Transcript
Page 1: Robust Control - École Polytechnique Fédérale de Lausanne · Robust Control Roland Longchamp Laboratoire d’automatique Ecole polytechnique f´´ ed´erale de Lausanne 1015 Lausanne

Robust Control

Roland Longchamp

Laboratoire d’automatique

Ecole polytechnique federale de Lausanne

1015 Lausanne

Switzerland

e-mail: [email protected]

ÉCOLE POLYTECHNIQUEFÉDÉRALE DE LAUSANNE

Page 2: Robust Control - École Polytechnique Fédérale de Lausanne · Robust Control Roland Longchamp Laboratoire d’automatique Ecole polytechnique f´´ ed´erale de Lausanne 1015 Lausanne

Outline

1. Basic Concepts

2. Plant Uncertainty

3. Robust Stability

4. Robust Performance

5. Design Constraints

6. Standard Loopshaping

7. Concluding Remarks

Page 3: Robust Control - École Polytechnique Fédérale de Lausanne · Robust Control Roland Longchamp Laboratoire d’automatique Ecole polytechnique f´´ ed´erale de Lausanne 1015 Lausanne

Basic Concepts

SISO, continuous-time systems

Loop transfer function L(s) = K(s)G(s)

Sensitivity function

S(s) =1

1 + L(s)=

E(s)

Yc(s)= −E(s)

V (s)=U ′(s)W (s)

Complementary sensitivity function

T (s) =L(s)

1 + L(s)=

Y (s)

Yc(s)= −Y (s)

V (s)= − U(s)

W (s)

S(s) + T (s) = 1 S(G) =

dT (G)

dGT (G)

G

Page 4: Robust Control - École Polytechnique Fédérale de Lausanne · Robust Control Roland Longchamp Laboratoire d’automatique Ecole polytechnique f´´ ed´erale de Lausanne 1015 Lausanne

Infinity-Norms

∞-signal norm

g : → , t 7→ g(t)

‖g‖∞ = supt|g(t)|

∞-system normG : → , s 7→ G(s)

‖G‖∞ = supω|G(jω)|: Exists iff G(s) is proper and

has no poles on the imaginary axis

∞-system norm is submultiplicative

‖KG‖∞ ≤ ‖K‖∞ ‖G‖∞

Page 5: Robust Control - École Polytechnique Fédérale de Lausanne · Robust Control Roland Longchamp Laboratoire d’automatique Ecole polytechnique f´´ ed´erale de Lausanne 1015 Lausanne

Nominal Performance

|S(jω)| < σ ω ∈ [0, ωb], σ ∈

ωb: Closed-loop bandwidth

maxω∈[0,ωb]

1

σ|S(jω)| < 1

W1(jω) =

1

σif ω ∈ [0, ωb]

0 if ω 6∈ [0, ωb]

supω|W1(jω)S(jω)| < 1

|W1(jω)| is a roughly decreasing function of ω:

Performance decreases with increasing frequency.

Page 6: Robust Control - École Polytechnique Fédérale de Lausanne · Robust Control Roland Longchamp Laboratoire d’automatique Ecole polytechnique f´´ ed´erale de Lausanne 1015 Lausanne

Nominal Performance (cont.)

Nominal performance

‖W1 S‖∞ < 1 W1(s) : Weight

⇔∣∣∣W1(jω) 1

1+L(jω)

∣∣∣ < 1 ∀ω

⇔ |W1(jω)| < |1 + L(jω)| ∀ω

At each frequency, the point L(jω) on the Nyquist

plot lies outside the disk of center -1, ra-

dius |W1(jω)|.

Page 7: Robust Control - École Polytechnique Fédérale de Lausanne · Robust Control Roland Longchamp Laboratoire d’automatique Ecole polytechnique f´´ ed´erale de Lausanne 1015 Lausanne

Plant Uncertainty

Parametric uncertainty

=

B(s)

sn + a1sn−1 + . . .+ an: ai ≤ ai ≤ ai,i = 1,2, . . . , n

Finite set of models

= {G1(s), G2(s), . . . , Gn(s)}Unstructured uncertainty (multiplicative form)

={G(s) = (1 + ∆(s)W2(s)) G(s) : ‖∆‖∞ ≤ 1

}G(s) : Nominal plant transfer function

W2(s) : Fixed stable transfer function (weight)∆(s) : Variable stable transfer function

Page 8: Robust Control - École Polytechnique Fédérale de Lausanne · Robust Control Roland Longchamp Laboratoire d’automatique Ecole polytechnique f´´ ed´erale de Lausanne 1015 Lausanne

Multiplicative Perturbation

s = jω, ω given

GG − 1 = ∆W2

∣∣∣∣GG − 1

∣∣∣∣ = |∆| |W2| ∈ [0, |W2|]

Arg(GG − 1

)= Arg∆ + ArgW2 ∈ (−π, π]

Im

Re1

1 : No perturbation (G = G)GG − 1 : Can be everywhere in the disk with

center 1, radius |W2|:∣∣∣∣GG − 1

∣∣∣∣ ≤ |W2||W2(jω)| is a roughly increasing function of ω:Uncertainty increases with increasing frequency.

Page 9: Robust Control - École Polytechnique Fédérale de Lausanne · Robust Control Roland Longchamp Laboratoire d’automatique Ecole polytechnique f´´ ed´erale de Lausanne 1015 Lausanne

Example: Time Constant

Neglected time constant (e.g. the inductance inan electrical drive)

G(s) = G(s)1

τs+ 1τ ∈ [0, τ ]

G(s)

G(s)− 1 =

1

τs+ 1− 1 = − s

s+ 1τ

= ∆(s)W2(s)

∣∣∣∣∣∣ jω

jω + 1τ

∣∣∣∣∣∣ ≤ |W2(jω)| ∀ω, τ

W2(s) = τ sτs+1: |W2(jω)| increases with

increasing frequency{G(jω)

G(jω): 0 ≤ τ ≤ τ

}⊂ {s ∈ : |s− 1| ≤ |W2(jω)|} :

Conservatism

Page 10: Robust Control - École Polytechnique Fédérale de Lausanne · Robust Control Roland Longchamp Laboratoire d’automatique Ecole polytechnique f´´ ed´erale de Lausanne 1015 Lausanne

Example: Time Delay

Neglected time delay (e.g. in power electronics)

G(s) = G(s) e−sT T ∈ [0,0.1]G(s)

G(s)− 1 = e−sT − 1 = ∆(s)W2(s)∣∣∣e−jω T − 1

∣∣∣ ≤ |W2(jω)| ∀ω, T

W2(s) = 2.1 ss+10: |W2(jω)| increases with

increasing frequency{G(jω)

G(jω): 0 ≤ T ≤ 0.1

}⊂ {s ∈ : |s− 1| ≤ |W2(jω)|} :

Conservatism

Page 11: Robust Control - École Polytechnique Fédérale de Lausanne · Robust Control Roland Longchamp Laboratoire d’automatique Ecole polytechnique f´´ ed´erale de Lausanne 1015 Lausanne

Example: Uncertain Gain

Uncertain gain (parametric uncertainty)

G(s) = G(s) γ γ ∈ [0.1,10]

{G(jω)

G(jω): 0.1 ≤ γ ≤ 10

}⊂{s ∈ : |s− 1| ≤ 4.95

5.05

}:

Conservatism

Page 12: Robust Control - École Polytechnique Fédérale de Lausanne · Robust Control Roland Longchamp Laboratoire d’automatique Ecole polytechnique f´´ ed´erale de Lausanne 1015 Lausanne

Example: Multiple Models

Finite set of models

G1(s): Nominal plant transfer function

|W2(jω)| = max

{∣∣∣∣∣Gi(jω)

G1(jω)− 1

∣∣∣∣∣ : 2 ≤ i ≤ n}

{Gi(jω)

G1(jω): 2 ≤ i ≤ n

}⊂ {s ∈ : |s− 1| ≤ |W2(jω)|} :

Conservatism

Page 13: Robust Control - École Polytechnique Fédérale de Lausanne · Robust Control Roland Longchamp Laboratoire d’automatique Ecole polytechnique f´´ ed´erale de Lausanne 1015 Lausanne

Robust Stability

Classical measures of stability margin

Modulus margin

infω|1 + L(jω)| =

1

supω

1

|1 + L(jω)|=

1

‖S‖∞

Page 14: Robust Control - École Polytechnique Fédérale de Lausanne · Robust Control Roland Longchamp Laboratoire d’automatique Ecole polytechnique f´´ ed´erale de Lausanne 1015 Lausanne

Absolute Stability

x = A x + Buy = C x

}: Controllable and observable

u = −ψ(t, y)

ψ : [0,∞)× → : Piecewise continuous in t and

Lipschitz in y

α y2 ≤ y ψ(t, y) ≤ β y2, α < β: Sector condition

Absolute stability: The origin is globally uniformly

asymptotically stable for any nonlinearity in the

sector.

Page 15: Robust Control - École Polytechnique Fédérale de Lausanne · Robust Control Roland Longchamp Laboratoire d’automatique Ecole polytechnique f´´ ed´erale de Lausanne 1015 Lausanne

Absolute Stability (cont.)

Theorem (circle criterion): The system is ab-solutely stable if one of the following conditions issatisfied:

(i) If 0 < α < β, the Nyquist plot of L(jω) doesnot enter the disk D(α, β) and encircles it P

times in the counterclockwise direction, whereP is the number of poles of L(s) with positivereal parts.

(ii) If 0 = α < β, L(s) is Hurwitz and the Nyquistplot of L(jω) lies to the right of the lines = −1

β.

(iii) If α < 0 < β, L(s) is Hurwitz and the Nyquistplot of L(jω) lies in the interior of the diskD(α, β).

Page 16: Robust Control - École Polytechnique Fédérale de Lausanne · Robust Control Roland Longchamp Laboratoire d’automatique Ecole polytechnique f´´ ed´erale de Lausanne 1015 Lausanne

Absolute Stability (cont.)

Modulus margin: ‖S‖−1∞

α =1

1 + ‖S‖−1∞β =

1

1− ‖S‖−1∞

Page 17: Robust Control - École Polytechnique Fédérale de Lausanne · Robust Control Roland Longchamp Laboratoire d’automatique Ecole polytechnique f´´ ed´erale de Lausanne 1015 Lausanne

Robust Stability

Robust stability: Internal stability for all G(s) ∈ .

Theorem: The controller K(s) provides robust

stability iff ‖W2 T‖∞ < 1.

‖W2 T‖∞ < 1

⇔∣∣∣∣∣W2(jω)

L(jω)

1 + L(jω)

∣∣∣∣∣ < 1 ∀ω

⇔ |W2(jω)L(jω)| < |1 + L(jω)| ∀ω

At each frequency, the critical point lies outside

the disk of center L(jω), radius |W2(jω)L(jω)|.

Page 18: Robust Control - École Polytechnique Fédérale de Lausanne · Robust Control Roland Longchamp Laboratoire d’automatique Ecole polytechnique f´´ ed´erale de Lausanne 1015 Lausanne

Robust Performance

Robust performance: Internal stability and perfor-mance for all G(s) ∈ .

s 7→ |W1(s)S(s)|+ |W2(s)T (s)| = |W1 S|+ |W2 T |Theorem: The controller K(s) provides robustperformance iff ‖ |W1 S|+ |W2 T | ‖∞ < 1.

‖ |W1 S|+ |W2 T | ‖∞ < 1m∣∣∣∣∣W1(jω)

1

1 + L(jω)

∣∣∣∣∣+

∣∣∣∣∣W2(jω)L(jω)

1 + L(jω)

∣∣∣∣∣ < 1 ∀ω

m|W1(jω)|+ |W2(jω)L(jω)|

|1 + L(jω)|< 1 ∀ω

m|W1(jω)|+ |W2(jω)L(jω)| < |1 + L(jω)| ∀ω

At each frequency, the disks of center L(jω),radius |W2(jω)L(jω)|, and of center −1, radius|W1(jω)|, are disjoint.

Page 19: Robust Control - École Polytechnique Fédérale de Lausanne · Robust Control Roland Longchamp Laboratoire d’automatique Ecole polytechnique f´´ ed´erale de Lausanne 1015 Lausanne

Design Constraints

S(s) + T (s) =1

1 + L(s)+

L(s)

1 + L(s)= 1

Robust performance

⇒ min {|W1(jω)|, |W2(jω)|} < 1 ∀ωTheorem (area formula): Assume that the rel-ative degree of L(s) is at least 2 and let {pi :i = 1,2, . . . , n} denote the set of poles of L(s) inRe s > 0. Then∫ ∞

0log |S(jω)|dω = π (log e)

n∑i=1

Re pi

Page 20: Robust Control - École Polytechnique Fédérale de Lausanne · Robust Control Roland Longchamp Laboratoire d’automatique Ecole polytechnique f´´ ed´erale de Lausanne 1015 Lausanne

Waterbed Effect

|L(jω)| < 1ω2 ∀ω ≥ ω0 > 1

|S(jω)| = 1

|1 + L(jω)|≤ 1

1− |L(jω)|<

1

1− 1ω2

=ω2

ω2 − 1

∫ ∞ω0

log |S(jω)|dω ≤∫ ∞ω0

logω2

ω2 − 1dω = c <∞

Page 21: Robust Control - École Polytechnique Fédérale de Lausanne · Robust Control Roland Longchamp Laboratoire d’automatique Ecole polytechnique f´´ ed´erale de Lausanne 1015 Lausanne

Standard Loopshaping

G(s): Stable and minimum phase

|W1(jω)| À 1 > |W2(jω)| : |L(jω)| > |W1(jω)|1− |W2(jω)|

|W1(jω)| < 1¿ |W2(jω)| : |L(jω)| < 1− |W1(jω)||W2(jω)|

|W1(jω)S(jω)|+ |W2(jω)T (jω)| < 1

Page 22: Robust Control - École Polytechnique Fédérale de Lausanne · Robust Control Roland Longchamp Laboratoire d’automatique Ecole polytechnique f´´ ed´erale de Lausanne 1015 Lausanne

Concluding Remarks

Robust stability, robust performance, design con-straints, loopshaping, etc., nicely extend classicalcontrol theory.

Extension to MIMO systems:

‖G‖∞ = supωσ(G(jω))

σ(G(jω)): Largest singular value of G(jω)

ConservatismHigh order controllersSmall set of performance specificationsProvides what can be achievedetc.

Numerous other approaches to robust control

Kharitonov polynomialsMultimodel approachSingular perturbationSliding mode controlLyapunov methodsetc.


Top Related