Transcript
  • 7/25/2019 Solutions to Chapter 19

    1/24

    Fundamentals of Analytical Chemistry: 8th

    ed. Chapter 19

    Chapter 19

    19-1 The electrode potential of a system that contains two or more redox couples is the

    electrode potential of all half-cell processes at equilibrium in the system.

    19-2 (a)Equilibriumis the state that a system assumes after each addition of reagent.

    Equivalencerefers to a particular equilibrium state when a stoichiometric amount of

    titrant has been added.

    (b)Atrue oxidation/reduction indicatorowes its color change to changes in the electrode

    potential of the system. Aspecific indicatorexhibits its color change as a result of

    reactions with a particular solute species.

    19-3 The electrode potentials for all half-cell processes in an oxidation/reduction system have

    the same numerical value when the system is at equilibrium.

    19-4 For points before equivalence, potential data are computed from the analyte standard

    potential and the analytical concentrations of the analyte and its reaction product. Post-

    equivalence point data are based upon the standard potential for the titrant and its

    analytical concentrations. The equivalence point potential is computed from the two

    standard potentials and the stoichiometric relation between the analyte and titrant.

    19-5 In contrast to all other points on the titration curve, the concentrations of all of the

    participants in one of the half-reactions or the other cannot be derived from

    stoichiometric calculations.

    19-6 An asymmetric titration curve will be encountered whenever the titrant and the analyte in

    a ratio that is not 1:1.

  • 7/25/2019 Solutions to Chapter 19

    2/24

    Fundamentals of Analytical Chemistry: 8th

    ed. Chapter 19

    19-7 (a)

    V441.00511.0

    1log

    2

    0592.0403.0right

    E

    V290.0)151.0(441.0

    V151.01393.0

    1log

    2

    0592.0126.0

    leftrightcell

    left

    EEE

    E

    BecauseEcellis negative, the reaction will not proceed spontaneously in the direction

    considered and an external voltage source is needed to force this reaction to occur.

    (b)

    V04.2)806.0(23.1

    V806.00364.0

    1log

    2

    0592.0763.0

    V23.11006.9

    0620.0log

    2

    0592.025.1

    leftrightcell

    left

    3right

    EEE

    E

    E

    BecauseEcellis positive, the reaction proceeds spontaneously in the direction considered.

    (c)

    V0620.0)237.0(299.0

    V237.01000.1

    760/765log

    2

    0592.0000.0

    V299.00214.0

    1log

    2

    0592.0250.0

    leftrightcell

    24left

    right

    EEE

    E

    E

    BecauseEcellis negative, the reaction will not proceed spontaneously in the direction

    considered and an external voltage source is needed to force this reaction to occur.

    (d)

    V785.01059.4

    1log

    2

    0592.0854.0

    3right

    E

  • 7/25/2019 Solutions to Chapter 19

    3/24

    Fundamentals of Analytical Chemistry: 8th

    ed. Chapter 19

    2

    92922

    ]I[

    109.7]Pb[and109.7]I][Pb[

    V04.1)252.0(785.0

    V252.0

    109.7

    0120.0log

    2

    0592.0126.0

    leftrightcell

    9

    2

    left

    EEE

    E

    BecauseEcellis positive, the reaction proceeds spontaneously in the direction considered.

    (e)

    10

    10

    3

    310

    4

    33

    1093.4438.0

    379.01070.5]OH[

    379.0

    438.0]OH[1070.5

    ]NH[

    ]NH][OH[

    V551.0)551.0(000.0

    V551.01093.4

    00.1log

    2

    0592.0000.0

    V000.0

    leftrightcell

    210left

    right

    EEE

    E

    E

    BecauseEcellis positive, the reaction proceeds spontaneously in the direction considered.

    (f)

    V286.0)063.0(223.0

    V063.01047.10790.0

    00918.0log0592.0099.0

    V223.00538.01340.0

    0784.0log0592.0359.0

    leftrightcell

    22left

    2right

    EEE

    E

    E

    BecauseEcellis positive, the reaction proceeds spontaneously in the direction considered.

  • 7/25/2019 Solutions to Chapter 19

    4/24

    Fundamentals of Analytical Chemistry: 8th

    ed. Chapter 19

    19-8 (a)

    V452.0)793.0(341.0

    V793.00955.0

    1

    log2

    0592.0

    763.0

    V341.01078.6

    1log

    2

    0592.0277.0

    leftrightcell

    left

    3right

    EEE

    E

    E

    BecauseEcellis positive, the reaction proceeds spontaneously in the direction considered

    (oxidation on the left, reduction on the right).

    (b)

    V819.00671.0

    1

    log2

    0592.0

    854.0right

    E

    V788.01310.0

    0681.0log

    2

    0592.0771.0left

    E

    V031.0788.0819.0leftrightcell EEE

    BecauseEcellis positive, the reaction proceeds spontaneously in the direction considered

    (oxidation on the left, reduction on the right).

    (c)

    V414.0751.0165.1

    V751.01544.0

    1log0592.0799.0

    V165.10794.012.1

    1log

    4

    0592.0229.1

    leftrightcell

    left

    4right

    EEE

    E

    E

    BecauseEcellis positive, the reaction proceeds spontaneously in the direction considered

    (oxidation on the left, reduction on the right).

  • 7/25/2019 Solutions to Chapter 19

    5/24

    Fundamentals of Analytical Chemistry: 8th

    ed. Chapter 19

    (d)

    V401.0301.0100.0

    V301.00601.0

    1log

    2

    0592.0337.0

    V100.01350.0log0592.0151.0

    leftrightcell

    left

    right

    EEE

    E

    E

    BecauseEcellis negative, the reaction does not proceed spontaneously in the direction

    considered (reduction on the left, oxidation on the right).

    (e)

    443

    343

    1007.30764.0

    1302.01080.1]OH[

    1302.0

    0764.0]OH[1080.1

    ]HCOOH[

    ]HCOO][OH[

    V000.0

    V208.01007.3

    00.1log

    2

    0592.0000.0

    left

    24right

    E

    E

    V208.0000.0208.0leftrightcell EEE

    BecauseEcellis negative, the reaction does not proceed spontaneously in the direction

    considered (reduction on the left, oxidation on the right).

    (f)

    V724.0)040.0(684.0

    V040.0

    1016.11093.7

    1037.6log

    2

    0592.0334.0

    V684.0003876.0

    1134.0log0592.0771.0

    leftrightcell

    4

    33

    2

    left

    right

    EEE

    E

    E

    BecauseEcellis positive, the reaction proceeds spontaneously in the direction considered

    (oxidation on the left, reduction on the right).

  • 7/25/2019 Solutions to Chapter 19

    6/24

    Fundamentals of Analytical Chemistry: 8th

    ed. Chapter 19

    19-9 (a)

    V631.0)789.0(158.0

    V789.01364.0

    1

    log2

    0592.0

    763.0

    V158.00848.0

    1log

    2

    0592.0126.0

    leftrightcell

    Zn

    Pb

    2

    2

    EEE

    E

    E

    (b)

    V286.0461.0747.0

    V461.01564.0

    00309.0log0592.036.0

    V747.00301.0

    0760.0log0592.0771.0

    leftrightcell

    )CN(Fe

    Fe

    36

    3

    EEE

    E

    E

    (c)

    V331.0)331.0(000.0

    V331.0101046.1

    02723.0log0592.0099.0

    V000.0

    leftrightcell

    233T iO

    SHE

    2

    EEE

    E

    E

    19-10 (a)ZnZn2+(0.1364 M)Pb2+(0.0848 M)Pb

    (b)PtFe(CN)64-

    (0.00309 M), Fe(CN)63-

    (0.1564 M)Fe3+(0.0301 M), Fe2+(0.0760 M)Pt

    (c)PtTiO+(1.4610-3M), Ti3+(0.02723 M), H+(1.0010-3M)SHE

    19-11 Note that in these calculations, it is necessary to round the answers to either one or two

    significant figures because the final step involves taking the antilogarithm of a large

    number.

    (a)

    256.0771.0VFeVFe oV

    o

    Fe

    322333

    EE

  • 7/25/2019 Solutions to Chapter 19

    7/24

    Fundamentals of Analytical Chemistry: 8th

    ed. Chapter 19

    1717

    eq23

    32

    eq23

    32

    3

    2

    3

    2

    102.21023.2]V][Fe[

    ]V][Fe[

    348.17log]V][Fe[

    ]V][Fe[log

    0592.0

    256.0771.0

    ]V[

    ]V[log0592.0256.0

    ]Fe[

    ]Fe[log0592.0771.0

    K

    K

    (b)

    408.036.0Cr)CN(FeCr)CN(Fe oCr

    o

    )CN(Fe

    34

    6

    23

    6 336

    EE

    1212

    eq23

    6

    34

    6

    eq23

    6

    34

    6

    3

    2

    3

    6

    4

    6

    109104.9]Cr][)CN(Fe[

    ]Cr][)CN(Fe[

    973.12log]Cr][)CN(Fe[

    ]Cr][)CN(Fe[log

    0592.0

    408.036.0

    ]Cr[

    ]Cr[log0592.0408.0

    ])CN(Fe[

    ])CN(Fe[log0592.036.0

    K

    K

    (c)

    334.000.1OH4UOVO2U)OH(V2 oUO

    o

    )OH(V2

    2

    2

    24

    4 224

    EE

    2222

    eq42

    4

    2

    2

    22

    eq42

    4

    2

    2

    22

    42

    2

    4

    42

    4

    22

    103102.3]U[])OH(V[

    ]UO[]VO[

    50.22log]U[])OH(V[

    ]UO[]VO[log

    0592.0

    2334.000.1

    ]H][UO[

    ]U[log

    2

    0592.0334.0

    ]H[])OH(V[

    ]VO[log

    2

    0592.000.1

    K

    K

    (d)

    25.1771.0Fe2TlFe2Tl oT l

    o

    Fe

    3233

    EE

  • 7/25/2019 Solutions to Chapter 19

    8/24

    Fundamentals of Analytical Chemistry: 8th

    ed. Chapter 19

    1616

    eq223

    23

    eq223

    23

    23

    22

    3

    102105.1]Fe][Tl[

    ]Fe][Tl[

    18.16log]Fe][Tl[

    ]Fe][Tl[log

    0592.0

    2771.025.1

    ]Fe[

    ]Fe[log

    2

    0592.0771.0

    ]Tl[

    ]Tl[log

    2

    0592.025.1

    K

    K

    (e)

    577.070.1)HClOM1in(

    H2AsOHCe2OHAsOHCe2

    o

    AsOH4

    o

    Ce

    43

    3

    233

    4

    434

    EE

    3737

    eq

    43

    24

    2

    33

    23

    eq

    43

    24

    2

    33

    23

    2

    33

    43

    24

    23

    109109.8]AsOH[]Ce[

    ]H][AsOH[]Ce[

    94.37log]AsOH[]Ce[

    ]H][AsOH[]Ce[log

    0592.0

    2577.070.1]H][AsOH[

    ]AsOH[log

    2

    0592.0577.0

    ]Ce[

    ]Ce[log

    2

    0592.070.1

    K

    K

    (f)

    172.000.1OH5SOVO2SOH)OH(V2 oSO

    o

    )OH(V2

    2

    4

    2

    324 244

    EE

    2727

    eq

    32

    2

    4

    2

    4

    22

    eq

    32

    2

    4

    2

    4

    22

    42

    4

    32

    42

    4

    22

    109104.9]SOH[])OH(V[

    ]SO[]VO[

    97.27log]SOH[])OH(V[

    ]SO[]VO[log

    0592.0

    2172.000.1

    ]H][SO[

    ]SOH[log

    2

    0592.0172.0

    ]H[])OH(V[

    ]VO[log

    2

    0592.000.1

    K

    K

    (g)

    256.0359.0OHV2H2VVO oV

    o

    VO2

    3223@

    EE

  • 7/25/2019 Solutions to Chapter 19

    9/24

    Fundamentals of Analytical Chemistry: 8th

    ed. Chapter 19

    10

    eq222

    23

    eq222

    23

    3

    2

    22

    3

    104.2]V[]H][VO[

    ]V[

    389.10log]V[]H][VO[

    ]V[log

    0592.0

    256.0359.0

    ]V[

    ]V[log0592.0256.0

    ]H][VO[

    ]V[log0592.0359.0

    K

    K

    (h)

    369.0099.0OHTi2H2TiTiO oT

    o

    T iO2

    32232

    EE

    7

    eq222

    23

    eq222

    23

    3

    2

    22

    3

    100.8]Ti[]H][TiO[

    ]Ti[

    9054.7log]Ti[]H][TiO[

    ]Ti[log

    0592.0

    369.0099.0

    ]Ti[

    ]Ti[log0592.0369.0

    ]H][TiO[

    ]Ti[log0592.0099.0

    K

    K

    19-12 (a)

    At equivalence, [Fe2+

    ] = [V3+

    ] and [Fe3+

    ] = [V2+

    ]

    V258.02

    256.0771.0

    ]V][Fe[

    ]V][Fe[log0592.0256.0771.02

    ]V[

    ]V[log0592.0256.0

    ]Fe[

    ]Fe[log0592.0771.0

    eq

    33

    22

    eq

    3

    2

    eq

    3

    2

    eq

    E

    E

    E

    E

    (b)

    At equivalence, [Fe(CN)63-

    ] = [Cr2+

    ] and [Fe(CN)64-

    ] = [Cr3+

    ]

  • 7/25/2019 Solutions to Chapter 19

    10/24

    Fundamentals of Analytical Chemistry: 8th

    ed. Chapter 19

    V024.02

    408.036.0

    ]Cr][)CN(Fe[

    ]Cr][)CN(Fe[log0592.0408.036.02

    ]Cr[

    ]Cr[log0592.0408.0

    ])CN(Fe[

    ])CN(Fe[log0592.036.0

    eq

    33

    6

    24

    6eq

    3

    2

    eq

    3

    6

    4

    6eq

    E

    E

    E

    E

    (c)

    At equivalence, [VO2+

    ] = 2[UO22+

    ] and [V(OH)4+] = 2[U

    4+]

    V444.03333.1

    V333.1355.0688.1100.0

    1log0592.0344.0200.13

    ]H][UO][)OH(V[

    ]U][VO[log0592.0344.0200.13

    ]H][UO[

    ]U[log0592.0344.022

    ]H][)OH(V[]VO[log0592.000.1

    eq

    6eq

    62

    24

    42

    eq

    42

    2

    4

    eq

    2

    4

    2

    eq

    E

    E

    E

    E

    E

    (d)

    At equivalence, [Fe2+

    ] = 2[Tl3+

    ] and [Fe3+

    ] = 2[Tl+]

    V09.13

    27.3

    ]Tl][Tl[2

    ]Tl][Tl[2log0592.027.3

    ]Tl][Fe[

    ]Tl][Fe[log0592.025.12771.03

    ]Tl[

    ]Tl[

    log0592.025.122

    ]Fe[

    ]Fe[log0592.0771.0

    eq

    3

    3

    33

    2

    eq

    3eq

    3

    2

    eq

    E

    E

    E

    E

  • 7/25/2019 Solutions to Chapter 19

    11/24

    Fundamentals of Analytical Chemistry: 8th

    ed. Chapter 19

    (e)

    At equivalence, [Ce3+

    ] = 2[H3AsO4], [Ce4+

    ] = 2[H3AsO3] and [H+] = 1.00

    V951.03

    854.2

    00.1

    1log0592.0854.2

    ]H][AsOH][AsOH[2

    ]AsOH][AsOH[2log0592.0854.2

    ]H][AsOH][Ce[

    ]AsOH][Ce[log0592.0577.0270.13

    ]H][AsOH[

    ]AsOH[log0592.0577.022

    ]Ce[

    ]Ce[log0592.070.1

    eq

    22

    4333

    3343

    2

    43

    4

    33

    3

    eq

    2

    43

    33eq

    4

    3

    eq

    E

    E

    E

    E

    (f)

    At equivalence, [V(OH)4+] = 2[H2SO3] and [VO

    2+] = 2[SO4

    2-]

    V330.03

    1089.9

    V1089.9355.0344.1100.0

    1log0592.0172.0200.13

    ]H][SO][)OH(V[

    ]SOH][VO[log0592.0172.0200.13

    ]H][SO[

    ]SOH[log0592.0172.022

    ]H][)OH(V[

    ]VO[log0592.000.1

    1

    eq

    1

    6eq

    62

    44

    32

    2

    eq

    42

    4

    32eq

    2

    4

    2

    eq

    E

    E

    E

    E

    E

    (g)

    At equivalence, [VO+] = [V

    2+]

  • 7/25/2019 Solutions to Chapter 19

    12/24

    Fundamentals of Analytical Chemistry: 8th

    ed. Chapter 19

    V008.02

    154.0

    V154.0118.0103.0100.0

    1log0592.0103.02

    ]H][V[

    ]V[log0592.0103.0

    ]H][VO[

    ]V[log0592.0256.0359.02

    ]V[

    ]V[log0592.0256.0

    ]H][VO[

    ]V[log0592.0359.0

    eq

    2eq

    22

    2

    2

    2

    eq

    3

    2

    eq

    22

    3

    eq

    E

    E

    E

    E

    E

    (h)

    At equivalence, [Ti2+

    ] = [TiO2+

    ]

    V194.02

    388.0

    V388.0118.0270.0100.0

    1log0592.0270.02

    ]H][Ti[

    ]Ti[log0592.0103.0

    ]H][TiO[

    ]Ti[log0592.0369.0099.02

    ]Ti[

    ]Ti[log0592.0369.0

    ]H][TiO[

    ]Ti[log0592.0099.0

    eq

    2eq

    22

    2

    2

    2

    eq

    3

    2

    eq

    22

    3

    eq

    E

    E

    E

    E

    E

    19-13 (a)In the solution to Problem 19-11(a) we find

    17

    32

    23

    eq 1023.2]Fe][V[

    ]Fe][V[

    K

    At the equivalence point,

    0500.02

    1000.0]Fe[]V[

    ]Fe[]V[

    23

    32

    x

    Substituting into the first equation we find

  • 7/25/2019 Solutions to Chapter 19

    13/24

    Fundamentals of Analytical Chemistry: 8th

    ed. Chapter 19

    M0500.0]Fe[]V[

    and

    M1006.1]Fe[]V[,Thus

    1006.11023.2

    00250.0

    0500.01023.2

    23

    1032

    10

    17

    2

    2

    17

    x

    x

    (b)Proceeding in the same way, we find

    M0500.0]Cr[])CN(Fe[ 34

    6

    M107.1][Cr][Fe(CN) 8236

    (c)At equivalence

    M0333.03

    1000.0]UO[

    M0667.03

    2000.02

    3

    1000.02]UO[2]VO[

    ]U[2])OH(V[

    2

    2

    2

    2

    2

    2

    4

    4

    x

    x

    From the solution for Problem 19-11(c)

    M100.12

    101.2]U[andM101.2])OH(V[

    M1010.21062.42

    102.3

    0333.00667.0

    2

    2

    0333.00667.0102.3

    ]U[])OH(V[

    ]UO[]VO[

    99

    49

    4

    93 27

    22

    23

    2

    2

    22

    42

    4

    2

    2

    22

    2

    x

    x

    xx

    (d)

    M0333.0]Tl[andM0667.0]Fe[

    ]Tl[2]Fe[

    3

    32

    x

  • 7/25/2019 Solutions to Chapter 19

    14/24

    Fundamentals of Analytical Chemistry: 8th

    ed. Chapter 19

    From the solution for Problem 19-11(d)

    ]Tl[M104.12

    1070.2

    2

    ]Fe[M1070.21088.92

    105.10333.00667.0

    2

    2

    0667.00333.0105.1

    ]Fe][Tl[

    ]Fe][Tl[

    377

    273 21

    16

    23

    2

    2

    16

    223

    23

    x

    x

    x

    xx

    (e)Proceeding as in part (c), we find

    2

    0333.00667.0

    00.1]AsOH[]Ce[

    ]AsOH[]Ce[109.8

    ]H][AsOH[]Ce[

    ]AsOH[]Ce[3

    2

    2

    33

    24

    43

    2337

    2

    33

    24

    43

    23

    x

    When ]AsOH[2]Ce[ 334 x

    M033.0]AsOH[

    M067.0]Ce[

    M105.3]AsOH[

    M109.6]Ce[

    43

    3

    14

    33

    144

    (f)Proceeding as in part (c)

    M106.1]SOH[

    M102.3])OH(V[

    M033.0]SO[

    M067.0]VO[

    11

    32

    11

    4

    2

    4

    (g)

    100.02

    200.0]V[

    ]VO[]V[

    3

    22

    x

    Assume [H+] = 0.1000. From the solution to Problem 19-11(g)

  • 7/25/2019 Solutions to Chapter 19

    15/24

    Fundamentals of Analytical Chemistry: 8th

    ed. Chapter 19

    M100.0]V[

    M105.6]V[]VO[

    00.1104.2

    100.0]V][VO[

    100.0104.2

    ]H][V][VO[

    ]V[

    3

    622

    2

    10

    222

    2

    10

    222

    23

    x

    x

    (h)Proceeding as in part (g), we find

    M101.1]Ti[]TiO[

    M100.0]H[

    M100.0]Ti[

    52

    2

    3

    19-14

    Eeq, V Indicator

    (a) 0.258 Phenosafranine

    (b) -0.024 None

    (c) 0.444 Indigo tetrasulfonate or Methylene blue

    (d) 1.09 1,10-Phenanthroline

    (e) 0.951 Erioglaucin A

    (f) 0.330 Indigo tetrasulfonate

    (g) -0.008 None

    (h) -0.194 None

    19-15 (a)

    2342 SnV2SnV2

    At 10.00 mL,

  • 7/25/2019 Solutions to Chapter 19

    16/24

    Fundamentals of Analytical Chemistry: 8th

    ed. Chapter 19

    V292.00167.0

    0667.0log0592.0256.0

    ]V[

    ]V[log0592.0256.0

    M0667.0M1067.1mL00.60

    mL00.50mL

    Vmmol1000.0

    ]V[

    M0167.0mL00.60

    Snmmol

    Vmmol2mL00.10

    mL

    Snmmol0500.0

    ]V[

    3

    2

    2

    2

    2

    4

    34

    3

    E

    The remaining pre-equivalence point data are treated in the same way. The results appear

    in the spreadsheet that follows.

    At 50.00 mL,

    Proceeding as in Problem 19-12, we write

    ]Sn][V[

    ]Sn][V[log0592.0154.02256.03

    ]Sn[

    ]Sn[log0592.0154.022

    ]V[

    ]V[log0592.0256.0

    43

    22

    4

    2

    3

    2

    E

    E

    E

    At equivalence, [V2+

    ] = 2[Sn4+

    ] and [V3+

    ] = 2[Sn2+

    ]. Thus,

    V017.0

    3

    00.1log0592.0

    3

    154.02256.0eq

    E

    At 50.10 mL,

    V074.0100.5

    105.2log

    2

    0592.0154.0

    ]Sn[

    ]Sn[log

    2

    0592.0154.0

    ]Sn[M100.5M025.0mL10.100

    mL10.50mL

    Snmmol0500.0

    ]Sn[M025.0mL10.100

    Vmmol2

    Snmmol1mL00.50

    mL

    Vmmol1000.0

    5

    2

    4

    2

    45

    4

    Sn

    2

    2

    22

    Sn

    4

    2

    E

    c

    c

  • 7/25/2019 Solutions to Chapter 19

    17/24

    Fundamentals of Analytical Chemistry: 8th

    ed. Chapter 19

    The remaining post-equivalence points are obtained in the same way and are found in the

    table that follows.

    A B C D E F G

    1 19-15 (a) Titration of 50.00 mL of 0.1000 M V2+

    with 0.0500 M Sn4+

    2 Reaction: 2V2+

    + Sn4+

    2V3+

    + Sn2+

    3 For V3+

    /V2+

    , E0 -0.256

    4 For Sn4+

    /Sn2+

    , E0 0.154

    5 Initial conc. V2+

    0.1000

    6 Conc. Sn4+

    0.0500

    7 Volume solution, mL 50.00

    8 Vol. Sn4+

    , mL [V3+

    ] [V2+

    ] [Sn4+

    ] [Sn2+

    ] E, V

    9 10.00 0.0167 0.0667 -0.292

    10 25.00 0.0333 0.0333 -0.256

    11 49.00 0.0495 0.0010 -0.15612 49.90 0.0499 0.0001 -0.096

    13 50.00 0.017

    14 50.10 5.00E-05 0.0250 0.074

    15 51.00 4.95E-04 0.0248 0.104

    16 60.00 4.55E-03 0.0227 0.133

    17 Spreadsheet Documentation

    18 B9=$B$6*A9*2/($B$7+A9)

    19 C9=($B$5*$B$7-$B$6*A9*2)/($B$7+A9)

    20 F9=$B$3-0.0592*LOG10(C9/B9)

    21 F13=($B$3+2*$B$4)/3

    22 D14=($B$6*A14-$B$5*$B$7/2)/($B$7+A14)

    23 E14=$B$7*$B$5/(2*($B$7+A14))

    24 F14=$B$4-(0.0592/2)*LOG10(E14/D14)

    25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    35

    36

    37

    38

    39

    40

    41

  • 7/25/2019 Solutions to Chapter 19

    18/24

    Fundamentals of Analytical Chemistry: 8th

    ed. Chapter 19

    (b)

    34

    6

    23

    6 Cr)CN(FeCr)CN(Fe

    The pre-equivalence point data are obtained by substituting concentrations into the

    equation

    ])CN(Fe[

    ])CN(Fe[log0592.036.0

    3

    6

    4

    6E

    The post-equivalence point data are obtained with the Nernst expression for the Cr2+

    / Cr3+

    system. That is,

    ]Cr[

    ]Cr[log0592.00408.0

    3

    2

    E

    The equivalence point potential is found following the procedure in Problem 19-12. The

    results for all data points are found in the spreadsheet that follows.

  • 7/25/2019 Solutions to Chapter 19

    19/24

    Fundamentals of Analytical Chemistry: 8th

    ed. Chapter 19

    A B C D E F

    1 19-15 (b) Titration of 50.00 mL of 0.1000 M Fe(CN)63-

    with 0.1000 M Cr2+

    2 Reaction: Fe(CN)63-

    + Cr2+

    Fe(CN)64-

    + Cr3+

    3 For Fe(CN)6

    4-, E

    0 0.36

    4 For Cr3+

    /Cr2+

    , E0 -0.408

    5 Initial conc. Fe(CN)63-

    0.1000

    6 Conc. Cr2+

    0.1000

    7 Volume solution, mL 50.00

    8 Vol. Cr2+

    , mL [Fe(CN)64-

    ] [Fe(CN)63-

    ] [Cr3+

    ] [Cr2+

    ] E, V

    9 10.00 0.0167 0.0667 0.40

    10 25.00 0.0333 0.0333 0.36

    11 49.00 0.0495 0.0010 0.26

    12 49.90 0.0499 0.0001 0.20

    13 50.00 -0.0214 50.10 0.0500 9.99E-05 -0.248

    15 51.00 0.0495 0.0010 -0.307

    16 60.00 0.0455 0.0091 -0.367

    17 Spreadsheet Documentation

    18 B9=$B$6*A9/($B$7+A9)

    19 C9=($B$5*$B$7-$B$6*A9)/($B$7+A9)

    20 F9=$B$3-0.0592*LOG10(B9/C9)

    21 F13=($B$3+$B$4)/2

    22 D14=($B$5*$B$7/($B$7+A14)

    23 E14=($B$6*A14-$B$5*$B$7)/($B$7+A14)

    24 F14=$B$4-0.0592*LOG10(E14/D14)25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    3536

    37

    38

    39

    40

    41

  • 7/25/2019 Solutions to Chapter 19

    20/24

    Fundamentals of Analytical Chemistry: 8th

    ed. Chapter 19

    (c)The data points for this titration, which are found in the spreadsheet that follows, are

    obtained in the same way as those for parts (a) and (b).

    A B C D E F

    1 19-15 (c) Titration of 50.00 mL of 0.1000 M Fe(CN)64-

    with 0.0500 M Tl3+

    2 Reaction: 2Fe(CN)64-

    + Tl3+

    2Fe(CN)63-

    + Tl+

    3 For Fe(CN)64-

    , E0 0.36

    4 For Tl3+

    /Tl+, E

    0 1.25

    5 Initial conc. Fe(CN)64-

    0.1000

    6 Conc. Tl3+

    0.0500

    7 Volume solution, mL 50.00

    8 Vol. Tl3+

    , mL [Fe(CN)64-

    ] [Fe(CN)63-

    ] [Tl3+

    ] [Tl+] E, V

    9 10.00 0.0667 0.0167 0.32

    10 25.00 0.0333 0.0333 0.36

    11 49.00 0.0010 0.0495 0.4612 49.90 0.0001 0.0499 0.52

    13 50.00 0.95

    14 50.10 5.00E-05 0.0250 1.17

    15 51.00 4.95E-04 0.0248 1.20

    16 60.00 4.55E-03 0.0227 1.23

    17 Spreadsheet Documentation

    18 B9=($B$5*$B$7-$B$6*A9*2)/($B$7+A9)

    19 C9=$B$6*A9*2/($B$7+A9)

    20 F9=$B$3-0.0592*LOG10(B9/C9)

    21 F13=($B$3+2*$B$4)/3

    22 D14=($B$6*A14-$B$5*$B$7/2)/($B$7+A14)23 E14=($B$5*$B$7/2)/($B$7+A14)

    24 F14=$B$4-(0.0592/2)*LOG10(E14/D14)

    25

    26

    27

    28

    29

    30

    31

    32

    3334

    35

    36

    37

    38

    39

    40

  • 7/25/2019 Solutions to Chapter 19

    21/24

    Fundamentals of Analytical Chemistry: 8th

    ed. Chapter 19

    (d)The data points for this titration, which are found in the spreadsheet that follows, are

    obtained in the same way as those for parts (a) and (b).

    A B C D E F

    1 19-15 (d) Titration of 0.1000 M Fe3+

    with Sn2+

    2 Reaction: 2Fe3+

    + Sn2+

    2Fe2+

    + Sn4+

    3 For Fe3+

    /Fe2+

    E0 0.771

    4 For Sn4+

    /Sn2+

    , E0 0.154

    5 Initial conc. Fe3+

    0.1000

    6 Conc. Sn2+

    0.0500

    7 Volume solution, mL 50.00

    8 Vol. Sn2+

    , mL [Fe3+

    ] [Fe2+

    ] [Sn4+

    ] [Sn2+

    ] E, V

    9 10.00 0.0667 0.0167 0.807

    10 25.00 0.0333 0.0333 0.771

    11 49.00 0.0010 0.0495 0.67112 49.90 0.0001 0.0499 0.611

    13 50.00 0.360

    14 50.10 0.0250 5.00E-05 0.234

    15 51.00 0.0248 4.95E-04 0.204

    16 60.00 0.0227 4.55E-03 0.175

    17 Spreadsheet Documentation

    18 B9=($B$5*$B$7-$B$6*A9*2)/($B$7+A9)

    19 C9=$B$6*A9*2/($B$7+A9)

    20 F9=$B$3-0.0592*LOG10(B9/C9)

    21 F13=($B$3+2*$B$4)/3

    22 D14=(($B$5*$B$7/2)/($B$7+A14)

    23 E14=($B$6*A14-$B$5*$B$7/2)/($B$7+A14)

    24 F14=$B$4-(0.0592/2)*LOG10(E14/D14)

    25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    35

    36

    37

    38

    39

    40

  • 7/25/2019 Solutions to Chapter 19

    22/24

    Fundamentals of Analytical Chemistry: 8th

    ed. Chapter 19

    (e)

    H4UO5Mn2OH2U5MnO2 2

    2

    2

    2

    4

    4

    At 10.00 mL,

    V316.0

    00.11033.8[

    1033.3log

    2

    0592.0334.0

    ]H][UO[

    ]U[log

    2

    0592.0334.0

    UM0333.01033.8mL00.60

    Ummol5000.2]U[

    UOM1033.8solutionmL00.60

    MnOmmol2

    UOmmol5MnOmmol2000.0

    ]UO[

    Ummol500.2UmL00.50mL

    Ummol05000.0

    MnOmmol2000.0MnOmL00.10mL

    MnOmmol02000.0

    43

    2

    42

    2

    4

    434

    4

    U

    2

    2

    34

    2

    24

    2

    2UO

    444

    444

    4

    22

    E

    c

    c

    Additional pre-equivalence point data, obtained in the same way, are given in the

    spreadsheet that follows.

    At 50.00 mL,

    42

    2

    4

    eq

    8

    4

    2

    eq

    ]H][UO[

    ]U[log0592.0334.022

    ]H][MnO[

    ]Mn[log0592.051.155

    E

    E

    Adding the two equations gives

    122

    24

    42

    eq]H][UO][MnO[

    ]U][Mn[log0592.0334.0251.157E

    At equivalence, [MnO4-] = 2/5[U

    4+] and [Mn

    2+] = 2/5[UO2

    2+]

    Substituting these equalities and [H+] = 1.00 into the equation above gives

    V17.1

    7

    218.8

    7

    00.1log0592.0

    7

    218.8eq E

  • 7/25/2019 Solutions to Chapter 19

    23/24

    Fundamentals of Analytical Chemistry: 8th

    ed. Chapter 19

    At 50.10 mL,

    V48.100.110.100/0020.1

    10.100/000.1log

    5

    0592.051.1

    ]H][MnO[

    ]Mn[log

    5

    0592.051.1

    MnOmmol100.2000.10020.1remainingMnOmmol

    Mnmmol000.1Ummol5

    Mnmmol2

    UmL00.50mL

    Ummol05000.0

    formedMnmmol

    MnO0020.1MnOmL10.50mL

    MnO02000.0addedMnOmmol

    88

    4

    2

    4

    3

    4

    2

    4

    24

    42

    444

    4

    E

    The remaining post equivalence point data are derived in the same way and are given in

    the spreadsheet that follows.

  • 7/25/2019 Solutions to Chapter 19

    24/24

    Fundamentals of Analytical Chemistry: 8th

    ed. Chapter 19

    A B C D E F G

    1 19-15 (e) Titration of 50.00 mL 0.05000 M U4+

    with 0.02000 M MnO4-

    2 Reaction: 2MnO4-+ 5U

    4++2H2O 2Mn

    2++ 5UO2

    2++ 4H

    +

    3 For U4+

    /UO22+

    , E0 0.334

    4 For MnO4-, E0 1.51

    5 Initial conc. U4+

    0.0500

    6 Conc. MnO4- 0.0200

    7 Volume solution, mL 50.00

    8 Vol. MnO4-, mL [U

    4+] [UO2

    2+] [MnO4

    -] [Mn

    2+] [H

    +] E, V

    9 10.00 0.0333 0.0083 1.00 0.316

    10 25.00 0.0167 0.0167 1.00 0.334

    11 49.00 0.0005 0.0247 1.00 0.384

    12 49.90 0.0001 0.0250 1.00 0.414

    13 50.00 1.00 1.17

    14 50.10 2.00E-05 0.0100 1.00 1.48

    15 51.00 0.0002 0.0099 1.00 1.49

    16 60.00 0.0018 0.0091 1.00 1.50

    17 Spreadsheet Documentation

    18 B9=$B$5*$B$7-$B$6*A9*5/2)/($B$7+A9)

    19 C9=($B$6*A9*5/2)/($B$7+A9)

    20 F9=1.00 (entry)

    21 G9=$B$3-(0.0592/2)*LOG10(B9/(C9*F9^4))

    22 G13=((5*$B$4+2*$B$3)/7)-(0.0592/7)*LOG10(F13)

    23 D14=($B$6*A14-$B$5*$B$7*2/5)/($B$7+A14)

    24 E14=($B$5*$B$7*2/5)/($B$7+A14)

    25 G14=$B$4-(0.0592/5)*LOG10(E14/(D14*F14^8))

    2627

    28

    29

    30

    31

    32

    33

    34

    35

    36

    3738

    39

    40

    41

    42


Top Related