic acid

O O

HO P C

OH

Binds pyrophosphate site of polymerase

Competitive inhibitor

10 -100x greater inhibition of herpes polymerase

Toxic: accumulates in bones, nephrotoxicity

Rapid resistance

Clinical trial: CMV in AIDS patients

Anti-Viral ChemotherapyAnti-Viral Chemotherapy

Page 99: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1

Ribavirin

• Guanosine analog

• Non-competitive inhibitor of RNA polymerase in vitro

• Little effect on ‘flu in vitro

• Often good in animals but poor in humans

• Aerosol use: respiratory syncytial virus

• i.v./oral: reduces mortality in Lassa fever, Korean and Argentine hemorrhagic fever

Anti-Viral ChemotherapyAnti-Viral Chemotherapy

Page 100: DUPLICACION DEL MATERIAL GENETICO. The Eukaryotic Cell Cycle DNA Synthesis Restriction Point Mitosis Quiescence S S S G1 S M S G2 S G1