Transcript
Page 1: Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, October 2008

Tropospheric NO2

Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma

KNMI and BIRA-IASB

Beijing, October 2008

Page 2: Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, October 2008

Tropospheric NO2

Page 3: Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, October 2008

Tropospheric NO2 from satellite measurements

• Observed total slant column• Subtract stratospheric part (model)• Convert slant column into vertical column (air mass factor, RT)

Surface

Stratospheric NO2

CloudTropospheric NO2

Page 4: Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, October 2008

Retrieval approach

• CTM (TM4) Assimilation fed by satellite measurements (unpolluted pixels only) and ECMWF data gives:

•Estimation of stratospheric column

•A priori NO2 profile AMFtrop

• Surface albedo + cloud info + a priori profile AMFtrop

• Measured column + stratospheric column + AMFtrop

Tropospheric NO2 column

trop

stratobstrop AMF

SSV

Page 5: Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, October 2008

GOME

• Archive: Apr. 1996 - Jul. 2003

• Format: HDF4• Local time: 10.30• Monthly mean files

– TOMS ASCII-format– ESRI grid format

• Pixel size: 320x80 km

Page 6: Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, October 2008

SCIAMACHY• version 1.1: July 2002 till today

• Format: HDF4

• Local time: 10.00• Monthly mean files:

– TOMS ASCII-format– ESRI grid format– Regional images

• Pixel size is 60x30 km

Page 7: Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, October 2008

OMI

• version 1.1: October 2004 till today

• Local time: 13.30• Format: HDF5-EOS• Monthly mean files

– TOMS ASCII-format– ESRI grid format

• Pixel size: > 24x12 km

Page 8: Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, October 2008

GOME-2

• Data available: April 2007 till today

• Local time: 09.30• Format: HDF5• Monthly mean files

– TOMS ASCII-format– ESRI grid format

• Pixel size: 30x60 km

Page 9: Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, October 2008

Trend in tropospheric NO2 (1996-2006)

Trends with 95% confidence criterium

Page 10: Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, October 2008

Trends in China

2003 2006

Trendvan der A et al., J. Geophys. Res., 111, 2006

Page 11: Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, October 2008

Sources of tropospheric NO2

• NOx sources:– Anthropogenic (traffic, industry, power plants)– Soil emissions (grasslands, induced by rain)– Biomass burning (tropics, dry season)– Lightning (tropics)

• Phase shift to identify sources:– Anthropogenic winter maximum– Soil emissions summer maximum, rainfall– Biomass burning dry season – Lightning -

Page 12: Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, October 2008

Observed NO2 timeseries(monthly means 1996-2006)

Anthropogenic (Tehran) Biomass burning Ghana (10°N,0°)

Soil West-China (40°N,100°E)

Page 13: Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, October 2008

Month of maximum NO2

GOME/SCIAMACHY TM model

Page 14: Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, October 2008

OMI

Concurrent measurements of tropospheric NO2 from OMI and SCIAMACHY

• Retrieved with common, consistent algorithm

• Collocated, cloud-free measurements at common grid (0.5°x0.5°)

• Differences large over source regions, and larger than combined errors

• Differences in spectra (slant columns) and in AMF (profile shape)

10:00 hrs SCIAMACHY

13:40 hrs OMI

August 2006

Page 15: Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, October 2008
Page 16: Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, October 2008

What does GEOS-Chem simulate?

Relative decrease in NO2 column from 10am to 1:30 pm

Observed GEOS-Chem

US: -16% -28%

EU: -6% -13%

China: -26% -22%

Page 17: Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, October 2008

Summary Tropospheric NO2

GOME/SCIAMACHY NO2 data available for 1996-today, allowing trend analysis.

OMI data and GOME-2 is also available now.

Monitoring of China with SCIAMACHY/GOME-2 (overpass at 10.00/9.30 AM ) and OMI (overpass at 13.30 PM)

Overpass files for OMI pixels within 100 km from station.

Page 18: Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, October 2008

GOME tropospheric O3 columns

R. van der A, J. de Laat,

J. van Peet, O. Tuinder

(KNMI)

Page 19: Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, October 2008

Measuring tropospheric O3 column from space

- air pollution/air quality & greenhouse gas

- Stratosphere > 90 % of total O3 column- Troposphere < 10 % of total O3 column

- Tropospheric O3 is highly variable in space and time:

- Global: - in situ production (tropics and extra-tropics)

- complex chemistry

- Extratropics: - Stratosphere-troposphere exchange

- Tropopause height variations

- Clouds, aerosols (interpretation)

Page 20: Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, October 2008

Limited height information

[Degrees of Freedom for Signal]

About 5 independent pieces of vertical

information Smoothing of actual profile !!

about 1 piece of tropospheric information [cf. Liu et al., JGR, 2005]

separate troposphere – stratosphere !!!

Directly measuring tropospheric O3 from space:

GOME OPERA algorithm (Ozone ProfilE Retrieval Algorithm)

Tuinder, van der A, van Oss, Mijling [KNMI]

Non-linear Optimal Estimation [Rodgers], iterative, use of a-priori

Courtesy J. Landgraf, SRON

Page 21: Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, October 2008

New approach: data assimilation

Determine SOC by assimilating OPERA O3 profiles using CTM (TM5)

Then: TTOC = TOC - SOC

Advantages:

- No gaps in SOC internal consistency- Better solution for “smoothing error”- Internally consistent tropopause- different O3 (profile) measurements can be used and even combined

Best available estimate of SOC

Page 22: Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, October 2008

This figure was originally published in Liu et al. [JGR, 2006]. The upper panel shows the tropospheric O3 columns from GOME O3 profiles for a region over Indonesia in 1997 (7S, 110-125E). Added are also results from a chemistry-transport model calculation (GEOS-CHEM) with realistic emissions and nearby O3 sonde measurements. The lower panel is for a region over the central Pacific.

Added are the black lines: the GOME TOC values from the KNMI OPERA algorithm.

Page 23: Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, October 2008

Algorithm development and current status• Assimilation system/algorithm development

– Several problems in the system and algorithm – hampering long assimilation runs – were detected

– Slow progress of solving problems due to long duration of assimilation runs to test stability

– In the mean time …• OPERA algorithm was also considerably improved (Tuinder and Mijling)• New linearized strat. O3 chemistry scheme published

• Current status– Stable assimilation algorithm– Period 1996 to 2001 is available– Height depend error propagation in the assimilation included

Page 24: Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, October 2008

Tropospheric Ozone data

GOME tropospheric columns: Data set complete Low resolution => low quality Small improvements possible

GOME-2 tropospheric columns: Data set not available yet High quality Long processing time

GOME-2 tropospheric profiles: Data set is available Data can is difficult to interpret: averaging kernel and a-priori

profile needed

Page 25: Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, October 2008

End

Page 26: Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, October 2008

Scheme of source identification

Anthropogenic Winter maximum

(outside tropics)

Low variability

Biomass Winter/Spring maximum High variability

Soil Summer maximum High variability

Lightning NO2 (above clouds) > NO2(clear-sky)

Page 27: Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, October 2008

Source identification

van der A et al., JGR, 2008


Top Related