amercado.mat.utfsm.clamercado.mat.utfsm.cl/seminariolatam-esp_controlypi/casas.pdf · draft 4/33 uc...

132
1/33 UC University of Cantabria JJ II J I Back Close An optimal control problem of a nonmontone semilinear elliptic equation Eduardo Casas University of Cantabria Santander, Spain [email protected] A joint work with Mariano Mateos (University of Oviedo, Spain) and Arnd R¨ osch (University of Duisburg-Essen, Germany) Seminario Control en Tiempos de Crisis 2020

Upload: others

Post on 11-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

1/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

An optimal control problem of anonmontone semilinear elliptic equation

Eduardo CasasUniversity of CantabriaSantander, [email protected]

A joint work with Mariano Mateos (University of Oviedo, Spain) and Arnd Rosch (University ofDuisburg-Essen, Germany)

Seminario Control en Tiempos de Crisis 2020

Page 2: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

2/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

The Control Problem

(P) minu∈Uad

J(u) :=1

2

∫Ω

(yu(x)−yd(x))2 dx+ν

2

∫Ω

u2(x) dx (ν > 0)

Seminario Control en Tiempos de Crisis 2020

Page 3: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

2/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

The Control Problem

(P) minu∈Uad

J(u) :=1

2

∫Ω

(yu(x)−yd(x))2 dx+ν

2

∫Ω

u2(x) dx (ν > 0)

Uad =u ∈ L2(Ω) : α ≤ u(x) ≤ β a.e. in Ω(−∞ ≤ α < β ≤ +∞)

Seminario Control en Tiempos de Crisis 2020

Page 4: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

2/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

The Control Problem

(P) minu∈Uad

J(u) :=1

2

∫Ω

(yu(x)−yd(x))2 dx+ν

2

∫Ω

u2(x) dx (ν > 0)

Uad =u ∈ L2(Ω) : α ≤ u(x) ≤ β a.e. in Ω(−∞ ≤ α < β ≤ +∞)

Ay + b(x) · ∇y + f (x, y) = u in Ω

y = 0 on Γ

Seminario Control en Tiempos de Crisis 2020

Page 5: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

3/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Assumptions on the Linear Operator

• Ω is an open domain in Rn, n = 2 or 3, with Lipschitz boundary Γ

Seminario Control en Tiempos de Crisis 2020

Page 6: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

3/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Assumptions on the Linear Operator

• Ω is an open domain in Rn, n = 2 or 3, with Lipschitz boundary Γ

• Ay = −n∑

i,j=1

∂xj(aij(x)∂xiy) with aij ∈ L∞(Ω),

Seminario Control en Tiempos de Crisis 2020

Page 7: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

3/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Assumptions on the Linear Operator

• Ω is an open domain in Rn, n = 2 or 3, with Lipschitz boundary Γ

• Ay = −n∑

i,j=1

∂xj(aij(x)∂xiy) with aij ∈ L∞(Ω),

• ∃Λ > 0 such thatn∑

i,j=1

aij(x)ξiξj ≥ Λ|ξ|2 ∀ξ ∈ Rn and for a.a. x ∈ Ω

Seminario Control en Tiempos de Crisis 2020

Page 8: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

3/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Assumptions on the Linear Operator

• Ω is an open domain in Rn, n = 2 or 3, with Lipschitz boundary Γ

• Ay = −n∑

i,j=1

∂xj(aij(x)∂xiy) with aij ∈ L∞(Ω),

• ∃Λ > 0 such thatn∑

i,j=1

aij(x)ξiξj ≥ Λ|ξ|2 ∀ξ ∈ Rn and for a.a. x ∈ Ω

• Ay = Ay + b(x) · ∇y + a0(x)y, a0 ≥ 0

Seminario Control en Tiempos de Crisis 2020

Page 9: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

3/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Assumptions on the Linear Operator

• Ω is an open domain in Rn, n = 2 or 3, with Lipschitz boundary Γ

• Ay = −n∑

i,j=1

∂xj(aij(x)∂xiy) with aij ∈ L∞(Ω),

• ∃Λ > 0 such thatn∑

i,j=1

aij(x)ξiξj ≥ Λ|ξ|2 ∀ξ ∈ Rn and for a.a. x ∈ Ω

• Ay = Ay + b(x) · ∇y + a0(x)y, a0 ≥ 0

• b ∈ Lp(Ω) and a0 ∈ Lq(Ω), a0 ≥ 0,

• with p > 2 and q > 1 if n = 2, p ≥ 3 and q ≥ 3

2if n = 3

Seminario Control en Tiempos de Crisis 2020

Page 10: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

4/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

References

• N.S. Trudinger: “Linear elliptic equations with measurable coeffi-

cients”, Ann. Scuola Norm. Sup. Pisa 27 (1973) 265–308.

Seminario Control en Tiempos de Crisis 2020

Page 11: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

4/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

References

• N.S. Trudinger: “Linear elliptic equations with measurable coeffi-

cients”, Ann. Scuola Norm. Sup. Pisa 27 (1973) 265–308.

• D. Gilbarg and N.S. Trudinger: “Elliptic Partial Differential Equations

of Second Order”, Springer-Verlag, 1983.

Seminario Control en Tiempos de Crisis 2020

Page 12: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

4/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

References

• N.S. Trudinger: “Linear elliptic equations with measurable coeffi-

cients”, Ann. Scuola Norm. Sup. Pisa 27 (1973) 265–308.

• D. Gilbarg and N.S. Trudinger: “Elliptic Partial Differential Equations

of Second Order”, Springer-Verlag, 1983.

• L. Boccardo: “Stampacchia-Calderon-Zygmund theory for linear ellip-

tic equations with discontinuous coefficients and singular drift”, ESAIM

Control Optim. Calc. Var. 25 (2019).

Seminario Control en Tiempos de Crisis 2020

Page 13: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

5/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Garding’s Inequality

Lemma. Under the previous assumptionsA ∈ L(H10(Ω), H−1(Ω)) and

there exists a constant CΛ,b such that

〈Az, z〉H−1(Ω),H10 (Ω) ≥

Λ

4‖z‖2

H10 (Ω)− CΛ,b‖z‖2

L2(Ω) ∀z ∈ H10(Ω).

Seminario Control en Tiempos de Crisis 2020

Page 14: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

6/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

A Monotonicity Result

Lemma. If Ay ≤ 0⇒ y ≤ 0 (Gilbarg and Trudinger).

Seminario Control en Tiempos de Crisis 2020

Page 15: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

6/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

A Monotonicity Result

Lemma. If Ay ≤ 0⇒ y ≤ 0 (Gilbarg and Trudinger).

• We take 0 < ρ < ess supx∈Ωy(x), z(x) = (y(x)− ρ)+.

Seminario Control en Tiempos de Crisis 2020

Page 16: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

6/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

A Monotonicity Result

Lemma. If Ay ≤ 0⇒ y ≤ 0 (Gilbarg and Trudinger).

• We take 0 < ρ < ess supx∈Ωy(x), z(x) = (y(x)− ρ)+.

• Ωρ = x ∈ Ω : ∇z(x) 6= 0.

Seminario Control en Tiempos de Crisis 2020

Page 17: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

6/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

A Monotonicity Result

Lemma. If Ay ≤ 0⇒ y ≤ 0 (Gilbarg and Trudinger).

• We take 0 < ρ < ess supx∈Ωy(x), z(x) = (y(x)− ρ)+.

• Ωρ = x ∈ Ω : ∇z(x) 6= 0. |Ωρ| → 0 when ρ→ ess supx∈Ωy(x).

Seminario Control en Tiempos de Crisis 2020

Page 18: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

6/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

A Monotonicity Result

Lemma. If Ay ≤ 0⇒ y ≤ 0 (Gilbarg and Trudinger).

• We take 0 < ρ < ess supx∈Ωy(x), z(x) = (y(x)− ρ)+.

• Ωρ = x ∈ Ω : ∇z(x) 6= 0. |Ωρ| → 0 when ρ→ ess supx∈Ωy(x).

• 0 ≥ 〈Az, z〉 ≥ Λ‖∇z‖2L2(Ω)3 − ‖b‖L3(Ωρ)3‖∇z‖L2(Ω)3‖z‖L6(Ω)

Seminario Control en Tiempos de Crisis 2020

Page 19: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

6/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

A Monotonicity Result

Lemma. If Ay ≤ 0⇒ y ≤ 0 (Gilbarg and Trudinger).

• We take 0 < ρ < ess supx∈Ωy(x), z(x) = (y(x)− ρ)+.

• Ωρ = x ∈ Ω : ∇z(x) 6= 0. |Ωρ| → 0 when ρ→ ess supx∈Ωy(x).

• 0 ≥ 〈Az, z〉 ≥ Λ‖∇z‖2L2(Ω)3 − ‖b‖L3(Ωρ)3‖∇z‖L2(Ω)3‖z‖L6(Ω)

• ≥ Λ‖∇z‖2L2(Ω)3 − CΩ‖b‖L3(Ωρ)3‖∇z‖2

L2(Ω)3

Seminario Control en Tiempos de Crisis 2020

Page 20: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

6/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

A Monotonicity Result

Lemma. If Ay ≤ 0⇒ y ≤ 0 (Gilbarg and Trudinger).

• We take 0 < ρ < ess supx∈Ωy(x), z(x) = (y(x)− ρ)+.

• Ωρ = x ∈ Ω : ∇z(x) 6= 0. |Ωρ| → 0 when ρ→ ess supx∈Ωy(x).

• 0 ≥ 〈Az, z〉 ≥ Λ‖∇z‖2L2(Ω)3 − ‖b‖L3(Ωρ)3‖∇z‖L2(Ω)3‖z‖L6(Ω)

• ≥ Λ‖∇z‖2L2(Ω)3 − CΩ‖b‖L3(Ωρ)3‖∇z‖2

L2(Ω)3

• ‖b‖L3(Ωρ)3 ≥ ΛCΩ

> 0 ∀ρ

Seminario Control en Tiempos de Crisis 2020

Page 21: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

7/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Invertibility of ATheorem. The operator A : H1

0(Ω) −→ H−1(Ω) is an isomorphism.

Seminario Control en Tiempos de Crisis 2020

Page 22: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

7/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Invertibility of ATheorem. The operator A : H1

0(Ω) −→ H−1(Ω) is an isomorphism.

• Set Aty = Ay + tb(x) · ∇y + a0(x)y for t ≥ 0.

Seminario Control en Tiempos de Crisis 2020

Page 23: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

7/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Invertibility of ATheorem. The operator A : H1

0(Ω) −→ H−1(Ω) is an isomorphism.

• Set Aty = Ay + tb(x) · ∇y + a0(x)y for t ≥ 0.

• The injectivity of At is a consequence of the monotonicity.

Seminario Control en Tiempos de Crisis 2020

Page 24: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

7/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Invertibility of ATheorem. The operator A : H1

0(Ω) −→ H−1(Ω) is an isomorphism.

• Set Aty = Ay + tb(x) · ∇y + a0(x)y for t ≥ 0.

• The injectivity of At is a consequence of the monotonicity.

• I = t ∈ [0, 1] : At : H10(Ω) −→ H−1(Ω) is an isomorphism.

Seminario Control en Tiempos de Crisis 2020

Page 25: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

7/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Invertibility of ATheorem. The operator A : H1

0(Ω) −→ H−1(Ω) is an isomorphism.

• Set Aty = Ay + tb(x) · ∇y + a0(x)y for t ≥ 0.

• The injectivity of At is a consequence of the monotonicity.

• I = t ∈ [0, 1] : At : H10(Ω) −→ H−1(Ω) is an isomorphism.

• I is a nonempty relatively open set:

Seminario Control en Tiempos de Crisis 2020

Page 26: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

7/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Invertibility of ATheorem. The operator A : H1

0(Ω) −→ H−1(Ω) is an isomorphism.

• Set Aty = Ay + tb(x) · ∇y + a0(x)y for t ≥ 0.

• The injectivity of At is a consequence of the monotonicity.

• I = t ∈ [0, 1] : At : H10(Ω) −→ H−1(Ω) is an isomorphism.

• I is a nonempty relatively open set: 0 ∈ I and

‖At −At′‖L(H10 (Ω),H−1(Ω)) ≤ C|t− t′|‖b‖L2(Ω)n

Seminario Control en Tiempos de Crisis 2020

Page 27: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

8/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

• I is a closed set: Let tk∞k=1 ⊂ I such that tk → t.

Seminario Control en Tiempos de Crisis 2020

Page 28: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

8/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

• I is a closed set: Let tk∞k=1 ⊂ I such that tk → t. Let f ∈ H−1(Ω)

and yk∞k=1 ⊂ H10(Ω) such that Atkyk = f .

Seminario Control en Tiempos de Crisis 2020

Page 29: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

8/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

• I is a closed set: Let tk∞k=1 ⊂ I such that tk → t. Let f ∈ H−1(Ω)

and yk∞k=1 ⊂ H10(Ω) such that Atkyk = f .

• If yk∞k=1 is bounded in L2(Ω), then Garding’s inequality implies that

yk∞k=1 is bounded in H10(Ω) and, for a subsequence, yk y in H1

0(Ω)

and Aty = limk→∞Atkyk = f .

Seminario Control en Tiempos de Crisis 2020

Page 30: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

8/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

• I is a closed set: Let tk∞k=1 ⊂ I such that tk → t. Let f ∈ H−1(Ω)

and yk∞k=1 ⊂ H10(Ω) such that Atkyk = f .

• If yk∞k=1 is bounded in L2(Ω), then Garding’s inequality implies that

yk∞k=1 is bounded in H10(Ω) and, for a subsequence, yk y in H1

0(Ω)

and Aty = limk→∞Atkyk = f .

• If yk∞k=1 is not bounded in L2(Ω), then we take zk = 1‖yk‖L2(Ω)

yk.

Seminario Control en Tiempos de Crisis 2020

Page 31: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

8/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

• I is a closed set: Let tk∞k=1 ⊂ I such that tk → t. Let f ∈ H−1(Ω)

and yk∞k=1 ⊂ H10(Ω) such that Atkyk = f .

• If yk∞k=1 is bounded in L2(Ω), then Garding’s inequality implies that

yk∞k=1 is bounded in H10(Ω) and, for a subsequence, yk y in H1

0(Ω)

and Aty = limk→∞Atkyk = f .

• If yk∞k=1 is not bounded in L2(Ω), then we take zk = 1‖yk‖L2(Ω)

yk.

Garding’s inequality implies that zk∞k=1 is bounded in H10 (Ω) and, for

a subsequence, zk z in H10(Ω) and

Atz = limk→∞Atkzk = lim

k→∞

1

‖yk‖L2(Ω)

f = 0.

Seminario Control en Tiempos de Crisis 2020

Page 32: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

8/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

• I is a closed set: Let tk∞k=1 ⊂ I such that tk → t. Let f ∈ H−1(Ω)

and yk∞k=1 ⊂ H10(Ω) such that Atkyk = f .

• If yk∞k=1 is bounded in L2(Ω), then Garding’s inequality implies that

yk∞k=1 is bounded in H10(Ω) and, for a subsequence, yk y in H1

0(Ω)

and Aty = limk→∞Atkyk = f .

• If yk∞k=1 is not bounded in L2(Ω), then we take zk = 1‖yk‖L2(Ω)

yk.

Garding’s inequality implies that zk∞k=1 is bounded in H10 (Ω) and, for

a subsequence, zk z in H10(Ω) and

Atz = limk→∞Atkzk = lim

k→∞

1

‖yk‖L2(Ω)

f = 0.

Now, the injectivity implies z = 0, which contradicts ‖z‖L2(Ω) = 1.

Seminario Control en Tiempos de Crisis 2020

Page 33: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

9/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Regularity of the Solution

Theorem. Let y ∈ H10(Ω) satisfy Ay = u for some u ∈ Lp(Ω) with

p > n2 . Then, there exist µ ∈ (0, 1) and CA,µ independent of u such

that y ∈ C0,µ(Ω) and

‖y‖C0,µ(Ω) ≤ CA,µ‖u‖Lp(Ω).

Seminario Control en Tiempos de Crisis 2020

Page 34: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

9/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Regularity of the Solution

Theorem. Let y ∈ H10(Ω) satisfy Ay = u for some u ∈ Lp(Ω) with

p > n2 . Then, there exist µ ∈ (0, 1) and CA,µ independent of u such

that y ∈ C0,µ(Ω) and

‖y‖C0,µ(Ω) ≤ CA,µ‖u‖Lp(Ω).

Theorem. Assume that aij ∈ C0,1(Ω) for 1 ≤ i, j ≤ n, and a0 ∈L2(Ω). We also suppose that Γ is of class C1,1 or Ω is convex. Then,

A : H2(Ω) ∩H10(Ω) −→ L2(Ω) is an isomorphism.

Seminario Control en Tiempos de Crisis 2020

Page 35: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

10/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

The Adjoint Equation

Corollary. The adjoint operator A∗ : H10(Ω) −→ H−1(Ω) given by

A∗ϕ = A∗ϕ− div[b(x)ϕ] + a0(x)ϕ

is an isomorphism.

Seminario Control en Tiempos de Crisis 2020

Page 36: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

10/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

The Adjoint Equation

Corollary. The adjoint operator A∗ : H10(Ω) −→ H−1(Ω) given by

A∗ϕ = A∗ϕ− div[b(x)ϕ] + a0(x)ϕ

is an isomorphism.

Corollary. Assume that aij ∈ C0,1(Ω) for 1 ≤ i, j ≤ n, and

a0 ∈ L2(Ω). We also suppose that div b ∈ L2(Ω), Γ is of class C1,1 or

Ω is convex. Then, A∗ : H2(Ω)∩H10(Ω) −→ L2(Ω) is an isomorphism.

Seminario Control en Tiempos de Crisis 2020

Page 37: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

10/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

The Adjoint Equation

Corollary. The adjoint operator A∗ : H10(Ω) −→ H−1(Ω) given by

A∗ϕ = A∗ϕ− div[b(x)ϕ] + a0(x)ϕ

is an isomorphism.

Corollary. Assume that aij ∈ C0,1(Ω) for 1 ≤ i, j ≤ n, and

a0 ∈ L2(Ω). We also suppose that div b ∈ L2(Ω), Γ is of class C1,1 or

Ω is convex. Then, A∗ : H2(Ω)∩H10(Ω) −→ L2(Ω) is an isomorphism.

Proof. A∗ϕ = A∗ϕ− b(x)∇ϕ + (a0(x)− div b(x))ϕ

Seminario Control en Tiempos de Crisis 2020

Page 38: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

11/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

The Semilinear Equation

• f : Ω× R→ R is a Caratheodory function, monotone nondecreasing

with respect to the second variable

Seminario Control en Tiempos de Crisis 2020

Page 39: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

11/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

The Semilinear Equation

• f : Ω× R→ R is a Caratheodory function, monotone nondecreasing

with respect to the second variable

• ∀M > 0 ∃φM ∈ Lp(Ω) with p >n

2: |f (x, y)| ≤ φM(x)

for a.a. x ∈ Ω and ∀|y| ≤M

Seminario Control en Tiempos de Crisis 2020

Page 40: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

11/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

The Semilinear Equation

• f : Ω× R→ R is a Caratheodory function, monotone nondecreasing

with respect to the second variable

• ∀M > 0 ∃φM ∈ Lp(Ω) with p >n

2: |f (x, y)| ≤ φM(x)

for a.a. x ∈ Ω and ∀|y| ≤M

Theorem. For every u ∈ Lp(Ω) the semilinear equation has a unique

solution yu in H10(Ω) ∩ C(Ω).

Seminario Control en Tiempos de Crisis 2020

Page 41: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

11/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

The Semilinear Equation

• f : Ω× R→ R is a Caratheodory function, monotone nondecreasing

with respect to the second variable

• ∀M > 0 ∃φM ∈ Lp(Ω) with p >n

2: |f (x, y)| ≤ φM(x)

for a.a. x ∈ Ω and ∀|y| ≤M

Theorem. For every u ∈ Lp(Ω) the semilinear equation has a unique

solution yu in H10(Ω) ∩ C(Ω). Moreover, there exists a constant Kf

independent of u such that

‖yu‖H10 (Ω) + ‖yu‖C(Ω) ≤ Kf

(‖u‖Lp(Ω) + ‖f (·, 0)‖Lp(Ω) + 1

)

Seminario Control en Tiempos de Crisis 2020

Page 42: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

12/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

References

• T. Del Vecchio and M.M. Porzio: “Existence results for a class of

noncoercive Dirichlet problems”, Ricerche Mat. 44 (1995) 421–438.

Seminario Control en Tiempos de Crisis 2020

Page 43: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

12/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

References

• T. Del Vecchio and M.M. Porzio: “Existence results for a class of

noncoercive Dirichlet problems”, Ricerche Mat. 44 (1995) 421–438.

• L. Boccardo: “Two semilinear Dirichlet problems “almost” in duality”,

Boll. Unione Mat. Ital. 12 (2019) 349–356.

Seminario Control en Tiempos de Crisis 2020

Page 44: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

13/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

A Monotonicity Result

Lemma. Under the assumptions of the above theorem, if y1, y2 ∈H1

0(Ω) ∩ C(Ω) are solutions of the equations

Ayi + b(x) · ∇yi + f (x, yi) = ui, i = 1, 2,

with u1, u2 ∈ Lp(Ω) and u1 ≤ u2 in Ω, then y1 ≤ y2 in Ω as well.

Seminario Control en Tiempos de Crisis 2020

Page 45: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

13/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

A Monotonicity Result

Lemma. Under the assumptions of the above theorem, if y1, y2 ∈H1

0(Ω) ∩ C(Ω) are solutions of the equations

Ayi + b(x) · ∇yi + f (x, yi) = ui, i = 1, 2,

with u1, u2 ∈ Lp(Ω) and u1 ≤ u2 in Ω, then y1 ≤ y2 in Ω as well.

• The uniqueness of a solution of the state equation is consequence of

the above lemma.

Seminario Control en Tiempos de Crisis 2020

Page 46: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

14/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Existence: Sketch of Proof

• We redefine f = f − f (·, 0) and u = u− f (·, 0) ∈ Lp(Ω).

Seminario Control en Tiempos de Crisis 2020

Page 47: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

14/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Existence: Sketch of Proof

• We redefine f = f − f (·, 0) and u = u− f (·, 0) ∈ Lp(Ω).

• Step 1: ∃φ ∈ Lp(Ω) : |f (x, y)| ≤ φ(x) in Ω×R.

Seminario Control en Tiempos de Crisis 2020

Page 48: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

14/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Existence: Sketch of Proof

• We redefine f = f − f (·, 0) and u = u− f (·, 0) ∈ Lp(Ω).

• Step 1: ∃φ ∈ Lp(Ω) : |f (x, y)| ≤ φ(x) in Ω×R. We use Schauder’s

Theorem.

Seminario Control en Tiempos de Crisis 2020

Page 49: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

14/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Existence: Sketch of Proof

• We redefine f = f − f (·, 0) and u = u− f (·, 0) ∈ Lp(Ω).

• Step 1: ∃φ ∈ Lp(Ω) : |f (x, y)| ≤ φ(x) in Ω×R. We use Schauder’s

Theorem.

• Step 2: ∃φ ∈ Lp(Ω) such that f (x, y) ≥ φ(x) in Ω× R.

Seminario Control en Tiempos de Crisis 2020

Page 50: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

14/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Existence: Sketch of Proof

• We redefine f = f − f (·, 0) and u = u− f (·, 0) ∈ Lp(Ω).

• Step 1: ∃φ ∈ Lp(Ω) : |f (x, y)| ≤ φ(x) in Ω×R. We use Schauder’s

Theorem.

• Step 2: ∃φ ∈ Lp(Ω) such that f (x, y) ≥ φ(x) in Ω× R.

fk(x, y) = f (x,miny, k)

Seminario Control en Tiempos de Crisis 2020

Page 51: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

14/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Existence: Sketch of Proof

• We redefine f = f − f (·, 0) and u = u− f (·, 0) ∈ Lp(Ω).

• Step 1: ∃φ ∈ Lp(Ω) : |f (x, y)| ≤ φ(x) in Ω×R. We use Schauder’s

Theorem.

• Step 2: ∃φ ∈ Lp(Ω) such that f (x, y) ≥ φ(x) in Ω× R.

fk(x, y) = f (x,miny, k)⇒ φ(x) ≤ fk(x, y) ≤ φk(x)

Seminario Control en Tiempos de Crisis 2020

Page 52: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

14/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Existence: Sketch of Proof

• We redefine f = f − f (·, 0) and u = u− f (·, 0) ∈ Lp(Ω).

• Step 1: ∃φ ∈ Lp(Ω) : |f (x, y)| ≤ φ(x) in Ω×R. We use Schauder’s

Theorem.

• Step 2: ∃φ ∈ Lp(Ω) such that f (x, y) ≥ φ(x) in Ω× R.

fk(x, y) = f (x,miny, k)⇒ φ(x) ≤ fk(x, y) ≤ φk(x)

Ayk + b(x) · ∇yk + fk(x, yk) = u

Seminario Control en Tiempos de Crisis 2020

Page 53: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

14/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Existence: Sketch of Proof

• We redefine f = f − f (·, 0) and u = u− f (·, 0) ∈ Lp(Ω).

• Step 1: ∃φ ∈ Lp(Ω) : |f (x, y)| ≤ φ(x) in Ω×R. We use Schauder’s

Theorem.

• Step 2: ∃φ ∈ Lp(Ω) such that f (x, y) ≥ φ(x) in Ω× R.

fk(x, y) = f (x,miny, k)⇒ φ(x) ≤ fk(x, y) ≤ φk(x)

Ayk + b(x) · ∇yk + fk(x, yk) = u

Ay + b(x) · ∇y = u− φ

Seminario Control en Tiempos de Crisis 2020

Page 54: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

14/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Existence: Sketch of Proof

• We redefine f = f − f (·, 0) and u = u− f (·, 0) ∈ Lp(Ω).

• Step 1: ∃φ ∈ Lp(Ω) : |f (x, y)| ≤ φ(x) in Ω×R. We use Schauder’s

Theorem.

• Step 2: ∃φ ∈ Lp(Ω) such that f (x, y) ≥ φ(x) in Ω× R.

fk(x, y) = f (x,miny, k)⇒ φ(x) ≤ fk(x, y) ≤ φk(x)

Ayk + b(x) · ∇yk + fk(x, yk) = u

Ay + b(x) · ∇y = u− φA(y − yk) + b(x) · ∇(y − yk) = fk(x, yk)− φ ≥ 0

Seminario Control en Tiempos de Crisis 2020

Page 55: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

14/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Existence: Sketch of Proof

• We redefine f = f − f (·, 0) and u = u− f (·, 0) ∈ Lp(Ω).

• Step 1: ∃φ ∈ Lp(Ω) : |f (x, y)| ≤ φ(x) in Ω×R. We use Schauder’s

Theorem.

• Step 2: ∃φ ∈ Lp(Ω) such that f (x, y) ≥ φ(x) in Ω× R.

fk(x, y) = f (x,miny, k)⇒ φ(x) ≤ fk(x, y) ≤ φk(x)

Ayk + b(x) · ∇yk + fk(x, yk) = u

Ay + b(x) · ∇y = u− φA(y − yk) + b(x) · ∇(y − yk) = fk(x, yk)− φ ≥ 0

⇒ yk ≤ y ⇒ fk(x, yk) = f (x, yk) if k ≥ ‖y‖∞

Seminario Control en Tiempos de Crisis 2020

Page 56: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

15/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

• Step 3: The general case.

fk(x, y) = f (x, proj[−k,+k](y))

Seminario Control en Tiempos de Crisis 2020

Page 57: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

15/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

• Step 3: The general case.

fk(x, y) = f (x, proj[−k,+k](y))

Ayk + b(x) · ∇yk + fk(x, yk) = u

Seminario Control en Tiempos de Crisis 2020

Page 58: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

15/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

• Step 3: The general case.

fk(x, y) = f (x, proj[−k,+k](y))

Ayk + b(x) · ∇yk + fk(x, yk) = u

Az1 + b(x) · ∇z1 + f+(x, z1) = u with f+(x, t) = f (x, t+)

Seminario Control en Tiempos de Crisis 2020

Page 59: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

15/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

• Step 3: The general case.

fk(x, y) = f (x, proj[−k,+k](y))

Ayk + b(x) · ∇yk + fk(x, yk) = u

Az1 + b(x) · ∇z1 + f+(x, z1) = u with f+(x, t) = f (x, t+)

Az1 + b(x) · ∇z1 + fk(x, z1) = u + fk(x, z1)− f (x, z+1 ) ≤ u

Seminario Control en Tiempos de Crisis 2020

Page 60: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

15/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

• Step 3: The general case.

fk(x, y) = f (x, proj[−k,+k](y))

Ayk + b(x) · ∇yk + fk(x, yk) = u

Az1 + b(x) · ∇z1 + f+(x, z1) = u with f+(x, t) = f (x, t+)

Az1 + b(x) · ∇z1 + fk(x, z1) = u + fk(x, z1)− f (x, z+1 ) ≤ u

⇒ z1 ≤ yk ∀k ≥ 1

Seminario Control en Tiempos de Crisis 2020

Page 61: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

15/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

• Step 3: The general case.

fk(x, y) = f (x, proj[−k,+k](y))

Ayk + b(x) · ∇yk + fk(x, yk) = u

Az1 + b(x) · ∇z1 + f+(x, z1) = u with f+(x, t) = f (x, t+)

Az1 + b(x) · ∇z1 + fk(x, z1) = u + fk(x, z1)− f (x, z+1 ) ≤ u

⇒ z1 ≤ yk ∀k ≥ 1

Az2 + b(x) · ∇z2 = u− f (x,−‖z1‖C(Ω))

Seminario Control en Tiempos de Crisis 2020

Page 62: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

15/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

• Step 3: The general case.

fk(x, y) = f (x, proj[−k,+k](y))

Ayk + b(x) · ∇yk + fk(x, yk) = u

Az1 + b(x) · ∇z1 + f+(x, z1) = u with f+(x, t) = f (x, t+)

Az1 + b(x) · ∇z1 + fk(x, z1) = u + fk(x, z1)− f (x, z+1 ) ≤ u

⇒ z1 ≤ yk ∀k ≥ 1

Az2 + b(x) · ∇z2 = u− f (x,−‖z1‖C(Ω))

A(z2 − yk) + b(x) · ∇(z2 − yk) = fk(x, yk)− f (x,−‖z1‖C(Ω)) ≥ 0

Seminario Control en Tiempos de Crisis 2020

Page 63: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

15/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

• Step 3: The general case.

fk(x, y) = f (x, proj[−k,+k](y))

Ayk + b(x) · ∇yk + fk(x, yk) = u

Az1 + b(x) · ∇z1 + f+(x, z1) = u with f+(x, t) = f (x, t+)

Az1 + b(x) · ∇z1 + fk(x, z1) = u + fk(x, z1)− f (x, z+1 ) ≤ u

⇒ z1 ≤ yk ∀k ≥ 1

Az2 + b(x) · ∇z2 = u− f (x,−‖z1‖C(Ω))

A(z2 − yk) + b(x) · ∇(z2 − yk) = fk(x, yk)− f (x,−‖z1‖C(Ω)) ≥ 0

⇒ yk ≤ z2

Seminario Control en Tiempos de Crisis 2020

Page 64: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

15/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

• Step 3: The general case.

fk(x, y) = f (x, proj[−k,+k](y))

Ayk + b(x) · ∇yk + fk(x, yk) = u

Az1 + b(x) · ∇z1 + f+(x, z1) = u with f+(x, t) = f (x, t+)

Az1 + b(x) · ∇z1 + fk(x, z1) = u + fk(x, z1)− f (x, z+1 ) ≤ u

⇒ z1 ≤ yk ∀k ≥ 1

Az2 + b(x) · ∇z2 = u− f (x,−‖z1‖C(Ω))

A(z2 − yk) + b(x) · ∇(z2 − yk) = fk(x, yk)− f (x,−‖z1‖C(Ω)) ≥ 0

⇒ yk ≤ z2 ⇒ ‖yk‖C(Ω) ≤ max‖z1‖C(Ω), ‖z2‖C(Ω)

Seminario Control en Tiempos de Crisis 2020

Page 65: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

15/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

• Step 3: The general case.

fk(x, y) = f (x, proj[−k,+k](y))

Ayk + b(x) · ∇yk + fk(x, yk) = u

Az1 + b(x) · ∇z1 + f+(x, z1) = u with f+(x, t) = f (x, t+)

Az1 + b(x) · ∇z1 + fk(x, z1) = u + fk(x, z1)− f (x, z+1 ) ≤ u

⇒ z1 ≤ yk ∀k ≥ 1

Az2 + b(x) · ∇z2 = u− f (x,−‖z1‖C(Ω))

A(z2 − yk) + b(x) · ∇(z2 − yk) = fk(x, yk)− f (x,−‖z1‖C(Ω)) ≥ 0

⇒ yk ≤ z2 ⇒ ‖yk‖C(Ω) ≤ max‖z1‖C(Ω), ‖z2‖C(Ω)fk(x, yk) = f (x, yk) ∀k ≥ max‖z1‖C(Ω), ‖z2‖C(Ω)

Seminario Control en Tiempos de Crisis 2020

Page 66: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

16/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Continuity of u→ y and regularity of y

Seminario Control en Tiempos de Crisis 2020

Page 67: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

16/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Continuity of u→ y and regularity of y

Theorem. Let uk∞k=1 ⊂ Lp(Ω) with p > n2 be a sequence weakly

converging to u in Lp(Ω). Then, yuk → yu strongly in H10(Ω) ∩ C(Ω),

where yuk is the solution of the semilinear equation associated to uk.

Seminario Control en Tiempos de Crisis 2020

Page 68: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

16/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Continuity of u→ y and regularity of y

Theorem. Let uk∞k=1 ⊂ Lp(Ω) with p > n2 be a sequence weakly

converging to u in Lp(Ω). Then, yuk → yu strongly in H10(Ω) ∩ C(Ω),

where yuk is the solution of the semilinear equation associated to uk.

Theorem. Suppose that assumption on f holds with p = 2, aij ∈C0,1(Ω) for 1 ≤ i, j ≤ n. We also suppose that Γ is of class C1,1 or Ω

is convex. Then, for every u ∈ L2(Ω) the state equation has a unique

solution yu ∈ H2(Ω) ∩H10(Ω).

Seminario Control en Tiempos de Crisis 2020

Page 69: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

17/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Existence of solution of (P)

• We recall that

(P) minu∈Uad

J(u) :=1

2

∫Ω

(yu(x)−yd(x))2 dx+ν

2

∫Ω

u2(x) dx (ν > 0)

Seminario Control en Tiempos de Crisis 2020

Page 70: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

17/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Existence of solution of (P)

• We recall that

(P) minu∈Uad

J(u) :=1

2

∫Ω

(yu(x)−yd(x))2 dx+ν

2

∫Ω

u2(x) dx (ν > 0)

Theorem. The control problem (P) has at least one solution u.

Seminario Control en Tiempos de Crisis 2020

Page 71: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

18/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Differentiability Assumptions on f

Seminario Control en Tiempos de Crisis 2020

Page 72: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

18/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Differentiability Assumptions on f

• f : Ω× R −→ R is of class C2 w.r.t. the second variable

Seminario Control en Tiempos de Crisis 2020

Page 73: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

18/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Differentiability Assumptions on f

• f : Ω× R −→ R is of class C2 w.r.t. the second variable

• f (·, 0) ∈ Lp(Ω) with p >n

2and

∂f

∂y(x, y) ≥ 0 a.e. in Ω and ∀y ∈ R

Seminario Control en Tiempos de Crisis 2020

Page 74: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

18/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Differentiability Assumptions on f

• f : Ω× R −→ R is of class C2 w.r.t. the second variable

• f (·, 0) ∈ Lp(Ω) with p >n

2and

∂f

∂y(x, y) ≥ 0 a.e. in Ω and ∀y ∈ R

• ∀M > 0 ∃Cf,M :

∣∣∣∣∂f∂y (x, y)

∣∣∣∣ +

∣∣∣∣∂2f

∂y2(x, y)

∣∣∣∣ ≤ Cf,M ∀|y| ≤M

Seminario Control en Tiempos de Crisis 2020

Page 75: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

18/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Differentiability Assumptions on f

• f : Ω× R −→ R is of class C2 w.r.t. the second variable

• f (·, 0) ∈ Lp(Ω) with p >n

2and

∂f

∂y(x, y) ≥ 0 a.e. in Ω and ∀y ∈ R

• ∀M > 0 ∃Cf,M :

∣∣∣∣∂f∂y (x, y)

∣∣∣∣ +

∣∣∣∣∂2f

∂y2(x, y)

∣∣∣∣ ≤ Cf,M ∀|y| ≤M

∀M > 0 and ∀ε > 0 ∃δ > 0 such that∣∣∣∣∂2f

∂y2(x, y2)− ∂2f

∂y2(x, y1)

∣∣∣∣ < ε if |y1|, |y2| ≤M, |y2 − y1| ≤ δ

Seminario Control en Tiempos de Crisis 2020

Page 76: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

19/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Differentiability of the Mapping u→ yu

Seminario Control en Tiempos de Crisis 2020

Page 77: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

19/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Differentiability of the Mapping u→ yu

Given p > n2 , let us denote G : Lp(Ω) −→ Y = H1

0(Ω) ∩ C(Ω) the

mapping associating with each control the state G(u) = yu.

Seminario Control en Tiempos de Crisis 2020

Page 78: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

19/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Differentiability of the Mapping u→ yu

Given p > n2 , let us denote G : Lp(Ω) −→ Y = H1

0(Ω) ∩ C(Ω) the

mapping associating with each control the state G(u) = yu.

Theorem. The control-to-state mapping G is of class C2

Seminario Control en Tiempos de Crisis 2020

Page 79: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

19/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Differentiability of the Mapping u→ yu

Given p > n2 , let us denote G : Lp(Ω) −→ Y = H1

0(Ω) ∩ C(Ω) the

mapping associating with each control the state G(u) = yu.

Theorem. The control-to-state mapping G is of class C2 and for every

u, v ∈ Lp(Ω), we have that zv = G′(u)v is the solution of Az + b(x) · ∇z +∂f

∂y(x, yu)z = v in Ω

z = 0 on Γ

Seminario Control en Tiempos de Crisis 2020

Page 80: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

19/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Differentiability of the Mapping u→ yu

Given p > n2 , let us denote G : Lp(Ω) −→ Y = H1

0(Ω) ∩ C(Ω) the

mapping associating with each control the state G(u) = yu.

Theorem. The control-to-state mapping G is of class C2 and for every

u, v ∈ Lp(Ω), we have that zv = G′(u)v is the solution of Az + b(x) · ∇z +∂f

∂y(x, yu)z = v in Ω

z = 0 on Γ

and for v, w ∈ Lp(Ω), zv,w = G′′(u)(v, w) solves the equation Az + b(x) · ∇z +∂f

∂y(x, yu)z +

∂2f

∂y2(x, yu)zvzw = 0 in Ω

z = 0 on Γ

Seminario Control en Tiempos de Crisis 2020

Page 81: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

20/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Analysis of the Cost Functional

Seminario Control en Tiempos de Crisis 2020

Page 82: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

20/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Analysis of the Cost Functional

Theorem. The functional J : L2(Ω) −→ R is of class C2.

Seminario Control en Tiempos de Crisis 2020

Page 83: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

20/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Analysis of the Cost Functional

Theorem. The functional J : L2(Ω) −→ R is of class C2. Moreover,

given u, v, v1, v2 ∈ L2(Ω) we have

J ′(u)v =

∫Ω

(ϕu + νu)v dx

J ′′(u)(v1, v2) =

∫Ω

[1− ϕu

∂2f

∂y2(x, yu)

]zv1zv2 dx + ν

∫Ω

v1v2 dx

where ϕu ∈ H10(Ω)∩C(Ω) is the unique solution of the adjoint equation A∗ϕ− div[b(x)ϕ] +

∂f

∂y(x, yu)ϕ = yu − yd in Ω,

ϕ = 0 on Γ.

Seminario Control en Tiempos de Crisis 2020

Page 84: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

21/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Local Solutions

Seminario Control en Tiempos de Crisis 2020

Page 85: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

21/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Local Solutions

Definition. We say that u ∈ Uad is an Lr(Ω)-weak local minimum of

(P), with r ∈ [1,+∞], if there exists some ε > 0 such that

J(u) ≤ J(u) ∀u ∈ Uad with ‖u− u‖Lr(Ω) ≤ ε.

Seminario Control en Tiempos de Crisis 2020

Page 86: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

21/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Local Solutions

Definition. We say that u ∈ Uad is an Lr(Ω)-weak local minimum of

(P), with r ∈ [1,+∞], if there exists some ε > 0 such that

J(u) ≤ J(u) ∀u ∈ Uad with ‖u− u‖Lr(Ω) ≤ ε.

An element u ∈ Uad is said a strong local minimum of (P) if there exists

some ε > 0 such that

J(u) ≤ J(u) ∀u ∈ Uad with ‖yu − yu‖L∞(Ω) ≤ ε.

Seminario Control en Tiempos de Crisis 2020

Page 87: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

21/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Local Solutions

Definition. We say that u ∈ Uad is an Lr(Ω)-weak local minimum of

(P), with r ∈ [1,+∞], if there exists some ε > 0 such that

J(u) ≤ J(u) ∀u ∈ Uad with ‖u− u‖Lr(Ω) ≤ ε.

An element u ∈ Uad is said a strong local minimum of (P) if there exists

some ε > 0 such that

J(u) ≤ J(u) ∀u ∈ Uad with ‖yu − yu‖L∞(Ω) ≤ ε.

We say that u ∈ Uad is a strict (weak or strong) local minimum if the

above inequalities are strict for u 6= u.

Seminario Control en Tiempos de Crisis 2020

Page 88: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

22/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

I - Relationships among these Notions

Seminario Control en Tiempos de Crisis 2020

Page 89: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

22/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

I - Relationships among these Notions

• If Uad is bounded in L2(Ω), then

Seminario Control en Tiempos de Crisis 2020

Page 90: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

22/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

I - Relationships among these Notions

• If Uad is bounded in L2(Ω), then

1. u is an L1(Ω)-weak local minimum of (P) if and only if it is an

Lr(Ω)-weak local minimum of (P) for every r ∈ (1,+∞).

Seminario Control en Tiempos de Crisis 2020

Page 91: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

22/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

I - Relationships among these Notions

• If Uad is bounded in L2(Ω), then

1. u is an L1(Ω)-weak local minimum of (P) if and only if it is an

Lr(Ω)-weak local minimum of (P) for every r ∈ (1,+∞).

2. If u is an Lr(Ω)-weak local minimum of (P) for some r < +∞,

then it is an L∞(Ω)-weak local minimum of (P).

Seminario Control en Tiempos de Crisis 2020

Page 92: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

22/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

I - Relationships among these Notions

• If Uad is bounded in L2(Ω), then

1. u is an L1(Ω)-weak local minimum of (P) if and only if it is an

Lr(Ω)-weak local minimum of (P) for every r ∈ (1,+∞).

2. If u is an Lr(Ω)-weak local minimum of (P) for some r < +∞,

then it is an L∞(Ω)-weak local minimum of (P).

3. u is a strong local minimum of (P) if and only if it is an Lr(Ω)-weak

local minimum of (P) for all r ∈ [1,∞).

Seminario Control en Tiempos de Crisis 2020

Page 93: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

23/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

II - Relationships among these Notions

Seminario Control en Tiempos de Crisis 2020

Page 94: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

23/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

II - Relationships among these Notions

• If Uad is not bounded in L2(Ω), then

Seminario Control en Tiempos de Crisis 2020

Page 95: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

23/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

II - Relationships among these Notions

• If Uad is not bounded in L2(Ω), then

1. If u is an L2(Ω)-weak local solution, then u is an L1(Ω)-weak local

solution.

Seminario Control en Tiempos de Crisis 2020

Page 96: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

23/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

II - Relationships among these Notions

• If Uad is not bounded in L2(Ω), then

1. If u is an L2(Ω)-weak local solution, then u is an L1(Ω)-weak local

solution.

2. If u is an Lp(Ω)-weak local solution, then u is an Lq(Ω)-weak local

solution for every p < q ≤ ∞.

Seminario Control en Tiempos de Crisis 2020

Page 97: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

23/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

II - Relationships among these Notions

• If Uad is not bounded in L2(Ω), then

1. If u is an L2(Ω)-weak local solution, then u is an L1(Ω)-weak local

solution.

2. If u is an Lp(Ω)-weak local solution, then u is an Lq(Ω)-weak local

solution for every p < q ≤ ∞.

3. u is an L2(Ω)-weak local solution if and only if it is a strong local

solution.

Seminario Control en Tiempos de Crisis 2020

Page 98: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

24/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

First Order Optimality Conditions

Seminario Control en Tiempos de Crisis 2020

Page 99: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

24/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

First Order Optimality Conditions

Theorem. Let u be a local solution of (P) in any of the previous senses,

then there exist two unique elements y, ϕ ∈ H10(Ω) ∩ C(Ω) such that

Ay + b(x) · ∇y + f (x, y) = u in Ω,

y = 0 on Γ, A∗ϕ− div[b(x)ϕ] +∂f

∂y(x, y)ϕ = y − yd in Ω,

ϕ = 0 on Γ,∫Ω

(ϕ + νu)(u− u) dx ≥ 0 ∀u ∈ Uad

Seminario Control en Tiempos de Crisis 2020

Page 100: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

24/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

First Order Optimality Conditions

Theorem. Let u be a local solution of (P) in any of the previous senses,

then there exist two unique elements y, ϕ ∈ H10(Ω) ∩ C(Ω) such that

Ay + b(x) · ∇y + f (x, y) = u in Ω,

y = 0 on Γ, A∗ϕ− div[b(x)ϕ] +∂f

∂y(x, y)ϕ = y − yd in Ω,

ϕ = 0 on Γ,∫Ω

(ϕ + νu)(u− u) dx ≥ 0 ∀u ∈ Uad

Moreover, u ∈ H1(Ω) ∩ C(Ω) holds.

Seminario Control en Tiempos de Crisis 2020

Page 101: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

25/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Second Order Conditions

Seminario Control en Tiempos de Crisis 2020

Page 102: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

25/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Second Order Conditions

•Cone of critical directions:

Cu =

v ∈ L2(Ω) : J ′(u)v = 0 and v(x)

≥ 0 if u(x) = α

≤ 0 if u(x) = β

Seminario Control en Tiempos de Crisis 2020

Page 103: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

25/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Second Order Conditions

•Cone of critical directions:

Cu =

v ∈ L2(Ω) : J ′(u)v = 0 and v(x)

≥ 0 if u(x) = α

≤ 0 if u(x) = β

Theorem If u is a local minimum of (P), then J ′′(u)v2 ≥ 0 ∀v ∈ Cu.

Seminario Control en Tiempos de Crisis 2020

Page 104: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

25/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Second Order Conditions

•Cone of critical directions:

Cu =

v ∈ L2(Ω) : J ′(u)v = 0 and v(x)

≥ 0 if u(x) = α

≤ 0 if u(x) = β

Theorem If u is a local minimum of (P), then J ′′(u)v2 ≥ 0 ∀v ∈ Cu.

Conversely, if u ∈ Uad satisfies the first order optimality conditions and

J ′′(u)v2 > 0 ∀v ∈ Cu \ 0, then there exist ε > 0 and κ > 0 such

that

J(u) +κ

2‖u− u‖2

2 ≤ J(u) ∀u ∈ Uad : ‖yu − y‖L∞(Q) ≤ ε.

Seminario Control en Tiempos de Crisis 2020

Page 105: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

25/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Second Order Conditions

•Cone of critical directions:

Cu =

v ∈ L2(Ω) : J ′(u)v = 0 and v(x)

≥ 0 if u(x) = α

≤ 0 if u(x) = β

Theorem If u is a local minimum of (P), then J ′′(u)v2 ≥ 0 ∀v ∈ Cu.

Conversely, if u ∈ Uad satisfies the first order optimality conditions and

J ′′(u)v2 > 0 ∀v ∈ Cu \ 0, then there exist ε > 0 and κ > 0 such

that

J(u) +κ

2‖u− u‖2

2 ≤ J(u) ∀u ∈ Uad : ‖yu − y‖L∞(Q) ≤ ε.

Theorem Let u ∈ Uad. Then J ′′(u)v2 > 0 ∀v ∈ Cu \ 0 if and only

if there exists δ > 0 such that J ′′(u)v2 ≥ δ‖v‖2L2(Ω)

∀v ∈ Cu.

Seminario Control en Tiempos de Crisis 2020

Page 106: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

26/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Approximation of the state equation

Seminario Control en Tiempos de Crisis 2020

Page 107: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

26/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Approximation of the state equation

• We assume that Ω is a polygonal/polyhedral convex domain in Rn

with n = 2 or 3.

Seminario Control en Tiempos de Crisis 2020

Page 108: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

26/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Approximation of the state equation

• We assume that Ω is a polygonal/polyhedral convex domain in Rn

with n = 2 or 3.

• Let Thh>0 be a quasi-uniform family of triangulations of Ω.

Seminario Control en Tiempos de Crisis 2020

Page 109: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

26/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Approximation of the state equation

• We assume that Ω is a polygonal/polyhedral convex domain in Rn

with n = 2 or 3.

• Let Thh>0 be a quasi-uniform family of triangulations of Ω.

Yh = yh ∈ C(Ω) : yh|T ∈ P1(T ) ∀T ∈ Th and yh ≡ 0 on Γ.

Seminario Control en Tiempos de Crisis 2020

Page 110: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

26/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Approximation of the state equation

• We assume that Ω is a polygonal/polyhedral convex domain in Rn

with n = 2 or 3.

• Let Thh>0 be a quasi-uniform family of triangulations of Ω.

Yh = yh ∈ C(Ω) : yh|T ∈ P1(T ) ∀T ∈ Th and yh ≡ 0 on Γ.

a(y1, y2) = 〈Ay1, y2〉H−1(Ω),H10 (Ω)

=

∫Ω

( n∑i,j=1

aij(x)∂xiy1∂xjy2 + [b(x) · ∇y1]y2

)dx.

Seminario Control en Tiempos de Crisis 2020

Page 111: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

26/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Approximation of the state equation

• We assume that Ω is a polygonal/polyhedral convex domain in Rn

with n = 2 or 3.

• Let Thh>0 be a quasi-uniform family of triangulations of Ω.

Yh = yh ∈ C(Ω) : yh|T ∈ P1(T ) ∀T ∈ Th and yh ≡ 0 on Γ.

a(y1, y2) = 〈Ay1, y2〉H−1(Ω),H10 (Ω)

=

∫Ω

( n∑i,j=1

aij(x)∂xiy1∂xjy2 + [b(x) · ∇y1]y2

)dx.

Find yh ∈ Yh such that

a(yh, zh) +

∫Ω

f (x, yh(x))zh(x) dx =

∫Ω

u(x)zh(x) dx ∀zh ∈ Yh.

Seminario Control en Tiempos de Crisis 2020

Page 112: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

27/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Numerical Analysis of the Linear Equa-tion

Seminario Control en Tiempos de Crisis 2020

Page 113: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

27/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Numerical Analysis of the Linear Equa-tion

Theorem [Schatz, 1974]. Let a0 ∈ L2(Ω) be a nonnegative function.

There exists hA > 0 depending on A and ‖a0‖L2(Ω) such that the

variational problem Find yh ∈ Yh such that

a(yh, zh) +

∫Ω

a0(x)yh(x)zh(x) dx =

∫Ω

u(x)zh(x) dx ∀zh ∈ Yh

has a unique solution for every h ≤ hA and for every u ∈ L2(Ω).

Moreover, there exists a constant CA,a0 such that

‖yh‖H10 (Ω) ≤ CA,a0‖A

−1u‖H10 (Ω) ∀h ≤ hA.

Seminario Control en Tiempos de Crisis 2020

Page 114: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

28/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Numerical Analysis of the SemilinearEquation

Seminario Control en Tiempos de Crisis 2020

Page 115: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

28/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Numerical Analysis of the SemilinearEquationTheorem. Let us assume that

f (·, 0) ∈ L2(Ω) and ∀M > 0 ∃Lf,M such that

|f (x, y2)− f (x, y1)| ≤ Lf,M |y2 − y1| ∀|yi| ≤M, i = 1, 2.

Seminario Control en Tiempos de Crisis 2020

Page 116: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

28/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Numerical Analysis of the SemilinearEquationTheorem. Let us assume that

f (·, 0) ∈ L2(Ω) and ∀M > 0 ∃Lf,M such that

|f (x, y2)− f (x, y1)| ≤ Lf,M |y2 − y1| ∀|yi| ≤M, i = 1, 2.

∀M ≥ 1 + ‖y‖C(Ω) ∃hM > 0 such that for every h < hM the discrete

equation has a unique solution yh satisfying ‖yh‖C(Ω) ≤M .

Seminario Control en Tiempos de Crisis 2020

Page 117: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

28/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Numerical Analysis of the SemilinearEquationTheorem. Let us assume that

f (·, 0) ∈ L2(Ω) and ∀M > 0 ∃Lf,M such that

|f (x, y2)− f (x, y1)| ≤ Lf,M |y2 − y1| ∀|yi| ≤M, i = 1, 2.

∀M ≥ 1 + ‖y‖C(Ω) ∃hM > 0 such that for every h < hM the discrete

equation has a unique solution yh satisfying ‖yh‖C(Ω) ≤M . Moreover,

there exist constants KM and K∞,M independent of u such that

‖y − yh‖L2(Ω) + h‖y − yh‖H10 (Ω) ≤ KM

(‖u‖L2(Ω) + 1

)h2

‖y − yh‖L∞(Ω) ≤ K∞,M

(‖u‖L2(Ω) + 1

)h2−n2

Seminario Control en Tiempos de Crisis 2020

Page 118: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

28/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Numerical Analysis of the SemilinearEquationTheorem. Let us assume that

f (·, 0) ∈ L2(Ω) and ∀M > 0 ∃Lf,M such that

|f (x, y2)− f (x, y1)| ≤ Lf,M |y2 − y1| ∀|yi| ≤M, i = 1, 2.

∀M ≥ 1 + ‖y‖C(Ω) ∃hM > 0 such that for every h < hM the discrete

equation has a unique solution yh satisfying ‖yh‖C(Ω) ≤M . Moreover,

there exist constants KM and K∞,M independent of u such that

‖y − yh‖L2(Ω) + h‖y − yh‖H10 (Ω) ≤ KM

(‖u‖L2(Ω) + 1

)h2

‖y − yh‖L∞(Ω) ≤ K∞,M

(‖u‖L2(Ω) + 1

)h2−n2

Further, if there exist other solutions yhh<hM with yh 6= yh for all h,

then limh→0 ‖yh‖C(Ω) =∞.

Seminario Control en Tiempos de Crisis 2020

Page 119: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

29/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

A Discrete Mapping uh→ yh

Seminario Control en Tiempos de Crisis 2020

Page 120: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

29/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

A Discrete Mapping uh→ yh

Theorem. Let y ∈ Y be the solution of state equation corresponding

to the control u ∈ L2(Ω). Given ρ > 0 arbitrary, there exist ρ∗ > 0 and

h0 > 0 such that the discrete equation has a unique solution yh(u) ∈BYρ∗(y) for every u ∈ Bρ(u) ⊂ L2(Ω) and for all h < h0, where

BYρ∗(y) = y ∈ Y : ‖y − y‖Y ≤ ρ∗.

Furthermore, there exist constants K and K∞ such that

‖yu − yh(u)‖L2(Ω) + h‖yu − yh(u)‖H10 (Ω) ≤ K

(‖u‖L2(Ω) + ρ + 1

)h2

‖yu − yh(u)‖L∞(Ω) ≤ K∞

(‖u‖L2(Ω) + ρ + 1

)h2−n2 ∀u ∈ Bρ(u)

Seminario Control en Tiempos de Crisis 2020

Page 121: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

30/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Numerical Approximation of (P)

Seminario Control en Tiempos de Crisis 2020

Page 122: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

30/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Numerical Approximation of (P)

• Let us define J : L2(Ω)× L2(Ω)→ R given by

J (y, u) =1

2

∫Ω

(y(x)− yd(x))2 dx +ν

2

∫Ω

u2 dx

Seminario Control en Tiempos de Crisis 2020

Page 123: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

30/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Numerical Approximation of (P)

• Let us define J : L2(Ω)× L2(Ω)→ R given by

J (y, u) =1

2

∫Ω

(y(x)− yd(x))2 dx +ν

2

∫Ω

u2 dx

• Let us denote by Uh one of the following two spaces:

Uh = U0h := uh ∈ L2(Ω) : uh|T ∈ P0(T ) ∀T ∈ Th

Uh = U1h := uh ∈ C(Ω) : uh|T ∈ P1(T ) ∀T ∈ Th

Seminario Control en Tiempos de Crisis 2020

Page 124: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

30/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Numerical Approximation of (P)

• Let us define J : L2(Ω)× L2(Ω)→ R given by

J (y, u) =1

2

∫Ω

(y(x)− yd(x))2 dx +ν

2

∫Ω

u2 dx

• Let us denote by Uh one of the following two spaces:

Uh = U0h := uh ∈ L2(Ω) : uh|T ∈ P0(T ) ∀T ∈ Th

Uh = U1h := uh ∈ C(Ω) : uh|T ∈ P1(T ) ∀T ∈ Th

• We set Uh,ad = Uh ∩ Uad.• We approximate Problem (P) by the problem

(Ph) minJ (yh, uh) : (yh, uh) ∈ Yh×Uh,ad satisfies the discrete equation.

Seminario Control en Tiempos de Crisis 2020

Page 125: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

31/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Convergence of (Ph) to (P)

Seminario Control en Tiempos de Crisis 2020

Page 126: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

31/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Convergence of (Ph) to (P)

Theorem. There exists h0 > 0 such that problem (Ph) has at

least one solution (yh, uh) for all h < h0.

Seminario Control en Tiempos de Crisis 2020

Page 127: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

31/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Convergence of (Ph) to (P)

Theorem. There exists h0 > 0 such that problem (Ph) has at

least one solution (yh, uh) for all h < h0. Moreover, if (yh, uh)h<h0

is a sequence of solutions of problems (Ph), then it is bounded in

H10(Ω) × L2(Ω) and there exist subsequences converging weakly in

H10(Ω) × L2(Ω).

Seminario Control en Tiempos de Crisis 2020

Page 128: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

31/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Convergence of (Ph) to (P)

Theorem. There exists h0 > 0 such that problem (Ph) has at

least one solution (yh, uh) for all h < h0. Moreover, if (yh, uh)h<h0

is a sequence of solutions of problems (Ph), then it is bounded in

H10(Ω) × L2(Ω) and there exist subsequences converging weakly in

H10(Ω) × L2(Ω). In addition, if a subsequence, denoted in the same

way, satisfies that (yh, uh) (y, u) in H10(Ω)× L2(Ω) as h→ 0, then

(y, u) ∈ Y × Uad, u is a solution of (P) with associated stated y, and

(yh, uh)→ (y, u) strongly in H10 (Ω)× L2(Ω).

Seminario Control en Tiempos de Crisis 2020

Page 129: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

32/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Error Estimates

Seminario Control en Tiempos de Crisis 2020

Page 130: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

32/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Error Estimates

Theorem. Let u ∈ L2(Ω) be a local minimizer of (P) satisfying the suf-

ficient second order optimality conditions and let uh be the sequence

of minimizers of the problems (Ph) described in the above theorem.

Then, there exists h0 > 0 such that

• If Uad ( L2(Ω), then

‖u− uh‖L2(Ω) ≤ Ch. ∀h < h0

Seminario Control en Tiempos de Crisis 2020

Page 131: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

32/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

Error Estimates

Theorem. Let u ∈ L2(Ω) be a local minimizer of (P) satisfying the suf-

ficient second order optimality conditions and let uh be the sequence

of minimizers of the problems (Ph) described in the above theorem.

Then, there exists h0 > 0 such that

• If Uad ( L2(Ω), then

‖u− uh‖L2(Ω) ≤ Ch. ∀h < h0

• If Uad = L2(Ω) and Uh = U ih, i = 0, 1, then

‖u− uh‖L2(Ω) ≤ Ch1+i ∀h < h0

Seminario Control en Tiempos de Crisis 2020

Page 132: amercado.mat.utfsm.clamercado.mat.utfsm.cl/SeminarioLatAm-Esp_ControlyPI/Casas.pdf · Draft 4/33 UC University of Cantabria JJ II J I Back Close References N.S. Trudinger: \Linear

Dra

ft

33/33

UCUniversity

of Cantabria

JJIIJI

Back

Close

THANK YOU VERY MUCH FOR YOUR ATTENTION

Seminario Control en Tiempos de Crisis 2020