Transcript
Page 1: Spatial overlap of shark nursery areas and the salmon ... final.pdf · Ecology and Evolution. 2017;7:3773–3783. | 3773 Received: 9 January 2017 | Accepted: 14 March 2017 DOI: 10.1002/ece3.2957

Ecology and Evolution. 2017;7:3773–3783.  | 3773www.ecolevol.org

Received:9January2017  |  Accepted:14March2017DOI: 10.1002/ece3.2957

O R I G I N A L R E S E A R C H

Spatial overlap of shark nursery areas and the salmon farming industry influences the trophic ecology of Squalus acanthias on the southern coast of Chile

Juan Diego Gaitán-Espitia1  | Daniela Gómez2 | Alistair J. Hobday1 | Ross Daley3 |  Julio Lamilla4† | Leyla Cárdenas2

ThisisanopenaccessarticleunderthetermsoftheCreativeCommonsAttributionLicense,whichpermitsuse,distributionandreproductioninanymedium,providedtheoriginalworkisproperlycited.©2017TheAuthors.Ecology and EvolutionpublishedbyJohnWiley&SonsLtd.

1CSIROOceansandAtmosphere,Hobart,TAS,Australia2FacultaddeCiencias,InstitutodeCienciasAmbientalesyEvolutivas,UniversidadAustraldeChile,Valdivia,Chile3InstituteforMarineandAntarcticStudies,UniversityofTasmania,Hobart,TAS,Australia4FacultaddeCiencias,InstitutodeCienciasMarinasyLimnologicas,UniversidadAustraldeChile,Valdivia,Chile

CorrespondenceJuanDiegoGaitán-Espitia,CSIROOceansandAtmosphere,Hobart,TAS,Australia.Email:[email protected]

Funding informationCSIRO-OCEpost-doctoralfellowship;MillenniumNucleusCenterfortheStudyofMultipledriversonMarineSocio-EcologicalSystems(MUSELS)-MINECON,Grant/AwardNumber:NC120086

AbstractPotential interactionsbetweenmarinepredators andhumans arise in the southerncoastofChilewherepredatorfeedingandreproductionsitesoverlapwithfisheriesandaquaculture.Here,weassessthepotentialeffectsofintensivesalmonaquacultureonfoodhabits,growth,andreproductionofacommonpredator,thespinydogfish—identifiedasSqualus acanthiasviageneticbarcoding.Atotalof102(89femalesand13males)individualswerecollectedduringwinterandsummerof2013–2014fromtheChiloéSeawheresalmonaquacultureactivitiesareconcentrated.Thelowfrequencyofmalesinourstudysuggestsspatialsegregationofsex,whileimmatureandmaturefemalesspatiallyoverlapped inbothseasons.Femalespinydogfishshoweda func-tionalspecialistbehaviorasindicatedbythesmallnumberofpreyitemsandtherela-tive high importance of the austral hake and salmon pellets in the diet. Immaturesharksfedmoreonpelletsandanchoviesthanthelargerhake-preferringmaturefe-males.Ourresultsalsoindicatethatspinydogfishswitchprey(anchovytohake)totake advantage of seasonal changes in prey availability.Despite differences in thetrophicpatternsofS. acanthiasduetothespatialassociationwith intensivesalmonfarming,inthisregion,thereappearstobenodifferenceinfecundityorsizeatmatu-ritycomparedtootherpopulations.Althoughnodemographiceffectsweredetected,wesuggestthatarangeofadditionalfactorsshouldbeconsideredbeforeconcludingthatintensiveaquaculturedoesnothaveanyimpactonthesemarinepredators.

K E Y W O R D S

artisanalfishery,reproduction,Salmonindustry,sexualmaturity,Squalus acanthias,trophicecology

1  | INTRODUCTION

Inthepastthreedecades,salmonidaquacultureinChilehasexperiencedanexplosivegrowthanddiversificationdrivenbytheuseofintensive

farmingtechniques(Buschmannetal.,2009;Oddone,Paesch,&Norbis,2015)andtheintroductionofseveraldifferentsalmonidspecies(Correa&Gross,2008).AlthoughthisgrowthhasplacedChileasthesecondmostimportantsalmonexporterworldwide(Ellisetal.,2016),ithasalsoraisedcriticismsandconcernsrelatedtoitsnegativeenvironmentalef-fects(Buschmannetal.,2006,2009;Soto&Norambuena,2004).The†DeceasedAuthor.

Page 2: Spatial overlap of shark nursery areas and the salmon ... final.pdf · Ecology and Evolution. 2017;7:3773–3783. | 3773 Received: 9 January 2017 | Accepted: 14 March 2017 DOI: 10.1002/ece3.2957

3774  |     GAITÁN- ESPITIA ET Al.

marinephaseofsalmonaquacultureisconductedinanopenwaternet-systemthatallowsthedischargeoflargequantitiesofpollutants,mainlyorganicmatter,nitrogen,andphosphorusintowaterbodiesandtheseafloor (Paudeletal.,2015).Discharges fromsalmon farmscan lead toeutrophicationandalterationsoftheseasonalnutrientsupplyofcoastalecosystems(Brooks&Mahnken,2003;Kuttietal.,2007)andthesedi-mentorganiccontent(Carrolletal.,2003;Soto&Norambuena,2004),producing zones of anoxic conditions (Brown, Gowen, & McLusky,1987; Buschmann etal., 2006). All of these environmental changesaroundsalmonfarmsimpactthestructureandcompositionofbenthiccommunitiesbysupportinghighproductionofdeposit-feedinginverte-brates(Guilpartetal.,2012;Kuttietal.,2007)andattractinghighden-sitiesofdemersal fish (Carss,1990;Dempsteretal.,2002)andothermobilecarnivores (Bonizzonietal.,2013;Kemperetal.,2003;Quick,Middlemas,&Armstrong,2004;Ribeiroetal.,2007;Sepúlveda&Oliva,2005;Veríssimo,McDowell,&Graves,2010).Theimmediateoutcomeofthesealterationsisenhancementofbenthic-pelagiccouplingandthepotentialtransferofsediment-associatedcontaminantsintohighertro-phiclevels(Debruynetal.,2006).

InChile,thesalmonindustryisconcentratedaroundtheinnerseaofChiloéIsland(41–43°S,hereafterChiloéSea)(Figure1)(Buschmannetal.,2006,2009).This region isa semi-closedenvironment that ishometorare,uniqueandendangeredmarinespecies,includingcold-watercorals (Försterra&Häussermann,2003),penguinsandmigra-torybirds(Senneretal.,2014;Skewgar,Boersma,&Simeone,2014),otters (Ebensperger & Botto-Mahan, 1997), blue and humpbackwhales (Hucke-Gaete etal., 2004), dolphins and pinnipeds (Ribeiroetal., 2007; Veríssimo etal., 2010), and skates and sharks (Lamillaetal.,2005;Quiroz,Wiff,&Céspedes,2009;Valenzuela,Bustamante,&Lamilla,2008).MostofthesemarineanimalsusetheChiloéSeaasa feeding andnursery area (Hucke-Gaete etal., 2004;Quiroz etal.,2009).However,thissemi-closedenvironmentisundergreatpressurebecausethehighdensityofhuman-relatedactivitiesthatarecarriedoutinthisregionhasbecomeamajorthreatfortheecologicalbalanceandpersistenceoflocalmarinespecies(Oddoneetal.,2015).Forin-stance,differentbiologicalaspects(e.g.,mortalityrates,behavioranddistribution)ofa rangeofmarinepredators, suchasseals,dolphins,andsharks,aresignificantlyaffectedbytheirinteractionswithfisheries

F IGURE  1 Mapofthestudyareawithsalmonfarmsdistributionandactivityareasofsmalltolarge-scalefisheries(e.g.,hake,anchovies,mackerel,cusk-eel,seaurchins)(modifiedfromBustos-Gallardo&Irarrazaval,2016)

0 5 10 20 30 40km

Salmon farmSmall to large-scale fisheries areas

Page 3: Spatial overlap of shark nursery areas and the salmon ... final.pdf · Ecology and Evolution. 2017;7:3773–3783. | 3773 Received: 9 January 2017 | Accepted: 14 March 2017 DOI: 10.1002/ece3.2957

     |  3775GAITÁN- ESPITIA ET Al.

(e.g.,hake,mackerel,sardine,andanchovy)andintensiveaquaculturesystems(e.g.,salmon,mussels)intheChiloéSea(DeLaTorrienteetal.,2010; Kemper etal., 2003; Ribeiro etal., 2007; Sepúlveda&Oliva,2005;Veríssimoetal.,2010).Someoftheseinteractionshaveledtomortalitiesasaconsequenceofdirecthumanattackorbyaccidentalbycatch(DeLaTorrienteetal.,2010;Ribeiroetal.,2007;Sepulvedaetal.,2007).Oneof thebestexamplesof thissituation is thespinydogfishSqualus acanthias.Thiscoastalsqualoidshark,aswellasotherdogfish species (e.g., Centroscyllium granulatum and Deania calcea),is common bycatch species in many small and large-scale fisheriesin southernChile (De LaTorriente etal., 2010; Lamilla etal., 2005;Valenzuelaetal.,2008).Unfortunately,littleisknownabouttheabun-danceofS. acanthias inChileand theecological implicationsof thepopulationdeclines(~30%)documentedforthisvulnerablespeciesinSouthAmerica(Fordhametal.,2006;Veríssimoetal.,2010).

Giventhepotentialforstronginteractionsbetweenhumanactivi-ties(aquacultureandfisheries)andspinydogfishpopulationsinsouth-ernChile(DeLaTorrienteetal.,2010;Valenzuelaetal.,2008),hereweassessedthepotentialeffectsofsalmonfarmingonthebiologyofS. acanthiasintheChiloéSea.Wealsodiscussthetrophicandreproduc-tivemetricsemployedhereinthecontextofS. acanthiaspopulationselsewhere,whichareunexposedtointensesalmonidaquaculture.

2  | MATERIAL AND METHODS

Spinydogfish(N=102;89femalesand13males)werecollectedfrombycatchofartisanalfisheriesintheinnerseaofChiloeIsland(41°40′S;72°39′W) at the northern part of theChilean Southern fiords area(Figure1)duringMay–August(winter)2013andDecember–February(summer) 2014. These fisheries exploit small pelagic fish speciessuchasjackmackerel,anchoveta,hake,sardineamongothers.Oncecaptured, spiny dogfish specimens were preliminarily identified bymorphologicalexamination,preservedin ice,andtransportedtotheElasmobranchesLaboratoryattheAustralUniversityofChile(UACh).Genderandweight(W)wererecorded,whilematuritystagewasde-terminedfollowingStehmann(2002).Precaudallength(PCL)andtotallength(TL)weremeasuredtothenearestgramandmillimeterforeachanimal.

2.1 | Species identification

Manybycatchspeciesofdogfisharedifficulttoidentifyowingtoex-tensivemorphological similarities. This identification problem is ex-acerbatedbythecommonfisherypracticeofremovingthehead,tail,andmostfinsfromlandedsharkswhilestillatseatoreducerequiredstoragespacefortheanimal. InordertoconfirmtheidentityofthespinydogfishspeciescapturedbytheartisanalfisheryintheinnerseaofChiloé, andassumed tobeS. acanthias,we sequenceda670-bpfragmentof thecytochromecoxidase subunit1gene (Cox1).Totalgenomic DNA (gDNA) was extracted frommuscle of 10 randomlyselected individuals using the standard phenol-chloroformmethod.Cox1sequenceswereamplifiedbypolymerasechainreaction (PCR)

using primers reported elsewhere (Fallabella, 1994; Ward etal.,2007).PCRproductswerepurifiedusingtheENZADNAPurificationKit (OMEGA). Sequencingwas performed at the Departamento deEcología—Universidad Católica de Chile. All sequences were com-pared against the GenBank nonredundant protein database usingBLASTN.Sequencesshowingsignificanthits(Evalue<.001)andhighpercentofidentity(>99%)weredownloadedfromGenBankforpos-terior analysis. Sequences were aligned using theMAFFT platformof the TranslatorX multiple sequence alignment program (Abascal,Zardoya,&Telford,2010).AlignmentswereperformedusingtheL-INS-ioption(accurateforalignmentof≤200sequences)anddefaultsettings.Amedian-joininghaplotypenetworkwasconstructedwiththe PopART program (Leigh & Bryant, 2015) to estimate the “finescaled” intraspecificrelationshipsamongChileansequencesandthereference sequences obtained from GenBank. Haplotype networkanalysesarepowerfulmethodsforintraspecificdatainrevealingmul-tiple connectionsbetweenhaplotypesand thenumberofbase-pairchangesbetweenthem(Mardulyn,2012).

2.2 | Trophic ecology

Toinvestigatehowdietaroundthesalmoncagesmayvarywithsharksize,specimensweredividedintotwoclasses—matureor immature,followingsizecutoffsprovidedinAlonsoetal.(2002).Stomachswerepreservedin10%formalinandstoredfrozenat−20°Cuntilanalyzed.Stomachcontentswerethawedandwashedwithwater.Identificationwas based on intact and remaining hard structures combinedwithgeneral shape and anatomical features of prey. Recognizable preyitems were identified to the lowest possible taxon, following theosteological guide of fishes (Fallabella, 1994) from the BiologicalCollection at theZoology Instituteof theUACh.Because the sam-plesizewasrelativelysmall,cumulativenumberofpreycurveswasused to evaluate adequacy of the sample size in our study. Thesecurveswere estimatedwith asymptoticmodels using twodifferentapproaches: (1) the rarefaction curve and (2) the trophic diversitycurvebasedonthenumberofpreyitemsandthenumberofstomachssampled (Cortés,1997;Mardulyn,2012).Therarefactioncurvewasgeneratedbymeansof theEstimateS8.2 software (Colwell, 2013),randomizingthesampleorder100times.Thereafter,theasymptoticClenchfunctionwasfittedtothesmoothedcurveS(e)=ae/(1+be),whereS(e)isthenumberofspeciesfoundpersampling-effortunit(e);a and barefunctionparameters.ThelatterwereadjustedtothedataofeachcurvebymeansofaSimplexandQuasiNewtonmethodoftheStatisticapackage(StatSoftInc.version6.0,2004)tocalculateregres-sioncoefficientsandasymptote.Thecompositionandrelativeimpor-tanceoffooditemsinthedietwereexaminedusingthethreeindicesdescribedbyHyslop(1980):(1)thenumericalindex(%N);(2)thefre-quencyofoccurrence(%O);and(3)thegravimetricindex(%W).Ifusedseparately,theseindicescanproduceabiastowardhighlyabundantitems (%O), small items (%N), or very large items (%W) (Mardulyn,2012).Toovercometheseindividualbiases,ageneralizedformoftherelativeimportanceindex(%RI)wascalculatedtodeterminethecom-binedeffectoftheseindicesoneachpreycategory(Vögler,Milessi,

Page 4: Spatial overlap of shark nursery areas and the salmon ... final.pdf · Ecology and Evolution. 2017;7:3773–3783. | 3773 Received: 9 January 2017 | Accepted: 14 March 2017 DOI: 10.1002/ece3.2957

3776  |     GAITÁN- ESPITIA ET Al.

&Duarte,2009).The%RIwasplottedtoestablishthelevelofimpor-tanceofeachpreycategoryaccordingtodiscontinuitiesintheslopeof thecurve.Thecategoriesofpreyweresortedaccordingto levelofimportancewherehigh%RIvalueswereassignedtothefirstlevelofimportanceandsoforth(Vögleretal.,2009).Finally,dietbreadthwascalculatedusingLevin’sstandardizedindex,rangingfrom0to1,wherelowvaluesindicatedietsdominatedbyfewpreyitems(special-istpredators),andhighvaluesindicategeneralistdiets(Krebs,1989).

Forthedataset,asimilaritymatrixwasgeneratedusingtheBray–Curtis similaritymeasure. In addition, thenonparametric analysis ofsimilarities(ANOSIM)wasrunonthematricesusing999permutationswiththePRIMERsoftware(v6.0).Wetestedthenullhypothesisofnodifferencesinthedietcompositionbetweenthematureandimmaturefemale sharks, and betweenwinter and summer (groupingmaturitystages).Percentdataweresquare-root-transformedpriortostatisticalanalysis,whichsatisfiedassumptionsofnormality.

2.3 | Reproductive biology

ReproductionofS. acanthiasintheChiloéSeamayalsobeinfluencedbyassociationwithsalmonaquaculture.Becauseofthelownumberofmalescollectedintheareaofstudy,wefocusedinvestigationonthe89 females.A regressionanalysiswas first conducted todeter-minelength–weightrelationshipsusingthefollowingequation:

whereW is theweight (g),a and b areconstants,andL is the totallengthincm.

Thepresenceofmatureyellowoocytes(diameterover2cm)andembryoswithintheuteriwasconsideredtoindicatematurefemales(Stehmann,2002).Relationshipsbetweenmothersizeandthenumberofeggsandembryoswerethendetermined.Totallengthat50%ma-turity(TL50%)wascalculatedbyalogisticmodelfittedtothematuritydataasfollows:

whereYistheproportionofmatureindividualsandTL50%isgivenby—a/b (Nakano,Hayashi,&Nagamine,2015). Litter sizewas recordedfor pregnant females, along with sex, total length (TLpup), weight(Wpup),andvolumeoftheyolksac(V)foreachembryo.Relationshipsbetweenlength–weight, length–volumeoftheyolksac,andthesexratiooftheembryoswereexploredusingthe lm() function intheRstatisticalpackage.Thedevelopmentalstageoftheembryoswases-timatedfollowingJonesandUgland(2001).Atwo-wayANOVAwasperformedforcomparisonofthenumberofembryosamongmaturityclassesandseasons.

3  | RESULTS

3.1 | Species validation

Spinydogfishsamples(n=10)fromtheChiloéSeaweresuccessfullyamplified,sequenced,anddepositedattheNCBIundertheaccession

numbersGU191146toGU191155.ComparisonofthesesequencesagainstGenBank showed high similarity (>99%) to S. acanthias fol-lowedbyS. suckleyi(98%),S. edmundsi(93%),andS. hemipinnis(92%)(Fig.S1).Consequently,sequencesofS. acanthiasfromdifferentpartsoftheworldwereusedasreferenceinthemedian-joininghaplotypenetwork(Fig.S2).Onlyonehaplotypewassharedamongpopulationsin the Southern (Chile, Argentina, Tasmania, South Africa) and theNorthern(USA,Canada,Europe)Hemisphere.Allotherhaplotypesareinferredtohavebeenderivedfromthishaplotypebyone(e.g.,ChileanandArgentinianpopulations)or>2mutationalsteps(e.g.,UKandUSApopulations)(Fig.S2).

3.2 | Diet composition

Stomachcontentsof26immature(range46–74cmTL;mean±1SD: 57±8.1cm)and63mature(71–98cmTL;85±5.8cm)females,wereexamined,with61(68.5%)stomachscontainingfooditems.Wholeandundigestedprey itemswerefrequentlyfoundinthesamestomachsaswell-digestedprey.Therarefactioncurveandthetrophicdiversitycurveshowedawell-definedasymptote(Figure2),indicatingthatthetotalsamplesizewasadequateindescribingspinydogfishdietintheChiloéSea.Thestomachcontentoffemalesharkswascomposedoffivepreyitems(Table1),wherefishwerethemostrepresentedtaxawiththreeitems:australhake(Merluccius australis),anchovy(Engraulis ringens),andsardine(Sprattus fuegensis).M. australiswasthedominantprey, contributing thehighestvaluesof trophic indices followedbyfoodpelletsfromsalmonfarms (Table1).Accordingtothe%RI, thedietoffemalespinydogfishischaracterizedbythreelevelsofimpor-tance(Figure3a),wherehakeandpelletsaregroupedinthefirstlevel,anchovyinthesecondlevel,andthethirdleveliscomprisedofsardineandunidentifiedpreyitems(e.g.,gelatinousprey).TheLevin’sstand-ardizedindex(Ba)indicatedanarrowtrophicnichebreath(Ba=0.31)forS. acanthias in theChiloé Sea as a result of the lownumber ofpreyitemsandthehigherimportanceofaustralhakeinthedietoffe-malesharks.Therelativeimportanceofpelletsforimmaturefemales

W=a×Lbc

Y=[

1+e−(

a+b×TL

)]

−1

F IGURE  2 CumulativepreycurvesforfemalesofSqualus acanthias,theverticalaxisshowsthenumberofpreyitemsandthehorizontalaxisshowsthenumberofgutsanalyzed

Page 5: Spatial overlap of shark nursery areas and the salmon ... final.pdf · Ecology and Evolution. 2017;7:3773–3783. | 3773 Received: 9 January 2017 | Accepted: 14 March 2017 DOI: 10.1002/ece3.2957

     |  3777GAITÁN- ESPITIA ET Al.

decreasedinthedietofmaturesharks,inpartduetoincreased%RIoftheaustralhake (Table1,Figure3b).However, theresultsoftheANOSIMtestindicatedthatthedietsofthesetwogroupswerenotsignificantlydifferent(GlobalR=.008,P=.399).Comparisonofstom-achcontentsduringaustralseasonsrevealedsomedifferencesinthe%RIbetweenwinterandsummer(GlobalR=.165,P=.044;Table1,Figure3c). For instance, duringwinter, anchovy and salmon pelletsrepresent 93% of the prey contribution to the %RI, while in sum-mer,hakeandpelletsarethemostimportantitemswith~74%ofRI(Table1,Figure3c).Nodifferences in thenumberof immatureandmaturefemalesweredetectedbetweenseasons(χ2 =1.9,P=.59).

3.3 | Reproductive development and fecundity

FemalesofS. acanthiascollected intheChiloéSearanged in lengthfrom 46 to 98cm (mean±1 SD: 79±11cm). Their weights variedbetween 0.7 and 4.9kg (mean±1 SD: 2.4±1kg). The relationshipbetween these two variables revealed a positive allometric trendfor somatic growth (Figure4a, R2 = .915; P<.001). The estimatedlengthat50%maturitywas72.8cm(r=.998,Figure4b).Thenumberofoocyteswithadiameterover2cmvariedbetweenthreeand17(mean±SD: 7.67±2.8oocytes), andno significant relationshipwasdetectedbetweentheTLofmaturefemalesandthenumberofeggs

TABLE  1 DietcompositionoffemalesSqualus acanthias

Total Stages of development Seasons

Stomach contents %O %N %W %RI %RI mature %RI immature %RI winter %RI summer

Unidentified 13.1 5.2 1.5 0.93 0.7 1.1 0.8 7.3

Pellet 57.4 30.9 26.6 35.5 14.4 35.8 48.6 37.7

Hake 49.2 40.4 52.4 48.9 74.5 43.0 4.5 36.4

Anchovy 37.7 15.7 13.1 11.6 1.0 7.7 44.4 3.2

Sardine 19.6 7.8 6.5 3.1 9.4 12.4 1.7 15.4

F IGURE  3 TrophicecologyinfemalesofSqualus acanthias.(a)Relativeimportance(%RI)offunctionalpreycategories.Verticallinesindicatethethreelevelsofimportanceofthefunctionalpreycategoriesaccordingtodiscontinuitiesintheslopeofthe%RIcurve.Comparativeanalysisoftherelativeimportance(%RI)between(b)maturitystagesand(c)seasons

Page 6: Spatial overlap of shark nursery areas and the salmon ... final.pdf · Ecology and Evolution. 2017;7:3773–3783. | 3773 Received: 9 January 2017 | Accepted: 14 March 2017 DOI: 10.1002/ece3.2957

3778  |     GAITÁN- ESPITIA ET Al.

(Figure4c,R2 = .002; P<.91).Ontheotherhand,thenumberofem-bryosshoweda lowbutpositive relationshipwith theTLof the fe-malesharks(Figure4d,R2=.348;P<0.012)rangingbetweenoneand12embryosper female (mean±SD:5.52±3.1).A totalof274em-bryoswerefoundwithlengthsbetween3.6and25.8cm(mean±SD: 12.7±5.7cm) and weights between 2.5 and 40.8g (mean±SD: 12.3±11.9g).Therelationshipbetweentotallength(TLpup)andweight(Wpup)ofpupssuggeststhatembryosincreaseinweightexponentially(Figure5a,R2 = .913; P<0.001)andastheygrowtheweightoftheiryolksacdecreases(Figure5b,R2 = .385; P<0.001).Thesexratiooftheembryoswaseven(1:1),andsignificantdifferencesweredetectedinthenumberofembryosatthesmallermaturesizeclassesbetweenseasons(Figure5c,two-wayANOVA;F10,251=1.96,P=.038).

4  | DISCUSSION

Interactionsbetweenmarinepredators andhumans arise in coastalecosystems invariouspartsof theworldwhere feedingand repro-duction sitesoverlapwitheconomic activities suchas fisheries andaquaculture.Theseinteractionsinclude(1)mortalitythroughbycatch;(2) deliberate harming of animals by humans; (3) changes in animalbehavior;(4)competitionforthesameresource;(5)changesinpreysizestructureanddistribution;and(6)changesincommunitycompo-sitionresultingfromfishingorfromaquaculture-inducedalterationsoftheenvironment(DeLaTorrienteetal.,2010;Guilpartetal.,2012;Kemper etal., 2003; Kutti etal., 2007; Papastamatiou etal., 2010;Ribeiroetal.,2007;Sepúlveda&Oliva,2005;Sepulvedaetal.,2007;

F IGURE  4 ReproductivebiologyofSqualus acanthiasfemalesintheChiloeSea.(a)Allometricrelationshipbetweenthetotalweightandtotallengthofspinydogfish.Relationshipsbetweenlengthoffemalesharksand(b)thepercentageofmaturefemales,(c)thenumberofeggsand(d)thenumberofembryos

Page 7: Spatial overlap of shark nursery areas and the salmon ... final.pdf · Ecology and Evolution. 2017;7:3773–3783. | 3773 Received: 9 January 2017 | Accepted: 14 March 2017 DOI: 10.1002/ece3.2957

     |  3779GAITÁN- ESPITIA ET Al.

Veríssimoetal.,2010).Giventhehighdensityofhuman-relatedac-tivities(e.g.,fisheriesandintensiveaquaculturesystems)intheChiloéSea(Oddoneetal.,2015),stronginteractionswithspinydogfishpopu-lations(DeLaTorrienteetal.,2010;Valenzuelaetal.,2008)werepos-sible.OurresultsshowthatthespatialoverlapofsharknurseryareasandthesalmonindustryinfluencesthetrophicnicheofS. acanthias in thisregionbyaddingnewfooditems(i.e.,pellets;directeffect),andalteringthestructureandcompositionofbenthiccommunities (e.g.,crustaceans;indirecteffect).

4.1 | Genetic validation of Squalus acanthias

AlthoughsharksarenotthetargetspeciesinmanyChileanfisheries,practicessuchasdriftnettingandlonglinefishingresultinhighlev-elsofsharkbycatch(Lamillaetal.,2005;Valenzuelaetal.,2008).Theaccurateidentificationofspeciesofsharksobtainedfrombycatchisdifficultbecausesomespeciesdifferonlyslightlyintheirmorphologyandalsobecauseinsomecases,head,tail,andmostfinsfromlandedsharks are removed at sea tominimize storage needs and prevent

spoiling(Shivjietal.,2002).Therefore,differentmolecularapproacheshave been recommended for shark species identification. One ap-proach isDNAbarcodingusinguniversalprimers toamplifypartoftargetgenes(Holmes,Steinke,&Ward,2009;Wardetal.,2008).Thisapproach is similar to the traditional morphology-based methods,wherespeciesidentificationisbasedonthepresenceorabsenceofadistinctmorphological feature (Viswambharanetal.,2015). Inourstudy,theuseofthecytochromecoxidasesubunit1gene(Cox1)asabarcodingsequenceallowedusforthefirsttimetounambiguouslyidentifyS. acanthiasasthedogfishspeciesinthebycatchofartisanalfisheriesintheregion.Aswithotherreportedbarcodingstudies,theCox1regioniseffectiveindelineatingsharksuptothespecieslevelwithin the genusSqualus (Ward etal., 2007).Despite the relativelylownumberof individualssequencedinthisstudy,wewereabletoidentify10closelyrelatedhaplotypes intheseChileandogfish.OneofthesehaplotypeswassharedmainlywithotherS. acanthiaspopula-tionsintheSouthernHemisphere.Theseresultsareconsistentwithapreviousglobalphylogeographicstudy, inwhichtheSouthPacificandAtlanticlineageofS. acanthiaswascharacterizedbyastar-shaped

F IGURE  5 Relationshipbetweenthetotallengthsofpupswith(a)theirbodyand(b)yolksacweights.(c)Changesindistributionofthetotallengthsofpupsbetweensummerandwinter

Page 8: Spatial overlap of shark nursery areas and the salmon ... final.pdf · Ecology and Evolution. 2017;7:3773–3783. | 3773 Received: 9 January 2017 | Accepted: 14 March 2017 DOI: 10.1002/ece3.2957

3780  |     GAITÁN- ESPITIA ET Al.

networkwith one very common, central haplotype and several de-rivedandlow-frequencyhaplotypes(Veríssimoetal.,2010).

4.2 | Trophic ecology of Squalus acanthias around salmon farms in Chile

Theoverall dietofS. acanthias females in theChiloéSea consistedmainlyofteleostfishes.However,commercialsalmonfeedswerepre-sentinthestomachsoffemaledogfish.Thisisthefirstrecordofthishigh-energyfooditem(24–30%oil,~19kJg−1)inS. acanthias,whichdiffersfromthenaturaltrophiccompositionforthisspeciesinotherregions of the world (Alonso etal., 2002; Avsar, 2001; Demirhan,Seyhan,&Basusta,2007;Dunnetal.,2013;Hanchet,1991;Holden,1966;Laptikhovsky,Arkhipkin,&Henderson,2001;Tanasichuketal.,1991). Salmon farms are known to affect the surrounding environ-mentand localmarinecommunitiesbytheadditionoforganicmat-terintheformoffecesanduneatenfeed(Kuttietal.,2007;Soto&Norambuena, 2004).Organicwaste from salmon cages produces ahighconcentrationofammoniainthelocalenvironmentthatcanleadtodecreasedgrowth, increasedvulnerability todiseasesandpatho-logicalchangesinanimalsinhabitingsalmonfarmingareas(Piedecausaetal., 2010).Here, the presence of salmon pellets in the diet ofS. acanthiasraisesconcernaboutthepotentialimpactofsalmonfarmson the biology ofmarine predators, their trophic relationships, andecosystem function in this region. For example, the use of corn orsoybeanincommercialpelletsprovidesahighproportionofoleicacid(18:1n-9),linoleicacid(18:2n-6)andlinolenicacid(18:3n-3),thatalterthefattyacidcomposition,physiologyandbehavioroffishandmus-selsfromareasinthevicinityofsalmonfarms(Redmondetal.,2010;Skogetal.,2003).Inaddition,theintensivenatureofsalmonfarminghas resulted in the use of antibiotics (e.g., oxytetracycline), to limitbacterialandprotozoaninfections(Primavera,2006).Theseantibiot-icsareadministeredwiththefeedpelletsandhavethepotentialtobeaccumulatedintissuesofmarineorganismsaroundthesalmoncages(Campbell,Pantazis,&Kelly,2001).Excessiveuseofantibioticsresultsinthedevelopmentofsideeffects,suchasliverdamage,toxiceffects,bacterialresistance,andimmunesuppression,andcanhavenegativeeffects on environmental quality and human health (Nakano etal.,2015;Zounkováetal.,2011).InChile,salmonaquacultureuses8000timesmoreantibioticsthaninothercountries(e.g.,Norway),andthepresenceoftetracyclines(usedforproteininhibition)andquinolones(fastbactericideaction)hasbeendocumentedinnativespeciessur-roundingthesalmonpensoftheChiloéSea(Buschmannetal.,2009;Outeiro&Villasante,2013;Soto&Norambuena,2004).

BeyondthepresenceofsalmonpelletsinthedietofS. acanthias in Chile,thetrophicecologyofthissqualoiddifferscomparedtopopu-lationsinotherregions.Overall,spinydogfisharedescribedasafairlynon-selective(i.e.,generalist)andopportunisticpredatorthatfeedsonmanypelagicandbenthicspecies(Alonsoetal.,2002;Belleggiaetal.,2012).However, female spiny dogfish inChile showed a functionalspecialist behavior as indicated by the small number of prey itemsand the relative high importance of the austral hake and pellets inthediet.ThetrophicnicheofS. acanthiaspopulationsintheNorthern

Hemisphere, theSouthwestAtlantic, andSouthwestPacific is char-acterizedbyagreatdiversityof teleost fishes (e.g.,hakes, sandeels,gobies, herrings, anchovies, andwhiting), crustaceans (e.g., shrimps,crabs,lobsters,andeuphausiids),mollusks(e.g.,squidsandoctopuses),and other invertebrates (e.g., salps, sea anemones, nematodes, andpolychaetes)(Alonsoetal.,2002;Avsar,2001;Belleggiaetal.,2012;Demirhan etal., 2007; Dunn etal., 2013; Hanchet, 1991; Holden,1966;Laptikhovskyetal.,2001;Tanasichuketal.,1991). Inmostofthesestudies,demersalandpelagicfishwerethemaincomponentofthediet,whichisconsistentwithourresult.However,intheseregions,S. acanthiasfeedsonotherimportantpreyitemssuchascrustaceansandmollusksthatareabsentinthedietofsharksintheChiloéSea.One plausible explanation of this discrepancy could be the lowoc-currenceofthesepreysnearsalmonfarmsinSouthernChile.Infact,oneofthemostdrasticenvironmentaleffectsoforganicwastefromsalmonaquacultureisthealterationofthestructureandcompositionofbenthiccommunities (Guilpartetal.,2012;Kuttietal.,2007)andparticularlythereductionsinbiodiversityofcrustaceansinthevicinityof salmon cages (Buschmannetal., 2009;Hall-Spencer etal., 2006;Outeiro&Villasante,2013).

Fromanontogeneticperspective,S. acanthias exhibits substan-tialvariationindietwithbodylength(e.g.,Alonsoetal.,2002;Avsar,2001;Demirhanetal.,2007;Dunnetal.,2013;Hanchet,1991).Thisisconsistentwithour results inwhichsmaller immaturesharks fedmoreonpelletsandanchoviesthanlargermaturefemales.Theonto-genetictransitionfromsmallpreyitems(e.g.,crustaceans,salps,otherinvertebrates)tofishfeedingisatypicalfeatureofthetrophicecologyofS. acanthias (Dunnetal.,2013;Tanasichuketal.,1991).Anothersourceofvariationinthedietcompositionofthespinydogfishissea-sonality (Belleggiaetal.,2012;Demirhanetal.,2007;Laptikhovskyetal.,2001;Tanasichuketal.,1991).Here,despiteofthepresenceofsalmonpelletsinthestomachsoffemalesharksthroughouttheyear,significantdifferencesweredetectedbetween summerandwinter,againconsistentwithother studies that showspinydogfish switchpreytotakeadvantageofspatiotemporalchangesinpreyavailability(Demirhanetal.,2007). IntheChiloéSea,sharkspreymoreonan-choviesduringwinterandhakesduringsummer,whichisconsistentwiththe localavailabilityof thesepreyfishesduetotheirseasonalmigration(Aguayo-Hernández,1995;Lealetal.,2011).

4.3 | Biological parameters

Therelatively largersizeand increasedresidence timeof fishesnearsalmonfarmscomparedwithfishesfromotherareasisexplainedbytheavailabilityofhigh-energypellets fromsalmoncages,asdocumentedinmany species elsewhere (Skog etal., 2003).Hence, differences inbiologicalparametersforspinydogfishintheChiloéSeacomparedtopopulationsnotinfluencedbysalmonidaquaculturemightbeexpected.However,ourresultsdidnotsupportthehypothesisofdifferentrepro-ductiveandgrowthpatternsinspinydogfishinChiloe.ThesizerangeofimmatureandmaturefemaleswassimilartosouthwestAtlanticpopu-lations(Alonsoetal.,2002;Nakanoetal.,2015),andslightlylowerthanNorthernHemisphere populations (Avsar, 2001;Gračan etal., 2015;

Page 9: Spatial overlap of shark nursery areas and the salmon ... final.pdf · Ecology and Evolution. 2017;7:3773–3783. | 3773 Received: 9 January 2017 | Accepted: 14 March 2017 DOI: 10.1002/ece3.2957

     |  3781GAITÁN- ESPITIA ET Al.

Jones&Ugland,2001;Yigin&Ismen,2013),butwithpositiveallomet-ric trends for somaticgrowth (TL~W) inallof thecases.Thesizeat50%maturityofS. acanthiasintheChiloéSea(72.8cm)washigherthanreported for theMediterranean Sea (51.8–52.8cm) (Chatzispyrou&Megalofonou,2005;Yigin&Ismen,2013),similartoSouthwestAtlantic(70.4cm) (Nakanoetal.,2015)andSouthwestPacific (71.5–74.0cm)populations(Hanchet,1988),andlowerthanintheBlackSea(88cm)(Avsar, 2001), the Northeast (77–78.2cm) (Henderson, Flannery, &Dunne, 2002; Stenberg, 2005) and Northwest (79.1cm) (Sosebee,2005)Atlantic,andBritishColumbiawaters(93.5cm)(Ketchen,1972).Althoughregionaldifferences inTL50%occur, there isnoevidenceofparticulareffectsof localconditions (i.e., salmonfarming)onthispa-rameter of S. acanthias in theChiloé Sea. Fecundity (i.e., number ofeggsandembryos)wasalsowithin thevaluesdescribed forS. acan-thias elsewhere in theworld,with an increasingnumberof embryosin largermaturefemales,andnodifferences intheirsexratio (Avsar,2001;Jones&Ugland,2001;Ketchen,1972;Nakanoetal.,2015).TherangeoftotallengthofembryosexaminedencompassesthetheoreticalcurveproposedbyAvsar(2001)forthisspeciesandfollowstherela-tionshipforembryoweightdescribedinotherregions(Chatzispyrou&Megalofonou,2005;Yigin&Ismen,2013).Thelowfrequencyofmalesinourstudysuggeststhatspatialsegregation(latitudeanddepth)ofsexmayoccur,whileimmatureandmaturefemalesspatiallyoverlappedinallseasons(Nakanoetal.,2015).

Overall,despitedifferencesinthetrophicpatternsinthisregion,from this study, there appears to be no demographic expression intermsof fecundityor sizeatmaturityof these trophic changesdueto the spatial association with intensive salmon farming.We havenotcalculatedthecalorificvalueofthediet,andwesuggestthatthisvariableisneededinoneadditionalcomparativestudywithsamplesfromotherregionsthatarenotinfluencedbysalmonfarming,totestanydietenrichmenthypothesis.Itmayalsobenecessarytoexaminetheeffectofanychemicals in theenvironmenton the reproductiveperformanceofthesharks.Ifthisinnerseaistheonlydogfishnurseryareaintheregion,thenareproductivecomparisonmaynotbepossi-ble,andglobalcomparisonsofdietaryenergyandreproductiveoutputwillbeneeded.Weconcludethatatthisstage,theintensivesalmonaquacultureoftheChiloéSeaisinfluencingthedietofS. acanthias,butwithoutanimpactonsharkreproduction.

ACKNOWLEDGMENTS

ThispaperisdedicatedtothememoryofProfessorJulioLamilla,oneoftheco-authors,whopassedawayduringthedevelopmentofthisarticle,onMarch31,2016.Theauthorsexpresstheirthankstothefishery creek of Anahuac. JDGE was supported by a CSIRO-OCEpostdoctoralfellowship.LCwassupportedbytheMillenniumNucleusCenterfortheStudyofMultipledriversonMarineSocio-EcologicalSystems(MUSELS)-MINECONProjectNC120086.

CONFLICT OF INTEREST

Nonedeclared.

AUTHOR CONTRIBUTION

LC, JDGE,DG, and JL conceivedanddesigned the study.DG sam-pledthebiologicalmaterialandcarriedoutDNAextractions.JD,DG,AH, and RD performed data analyses. JD, AH, and LC drafted themanuscript.Allauthorsread,approved,andcontributedtothefinalmanuscript.

REFERENCES

Abascal,F.,Zardoya,R.,&Telford,M. (2010).TranslatorX:Multiplealign-ment of nucleotide sequences guided by amino acid translations.Nucleic Acids Research,38,W7–W13.

Aguayo-Hernández,M.(1995).BiologyandfisheriesofChileanhakes(M. gayi and M. australis).InAlheitJ.,PitcherT.J.(Ed.),Hake -Fisheries, ecol-ogy and markets.FishandFisheriesSeries,15(pp.305–337).London,UK:Chapman&Hall.

Alonso,M.,Crespo,A.E.,García,N.E., Pedraza, S.N.,Mariotti, P.A.,&Mora,N.J.(2002).Fisheryandontogeneticdrivenchangesinthedietofthespinydogfish,Squalus acanthias,inPatagonianwaters,Argentina.Environmental Biology of Fishes,63(2),193–202.

Avsar,D. (2001).Age, growth, reproduction and feedingof the Spurdog(Squalus acanthias Linnaeus, 1758) in the South-eastern Black Sea.Estuarine, Coastal and Shelf Science,52,269–278.

Belleggia,M.,Figueroa,D.E.,Sánchez,F.,&Bremec,C.(2012).Long-termchanges in the spiny dogfish (Squalus acanthias) trophic role in thesouthwesternAtlantic.Hydrobiologia,684(1),57–67.

Bonizzoni,S.,Furey,N.B.,Pirotta,E.,Valavanis,V.D.,Würsig,B.,&Bearzi,G. (2014). Fish farming and its appeal to common bottlenose dol-phins:modellinghabitatuse inaMediterraneanembayment.Aquatic Conservation: Marine and Freshwater Ecosystems,24(5),696–711.

Brooks,K.M.,&Mahnken,C.V.(2003).InteractionsofAtlanticsalmoninthePacificnorthwestenvironment.Fisheries Research,62(3),255–293.

Brown,J.R.,Gowen,R.J.,&McLusky,D.S.(1987).TheeffectofsalmonfarmingonthebenthosofaScottishsealoch.Journal of Experimental Marine Biology and Ecology,109(1),39–51.

Buschmann,A.H.,Riquelme,V.A.,Hernández-González,M.C.,Varela,D.,Jiménez,J.E.,Henríquez,L.A.,...Filún,L.(2006).Areviewoftheim-pactsofsalmonidfarmingonmarinecoastalecosystemsinthesouth-eastPacific.ICES Journal of Marine Science,63(7),1338–1345.

Buschmann, A. H., Cabello, F., Young, K., Carvajal, J., Varela, D. A., &Henríquez,L.(2009).SalmonaquacultureandcoastalecosystemhealthinChile:Analysisofregulations,environmentalimpactsandbioremedia-tionsystems.Ocean and Coastal Management,52(5),243–249.

Bustos-Gallardo,B.,&Irarrazaval,F.(2016).“Throwingmoneyintothesea”:Capitalism as aworld-ecological System. Evidence from the ChileanSalmonIndustryCrisis,2008.Capitalism Nature Socialism,5752(April),1–20.doi:10.1080/10455752.2016.1162822.

Campbell,D.A.,Pantazis,P.,&Kelly,M.S. (2001). Impactandresidencetimeofoxytetracyclineintheseaurchin,Psammechinus miliaris,apo-tentialaquaculturespecies.Aquaculture,202(1–2),73–87.

Carroll, M. L., Cochrane, S., Fieler, R., Velvin, R., & White, P. (2003).Organic enrichment of sediments from salmon farming in Norway:Environmental factors, management practices, andmonitoring tech-niques.Aquaculture,226(1–4),165–180.

Carss,D. (1990).Concentrationsofwildandescapedfishes immediatelyadjacenttofishfarmcages.Aquaculture,90(1),29–40.

Chatzispyrou,A.,&Megalofonou,P.(2005).Sexualmaturity,fecundityandembryonicdevelopmentofthespinydogfish,Squalus acanthias,intheeasternMediterraneanSea.Journal of the Marine Biological Association of the United Kingdom,85,1155–1161.

Colwell,R.K. (2013).EstimateS:statisticalestimationofspeciesrichnessandsharedspeciesfromsamples.Version9.0User’sGuideandapplica-tion.Retrievedfromhttp://viceroy.eeb.uconn.edu/estimates

Page 10: Spatial overlap of shark nursery areas and the salmon ... final.pdf · Ecology and Evolution. 2017;7:3773–3783. | 3773 Received: 9 January 2017 | Accepted: 14 March 2017 DOI: 10.1002/ece3.2957

3782  |     GAITÁN- ESPITIA ET Al.

Correa,C.,&Gross,M.R.(2008).ChinooksalmoninvadesouthernSouthAmerica.Biological Invasions,10(5),615–639.

Cortés, E. (1997).A critical review ofmethods of studying fish feedingbasedonanalysisofstomachcontents:Applicationtoelasmobranchfishes. Canadian Journal of Fisheries and Aquatic Sciences, 54(3),726–738.

DeLaTorriente,A.,Quiñones,R.A.,Miranda-Urbina,D.A.,&Echevarría,F.(2010).SouthAmericansealionandspinydogfishpredationonar-tisanalcatchesofsouthernhake in fjordsofChileanPatagonia. ICES Journal of Marine Science,67(2),294–303.

Debruyn,A.M.,Trudel,M.,Eyding,N.,Harding,J.,McNally,H.,Mountain,R., ... Mazumder, A. (2006). Ecosystemic effects of salmon farmingincreasemercury contamination inwild fish.Environmental Science & Technology,40(11),3489–3493.

Demirhan,S.A.,Seyhan,K.,&Basusta,N.(2007).Dietaryoverlapinspinydogfish (Squalus acanthias) and thornback ray (Raja clavata) in thesoutheasternblacksea.Ekoloji,16(62),1–8.

Dempster,T.,Sanchez-Jerez,P.,Bayle-Sempere,J.T.,Giménez-Casalduero,F.,&Valle,C. (2002).Attractionofwildfishtosea-cagefishfarmsinthesouth-westernMediterraneanSea:Spatialandshort-termtempo-ralvariability.Marine Ecology Progress Series,242,237–252.

Dunn,M.R.,Stevens,D.W.,Forman,J.S.,&Connell,A. (2013).Trophicinteractionsanddistributionofsomesqualiformesharks,includingnewdiet descriptions forDeania calcea and Squalus acanthias. PLoS ONE,8(3),1–14.

Ebensperger, L., &Botto-Mahan,C. (1997).Use of habitat, size of prey,andfood-nicherelationshipsoftwosympatricottersinsouthernmostChile.Journal of Mammalogy,78(1),222–227.

Ellis,T.,Turnbull, J. F., Knowles,T.G., Lines, J.A.,&Auchterlonie,N.A.(2016).TrendsduringdevelopmentofScottishsalmonfarming:Anex-ampleofsustainableintensification?Aquaculture,458,82–99.

Fallabella, F. (1994).Guia osteologica de peces marinos de Chile. Valdivia:UniversidadAustraldeChile.

Folmer,O., Black,M., Hoeh,W., Lutz, R., &Vrijenhoek, R. (1994). DNAprimersforamplificationofmitochondrialcytochromecoxidasesub-unit I fromdiversemetazoan invertebrates.Molecular Marine Biology and Biotechnology,3(5),294–299.

Fordham,S.,Fowler,S.L.,Coelho,R.,Goldman,K.J.,&Francis,M.(2006).Squalus acanthias (South America subpopulations). In IUCN 2013.IUCNRedListofThreatenedSpecies.(Version2013.2).Retrievedfromhttp://www.iucnredlist.org/details/39326/0

Försterra,G.,&Häussermann,V. (2003). First report on large sclerac-tinian (Cnidaria: Anthozoa) accumulations in cold-temperate shal-lowwaterofsouthChilean fjords.Zoologische Verhandelingen,345,117–128.

Gračan,R.,Heppell,S.A.,Lacković,G.,&Lazar,B.(2016).Ageandgrowthdynamics of spiny dogfish, Squalus acanthias, in the Adriatic Sea(Eastern Mediterranean Sea).Marine and Freshwater Research, 67(3),357–367.

Guilpart,A.,Roussel,J.M.,Aubin,J.,Caquet,T.,Marle,M.,&LeBris,H.(2012).Theuseofbenthicinvertebratecommunityandwaterqualityanalyses to assess ecological consequences of fish farmeffluents inrivers.Ecological Indicators,23,356–365.

Hall-Spencer, J.,White,N.,Gillespie, E.,Gillham,K.,&Foggo,A. (2006).Impact of fish farms on maerl beds in strongly tidal areas.Marine Ecology Progress Series,326,1–9.

Hanchet,S.(1988).ReproductivebiologyofSqualus acanthiasfromtheeastcoast,South Island,NewZealand.New Zealand Journal of Marine and Freshwater Research,22(May),537–549.

Hanchet,S. (1991).Dietofspinydogfish,Squalus acanthiasLinnaeus,ontheeastcoast,SouthIsland,NewZealand.Journal of Fish Biology,39,313–323.

Henderson,A.C.,Flannery,K.,&Dunne,J.(2002).GrowthandReproductioninSpinyDogfishSqualus acanthiasL.(Elasmobranchii:Squalidae),fromtheWestCoastofIreland.Sarsia,87,350–361.

Holden,M.J.,1966.TheFoodoftheSpurdog,Squalus acanthias(L.).ICES Journal of Marine Science,30(2),255–266.

Holmes,B.H.,Steinke,D.,&Ward,R.D.,(2009).IdentificationofsharkandrayfinsusingDNAbarcoding.Fisheries Research,95(2–3),280–288.

Hucke-Gaete,R.,Osman,L.P.,Moreno,C.A.,Findlay,K.P.,&Ljungblad,D.K.(2004).DiscoveryofabluewhalefeedingandnursinggroundinsouthernChile.Proceedings of the Royal Society of London B: Biological Sciences,271(1),S170–S173.

Hyslop,E.J. (1980).Stomachcontentsanalysis-areviewofmethodsandtheirapplication.Journal of Fish Biology,17,411–429.

Jones,T.S.,&Ugland,K.I.(2001).Reproductionoffemalespinydogfish,Squalus acanthias,intheOslofjord.Fishery Bulletin,99(4),685–690.

Kemper,C.M.,Pemberton,D.,Cawthorn,M.,Heinrich,S.,Mann,J.,Wursig,B.,...Gales,R.(2003).Aquaculture and Marine Mammals: Co-existence or conflict ? In Marine mammals: fisheries, tourism and management issues. Clayton:CSIROPublishing,pp.208–226.

Ketchen,K.S.(1972).Sizeatmaturity,fecundityandembryonicgrowthofthespinydogfish(Squalus acanthias)inBritishColumbiawaters.Journal of the Fisheries Research Board of Canada,29,1717–1723.

Krebs,C.J.,1989.Ecological methodology,NewYork:HarperCollins.Kutti,T.,Hansen,P.K.,Ervik,A.,Høisæter,T.,&Johannessen,P. (2007).

Effects of organic effluents from a salmon farm on a fjord system.II.Temporal and spatial patterns in infauna community composition.Aquaculture,262(2–4),355–366.

Lamilla,J.,Acuña,E.,Araya,M.,Oliva,M.,Kong,I.,Villaroel,J.C.,...Mutschcke,E. (2005). Lineamientos básicos para desarrollar el Plan de AcciónNacionaldeTiburones.Informe Final. Proyecto FIP,2004-18,1–621.

Laptikhovsky,V.V.,Arkhipkin,A.I.,&Henderson,A.C.(2001).Feedinghab-itsanddietaryoverlapinspinydogfishSqualus acanthias(Squalidae)andnarrowmouthcatsharkSchroederidhthys bivius(Scyliorhinidae).Journal of the Marine Biological Association of the United Kingdom,81,1015–1018.

Leal,E.,Canales,T.M.,Aranis,A.,&Gonzáles,M.(2011).Actividadrepro-ductivaylongituddemadurezdesardinaaustralSprattus fuegensis en el marinteriordeChiloé,Chile.Revista de Biología Marina y Oceanografíia,46(1),43–51.

Leigh, J.W., & Bryant, D. (2015). Popart: Full-feature software for hap-lotype network construction.Methods in Ecology and Evolution, 6(9),1110–1116.

Mardulyn,P. (2012).Treesand/ornetworks todisplay intraspecificDNAsequencevariation?Molecular Ecology,21(14),3385–3390.

McLeod,D.J.,Hobday,A.J.,Lyle,J.M.,&Welsford,D.C.(2012).Aprey-relatedshiftintheabundanceofsmallpelagicfishineasternTasmania?ICES Journal of Marine Science,69(6),953–960.

Nakano,T.,Hayashi,S.,&Nagamine,N.(2015).Effectofexcessivedosesofoxytetracyclineonstress-relatedbiomarkerexpressionincohosalmon.Environmental Science and Pollution Research International.Availableat:http://www.ncbi.nlm.nih.gov/pubmed/26111749.

Oddone,M.C.,Paesch,L.,&Norbis,W.(2015).PopulationstructureofthepikeddogfishSqualus acanthias(Elasmobranchii:Squalidae),withprelim-inaryreproductiveobservations.Ichthyological Research,62(4),463–473.

Outeiro,L.,&Villasante,S. (2013).Linkingsalmonaquaculturesynergiesandtrade-offsonecosystemservicestohumanwellbeingconstituents.Ambio,42(8),1022–1036.

Outeiro, L., Häussermann, V., Viddi, F., Hucke-Gaete, R., Försterra, G.,Oyarzo,H.,...Villasante,S.(2015).UsingecosystemservicesmappingformarinespatialplanninginsouthernChileunderscenarioassessment.Ecosystem Services,16,341–353.doi:10.1016/j.ecoser.2015.03.004.

Papastamatiou,Y.P., Itano,D.G.,Dale,J.J.,Meyer,C.G.,&Holland,K.N. (2010). Site fidelity and movements of sharks associated withocean-farmingcagesinHawaii.Marine and Freshwater Research,61(12),1366–1375.

Paudel, S.R.,Choi,O.,Khanal, S.K.,Chandran,K.,Kim, S.,& Lee,J.W.(2015).Effectsoftemperatureonnitrousoxide(N2O)emissionfromintensive aquaculture system. The Science of the Total Environment,518–519,16–23.

Page 11: Spatial overlap of shark nursery areas and the salmon ... final.pdf · Ecology and Evolution. 2017;7:3773–3783. | 3773 Received: 9 January 2017 | Accepted: 14 March 2017 DOI: 10.1002/ece3.2957

     |  3783GAITÁN- ESPITIA ET Al.

Piedecausa,M.A.,Aguado-Giménez, F.,García-García, B.,&Telfer,T. C.(2010). Total ammonia nitrogen leaching from feed pellets used insalmonaquaculture.Journal of Applied Ichthyology,26(1),16–20.

Primavera, J. H., 2006. Overcoming the impacts of aquaculture on thecoastalzone.Ocean & Coastal Management,49(9–10),531–545.

Quick,N.J.,Middlemas, S.J.,&Armstrong,J.D., 2004.A surveyof an-tipredator controls atmarine salmon farms in Scotland.Aquaculture,230(1–4),169–180.doi:10.1016/S0044-8486(03)00428-9.

Quiroz, J. C., Wiff, R., & Céspedes, R. (2009). Reproduction and pop-ulation aspects of the yellownose skate, Dipturus chilensis (Pisces,Elasmobranchii: Rajidae), from southern Chile. Journal of Applied Ichthyology,25(1),72–77.

Redmond,K.J.,Magnesen,T.,Hansen,P.K.,Strand,Ø.,&Meier,S.(2010).Stableisotopesandfattyacidsastracersoftheassimilationofsalmonfish feed in blue mussels (Mytilus edulis). Aquaculture, 298(3–4),202–210.

Ribeiro, S.,Viddi, F.A., Cordeiro, J. L.,& Freitas,T. R. (2007). Fine-scalehabitat selection of Chilean dolphins (Cephalorhynchus eutropia):InteractionswithaquacultureactivitiesinsouthernChiloéIsland,Chile.Journal of the Marine Biological Association of the UK,87(1),119.

Senner,N.R.,Hochachka,W.M., Fox,J.W.,&Afanasyev,V. (2014).Anexceptiontotherule:Carry-overeffectsdonotaccumulateinalong-distancemigratorybird.PLoS ONE,9(2),e86588.

Sepúlveda,M.,&Oliva,D. (2005). InteractionsbetweenSouthAmericansealionsOtaria flavescens(Shaw)andsalmonfarmsinsouthernChile.Aquaculture Research,36(11),1062–1068.

Sepúlveda,M.,Pérez,M.J.,Sielfeld,W.,Oliva,D.,Durán,L.R.,Rodríguez,L., ... Buscaglia, M. (2007). Operational interaction between SouthAmericansealionsOtaria flavescensandartisanal(small-scale)fishingin Chile: Results from interview surveys and on-board observations.Fisheries Research,83(2–3),332–340.

Shivji,M.,Clarke, S., Pank,M.,Natanson, L.,Kohler,N.,& Stanhope,M.(2002).Genetic identificationofpelagicsharkbodypartsforconser-vationandtrademonitoring.Conservation Biology,16(4),1036–1047.

Skewgar, E., Boersma, P., & Simeone, A. (2014). Winter migration ofMagellanicPenguins(Spheniscus magellanicus)alongthesoutheasternPacific.Waterbirds,37(2),203–209.

Skog,T.E.,Hylland,K.,Torstensen,B.E.,&Berntssen,M.H.(2003).Salmonfarming affects the fatty acid composition and taste of wild saithePollachius virensL.Aquaculture Research,34(12),999–1007.

Sosebee,K.A.(2005).Aredensity-dependenteffectsonelasmobranchma-turitypossible?Journal of Northwest Atlantic Fishery Science,35(March),115–124.

Soto,D.,&Norambuena,F.(2004).EvaluationofsalmonfarmingeffectsonmarinesystemsintheinnerseasofsouthernChile:Alarge-scalemen-surativeexperiment.Journal of Applied Ichthyology,20(6),493–501.

Stehmann,M.F.(2002).Proposalofamaturitystagesscaleforoviparousandviviparouscartilaginousfishes(Pisces,Chondrichthyes).Archive of Fishery and Marine Research,50(1),23–48.

Stenberg, C. (2005). Life history of the piked dogfish (Squalus acanthias L.) in Swedish waters. Journal of Northwest Atlantic Fishery Science,35(March),155–164.

Tanasichuk, R.W.,Ware, D. M., Shaw,W., & McFarlane, G. A. (1991).Variationsindietdailyrationandfeedingperiodicityofpacifichakemerluccius-productus and spiny dogfish Squalus acanthias off thelowerwestcoastofVancouverIsland.Canadian Journal of Fisheries and Aquatic Sciences,48(11),2118–2128.

Valenzuela,A.,Bustamante,C.,&Lamilla,J.(2008).Morphologicalcharac-teristicsof fivebycatchsharkscaughtbysouthernChileandemersallonglinefisheries.Scientia Marina,72(2),231–237.

Veríssimo, A., McDowell, J. R., & Graves, J. E. (2010). Global popula-tion structure of the spiny dogfish Squalus acanthias, a temperateshark with an antitropical distribution. Molecular Ecology, 19(8),1651–1662.

Vilata,J.,Oliva,D.,&Sepúlveda,M.(2010).ThepredationoffarmedsalmonbySouthAmericansealions(Otaria flavescens)insouthernChile.ICES Journal of Marine Science,67(3),475–482.

Viswambharan,D.,Pavan-Kumar,A.,Singh,D.P.,Jaiswar,A.K.,Chakraborty,S.K.,Nair,J.R.,&Lakra,W.S.(2015).DNAbarcodingofgobiidfishes(Perciformes,Gobioidei).Mitochondrial DNA,26(1),15–19.

Vögler,R.,Milessi,A.C.,&Duarte,L.O.(2009).ChangesintrophiclevelofSquatinaguggenheimwithincreasingbodylength:Relationshipswithtype,sizeandtrophiclevelofitsprey.Environmental Biology of Fishes,84(1),41–52.

Ward,R.D.,Holmes,B.H.,Zemlak,T.S.,&Smith,P.J. (2007).DNAbar-codingdiscriminatesspurdogsofthegenusSqualus.InP.R.Last,W.T.White & J. Pogonoski, (Eds.),Descriptions of new dogfishes of the genus squalus (Squaloidea: Squalidae).Hobart:MarineandAtmosphericResearchPaper,CSIRO,pp.17–130.

Ward,R.D.,Holmes,B.H.,White,W.T.,&Last,P.R.(2008).DNAbarcod-ingAustralasianchondrichthyans:Resultsandpossibleuses inconser-vation.Marine and Freshwater Research,59(1),57–71.

Yigin, C. C., & Ismen, A. (2013). Reproductive biology of spiny dogfishSqualus acanthias,intheNorthAegeanSea.Turkish Journal of Fisheries and Aquatic Sciences,13(1),87–94.

Zounková, R., Klimešová, Z., Nepejchalová, L., Hilscherová, K., & Bláha,L. (2011).Complexevaluationof ecotoxicity andgenotoxicityof an-timicrobials oxytetracycline and flumequine used in aquaculture.Environmental Toxicology and Chemistry,30(5),1184–1189.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in thesupportinginformationtabforthisarticle.

How to cite this article:Gaitán-EspitiaJD,GómezD,HobdayAJ,DaleyR,LamillaJ,CárdenasL.SpatialoverlapofsharknurseryareasandthesalmonfarmingindustryinfluencesthetrophicecologyofSqualus acanthiasonthesoutherncoastofChile.Ecol Evol.2017;7:3773–3783.https://doi.org/10.1002/ece3.2957


Top Related