draw-bend fracture prediction with dual-phase...

62
Draw-Bend Fracture Prediction with Dual-Phase Steels R. H. Wagoner September 25, 2012 AMPT Wollongong, Australia

Upload: others

Post on 04-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Draw-Bend Fracture Prediction with Dual-Phase Steels

    R. H. Wagoner

    September 25, 2012

    AMPT Wollongong, Australia

  • R. H. Wagoner

    Outline

    1. Background – Shear Fracture, 2006 2. DBF Results & Simulations, 2011 Intermediate Conclusions 3. Practical Application, 2012

    Ideal DBF Test Recommended Procedure

    4. No Ideal Test? Results, Recommended Procedure

    2

  • R. H. Wagoner 3

    1. Background – Shear Fracture, 2006

  • R. H. Wagoner 4

    Shear Fracture of AHSS – 2005 Case

    Jim Fekete et al, AHSS Workshop, 2006

  • R. H. Wagoner 5

    Shear Fracture of AHSS - 2011

    Forming Technology Forum 2012 Web site: http://www.ivp.ethz.ch/ftf12

    http://www.ivp.ethz.ch/ftf12

  • R. H. Wagoner 6

    Unpredicted by FEA / FLD

    Stoughton, AHSS Workshop, 2006

  • R. H. Wagoner 7

    Shear Fracture: Related to Microstructure?

    Ref: AISI AHSS Guidelines

  • R. H. Wagoner 8

    Conventional Wisdom, 2006

    Shear fracture… • is unique to AHSS (maybe only DP steels) • occurs without necking (brittle) • is related to coarse, brittle microstructure • is time/rate independent Notes: • All of these based on the A/SP stamping trials, 2005. • All of these are wrong. • Most talks assume that these are true, even today.

  • R. H. Wagoner 9 9 9

    NSF Workshop on AHSS (October 2006) E

    long

    atio

    n (%

    )

    Tensile Strength (MPa)

    0

    10

    20

    30

    40

    50

    60

    70

    0 600 1200 300 900 1600

    MART

    Mild BH

    Elo

    ngat

    ion

    (%)

    600

    R. W. Heimbuch: An Overview of the Auto/Steel Partnership and Research Needs [1]

  • R. H. Wagoner 10

    2. DBF Results & Simulations, 2011

  • R. H. Wagoner

    References: DBF Results & Simulations J. H. Kim, J. H. Sung, K. Piao, R. H. Wagoner: The Shear Fracture of

    Dual-Phase Steel, Int. J. Plasticity, 2011, vol. 27, pp. 1658-1676. J. H. Sung, J. H. Kim, R. H. Wagoner: A Plastic Constitutive Equation

    Incorporating Strain, Strain-Rate, and Temperature, Int. J. Plasticity, 2010, vol. 26, pp. 1746-1771.

    J. H. Sung, J. H. Kim, R. H. Wagoner: The Draw-Bend Fracture Test (DBF)

    and Its Application to DP and TRIP Steels, Trans. ASME: J. Eng. Mater. Technol., (in press)

    11

  • R. H. Wagoner

    DBF Failure Types

    Type I

    Type II Type III

    65o

    65o

    V2

    V1

    Type I: Tensile failure (unbent region) Type II: Shear failure (not Type I or III) Type III: Shear failure (fracture at the roller)

    12

  • R. H. Wagoner

    DBF Test: Effect of R/t

    13

  • R. H. Wagoner 14

    “H/V” Constitutive Eq.: Large-Strain Verification

    600

    700

    800

    900

    1000

    0.1 0.2 0.3 0.4 0.5 0.6 0.7

    Effe

    ctiv

    e St

    ress

    (MPa

    )

    Effective Strain

    H/V =1MPa

    DP590(B), RDStrain Rate=10-3/sec25oC

    Tensile TestVoce =1MPa

    Hollomon =4MPa

    Bulge Test (r=0.84, m=1.83)

    FitRange Extrapolated, Bulge Test Range

  • R. H. Wagoner 15

    0 0.05 0.1 0.15 0.2 0.25 0.3300

    400

    500

    600

    700

    Engi

    neer

    ing

    Stre

    ss (M

    Pa)

    Engineering Strain

    Experiment(D-B)

    Voce HollomonH/V model

    DP590(B), RDStrain Rate=10-3/s100oC, Isothermal

    FE Simulated Tensile Test: H/V vs. H, V

  • R. H. Wagoner

    Predicted ef, H/V vs. H, V: 3 alloys, 3 temperatures

    16

    Hollomon Voce H/V

    DP590 0.05 (23%) 0.05 (20%) 0.02 (7%)

    DP780 0.03 (18%) 0.04 (22%) 0.01 (6%)

    DP980 0.04 (30%) 0.03 (21%) 0.01 (5%)

    Standard deviation of ef: simulation vs. experiment

  • R. H. Wagoner 17

    FE Draw-Bend Model: Thermo-Mechanical (T-M)

    hmetal,air = 20W/m2K

    hmetal,metal = 5kW/m2K

    µ = 0.04

    U1, V1

    U2, V2

    • Abaqus Standard (V6.7) • 3D solid elements (C3D8RT), 5 layers • Von Mises, isotropic hardening • Symmetric model

    Kim et al., IDDRG, 2009

  • R. H. Wagoner

    Front Stress vs. Front Displacement

    18

    0

    200

    400

    600

    800

    1000

    0 20 40 60 80

    Fron

    t Str

    ess,

    σ1

    Front Displacement, U1 (mm)

    Measured

    DP780-1.4mm, RDV

    1=51mm/s, V

    2/V

    1=0

    R/t=4.5

    IsothermalSolid, Shell

    T-M

  • R. H. Wagoner

    Displacement to Maximum Front Load vs. R / t

    19

    0

    20

    40

    60

    80

    0 2 4 6 8 10 12 14

    UM

    ax. L

    oad

    (mm

    )

    R / t

    Type I

    Type III

    DP780-1.4mm, RDV

    1=51mm/s, V

    2/V

    1=0

    T-M, Solid

    Measured

    Isothermal, Solid

    Isothermal, Shell

  • R. H. Wagoner 20

    Is shear fracture of AHSS brittle or ductile?

  • R. H. Wagoner

    Fracture Strains: DP 780 (Typical)

    21

  • R. H. Wagoner

    Fracture Strains: TWIP 980 (Exceptional)

    22

  • R. H. Wagoner

    Directional DBF : DP 780 (Typical)

    23

  • R. H. Wagoner

    Directional DBF Formability: DP980 (Exceptional)

    24

    0

    5

    10

    15

    20

    25

    30

    0 30 60 90

    Elon

    gatio

    n to

    Fra

    ctur

    e (m

    m)

    Angle to RD (degree)RD TD

    DP980R/t = 3.3

  • R. H. Wagoner 25

    Interim Conclusions

    • “Shear fracture” occurs by plastic localization.

    • Deformation-induced heating dominates the error in predicting shear failures.

    • Brittle cracking can occur. (Poor microstructure or exceptional tensile ductility, e.g. TWIP).

    • T-dependent constitutive equation is essential.

    • Shear fracture is predictable plastically. (Challenges: solid elements, T-M model.)

  • R. H. Wagoner 26

    3. Practical Application - 2012

  • R. H. Wagoner

    DBF/FE vs. Industrial Practice/FE

    Ind.: Plane strain High rate ~Adiabatic FE: Shell Isothermal Static

    DBF: General strain Moderate rates Thermo-mech. FE: Solid element Thermo-mech.

    27

  • R. H. Wagoner

    Ideal DBF Test: Plane Strain, High Rate

    28

  • R. H. Wagoner

    Ideal Test Results - Stress

    29

    400

    600

    800

    1000

    1200

    0 2 4 6 8 10 12 14

    Peak

    Eng

    inee

    ring

    Stre

    ss (M

    Pa)

    Bending Ratio, R / t

    DP780-1.4mm

    Analytical PS Result

    (UTS)

    (R/t)*

  • R. H. Wagoner

    Ideal Test Results - Strain

    30

    0

    0.1

    0.2

    0.3

    0.4

    0 2 4 6 8 10 12 14 16

    True

    Str

    ain

    Bending Ratio, R / t

    Analytical PS ResultsDP 780 - 1.4mm

    Outer Strains

    Inner Strains

    Center Strains(Membrane) FLDo

    (R/t)*

  • R. H. Wagoner

    How to Use Practically: Bend, Unbend Regions

    31

  • R. H. Wagoner

    Practical Application of SF FLD – (1) Direct

    32

    For each element in contact

    Known: R, t ε*membrane

    Predicted Fracture: εFEA > ε*membrane

  • R. H. Wagoner

    Practical Application of SF FLD – (2) Indirect

    33

    For each element drawn over contact

    Known: (R, t)contact Pmax σ*PS tension ε*PS tension

    Predicted Fracture: εFEA > ε*PS tension

    Wu, Zhou, Zhang, Zhou, Du, Shi: SAE 2006-01-0349.

  • R. H. Wagoner

    Calculation: Indirect Method

    34

    Example: von Mises Yield, Hollomon Hardening

    Von Mises: 𝝈∗𝑷𝑷𝑷 =𝟑𝟐𝑷𝒎𝒎𝒎 𝑨

    Hollomon: 𝝈 = 𝑲 𝜺 𝒏

    So: 𝝈∗𝑷𝑷𝑷 =𝟑𝟐𝑲 𝜺∗𝑷𝑷𝑷

    𝒏 𝜺∗𝑷𝑷𝑷 =𝟐𝟑

    𝝈∗

    𝑲

    𝟏/𝒏

  • R. H. Wagoner

    Recommended Procedure with Industrial FEA

    35

    1. Use adiabatic law in FEA, use rate sensitivity

    2. Classify each element based on X-Y position (tooling) a) Bend (plane-strain) b) After bend (plane-strain) c) General (not Bend, not After)

    3. Apply 4 criteria: a) FLD (Bend, After) b) Direct SF (Bend) c) Indirect SF (After) d) Brittle Fracture* (All?)

  • R. H. Wagoner 36

    4. No Ideal Test? (What to do?)

  • R. H. Wagoner

    What is Needed?

    37

    Pmax = f(R/t) (PS, high-speed DBF)

    400

    600

    800

    1000

    1200

    0 2 4 6 8 10 12 14

    Peak

    Loa

    d (M

    Pa)

    Bending Ratio, R / t

    0

    0.1

    0.2

    0.3

    0.4

    0 2 4 6 8 10 12 14 16

    Mem

    bran

    e St

    rain

    Bending Ratio, R / t

    ε∗membrane = f(R/t) (PS, high-speed DBF)

  • R. H. Wagoner 38

    FE Plane Strain DBF Model

    µ = 0.06

    U1, V1

    U2, V2 = 0

    • Abaqus Standard (V6.7) • Plane strain solid elements (CPE4R), 5 layers • Von Mises, isotropic hardening • Isothermal, Adiabatic, Thermo-Mechanical

  • R. H. Wagoner

    0

    400

    800

    1200

    1600

    0 0.2 0.4 0.6 0.8 1

    True

    Str

    ess

    (MPa

    )

    True Plastic Strain

    DP980(D)-GA-1.45mmdε/dt=10-3/s

    Adiabatic

    25oC75oC

    125oC

    -5% -12%

    Adiabatic Constitutive Equation

    0p

    T dC

    εη σ ερ

    ∆ = ∫

    ( , ) ( , , )adiabatic Tσ ε ε σ ε ε= ∆

    39

  • R. H. Wagoner

    Peak Stress, Plane-Strain: DP980

    40

    600

    800

    1000

    1200

    1400

    0 2 4 6 8 10 12 14

    Peak

    Eng

    inee

    ring

    Stre

    ss (M

    Pa)

    R / t

    DP980-1.43mm

    Analytical Model,Plane StrainPS FE Model,m=0, µ=0

    UTS

    DBF measured(RD, TD)

  • R. H. Wagoner

    Membrane Strains at Maximum Load

    41

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0 2 4 6 8 10 12 14 16

    ε s, T

    rue

    Mem

    bran

    e St

    rain

    Bending Ratio, R / t

    Analytical Adiabatic ModelStopped at Maximum LoadDP590

    DP780

    DP980

  • R. H. Wagoner

    Analytical Model: Model vs. Fit

    42

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    0 0.1 0.2 0.3 0.4 0.5 0.6

    ∆ε s

    , Tru

    e M

    embr

    ane

    Stra

    in

    1 / Bending Ratio, t / R

    Analytical Adiabatic ModelStopped at Maximum Load

    DP590S = 0.167, ε

    so = 0.138

    DP780S = 0.198, ε

    so = 0.101

    DP980S = 0.221, εs

    o = 0.088

    −+

    ε=

    ε

    maxmax

    oss R

    tRtS

    Rt

    Rt

  • R. H. Wagoner

    Analytical Model: Model vs. Fit

    43

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0 2 4 6 8 10 12 14 16

    ε s, T

    rue

    Mem

    bran

    e St

    rain

    Bending Ratio, R / t

    Analytical Adiabatic ModelStopped at Maximum Load

    DP590: S = 0.168, ε

    so = 0.138

    DP780: S = 0.198, εs

    o = 0.101

    DP980: S = 0.221, ε

    so = 0.088

    −+

    ε=

    ε

    maxmax

    oss R

    tRtS

    Rt

    Rt

  • R. H. Wagoner 44

    Conclusions

    • Shear fracture is predictable with careful testing or careful

    constitutive modeling and FEA.

    • “Shear fracture” occurs by plastic localization.

    • “Shear fracture” is an inevitable consequence of draw-bending mechanics. All materials.

    • Brittle fracture can occur, but is unusual. (Poor microstructure or

    v. high tensile tensile limit, e.g. TWIP).

    • T-dependent constitutive equation is essential for AHSS because of high plastic work. (But probably not Al or many other alloys.)

  • R. H. Wagoner 45

    Thank you.

  • R. H. Wagoner 46

    References

    • R. H. Wagoner, J. H. Kim, J. H. Sung: Formability of Advanced High Strength Steels, Proc. Esaform 2009, U. Twente, Netherlands, 2009 (CD)

    • J. H. Sung, J. H. Kim, R. H. Wagoner: A Plastic Constitutive Equation Incorporating Strain, Strain-Rate, and Temperature, Int. J. Plasticity, (accepted).

    • A.W. Hudgins, D.K. Matlock, J.G. Speer, and C.J. Van Tyne, "Predicting Instability at Die Radii in Advanced High Strength Steels," Journal of Materials Processing Technology, vol. 210, 2010, pp. 741-750.

    • J. H. Kim, J. Sung, R. H. Wagoner: Thermo-Mechanical Modeling of Draw-Bend Formability Tests, Proc. IDDRG: Mat. Prop. Data for More Effective Num. Anal., eds. B. S. Levy, D. K. Matlock, C. J. Van Tyne, Colo. School Mines, 2009, pp. 503-512. (ISDN 978-0-615-29641-8)

    • R. H. Wagoner and M. Li: Simulation of Springback: Through-Thickness Integration, Int. J. Plasticity, 2007, Vol. 23, Issue 3, pp. 345-360.

    • M. R. Tharrett, T. B. Stoughton: Stretch-bend forming limits of 1008 AK steel, SAE technical paper No.2003-01-1157, 2003.

    • M. Yoshida, F. Yoshida, H. Konishi, K. Fukumoto: Fracture Limits of Sheet Metals Under Stretch Bending, Int. J. Mech. Sci., 2005, 47, pp. 1885-1896.

    http://www.sciencedirect.com/science?_ob=IssueURL&_tockey=

  • R. H. Wagoner 47

    Extra Slides

  • R. H. Wagoner

    DP Steels

    48

    0

    200

    400

    600

    800

    1000

    1200

    0 5 10 15 20 25

    Engi

    neer

    ing

    Stre

    ss(M

    Pa)

    Engineering Strain (%)

    DP590(B)-1.4mm

    DP780(D)-1.4mm

    DP980(D)-1.45mm

    Strain Rate: 10-3/secRoom Temp.Rolling Direction

  • R. H. Wagoner 49

    “H/V” Constitutive Framework

    Special:

    Standard:

    ( , , ) ( , ) ( ) ( )T f T g h Tσ σ ε ε ε ε= = ⋅ ⋅

    ( , ) ( ) (1 ( ))Hollo Vocef T T f T fε α α= + − ⋅

    1 2( ) ( )RTT T Tα α α= − −n

    Hollof Kε= [1 exp( )]Vocef A B Cε= − −

    [log ]

    0

    ( )a b

    εε

    ε

    +

    =

    ( ) (1 ( ))RTh T D T T= − ⋅ − Sung et al., Int. J. Plast. 2010

  • R. H. Wagoner

    Simulated D-B Test: Effect of Draw Speed

    50

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 5 10 15 20 25 30 35

    F/F U

    TS

    Front Displacement (mm)

    DP980(D)R/t=4.4, V

    2/V

    1=0

    51mm/s(dε/dt=2.5/s)

    Adiabatic

    Isothermal

    2.5mm/s(0.13/s)

    0.001mm/s(5x10-3/s)

    13mm/s(0.6/s)

  • R. H. Wagoner

    DBF Formability: DP980(A), RD vs. TD (Typical)

    51

    * Directional Formability: TD=RD

    0

    10

    20

    30

    40

    50

    2.2 3.4 4.5 5.5 6.6 7.8 10 13.3

    Fron

    t Dis

    p. to

    Fai

    lure

    (Uf,

    mm

    )

    R/t

    RDTD

    DP980(A)V

    1=51mm/sec

    V2/V

    1=0

  • R. H. Wagoner

    DBF Formability: DP980(D), RD vs. TD (Exceptional)

    52

    * Directional Formability: RD>TD

    0

    10

    20

    30

    40

    50

    60

    2.2 3.3 4.4 5.4 6.6 7.7 9.9 13.1

    Fron

    t Dis

    p. to

    Fai

    lure

    (Uf,

    mm

    )

    R/t

    DP980(D)V

    1=51mm/sec

    V2/V

    1=0

    RD

    TD

  • R. H. Wagoner

    Analytical Model – Curvilinear Derivation

    Rrn

    Neutral liner

    θ t

    T T

    lnn

    r

    rθε =

    2 2ln

    3 3ij ij

    n

    r

    rε ε ε= =

    53

    Fracture Criterion: Fracture occurs at Tmax for given R, to

    2 2 2( ) ( )3 3 3

    n

    n

    rR t

    r r

    r dr dr rθθσ σ σ σ+

    = − −

    ∫ ∫

    0R tR t

    R R

    Trdr dθθ θθσ σ ξξ

    ++

    =∂

    =∂∫ ∫

    2 2( ) ( )3 3

    R t

    r

    r dr rθθσ σ σ+

    = +

    Materially embedded coordinate :ξ

    nr

    rdr d dr

    λ ξ ξ= =

    0 2 2( ) ( )3 3

    R t r dθθξ

    σ ξ σ ξ σ ξξ

    + ∂ = + ∂

    0 2 2 2( ) ( )3 3 3

    n

    n

    R t r rd dξ

    θθξ ξ

    σ ξ σ ξ σ ξ σ ξξ ξ

    + ∂ ∂ = − − ∂ ∂

    ∫ ∫

    nr r>

    nr r<

    nξ ξ>

    nξ ξ

  • R. H. Wagoner

    DBF Interpretation: Plane-strain vs. Tension

    400

    600

    800

    1000

    1200

    0 2 4 6 8 10 12 14

    Peak

    Eng

    inee

    ring

    Stre

    ss (M

    Pa)

    R / t

    DP780-1.4mm

    Analytical Model,Plane Strain

    Simplified FE Model,m=0, µ=0

    UTS

    54

  • R. H. Wagoner

    Inner and Outer Strains at Maximum Load

    55

    0

    0.1

    0.2

    0.3

    0.4

    0 2 4 6 8 10 12 14 16

    True

    Str

    ain

    Bending Ratio, R / t

    Analytical Adiabatic ModelStopped at Maximum Load

    DP590

    DP780

    Inner Strains

    DP980

    Outer Strains

  • R. H. Wagoner

    Membrane Strains (R/t Affected Only)

    56

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0 2 4 6 8 10 12 14 16

    ∆ε s

    , Tru

    e M

    embr

    ane

    Stra

    in

    Bending Ratio, R / t

    Analytical Adiabatic ModelStopped at Maximum Load

    DP590

    DP780DP980

  • R. H. Wagoner

    R/t-Affected Membrane Strains vs. t/R

    57

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0 0.1 0.2 0.3 0.4 0.5 0.6

    ∆ε s

    , Tru

    e M

    embr

    ane

    Stra

    in

    1 / Bending Ratio, t / R

    Analytical Adiabatic ModelStopped at Maximum Load

    DP590

    DP780

    DP980

  • R. H. Wagoner

    Forming Limit Diagram

    58

    Ref: Hosford & Duncan

  • R. H. Wagoner

    PS T-M Model: Model vs. Fit

    59

    -0.05

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0 0.1 0.2 0.3 0.4

    ∆ε s

    , Tru

    e M

    embr

    ane

    Stra

    in

    1 / Bending Ratio, t / R

    Plane Strain Thermo-Mechanical ModelStopped at Maximum Load DP590

    S = 0.753, εs

    o = 0.149

    DP780S = 0.330, ε

    so = 0.123

    DP980S = 0.051, ε

    so = 0.133

    −+

    ε=

    ε

    maxmax

    oss R

    tRtS

    Rt

    Rt

  • R. H. Wagoner

    PS T-M Model: Model vs. Fit

    60

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0 2 4 6 8 10 12 14 16

    ε s, T

    rue

    Mem

    bran

    e St

    rain

    Bending Ratio, R / t

    Plane Strain Thermo-Mechanical ModelStopped at Maximum Load

    DP590S = 0.753, ε

    so = 0.149

    DP780: S = 0.330, εs

    o = 0.123

    DP980: S = 0.051, εs

    o = 0.133

    −+

    ε=

    ε

    maxmax

    oss R

    tRtS

    Rt

    Rt

  • R. H. Wagoner 61

    Draw-Bend Fracture Test (DBF): V1, V2 Constant

    Star

    t

    Max. Finish

    Max

    . Fin

    ish

    V1

    Start

    R

    444.5 mm (10”) 190.5 mm

    190.

    5 m

    m

    444.

    5 m

    m(1

    0”)

    V2 = αV1

    uf

    Specimen width: 25mm Tool radius choices: 2/16, 3/16, 4/16, 5/16, 6/16, 7/16, 9/16, 12/16 inch 3.2, 4.8, 6.4, 7.9, 9.5, 11.1, 14.3, 19 mm α = V2/V1: 0 and 0.3

    Wagoner et al., Esaform, 2009

  • R. H. Wagoner

    AHSS vs. HSLA

    62

    Ref: AISI AHSS Guidelines

    Draw-Bend Fracture Prediction with Dual-Phase SteelsOutlineSlide Number 3Shear Fracture of AHSS – 2005 CaseShear Fracture of AHSS - 2011Unpredicted by FEA / FLDShear Fracture: Related to Microstructure?Conventional Wisdom, 2006NSF Workshop on AHSS (October 2006)Slide Number 10References: DBF Results & SimulationsDBF Failure Types DBF Test: Effect of R/tSlide Number 14Slide Number 15Predicted ef, H/V vs. H, V: 3 alloys, 3 temperaturesFE Draw-Bend Model: Thermo-Mechanical (T-M)Front Stress vs. Front DisplacementDisplacement to Maximum Front Load vs. R / tSlide Number 20Slide Number 21Slide Number 22Slide Number 23Slide Number 24Interim ConclusionsSlide Number 26DBF/FE vs. Industrial Practice/FEIdeal DBF Test: Plane Strain, High RateIdeal Test Results - StressIdeal Test Results - StrainHow to Use Practically: Bend, Unbend RegionsPractical Application of SF FLD – (1) DirectPractical Application of SF FLD – (2) IndirectCalculation: Indirect MethodRecommended Procedure with Industrial FEASlide Number 36What is Needed?FE Plane Strain DBF ModelAdiabatic Constitutive EquationPeak Stress, Plane-Strain: DP980Membrane Strains at Maximum LoadAnalytical Model: Model vs. FitAnalytical Model: Model vs. FitConclusionsSlide Number 45ReferencesSlide Number 47DP SteelsSlide Number 49Simulated D-B Test: Effect of Draw SpeedSlide Number 51Slide Number 52Analytical Model – Curvilinear DerivationDBF Interpretation: Plane-strain vs. TensionInner and Outer Strains at Maximum LoadMembrane Strains (R/t Affected Only)R/t-Affected Membrane Strains vs. t/RForming Limit DiagramPS T-M Model: Model vs. FitPS T-M Model: Model vs. FitDraw-Bend Fracture Test (DBF): V1, V2 ConstantAHSS vs. HSLA