Transcript
Page 1: Risk analysis for measles reintroduction post global certification of

Riskanalysisformeaslesreintroductionpostglobalcertificationoferadication

DrRaySanders.July2010

SummaryandconclusionsMeaslesviruswillcontinuetoexistaftercertificationofglobaleradicationasvirusstocksandinfectiousmaterialsheldinlaboratories.Livevirusmayalsoexistinundetectedfocioftransmissionandinpersistentlyandchronicallyinfectedindividuals.Thisanalysisattemptstoidentifyand

evaluatethemainrisksforre‐introductionofmeaslestransmissionpostcertificationoferadicationinaworldinwhichuniversalroutinemeaslesimmunizationisnolongerafeature.

Riskofcontinuing,undetectedwild‐typemeaslestransmissioninhumansThereare,asyet,nodefinitivecriteriaforcertificationofglobalmeasleseradicationoragreed

requirementsforvalidationofthesecriteria.Withoutthesecriteria,andthedetailedrequirementsfordemonstratingtheyhavebeenmet,itisnotpossibletoaccuratelyestimatetheriskpresentedbyundetectedcontinuingtransmission.

Mildorasymptomaticmeaslesinfectionsareprobablyverycommonamongmeasles‐immune

personsexposedtomeaslescases,buttransmissionfromasymptomaticcasesislikelytobeveryrare.Ifitoccursitisunlikelytobeefficientenoughtosustaintransmission,especiallyinthehighlyvaccinatedpopulationsexpectedintheyearsimmediatelyfollowingglobalcertificationof

eradication.However,thepotentialroleofasymptomaticinfectionsinmaintainingtransmissionrequiresfurtherinvestigation.

Ifthecriteriaforglobalcertificationoferadicationarefirmenough,andrequirerigorousvalidation,thentheriskofundetectedmeaslestransmissionaftercertificationisverylow.Ifthecertification

criteriaarelax,orvalidationrequirementsareinadequate,theriskwillbehigher.

Riskoftransmissionofvaccine‐derivedvirusThecurrentlylicensedlive‐attenuatedmeaslesvaccinesaresafeandefficientandhavebeenusedsuccessfullytoprotectmanymillionsofindividualsandpreventmeaslestransmission.Allcurrent

vaccinevirusesarecloselyrelatedandbelongtogenotypeA.Thereisnopublishedconclusiveevidenceforcurrentlylicensedliveattenuatedvaccinevirusesrevertingtowild‐typetransmissibilityorvirulence.Onthecontrary,thevastmajorityofevidencepointstoanimpressivelevelofgenetic

stability.However,sincetheyarelivevirusesthatreplicatewithinvaccinerecipients,theremotepossibilitymustexistthattheycouldreverttowild‐typecharacteristics.Thereisalsonoevidencefortheestablishmentofvaccine‐escapemutants.Evenifvaccinevirusesweretoreverttowild‐type

transmissibility,thereisnoreasontosuspectthattransmissioncouldnotbecontrolledusingcurrentvaccines.

RiskfrompersistentinfectionsThereisnopublishedevidencethatcasesofpersistentmeaslesinfectionareassociatedwiththe

sheddingofinfectiousvirusorplayanypartinmeaslestransmission.Asthenumberofacutemeaslesviruscasesdeclinesintheyearsleadingtoglobaleradication,wecanexpectadeclineinthe

Page 2: Risk analysis for measles reintroduction post global certification of

DrRaySanders.Measlesre‐introductionriskanalysis

Page2

numberofpotentialSSPEandMIBEcases.AcutemeaslesinfectioninHIV‐infectedindividualstendstobemoresevere,lastlongerandresultinashorterlivedimmunitytore‐infection,butthereisno

publishedevidencetosuggestthatco‐infectionincreasesthepotentialforestablishmentofpersistentmeaslesinfections,eitherwithwild‐typevirusorwithvaccine‐derivedvirus.

Riskfromnon‐humanprimatesAlthoughnon‐humanprimatescanbeexperimentallyandnaturallyinfectedwithmeaslesvirus,and

animal‐animaltransmissionoccurs,populationsizesaretoosmalltomaintainepizootictransmissionorposeathreattohumanpopulations.

Riskoflaboratory‐associatedmeaslesinfectionAlthoughthereisnodirectevidenceforlaboratory‐acquiredmeaslesinfectionsitispossiblethat

theyhaveoccurredamongimmunelaboratorystaffandresultedinasymptomaticorverymildinfections.Thereisnopublishedevidencetosuggestthattheseasymptomaticormildinfectionsresultinfurthertransmissionofvirus.Measlesviruslosesinfectivitywithinafewhoursatambient

temperatures,andinfectiousmaterialsstoredattemperaturesabove‐30oCcanbeexpectedtoloseallinfectivityoverthecourseofonetotwoyears.Materialsstoredatorbelow‐70oC,orfreezedried,maintaininfectivityformanyyears.

Despitethelackofevidenceforlaboratory‐acquiredmeaslesinfectionsorescapeofvirusintothe

community,thesemustbeconsideredpossibilitiesinapost‐eradicationworld.Anappropriatesystematiclaboratorycontainmentstrategyformeasles,learningfromtheexamplesetbythePolioEradicationInitiative,shouldbedeveloped.

Riskofintentionalreleaseofmeaslesvirus

Measlesisahighlyinfectiousvirusthathashaddevastatingeffectsonsusceptiblepopulationsinthepast.Althoughitisunlikelythatthehighmortalitiesseenintheseisolatedcommunitieswouldbe

repeated,thethreatofmeaslesreleasewouldprobablybeveryeffectiveonceasizablepopulationofsusceptibleindividualshadaccumulated.Thisthreatcouldbecounteredbytheestablishmentofameaslesvaccinestockpile,preferablyusinganew,easytomass‐administer,non‐replicativemeasles

vaccine.Thesizeandnatureofanystockpileshouldbedefinedwithinasystematicandcomprehensivepost‐eradicationriskmanagementstrategy.

Risksforreintroductionofmeaslescanbesummarisedasfollows:

Risk Magnitude Tendencyovertime MitigatingactionsContinuingwild‐typemeaslestransmissioninhumans

Lowbutdependsoncertificationcriteriaandvalidationrequirements

Decreasing Basecertificationcriteriaandvalidationrequirementsondynamicandstochasticmodellingdata

Transmissionofvaccine‐derivedvirus

Verylow Dependsonlevelofvaccineuse

Developalternative,non‐replicatingvaccines

Persistentinfections Verylow Decreasing MaintainsurveillanceNon‐humanprimates Verylow Decreasing Maintainsurveillance

Laboratory‐associatedinfection

Verylowbutrisingposteradication

Increasing Developsystematiclaboratorycontainmentstrategy

Intentionalrelease Verylowbutrisingposteradication

Increasing Developvaccinestockpilesaspartofacomprehensiveriskmanagementstrategy

Page 3: Risk analysis for measles reintroduction post global certification of

DrRaySanders.Measlesre‐introductionriskanalysis

Page3

Areasrequiringfurtherresearchandinvestigationinclude:GreaterunderstandingofthetransmissiondynamicsofmeaslesDevelopingmoremodels,particularlydynamicandstochasticmodelsofmeaslestransmission,

persistenceandeliminationwillberequiredfordevelopingthecertificationcriteriaandvalidationrequirements,particularlyforlow‐income,highdensitypopulations.

Additionaldetailedepidemiologicalandmolecularanalysisisrequiredonimportationsandoutbreaks,particularlythoseoccurringinhighlyimmunizedpopulationsandinpopulationswith

recognizedinadequatelyimmunizedsub‐populations.

Withtherapidincreaseinthenumberofhighlyimmunizedpopulations,opportunitiesforstudyingasymptomaticandatypicalinfectionsandtheirpotentialroleintransmissionshouldbetaken.

Greaterunderstandingofthechangesbroughtaboutbytheattenuationprocess

Moreinformationonthenatureofthechangescausedbyattenuationandthepotentialforvaccinevirusreversiontowild‐typecharacteristicsisrequired.

Moreunderstandingofthenatureofthecomplexinteractionbetweenmeaslesvirusandthehostimmunesystem,includingbothhumoralandcell‐mediatedresponses,wouldprobablybenefit

continueduseofexistingvaccinesanddevelopmentofnewvaccines.

AllgenotypeAvirusesdetectedinassociationwithacutecasesofmeaslesandatypicalvaccineresponsesshouldbethoroughlyscrutinized.Fullepidemiologicalinformationwillberequired,andadditionalsequencedatafrombothclinicalsamplesandcorrespondingviralisolateswillbe

necessarytoruleoutthepossibilityoftransmission.

Page 4: Risk analysis for measles reintroduction post global certification of

DrRaySanders.Measlesre‐introductionriskanalysis

Page4

TableofContentsError!Bookmarknotdefined.

Page 5: Risk analysis for measles reintroduction post global certification of

DrRaySanders.Measlesre‐introductionriskanalysis

Page5

Introduction.Wedonotyethaveanagreed,definitivedefinitionformeasleseradication,butareasonabledefinitionmaybe:

“Interruptionofmeaslesvirustransmissiongloballyforaperiodgreaterthanorequalto36

months,inthepresenceofhigh‐qualitysurveillance”(modifiedfromcurrentGlobalandRegionaldefinitionsofRegionalelimination).

Accordingtothisdefinition,measlesviruswillcontinuetoexist,asvirusstocksandinfectiousmaterialsheldinlaboratories.Livevirusmayalsocontinuetoexistinpersistentlyandchronically

infectedindividuals.Whatriskdothesevirusesandmaterialsposeinapost‐eradicationworld?

Forthepurposesofthisanalysispotentialriskshavebeendividedintotwocategories:

• ‘natural’–associatedwithcirculationofwild‐typevirus,viruspersistence,andimmunizationactivities;and

• ‘laboratory’–associatedwithlaboratorywork,storageandintentionalrelease.

Thesetwocategoriesarenotmutuallyexclusive,butdopermitamoresystematic,structured

assessment.

‘Natural’risksconsideredinclude:

a) continuingwild‐typemeaslestransmissioninundetectedhumanreservoirs;b) transmissionofvaccine‐derivedvirus;c) persistentandchronicinfections;

d) non‐humanprimatereservoirs.

‘Laboratory’risksconsideredinclude:

a) laboratory‐acquiredinfections;b) storedinfectiousmaterials;c) virusescapeintothecommunity;

d) intentionalrelease.

Ifuniversalornear‐universalcoveragewithmeaslesvaccineiscontinuedafterglobaleradication,particularlyifamoreeffective,non‐replicatingvaccineisused,theriskofmeaslesreintroductionwillbeminimal.Itislikelythatanumberofnationalauthoritieswill,forpoliticalaswellaspublichealth

reasons,choosetocontinueroutineimmunizationposteradication.Someauthoritiesmayadoptamodifiedimmunizationschedule,suchasasingle‐dosepolicy,orsomeformofcampaignstrategy.Itisalsolikelythatanumberofnationalauthorities,eitherthroughdecisionordefault,willcease

routinemeaslesimmunization.Forthepurposesofthisanalysisithasbeenassumedthatuniversalimmunizationagainstmeasleswillnotbecontinuedposteradication,andthatanincreasingglobal

populationwillbesusceptibletomeaslesinfectionintheyearsfollowingcertification.

Page 6: Risk analysis for measles reintroduction post global certification of

DrRaySanders.Measlesre‐introductionriskanalysis

Page6

Theanalysisconcludeswithabriefdiscussionofactionsrequiredtoreducetheriskofaccidentalordeliberatereleaseofmeaslesinapost‐eradicationworldandareasthatcouldbenefitfromfurther

research.

Riskofcontinuing,undetectedwild‐typemeaslestransmissioninhumansThereare,asyet,nodefinitivecriteriaforcertificationofglobalmeasleseradicationoragreedrequirementsforvalidationofthesecriteria.Withoutthesecriteria,andthedetailedrequirements

fordemonstratingtheyhavebeenmet,itisnotpossibletoaccuratelyestimatetheriskpresentedbyundetectedcontinuingtransmission.However,basedoncurrentRegionalandGlobalrecommendationsoncertificationofRegionalmeasleselimination,itislikelythateradicationcriteria

willinclude:

1. Absenceofcirculatingmeaslesvirusforatleastoneyear;2. Adequatesurveillanceincludinggenotypedata.Adequatesurveillancemaybedefinedby:

• Numberofreportedsuspectedmeaslescasesthatarediscardedasnon‐measles

(targets:≥2/100,000populationnationally,≥1/100,000inatleast80%ofdistricts)• Percentageofreportedsuspectedcasesthathaveadequateinvestigationwithin48

hoursofreport(target:≥80%ofreportedsuspectedcases)

• Percentageofreportedsuspectedcasesthathaveadequatespecimenscollected(target:≥80%ofreportedsuspectedcases)

• PercentageofdistrictswithaccesstoaWHO‐accreditedmeaslesdiagnostic

laboratory(target:100%)• PercentageofspecimenswithIgMresultswithin7daysofreceiptinlaboratory

(target:≥90%)

• PercentageofchainsoftransmissionwithRNAsequenceanalysis(target:≥95%)• Someuseofmeaslesavidityassaystodistinguishrecentfromlong‐standing

immunologicalresponses

• Somedemonstrationofalternativesurveillancemechanisms,routineorsupplementary,basedoncasedetection,investigationandreporting;

3. Achievementofhighpopulationimmunity.Populationimmunitymaybedemonstratedby:• ≥95%coveragewithroutineMCV2inalldistricts,or• ≥80%coveragewithroutineMCV1plus≥95%coveragewithSIAfollow‐upinall

districts,or• Someuseofextensiveserosurveydata.

FromexperiencegainedthroughRegionalpolioeliminationandcertification,specificcriteriamaybeusedtofulfilthethreegeneralcriteriaabove,butitisunlikelythatanysinglespecificindicatorwillberequiredtopassorfailvalidation.Thestrictnessandextentofrequirementsforproviding

evidencethatcertificationcriteriahavebeenmetwilllargelydeterminethemagnitudeofriskposedbyundetectedcontinuingmeaslestransmission.Butevenwithrelativelylaxcriteriaandvalidation

requirements,howlikelyisitthatongoingmeaslestransmissionwillbeundetectedforaminimumofoneyearbeforecertification?

Page 7: Risk analysis for measles reintroduction post global certification of

DrRaySanders.Measlesre‐introductionriskanalysis

Page7

Whatisthesmallestpopulationrequiredtomaintainmeaslestransmission?Measlesepidemicshavegenerallybeencharacterisedbyexplosivecycleswithhighlycomplex

pathogen‐andpopulation‐levelinteractionsthatinfluencetransmissiondynamics(1).Accuratelypredictingthecriticalcommunitysize(CCS)requiredformaintainingmeaslesviruscirculationisdifficultduetothelargenumberofvariablesinvolved.Directobservationandarangeofboth

deterministicandstochasticmodelssuggestthatapopulationof250,000to400,000with5,000to10,000birthsperyearisrequiredtomaintaintransmission(2,3).Highlevelsofimmunization,lowpopulationdensity,alowbirth‐rateandgoodpublichealthcarefacilitiesincreasetheCCS.Low

vaccineuptake,highpopulationdensity,highbirth‐rates,highlevelsofimmunodeficiencyandpoorpublichealthcarefacilitiesdecreasetheCCS(1,4,5).

AlthoughitmaybedifficulttoaccuratelyestimatetheCCSinlow‐income,lowvaccinecoverage

populations,itiseasytoidentifythesepopulations.Ifdiseasesurveillanceandimmunizationactivitiesaretargetedonthem,andonanynew,at‐riskpopulationsthatmayemergefollowingdisplacementcausedbyconflictorclimatechange(6),thepotentialtooverlookcirculationofvirus

intheyearleadinguptoglobalcertificationwillbegreatlyreduced.

Whatroledoasymptomaticinfectionsplayinvirustransmission?Measlescontrolstrategiesassumethatvirustransmissionoccursthroughchainsofclinicallyrecognizablemeaslescases,andthesurveillancesystemlargelyreliesontheidentificationofthese

casesfordetectingandrespondingtooutbreaks.Butasymptomaticinfectionscertainlyoccurandmayplayanimportantroleinmeaslestransmission.Serologicalevidenceforacutemeaslesinfectionamongpeopleexposedtomeaslesvirusbutfailingtodevelopclassicalsymptomshasbeenwell

documented(7,8,9,10,11,12,13,14,15)andithaslongbeenrecognizedthatmeaslesviruscaninfectpreviouslyimmunepersons,producingclassicsymptomsofmeaslesinsome,butmildornosymptomsinmost(16,17,18,19,20).Theestimatedratesofmildorasymptomaticmeaslesinfections

afterexposuretomeaslescasesarevaried,however,inpartbecauseofdifferentdiagnostictechniquesanddifferentcasedefinitionsused,orbecauseofthedifferenttypesofexposure.Inseveralstudiestheratesofmildorasymptomaticinfectionweredeterminedduringoutbreaksin

whichpersonswerelikelytohavehadmultipleexposurestomeaslescases(16,21,12,8).Astudyofmildorasymptomaticmeaslesinfectionsamong44personslikelytohavebeenexposedtoclassicmeaslesduringa3‐daybustripconcludedthatinpopulationswithhighlevelsofimmunityto

measles,non‐classicmeaslesinfectionscanoccurinatleast20%ofpreviouslyimmunepersonswithcloseexposuretoapersonwithclassicmeasles(10).Itispossiblethatmildorasymptomaticmeaslesinfectionsarecommonamongmeasles‐immunepersonsexposedtomeaslescasesandmay

bethemostcommonmanifestationofmeaslesduringoutbreaksinhighlyimmunepopulations(10).Althoughclinicallyunimportant,asymptomaticmeaslesvirusinfectionscouldbeepidemiologicallyimportantifinfectedpersonsarecapableoftransmittingvirus.Althoughatleastonestudyhas

reportedisolationofmeaslesvirusfromanasymptomaticindividualinclosecontactwithanacutecase(11),anotherstudyfailedtofindevidenceofvirussheddingfrom11seropositiveacutecasecontacts(14).Iftransmissionfromasymptomaticcasesdoesoccur,itislikelytobeveryrare,andis

unlikelytobeefficientenoughtosustaintransmission(11,15),especiallyinthehighlyvaccinatedpopulationsexpectedintheyearsimmediatelyfollowingglobalcertificationoferadication.

Page 8: Risk analysis for measles reintroduction post global certification of

DrRaySanders.Measlesre‐introductionriskanalysis

Page8

ConclusionIfthecertificationcriteriaarefirmenough,andrequirerigorousvalidation,thentheriskof

undetectedmeaslestransmissionafterGlobalCertificationisverylow.Ifthecertificationcriteriaarelax,orvalidationrequirementsareinadequate,theriskwillhigher.

Riskassessment:Theriskisintuitivelylow,butuntilthecriteriaforglobalcertificationof

measleseradicationandtherequirementsforvalidationareestablisheditisnotpossibletoestimatetheriskposedbycontinuingwild‐typemeaslestransmissioninundetectedreservoirs.

Riskoftransmissionofvaccine‐derivedvirusThedevelopmentofliveattenuatedmeaslesvirusvaccinesbegansoonafterisolationofthevirusbyEndersandPeeblesin1954(22).ThefirstlicensedattenuatedmeaslesvaccinewasEdmonstonB,usedbetween1963and1975butfrequentlyassociatedwithfeverandrash(23).Thefurther

attenuatedSchwarzandMoratenstrainswerederivedfromtheoriginalEdmonstonstrainthroughadditionalpassagesinchickembryofibroblasts(Figure1).Despitedifferencesintheirpassagehistory,thesetwovaccinestrainshaveidenticalgenomicsequences(24).TheMoratenvaccineis

widelyusedintheUnitedStatesofAmerica;theSchwarzvaccineisusedinmanycountriesthroughouttheworld,andtheEdmonston‐Zagrebvaccine,similarlyderivedfromtheEdmonstonBstrain,isthemostwidelyusedstrainindevelopingcountries.Otherattenuatedmeaslesvaccines

havebeenproducedfromlocallyderivedwild‐typestrains,particularlyintheRussianFederation(Leningrad‐16),thePeople’sRepublicofChina(Shanghai‐191)andJapan(CAM‐70,AIK‐C)(23).Allofthecurrentvaccinevirusesarewelldocumentedandwellcharacterisedwithregardtoprovenance,

immunogenicity,thermalstabilityandgenomicstructure(25,26,27,28,29,30,31,32,33).Althoughcurrentvaccinevirusesandtheirwild‐typeprogenitorssharemorethan95%sequencehomology,theycaneasilybedistinguishedgeneticallyfromcurrentlycirculatingwild‐typeviruses.

Page 9: Risk analysis for measles reintroduction post global certification of

DrRaySanders.Measlesre‐introductionriskanalysis

Page9

Figure1.Relationshipsofmajorcurrentmeaslesvaccineviruses(fromMoss&Scott,2009(23)).

Measlesvirusisconsideredtobeoneofthemostcontagiousofhumanpathogens,withaveryhighleveloftransmissibility.Likewild‐typevirus,measlesvaccinevirusreplicateseffectivelywithinvaccinerecipients,inducingbothhumoralandcellularimmuneresponsessimilartonaturalmeasles

virusinfection,althoughtheseresponsesareoflowermagnitudeandshorterduration.Approximately5%ofchildrendevelopfeverandrashafterreceivingmeaslesvaccine,andviralRNAcanbedetectedintheurineandrespiratorysecretionsforsomedayspost‐immunization(34).

Vaccineviruscanbeisolatedfromthebloodofrecentvaccinerecipients,andhasbeendetectedinsamplesoflung,liver,bonemarroworbraintissuesintheveryrarecasesofsevereacutediseasefollowingmeaslesvaccination(35).VirusRNAandantigencanbedetectedintheurineofvaccine

recipientsforupto14‐16dayspost‐immunization(36,37),butthereisnopublishedevidenceforthetransmissionofvaccinevirus.Obviouslythechangescausedbytheattenuationprocesseffectivelyblocktransmissibility.Isitpossibleforvaccinevirustoregainthetransmissibilitycharacteristicsof

wild‐typevirus?

Thereasonsfornon‐transmissionofvaccinevirusesarenotfullyunderstood,andarelikelytobecomplex.Ithasbeenproposedthatlossofabilitytointeractwithepithelialcellreceptorsisakeyfactor(38,39,40).Itisalsopossiblethatmodificationofthevirusmatrix(M)protein,knowntobe

importantinvirusbuddingfrominfectedcells(41),contributestolossoftransmissibility.Theabilityofvaccinevirusestointerferewiththeinnateimmuneresponsemayalsobeakeyfactor.Whateverthereason,itappearsthattheblockontransmissionofvaccinevirusesishighlyeffective.

Measlesvirusisserologicallymonotypicandisgeneticallycharacterizedintoeightclades(A–H),

dividedinto23recognizedgenotypes(42,43,44).Allofthecurrentvaccines,whetherderivedfromEdmonstonornot,sharearemarkablenucleotidesequencesimilarityandallaremembersofgenotypeA(45,24).Duringthe1950sand1960s,onlymeaslesvirusesbelongingtogenotypeAwere

Page 10: Risk analysis for measles reintroduction post global certification of

DrRaySanders.Measlesre‐introductionriskanalysis

Page10

isolatedandmayhavehadaworld‐widedistributionbeforevaccinationstarted(46,47,48).Thisisnotthesituationtoday,whentheidentificationofnon‐vaccinerelatedgenotypeAvirusesisvery

unusual.Overthepastfifteenyearsamassiveamountofworkhasbeenputintocharacterizingmeaslesvirusesassociatedwithoutbreaks.Althoughtherearestillgaps,virusesfrommostmajoroutbreaksandfromimportationsinareasthathaveeliminatedindigenousmeasles,arecurrently

beingsequencedandgeneticallycharacterizedthroughtheWHOLaboratoryNetwork’sactivities.Wenowhaveareasonablycomprehensiveunderstandingofwhichvirusesarecirculatingwhere(42,43,44,49,50,51,52,53).

Againstabackgroundofseveralthousandisolatescharacterized,veryfewgenotypeAviruseshave

beenidentifiedduringthepast20years.WiththepossibleexceptionofvirusesisolatedintheUKin1993(54),nonehasbeenassociatedwithoutbreaks.Whendetectedtheyhavebeensporadiccaseswithuncertainepidemiology,closelyassociatedwithveryrecentreceiptofvaccine,orqueriedas

laboratorycontaminants(43,55,56,57,58,59,60,61,62).

Table1summarizesthepublisheddocumentationonthedetectionofgenotypeAmeaslesvirusessince1990.

Yearofdetection Country State/Province/Region Numberofisolates Reference

1990 Japan Handai? 1 (62)1991 Argentina BuenosAires 1 (63)

1993 UK Coventry,England 5 (54)

1995 SouthAfrica Johannesburg 1 (64)

1996 RussianFederation Novosibirsk,Siberia 3 (56)

1996 USA Delaware 1 (60)

1996 China Hunan 1 (55)

1996 UK ? 2 (58)

1996 SouthAfrica Johannesburg 1 (57)

1998 UK ImportationfromRussia 1 (58)

1999 Argentina BuenosAires 2 (63)

1999 China Henan 1 (55)

2000 UK ? 1 (58)

2001 Spain Ibiza 1 (59)

2002 Spain Madrid/Badajos 2 (59)

2003 Spain Almeria 3 (59)

2003 China Xinjiang 1 (55)

2005 Taiwan Taichung/Taipei 2 (61)

2007 Taiwan Tainan/Taipei 2 (61)

Table1.PublisheddocumentationonisolationandcharacterizationofgenotypeAmeaslesvirusesfrom1990

toMay2010.

Table1includesisolatesthatmayrepresentwild‐typelineagesthathavesurvivedsincethepre‐vaccinationera.Italsoincludesvirusesisolatedfromveryrecentvaccinerecipientspresentingwith

classicmeaslessymptoms.Butitmayalsoincludevaccine‐derivedisolatesthathavebeentransmittedfromvaccinerecipientstounvaccinatedcontacts.AlthoughsomeofthesegenotypeAviruseshavenucleotidesubstitutionsthatdistinguishthemfromvaccineviruses,thereisno

publisheddocumentationidentifyingadistinctsetofgeneticmarkersthatconsistentlydifferentiateswild‐typevirusesfromattenuatedviruses(46).Measlesvaccinevirusesre‐isolatedfrom

Page 11: Risk analysis for measles reintroduction post global certification of

DrRaySanders.Measlesre‐introductionriskanalysis

Page11

immunosuppressedpatientswithgiantcellpneumoniahavenucleotidesequencesalmostidenticaltothoseofthevaccinevirus,suggestingthatvaccinevirusesareverystableevenafterprolonged

replicationinahumanhost(46).

Numerouspublishedstudiesofseveralthousandsofisolatesfromacutemeaslescasesinvestigatedoverthepast20yearshavefailedtodetectgenotypeAviruses(52,53,65,66,67,68,51,50,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83).Becauseoftheincreasingintensityofmeasles

immunizationprogrammes,genotypeAviruses,intheformofvaccineviruses,shouldbethemostabundantmeaslesgenotypeonEarth.Giventhattheyaresoinfrequentlyisolatedfrommeaslescases,themolecularepidemiologicaldataappearstosupportthecontentionthatvaccinevirusesdo

notreadilyreverttowild‐typetransmissibility.

Whatistheriskofmeaslesvaccine‐escapemutants?Thereisnoconclusivepublishedevidencefortheemergenceofmeaslesvaccineescapemutants(84).MeaslesisatypicalRNAvirusinthatintrinsicerrorsoftheRNApolymeraseandlackof

proofreadingmechanismsresultsinamutationrateof9x10‐5perbaseperreplicationandagenomicmutationrateof1.4perreplication(85).Thisiswellwithinthetypicalrangeof10‐3to10‐6mutationspersiteperreplication(86).Asaconsequenceofthishighmutationrate,RNAviruspopulations,

eventhoseinitiatedbyasingleinfectiousunit,arenotclonalbutconsistofalargenumberofgeneticmicrovariantsreferredtoasquasispecies.Despitethehighmutationrate,andunlikeotherRNAvirusessuchasinfluenzaandHIV,measlesvirusremainsremarkablystable.Howcanlive

attenuatedvaccinesdevelopedfromwildtypemeaslesvirusesmorethanhalfacenturyagostillbeeffectiveagainstcirculatingviruses?

Theanswerisprobablyassociatedwithuseofthesignallinglymphocyticactivationmolecule(SLAM;alsoknownasCD150)receptorbythemeasleshaemagglutinin(H)protein,whichisresponsiblefor

cellattachmentandisamajortargetforneutralizingantibodies(87).Theenvelopeofmeaslesvirushastwotypesofglycoproteinspikes,designatedhaemagglutinin(H)andfusion(F)proteins.TheHproteinbindstospecificmolecules(receptors)ontargetcells,whiletheFproteinmediates

membranefusionbetweenthevirusenvelopeandthehostcellplasmamembranethroughcooperationwiththeHprotein.In2000,SLAMwasidentifiedasacellreceptorformeaslesvirus(88).SLAMisexpressedoncellsoftheimmunesystem,suchasactivatedlymphocytesanddendritic

cells(89).StudiesonthecrystallinestructureoftheHproteinhaveshownthatalthoughmostofthisglycoproteiniscoveredbysugarchains,thelargesurfaceareathathoststheSLAMbindingsiteisfreefromsugarchains(90).Mutationsinthisregionarenotpermittedbecausetheyinterferewith

receptorbinding.Thisextremesequencerestrictionallowsforveryefficientproductionofneutralizingantibodiesthatblockbindingofthevirustoitsreceptor.Sotheoriginalvaccinestrains,developedinthe1960s,arestilleffectiveagainstcurrentwild‐typeviruses(91).Analysisofavailable

sequencedatafromapproximately500isolatessuggeststhatdespitetheerror‐proneviralpolymerase,theaminoacidsequenceofHisstronglyconserved,with60%oftheresiduesbeingidenticalorverysimilar(92).Itappearsthatanymutationthatchangesthenatureofthese

conservedresiduesresultsinnon‐viablevirus.

ConclusionThereisnocurrentpublisheddatatosupportevidenceforcurrentlylicensedliveattenuatedvaccine

virusesrevertingtowild‐typetransmissibility.Onthecontrary,thevastmajorityofevidencepoints

Page 12: Risk analysis for measles reintroduction post global certification of

DrRaySanders.Measlesre‐introductionriskanalysis

Page12

toanimpressivelevelofgeneticstability.However,sincetheyarelivevirusesthatreplicatewithinvaccinerecipients,thepossibilitymustexistthattheycouldreverttowild‐typetransmissibility.

ThereisstrongexperimentalevidenceforthemonotypicnatureandgeneticstabilityofmeaslesvirusbeingbasedonuseoftheSLAMreceptor.Thereisalsonoevidencefortheestablishmentofvaccine‐escapemutants.Evenifvaccinevirusesweretoreverttowild‐typetransmissibility,thereis

noreasontosuspectthattransmissioncouldnotbecontrolledusingcurrentvaccines.

Riskassessment:Availableinformationsuggeststhattheriskofcurrentlive‐attenuatedvaccinevirusesrevertingtowild‐typetransmissibilityisverylow,butitremainsapossibility.

Riskfrompersistentinfections

Howlongdoesmeaslesinfectionusuallypersist?Inclassicmeaslescasesthereisa10–14dayincubationperiodbetweeninfectionandtheonsetofclinicalsignsandsymptoms,andinfectedpersonsareusuallycontagiousfrom2–3daysbeforeand

uptofourdaysafteronsetoftherash.Hostimmuneresponsestomeaslesvirusareessentialforviralclearance,clinicalrecoveryandtheestablishmentoflong‐termimmunity.Earlyinnateimmune

responsesoccurduringtheprodromalphaseandincludeactivationofnaturalkiller(NK)cellsandincreasedproductionofinterferons(IFN)‐αandβ(23,93,94).However,themechanismsandtimingofnormalmeaslesvirusclearancearepoorlyunderstood.Measlesvirushasbeenisolatedfrom

peripheralbloodmononuclearcells(PBMC)uptoaweek,andfromurineupto10days,afterappearanceoftherash(95,96).Delayedvirusclearancehasbeendocumentedincasesofmalnutrition(97,98,99)andpatientswithcellularimmunitydeficiencies(100,101,102).Detectionof

measlesvirusRNAhasbeenreportedforupto4monthsinacaseofcongenitalmeasles(103),for1to4monthsafteruncomplicatedinfectionin90%ofHIV‐1‐infectedchildrenandmorethan50%ofHIVnon‐infectedchildren(104,105,106,107).Thesedataareconsistentwithstudiesofrhesus

macaquesshowingthatvirusclearanceoccursover120–150days(108),suggestingthatnormalclearanceisaprolongedprocess.DespitethereportedpersistenceofviralRNA,therehavebeennoreportsofinfectiousvirussheddingmorethan3to4weeksafterappearanceofsymptoms(98,99).

Persistentinfectionwithmeaslesvirushasdefinitivelybeenassociatedwithsubacutesclerosing

panencephalitis(SSPE),aprogressivefatalneurologicaldiseasewithhighlevelsofneuronalinfectionbymeaslesvirusinthecentralnervoussystem(94).Inimmunocompromisedpatients,persistentmeaslesvirushasbeenlinkedtoanotherneurologicalinfection,measlesinclusionbodyencephalitis

(MIBE)(109).Multiplesclerosis,chronicallyactiveautoimmunehepatitis,Paget’sdisease,otosclerosis,Crohn’sdiseaseandautism,amongmanyotherdiseases,havealsobeensuggestedatvarioustimesaslong‐termsequelaeofmeaslesvirusinfection.Noconfirmedevidencehasbeen

presented,however,tosubstantiatetheseassociations,letaloneproveacausativerelationship.

WhatistheriskfromSSPEcases?SSPEisaslow,progressivediseasethatisinvariablyfatal.TheaverageperiodfrominitialmeaslesinfectiontoSSPEsymptomonset(latency)usuallyrangesbetween4and10years,buthasbeen

reportedfrom2monthsto23years(110).Childrenarefarmorelikelytodevelopthiscomplicationthanadults.ReportedSSPEincidencevariesfromapproximately0.2to40casespermillionpopulationperyear.Directcomparisonofdatafromdifferentcountriesisproblematicbecause

Page 13: Risk analysis for measles reintroduction post global certification of

DrRaySanders.Measlesre‐introductionriskanalysis

Page13

methodsandqualityofdiagnosishavebeeninconsistent.AnalysesofdatafromtheUKandUSAhavecalculatedthetrueincidenceofSSPEtobeapproximately4–11casesofSSPEper100000cases

ofmeasles.Ahigherriskisassociatedwithearlierinfection:theriskfollowingmeaslesinfectionunder1yearofageis18/100000comparedwith1.1/100000after5yearsofageintheUK(110).Obviously,asthenumberofmeaslesinfectionsdeclines,sowillthenumberofpotentialSSPEcases.

Thediseaseinitiallymanifestsassubtlecognitivelosses,progressingtomoreovertcognitivedysfunction,followedbymotorloss,seizuresandeventualorganfailureinvirtuallyallaffected

individuals.Neuronsinboththegrayandwhitematterareinfected,andthediseaseishistologicallycharacterizedbythepresenceofcellularinclusionbodies(111).AserologichallmarkofSSPE,ascomparedtotheothercentralnervoussystemcomplications,istheelevationofmeaslesspecific

antibodiesinthebloodandcerebrospinalfluid(94).Mostimportantly,evidencefrombrainbiopsiesofSSPEpatientsindicatesthatinfectedneuronsdonotreleasebuddingvirus(112).Basedonsequencingstudiesofvirusfromthesespecimensandfromcellspersistentlyinfectedwithmeasles

virusisolatesfromSSPEpatients,ithasbeenproposedthatthefailureofinfectedneuronstoproducecompleteextracellularvirusmaybeduetodefectsinproteinexpressioncausedbyextensivepointmutationsintheH,fusion(F)andmatrix(M)genes(113,94,114,115,116).Thereis

noevidencefortransmissionofmeaslesvirusfromSSPEcases.

WhatistheriskfromMIBEcases?Measlesinclusionbodyencephalitis(MIBE)isararecentralnervoussystemcomplicationfollowingacuteMVinfection,hasbeendescribedinchildrenandadultsreceivingimmunosuppressivedrugs

andthereforeisthoughttochieflyaffectimmunocompromisedhosts.MIBEhasalsobeenreportedtoresultfromreceiptofmeaslesvaccine(117).Theneurologicdiseaseusuallyappears3to6monthsaftertheacutemeaslesrash(111),withamediantimeof4months(118).Measlesantigenis

presentinthebrain,andvirushasbeenisolateddirectlyfromthebrainsofaffectedindividuals(111,119).MIBEdiffersfromSSPEintheabsenceofelevatedserumandcerebrospinalfluidneutralizingantibodies(94).Thediseasecourseisrelativelyshort,lastingfromdaystoweeks,

causingseizures,motordeficits,andstupor,oftenleadingtocomaanddeath.Althoughonlyaverysmallpercentageofacutemeaslesinfectionswillgoontodeveloppersistent

complications,afewstudieshavedetectedmeaslesvirusRNAinvariousorgans,onautopsy,ofelderlyindividualswhodiedofnon‐viralcauses(120,121).Thesefindingssuggestthatmeaslesviruspersistsinthebrains(andotherorgans)ofhealthyindividuals,andmaymanifestitselfincentral

nervoussystemdiseaseunderconditionsofimmunocompromiseorimmunosuppression.Thishasbeenunderlinedbythecaseofa13year‐oldboythatdevelopedMIBEafterreceivingastemcelltransplant(119).Neitherthepatientnorthestemcelldonorhadapparentrecentmeaslesexposure

orvaccination,andneitherhadrecenttraveltomeasles‐endemicregions.ThepatientwasborninChicagoduringthemeaslesepidemicof1989‐1991(birthyear1989).Anundiagnosedcaseofmeaslesintheperiod1989‐1991wouldsuggestalatencyperiodtoMIBEof12years,whichisnot

typical.CasesofMIBEwithoutclearmeaslesexposureorinfectionhavebeenreported.InareviewofMIBE,18%ofpatientshadnodocumentedmeaslesexposureorinfection(118);however,many

ofthesecasesoccurredinyearswhenmeasleswasmoreprevalent.TherearenopublishedreportsofinfectiousmeaslesvirussheddingfromMIBEcases.

Page 14: Risk analysis for measles reintroduction post global certification of

DrRaySanders.Measlesre‐introductionriskanalysis

Page14

DoesHIVco‐infectionpresentariskforpersistentmeaslesinfectionandtransmission?Asdiscussedabove,measlesvirusRNAcouldbedetectedinsamplesfrom90%ofHIV‐infected

childrenonemonthafterrecoveryfromacutemeasles(104),butinthisstudynoattemptwasmadetoculturevirusfromanysamples.InregionsofhighHIV‐1prevalence,co‐infectionwithHIV‐1morethandoublestheoddsofdeathinhospitalizedchildrenwithmeasles(122)andmayslowtherateof

virusclearanceslightly,butthereisnoevidencethatHIV‐infectionleadstoanincreasedriskforpersistentmeaslesvirusinfection.NordoesHIVinfectionappeartopresentariskforpersistentinfectionwiththemeaslesvaccinevirus.Asearchforpersistentmeaslesmumpsandrubellavaccine

virusesinchildrenwithHIV‐1infectionfailedtodetectvirusinperipheralbloodmononuclearcells,polymorphonuclearleukocytes,orplasma(123).

ConclusionThereisnopublishedevidencethatcasesofpersistentmeaslesinfectionareassociatedwiththe

sheddingofinfectiousvirusorplayanypartinmeaslestransmission.Asthenumberofacutemeaslesviruscasesdeclinesintheyearsleadingtoglobaleradication,wecanexpectadeclineinthenumberofpotentialSSPEandMIBEcases.

AcutemeaslesinfectioninHIV‐infectedindividualstendstobemoresevere,lastlongerandresultinashorterlivedimmunitytore‐infection,butthereisnopublishedevidencetosuggestthatco‐

infectionincreasesthepotentialforestablishmentofpersistentmeaslesinfections,eitherwithwild‐typevirusorwithvaccine‐derivedvirus.

Riskassessment:Availableinformationsuggeststhattherelativelysmallnumberofpersistentmeaslesviruscases,includingthosethatmayresultfromco‐infectionwithHIV,poseaverylowriskforreintroductionofmeasles.

Riskfromnon‐humanprimatesAlargeproportionofourcurrentknowledgeofmeaslesandmeaslesinfectionmechanismshave

comefromexperimentalinfectionofnon‐humanprimates.In1911,GoldbergerandAndersondemonstratedthatmacaquesinoculatedwithfilteredsecretionsfrommeaslespatientsdevelopedmeasles,provingthecausativeagentwasavirus(124).Awiderangeofnon‐humanprimatespecies

aresusceptibletoexperimentalinfectionwithmeaslesvirus.TheseincludeMacacamulatta,M.fascicularis,M.radiata,M.cyclopis,Papiocristatus,Cercopithecusaethiops,Saimirisciureus,Colobusquereza,Pantroglodytes,Callithrixjacchus,Saguinusoedipus,S.fuscicollis,andAotustrivirgatus

andAtelesspecies(125,126,127).Aswouldbeexpectedfromaneffectiveanimalmodel,manyspeciesrespondtoinfectioninamannerverysimilartohumans(128,129,130).Inadvertent

transmissionofeithermeasles(fromhumans)orthecloselyrelatedcaninedistempervirus(fromdogs)tocaptivenon‐humanprimateshascausednumerousoutbreakswithsignificantmorbidityandmortality(131,127,132,133,134).Non‐humanprimatesinthewildappeartobefreefrommeasles,

onlycontractinginfectionwhentheycomeintocontactwithinfectedhumans(125).Human‐to‐primatediseasetransmissioncanpotentiallycausesignificantmorbidityandmortalityamongwildprimatepopulations.Serologicalevidenceofmeaslesinfectioninfree‐rangingpopulationsofnon‐

humanprimateshasbeenwelldocumented(135,136,137).Evidenceexistsofmeaslesinfectioninnon‐humanprimatepopulationswithfrequentcontactwithhumanpopulations,aswellasinwild

Page 15: Risk analysis for measles reintroduction post global certification of

DrRaySanders.Measlesre‐introductionriskanalysis

Page15

populationswithminimalhumancontact(127).Across‐sectionalstudyofwildmacaques(Macacatonkeana)inSulawesi,Indonesia,foundserologicalevidenceofmeaslesevidencein5of15animals

surveyed(136).Becausehumanpopulationsrepresentthelargestreservoirofthemeaslesvirus,itismostlikelythat

measlesepizooticsinnon‐humanprimatepopulationsareinitiatedbyhumantonon‐humanprimatetransmissionandsubsequentlyspreadbyanimaltoanimaltransmission.Duetotheirrelativelysmallnumbers,itisunlikelythatnaturalpopulationsofnon‐humanprimatesaresignificantorsustainable

reservoirsofmeaslesvirus(127).

ConclusionAlthoughnon‐humanprimatescanbeexperimentallyandnaturallyinfectedwithmeaslesvirus,andanimaltoanimaltransmissionoccurs,populationsizesaretoosmalltomaintainepizootic

transmission.

Riskassessment:Availableinformationsuggeststhatinfectionsinnon‐humanprimatespose

averylowriskforreintroductionofmeasles.

Riskoflaboratory‐associatedmeaslesinfectionRisksposedbylaboratory‐maintainedmeaslesviruses,throughaccidentalorintentionalrelease,arelargelydependentonwhetheruniversalimmunizationagainstmeaslesiscontinuedorifitisstopped

on,orsoonafter,globalcertification.Ifthedecisionismadetocontinueuniversalimmunization,possiblywithnon‐replicatingvaccines,theriskposedbylaboratory‐maintainedviruswillbeverylow,sincetherewillbealmostuniversalimmunity.If,however,universalimmunizationstopsafter

globalcertification,therisksposedbylaboratory‐maintainedmeasles‐infectiousmaterialswillprogressivelyincrease,asthenumberofmeasles‐susceptiblesinthepopulationincreases.Therisksincludenotonlyaccidentalreleaseoflivemeaslesvirusfromlaboratoriesandattenuatedvirus

vaccineproductionfacilities,butthreatofdeliberaterelease.

Whatistheevidenceforlaboratory‐acquiredmeaslesinfection?Aseriesofsurveysforlaboratory‐acquiredinfectionsconductedintheUK(138,139,140,141,142,143,144),theUSA(145,146,147,148,149)andJapan(150)failedtoinclude

measlesamongthelistedinfections.Arecentreviewofprinciplesforpreventionoflaboratory‐associatedinfectionsalsofailedtomakementionofmeasles(151).Anextensiveliteraturesearchfailedtofinddocumentedevidenceoflaboratory‐acquiredmeaslesinfection.Thisleavesthree

possibilities:laboratory‐acquiredmeaslesinfectionshavenotoccurred;theinfectionsthathaveoccurredhavebeenbelowthethresholdofsensitivityofthesurveillancesystems;or,measleshasbeenconsideredatrivialdiseaseandinfectionshavenotbeenreported(152,153).

Priortothe1970sitistobeexpectedthatalmostallstaffworkinginclinicalmicrobiologyandresearchlaboratorieswouldhavebeenexposedtomeaslesinfectionduringchildhood.Fromthe

1970sonwardsitistobeexpectedthatallnewstaffcomingtoworkintheselaboratorieswouldhavereceivedatleastonedoseofmeaslesvaccine.Itisunlikelytherefore,thatexposedlaboratorystaffwoulddevelopacutemeaslessymptomsfromlaboratory‐acquiredinfections.Butgiventhe

veryhightransmissibilityofmeaslesvirus,itispossiblethatexposuretoinfectiousvirus,and

Page 16: Risk analysis for measles reintroduction post global certification of

DrRaySanders.Measlesre‐introductionriskanalysis

Page16

resultingasymptomaticinfections,orverymild,atypicalinfectionshaveoccurred.Iftheyhaveoccurred,itisprobablethattheseinfectionshavegoneundetected,orsimplyoverlookedas

unimportant.

Howstableismeaslesvirusintheenvironmentandinlaboratorymaterials?Measlesisnotaphysicallyrobustvirus.Itisviableforlessthan2hoursatambienttemperaturesonsurfacesandobjects,whiletheaerosolizedvirustypicallyremainsinfectiveforonly30minutesto2

hours,dependingonenvironmentalconditions(154,155).Itisverysensitivetoheatandisinactivatedafterlessthan40minutesat56°C,eveninmediumcontainingaproteinstabilizersuchas5%calfserum(156).Virusinmaintenancemediumlosesatleast2logsoftitrewhenstoredat+6oC

for14‐20weeksandlosesallinfectivityafter1yearatthistemperature.Additionofaproteinstabilizerimprovesviruslongevity,withalossofapproximately2logsoftitreafter1yearat+6oC.Interestingly,storageat‐30oCofferslittleadvantageoverstorageat+6oC,witha1‐2loglossoftitre

over1year.Storageat‐72oCorbelowresultsinverylittlelossofvirusinfectivity,andinfectiousmaterialsmaintainedatthistemperatureshouldretaininfectivityformanyyears(156).Thevirussurvivesfreeze‐dryingrelativelywelland,whenfreeze‐driedwithaproteinstabilizer,cansurvive

storagefordecadesat‐70oC(156,155).Incommonwithmanyotherenvelopedvirusesitisinactivatedbysolvents,suchasetherandchloroform,byacids(pH<5),alkalis(pH>10),andbyUVandvisiblelight.Itisalsosusceptibletomanydisinfectants,including1%sodiumhypochlorite,70%

alcoholandformalin.

Whichlaboratorymaterialspresentarisk?Measlesvirusinfectiousmaterialsincludeautopsyorclinicalsamples(e.g.pharyngealsecretions,urine,blood)frommeasles‐infectedpersonsorrecentlive‐attenuatedvaccinerecipients,and

laboratoryderivedmaterials(e.g.virusisolatesandreferencestocks,materialsderivedfrominoculatedcellcultures,laboratoryanimals).Measlesviruspotentialinfectiousmaterials,thosethataresuspectedtocontaininfectiousmeaslesviruses,includepharyngealsecretionsandblood

samplescollectedforanypurposeatatimeandinaplacewheremeaslesviruseswerecirculating,andstoredunderconditionsthatwouldpreservevirusinfectivity.Theyalsoincludeproductsofthesematerialsinmeaslesviruspermissivecellsoranimals(157).

Whattypesofriskdolaboratoriespresent?Riskspostmeasleseradicationwillexistattwolevels:

• occupationalriskofexposureamonglaboratorystaff,• communityriskoflaboratory‐associatedmeaslesexposure.

Thethreemostcommonroutesofexposuretoinfectiousagentsinthelaboratoryareingestion,inhalation,andinjection(153).Measlesviruscanremaininfectiousonsurfaces,suchasworkbenchesanddoorhandles,foruptotwohours.Iftransferredfromthehandtothemouth,noseor

conjunctiva,theycaninitiateinfectionofepithelialcells(158).Althoughtherearenorecordedincidentsoflaboratory‐acquiredmeaslesvirusinfections,severalsurveysdocumentthefrequent

occurrenceofingestingmorereadilyrecognizedpathogens,suchasShigellaandSalmonella(139,140,141,142,143,147,153).Themostcommonroutefornaturaltransmissionofmeaslesisbelievedtobebyinhalationofaerosolizedvirus;infectiousdropletsbeingproducedbytalking,

coughingandsneezingbyinfectedindividuals(158).Smallparticles(<5‐μdropletnuclei)ofsuspendedevaporatedresiduescanmoveaboutroomsandbuildingsonaircurrentsandwhen

Page 17: Risk analysis for measles reintroduction post global certification of

DrRaySanders.Measlesre‐introductionriskanalysis

Page17

inhaleddepositprimarilyinthelowerrespiratorytract(159).Laboratoryactivitiesthatexposestafftoaerosolsgeneratedfrominfectiousmaterial(e.g.centrifugation,blending,vigorouspipetting,

etc.),andexposuretoinfectedlaboratoryanimals,presentariskforinfection.Themostcommonroutefordeliveryofcurrentmeaslesvaccinesisbyinjection.So,injectionandneedle‐stickinjuriesinvolvingmeaslesvirusinfectiousmaterialsobviouslypresentariskforinfection.

Communitymembersmaybeexposedtoinfectiousmeaslesvirusfrom:

• contaminatedlaboratoryworkers,

• infectedlaboratoryworkers,• contaminatedaireffluents,• transportofinfectiousmaterial,

• escapedinfectiousanimals.Again,nopublishedevidenceexistsfortheescapeofinfectiousmeaslesvirusfromthelaboratory

intothecommunity.Giventherapidinactivationofmeaslesvirusundernormalenvironmentalconditions,thelengthoftimeavailableforinfectiousvirustobecarriedoutofthelaboratoryandintothecommunity,eitheronthebodyorclothesofacontaminatedworker,orincontaminatedair

effluents,isprobablylimitedto2hours.Thisreducestherisktoaverylowlevel.Asdiscussedabove,availableevidencesuggeststhatimmunizedindividuals,whodevelopasymptomaticormildinfections,areunlikelytotransmitthevirus(10),reducingthecommunityrisk.Wecanassumethat

laboratoriesimplementinggoodlaboratorypractices(GLP)orgoodmanagementpractices(GMP)willminimizetherisksofreleasetotheenvironmentbyproperlypackagingandtransporting

infectiousmaterialsinaccordancewithcurrentinternationallawsandregulations.Giventhesecurityconcernsthatsurroundlaboratoryanimalhousesandresearchfacilities,thelikelihoodthatmeasles‐infectedanimalswouldescapeintothecommunitymustbeextremelysmall.

ConclusionAlthoughthereisnodirectevidenceforlaboratory‐acquiredmeaslesinfectionsitispossiblethattheyhaveoccurredamongimmunelaboratorystaffandresultedinasymptomaticorverymildinfections.Thereisnopublishedevidencetosuggestthatthesepossibleasymptomaticormild

infectionsresultinfurthertransmissionofvirus.Measlesviruslosesinfectivitywithinacoupleofhoursatambienttemperaturesintheenvironment,andinfectiousmaterialsstoredattemperaturesabove‐30oCcanbeexpectedtoloseallinfectivityoverthecourseofonetotwoyears.

Despitethelackofevidenceforlaboratory‐acquiredmeaslesinfectionsorescapeofvirusintothecommunity,inapost‐eradicationworldthesemustbeconsideredpossibilitiesduetothehighlyinfectiousnatureofmeasles.

Riskassessment:Inameaslespost‐eradicationworldwithoutroutineuniversalimmunization,measleslaboratories(andmeasleslivevaccineproductionfacilities)willpose

averylowbutincreasingriskforreintroductionofmeasles.

RiskofintentionalreleaseofmeaslesvirusBioterroristthreatsdonotworkagainstpopulationsthathavebeenfullyimmunized.However,inapost‐eradicationworldinwhichuniversalroutineimmunizationhasceased,agrowingpopulation

Page 18: Risk analysis for measles reintroduction post global certification of

DrRaySanders.Measlesre‐introductionriskanalysis

Page18

willbesusceptibletomeasles,andmeasleswill,eventually,becomeacredibleagentforbioterrorism.Thedevastatingeffectofmeaslesonsusceptiblepopulationsinthepre‐vaccination

erahasbeenwelldocumented(158).ThisisparticularlytruefortheislandsofthePacific.In1848inHawaii,10,000natives,about10percentofthepopulation,diedduringanepidemic(160,161,162).In1861onAneityumintheNewHebrides,thepopulationwasreducedbyabout60percentina

measlesepidemic(163).In1875inFiji,20,000natives,20to25percentofthepopulation,diedofmeasles(164).In1907,againinFiji,6percentof30,000casesdied,andin1911onRotuma16percentofthepopulationdiedofmeasles(165).In1936measlescaused100deathsand14,282casesin

theGilbertIslands(166),andin1937inHawaii,therewere205deathsfor13,680casesofmeasles(167).In1946intheBritishIslandsoftheSouthPacific,therewere1,000deathsfor15,000to20,000casesofmeasles(168).Therearemanyotheraccountsofsimilardevastatingmeasles

epidemicsinisolatedcommunitiesaroundtheworld.

Withadvancesinmodernmedicaltreatmentitisunlikelythatsimilarmortalityrateswouldbeinflictedoneortwogenerationspostmeasleseradication,butdeliberatereleasewouldcauseextensivedisruptiontomedical,publichealthandsocialservices,andprobablyincurenormous

containmentcosts.Thethreatofrelease,withtheknowledgeofthepotentialdisruptionandfinancialexpenseitcouldcause,wouldmakemeaslesaneffectiveagentforbioterroristsoncealargeenoughpopulationofmeasles‐susceptibleshadaccumulated.Measlesisnotcurrentlyincluded

intheCDCBioterrorismAgentCategories(169,170),butthissituationwillneedtobereviewedintheyearsfollowingeradication.

ConclusionMeaslesisahighlyinfectiousvirusthathashaddevastatingeffectsonsusceptiblepopulationsinthe

past.Althoughitisunlikelythatthehighmortalitiesseenintheseisolatedcommunitieswouldberepeated,thethreatofintentionalreleasewouldprobablybeveryeffectiveonceasizablepopulationofsusceptibleindividualshadaccumulated.

Riskassessment:Theriskofdeliberatereleaseofmeasleswillbeverylowatthetimeofglobaleradication,butwillriserapidlywithaccumulationofunvaccinatedmeasles

susceptibles.

ActionsrequiredtoreducetheriskofaccidentalordeliberatereleaseofmeaslesOneapproachtoreducingtheriskofmeaslesre‐introductionwouldbeadoptionofastrategytominimizeavailabilityofmeaslesvirus,throughremovaloflivevirusesfromlaboratoriesandsecurely

containingallinfectiousmaterialthatremains,andestablishinganinsurancepolicyintheformofavaccinestockpile.

Reducingtheriskofaccidentalrelease:alaboratorycontainmentstrategyAsystematiclaboratorycontainmentstrategyformeasles,learningfromtheexamplesetbythePolioEradicationInitiative(171),startingnowandcontinuingintothepost‐eradicationera,would

minimisetheriskofaccidentalre‐introductionofmeaslesvirus.Thestrategyestablishedforpoliooutlinesthreedistinctphases.Phase1wouldlastfromthepresent,whenmeaslescontinuestocirculate,tothetimewhenmeaslestransmissionceases.Phase2wouldcoverthecertification

Page 19: Risk analysis for measles reintroduction post global certification of

DrRaySanders.Measlesre‐introductionriskanalysis

Page19

period,andPhase3wouldtakeplaceintheposteradication,postglobalcertificationperiod.ThesethreePhasesforpoliohavebeenclearlydescribedinaseriesofpublishedGlobalActionPlans

(172,173,157).

Thelaboratory‐associatedrisksposedbymeaslesareconsiderablylowerthanthoseposedbypolio,andstrategiesforreducingtheriskevenfurthershouldnotsimplyduplicatetheactivitiesdevelopedforpolio,butbeproportionateandappropriateformeasles.Thegeneralapproachtakenbythe

PolioEradicationInitiative,andlessonslearnedfromimplementingthepoliocontainmentstrategy,shouldprovideasoundstartingpointformeasles.Strategiesforreducingtheriskinthepre‐eradicationphaseshouldbebasedonthefollowingprinciples:

• minimizingthenumberoflaboratoriesretainingmeaslesvirusinfectiousandpotential

infectiousmaterials;• minimizingtherisksofoperationsinlaboratoryandmeasleslivevaccineproduction

facilities;

• minimizingthesusceptibilityofworkerstomeaslesvirusinfectionandshedding;• minimizingsusceptibilityofcommunitytomeaslesvirusspread.

Thehighestrisksarepresentedbythoselaboratoryoperationsinvolvingmeaslesvirusreplication,

includingthegrowthofvaccinestrainsforlivevaccineproduction.Thelowestrisksarenon‐replicative,biosafety‐appropriateoperationsperformedwithpotentiallyinfectiousclinicalmaterials.Intheyearsleadinguptoglobaleradicationallworkwithwildmeaslesvirusesshouldrequire

biosafetylevel‐2(174),withadditionalrequirementsforrestrictinglaboratoryaccess,andmaintenanceofaccuraterecordsofmeaslesvirusmaterials.Establishingnationalmeasles

inventories,andcallstosafelydisposeofallunwantedmeaslesinfectiousandpotentialinfectiousmaterials,ashasbeenaccomplishedforpolio,wouldalsoberequired.

Thesecondphaseofriskreductionwouldconsistessentiallyofvalidatingthecontainmentactivitiesatnational,regionalandgloballevelsasarequirementforGlobalCertification.Stoppinguniversal

measlesimmunizationpostcertification(thirdphase)willaltertherelativeweightsoftheprinciplesonwhichminimizingtheriskfromthelaboratoryisbased(157):

• minimizingsusceptibilityofcommunitiestomeaslesvirusspreadwillnolongerapplyinthosecountriesthatelecttostopmeaslesimmunization;

• minimizingthesusceptibilityofworkerstomeaslesvirusinfectionandshedding,intheabsenceofanon‐infectiousvaccine,willrelysolelyonpreventionofinfection;

• minimizingthenumberoflaboratoriesretainingmeaslesvirusmaterialsandminimizingthe

risksofoperationsinthoselaboratoriesbecomesmuchmoreimportant.Wearecurrentlyconsideringtheprospectofglobalcessationofmeaslestransmissionapproximately

adecadefromnow,allowingreasonabletimetodevelopanappropriatemeasleslaboratorycontainmentstrategyandforlaboratoryresearchonmeaslesvirusestocontinueundercurrent,biosafetylevel‐2,conditions.Italsoallowstimeforcontinueddevelopmentofalternativemeasles

vaccinesandspecificantivirals.

Page 20: Risk analysis for measles reintroduction post global certification of

DrRaySanders.Measlesre‐introductionriskanalysis

Page20

DevelopingavaccinestockpileLiveattenuatedmeaslesvaccineshavebeenhighlysuccessfulinprotectingpopulationsagainst

measlesandstoppingmeaslestransmission.Asdiscussedabove,thesevaccinesareverysafe,andposeonlyasmallpotentialriskforestablishingtransmissionofvaccine‐derivedvirusesinaposteradicationworld.Toremovethisriskanewvaccinethathasnocapacityforreplicationor

transmissionisrequired(175).Theidealmeaslesvaccinewouldbeinexpensive,safe,heat‐stable,immunogenicinneonatesorveryyounginfants,andadministeredasasingledosewithouttheneedtouseaneedleorsyringe(93),be100%effectiveand100%incapableoftransmission.Whilesucha

vaccinewouldhaveclearbenefitsfortheeradicationofmeasles,itwouldbeasavaccineforstockpilingposteradicationthatitwouldcomeintoitsown.Severalvaccinecandidateswithsomeofthesecharacteristicsareundergoingdevelopmentandtesting.Featuresofthesenew,potential

measlesvaccineshavebeenextensivelyreviewed(175,176).

Howlargeameaslesvaccinestockpilewouldberequiredisverydifficulttopredictwithoutmodelling.Requirementswouldobviouslybedynamic,dependingonsomefairlycomplexvariables,includingthenumberofsusceptiblesaccumulatinginthecommunity,theeffectivenessofthe

vaccine,transmissiondynamicsofthevirusandtheeffectivenesswithwhichanyeventrequiringanimmunizationresponsewasdetected,reportedandrespondedto.Decisionsonsuchbig,expensiveitemsasestablishingameaslesvaccinestockpileshouldnotbetakeninisolation,butconsidered

systematicallyandincludedinaconsensusriskmanagementstrategy,ashasbeenachievedforpolio(177,178,179,180,181,182).Developmentofapostmeasleseradicationriskmanagementstrategyshouldbeginassoonaspossible.

AreasrequiringfurtherresearchTherisksofre‐introductionofmeaslespostglobaleradicationmaybereducedbyapplyingknowledgeacquiredthroughkeyareasofresearchconductedintheyearsleadinguptoeradication.Thesekeyareasincludethefollowing:

GreaterunderstandingofthetransmissiondynamicsofmeaslesIndrawingupthecertificationcriteriaandvalidationrequirementsitwillbenecessarytoengage

expertsfamiliarwiththedevelopmentofdynamicandstochasticmodelsofmeaslestransmission,persistenceandelimination.Thiswillbeparticularlyimportantfordeterminingthecertificationandvalidationrequirementsforlow‐income,highdensitypopulations.Basedontheexperiencegained

inpolioeradication,thiswillbemostrelevantforselectedpopulationsinAfrica,theIndiansub‐continentandlargerefugee/migrantpopulationcamps.

Importantinformationcanalsoprobablybegainedfromdetailedepidemiologicalandmolecular

analysisofoutbreaks,particularlythoseoccurringinhighlyimmunizedpopulations,high‐densitypopulations,andingenerallyhighly‐immunizedpopulationswithinadequatelyimmunizedsub‐

populations.

Withtherapidincreaseinthenumberofhighlyimmunizedpopulations,opportunitiesforstudyingasymptomaticandatypicalinfectionsandtheirpotentialroleintransmissionshouldbetaken.

Greaterunderstandingofthechangesbroughtaboutbytheattenuationprocess

Page 21: Risk analysis for measles reintroduction post global certification of

DrRaySanders.Measlesre‐introductionriskanalysis

Page21

Ifcurrentlylicensedattenuatedmeaslesvaccinesaretobeusedinapost‐eradicationworld,moreinformationonthenatureofthechangescausedbyattenuationandthepotentialforreversionto

wild‐typecharacteristicswillberequired.Analternativewouldbetospeedupdevelopment,testingandintroductionofnewmeaslesvaccinesthatarenotdependentonliveattenuatedvirus.

Moreunderstandingofthenatureofthecomplexinteractionbetweenmeaslesvirusandthehostimmunesystem,includingbothhumoralandcell‐mediatedresponses,wouldprobablybenefit

continueduseofexistingvaccinesanddevelopmentofnewvaccines.

Intheyearsleadinguptoglobaleradication,allgenotypeAvirusesdetectedinassociationwithacutecasesofmeaslesshouldbethoroughlyscrutinized.Fullepidemiologicalinformationwillberequired,andadditionalsequencedatafrombothclinicalsamplesandcorrespondingviralisolates

willbenecessarytoruleoutthepossibilityoftransmissionofvaccine‐derivedvirus.Thoroughgeneticanalyses,includingfullgenomicsequencing,shouldbeperformedonselectedvaccinevirusesthatareassociatedwithcommonvaccinereactionsaswellasthosedetectedintheveryrare

severreactionstovaccination.

Page 22: Risk analysis for measles reintroduction post global certification of

DrRaySanders.Measlesre‐introductionriskanalysis

Page22

Bibliography1. AndersonRM.Biologicalchallengestoposteradication.Herdimmunityandthedesignofvaccinationprograms.InKnoblerS,

LederbergJ,PrayLA.ConsiderationsforviralDiseaseeradication.Lessonslearnedandfuturestrategies.Workshopsummary.Washington:NationalAcademicPress;2002.p.65‐77.

2. BlackFL.Measlesendemicityininsularpopulations:criticalcommunitysizeanditsevolutionaryimplication.JournalofTheoreticalBiology.1966;11(2):p.207‐211.

3. KeelingMJ,GrenfellBT.Diseaseextinctionandcommunitysize:modellingthepersistenceofmeasles.Science.1997;275:p.65‐67.

4. KouadioIK,KamigakiT,OshitaniH.Measlesoutbreaksindisplacedpopulations:areviewoftransmission,morbidityandmortalityassociatedfactors.BMCInternationalHealthandHumanRights.2010;10:5.

5. SzuszEK,GarrisonLP,BauchCT.Areviewofdataneededtoparameterizeadynamicmodelofmeaslesindevelopingcountries.BMCResearchNotes.2010;3:75.

6. TooleMJ,SteketeeRW,WaldmanRJ,NieburgP.Measlespreventionandcontrolinemergencysettings.BulletinoftheWorldHealthOrganization.1989;67:p.381‐388.

7. EdmostonMB,AddissDG,McPhersonJT,BergJL,CircoSR,DavisJP.Mildmeaslesandsecondaryvaccinefailureduringasustainedoutbreakinahighlyvaccinatedpopulation.JAMA.1990;263:p.2467‐2471.

8. HuissS,DamienB,SchneiderF,MullerCP.Characteristicsofasymptomaticsecondaryimmuneresponsestomeaslesvirusinlateconvalescentdonors.ClinicalandExperimentalImmunology.1997;109(3):p.416‐420.

9. OzanneG,D’HalewynMA.Secondaryimmuneresponseinavaccinatedpopulationduringalargemeaslesepidemic.JournalofClinicalMicrobiology.1992;30:p.1778‐1782.

10. HelfandRF,KimDK,GaryHEJ,EdwardsGL,BissonGP,PapaniaMJ,etal.Nonclassicmeaslesinfectionsinanimmunepopulationexposedtomeaslesduringacollegebustrip.JournalofMedicalVirology.1998;56(4):p.337‐341.

11. VardasE,KreisS.Isolationofmeaslesvirusfromanaturally‐immune,asymptomaticallyre‐infectedindividual.JournalofClinicalVirology.1999;13(3):p.173‐179.

12. ChenRT,MarkowitzLE,AlbrechtP,StewartJA,MofensonLM,PrebludSR,etal.Measlesantibody:reevaluationofprotectivetiters.JournalofInfectiousDiseases.1990;162(5):p.1036‐1042.

13. WhittleHC,AabyP,SambB,JensenH,BennettJ,SimondonF.EffectofsubclinicalinfectiononmaintainingimmunityagainstmeaslesinvaccinatedchildreninWestAfrica.Lancet.1999;353(9147):p.98‐102.

14. LievanoFA,PapaniaMJ,HelfandRF,HarpazR,WallsL,KatzRS,etal.Lackofevidenceofmeaslesvirussheddinginpeoplewithinapparentmeaslesvirusinfections.Journalofinfectiousdiseases.2004;189Suppl1:p.165‐170.

15. SonodaS,TN.Detectionofmeaslesvirusgenomeinlymphocytesfromasymptomatichealthychildren.JournalofMedicalVirology.2001;65(2):p.381‐387.

16. CherryJD,FeiginRD,LobesLAJ,HinthornDR,ShackelfordPG,ShirleyRH,etal.Urbanmeaslesinthevaccineera:aclinical,epidemiologic,andserologicstudy.JournalofPediatrics.1972;81(2):p.217‐230.

17. CherryJD,FeiginRD,LobesLAJ,ShackelfordPG.Atypicalmeaslesinchildrenpreviouslyimmunizedwithattenuatedmeaslesvirusvaccines.Pediatrics.1972;50(5):p.712‐717.

Page 23: Risk analysis for measles reintroduction post global certification of

DrRaySanders.Measlesre‐introductionriskanalysis

Page23

18. SmithFR,CurranAS,RacitiKA,BlackFL.Reportedmeaslesinpersonsimmunologicallyprimedbypriorvaccination.JournalofPediatrics.1982;101(3):p.391‐393.

19. ReyesMA,deBorreroMF,RoaJ,BergonzoliG,SaraviaNG.Measlesvaccinefailureafterdocumentedseroconversion.PediatricInfectiousDiseaseJournal.1987;6(9):p.848‐851.

20. AabyP,BukhJ,LeerhøyJ,LisseIM,MordhorstCH,PedersenIR.Vaccinatedchildrengetmildermeaslesinfection:acommunitystudyfromGuinea‐Bissau.JournalofInfectiousDiseases.1986;154(5):p.858‐863.

21. LinnemannCCJ,RotteTC,SchiffGM,YoutseyJL.Aseroepidemiologicstudyofameaslesepidemicinahighlyimmunizedpopulation.AmericanJournalofEpidemiology.1972;95(3):p.238‐246.

22. EndersJF,PeeblesTC.Propagationintissueculturesofcytopathicagentsfrompatientswithmeasles.ProceedingsoftheSocietyforExperimentalBioliologyandMedicine.1954;86:p.277‐286.

23. MossWJ,ScottS.WHOImmunologicalBasisforImmunizationSeries.Module7:Measles.Geneva:WorldHealthOrganization;2009.

24. ParksCL,LerchRA,WalpitaP,WangHP,SidhuMS,UdemSA.ComparisonofpredictedaminoacidsequencesofmeaslesvirusstrainsintheEdmonstonvaccinelineage.JournalofVirology.2001;75:p.910‐920.

25. KrugmanS.Further‐attenuatedMeaslesVaccine:CharacteristicsandUse.ReviewsofInfectiousDiseases.1983;5:p.477‐481.

26. HirayamaM.MeaslesVaccinesUsedinJapan.ReviewsofInfectiousDiseases.1983;5:p.495‐503.

27. PeradzeTV,SmorodintsevAA.EpidemiologyandSpecificProphylaxisofMeasles.ReviewsofInfectiousDiseases.1983;5:p.487‐490.

28. XiangJ,ChenZ.MeaslesVaccineinthePeople'sRepublicofChina.ReviewsofInfectiousDiseases.1983;5:p.506‐510.

29. MakinoS.DevelopmentandCharacteristicsofLiveAIK‐CMeaslesVirusVaccine:ABriefReport.ReviewsofInfectiousDiseases.1983;5:p.504‐505.

30. BorgesMB,CarideE,JaborAV,MalachiasJMN,FreireMS,HommaA,etal.StudyofthegeneticstabilityofmeaslesvirusCAM‐70vaccinestrainafterserialpassagesinchickenembryofibroblastsprimarycultures.VirusGenes.2008;36:p.35‐44.

31. BorgesMBJ,MannGF,FreireMdS.BiologicalCharacterizationofClonesDerivedfromtheEdmonstonStrainofMeaslesVirusinComparisonwithSchwarzandCAM‐70VaccineStrains.MemInstOswaldoCruz,RiodeJaneiro.1996;91:p.507‐514.

32. TaminA,RotaPA,WangZD,HeathJL,AndersonLJ,BelliniWJ.Antigenicanalysisofcurrentwildtypeandvaccinestrainsofmeaslesvirus.JournalofInfectiousDiseases.1994;170:p.795‐801.

33. ZhangY,ZhouJ,BelliniWJ,XuW,RotaPA.GeneticcharacterizationofChinesemeaslesvaccinesbyanalysisofcompletegenomicsequencesJ.Journalofmedicalvirology.2009;81:p.1477‐1483.

34. WardB,BoulianneN,RatnamS,GuiotMC,CouilardM,DeSerresG.Cellularimmunityinmeaslesvaccinefailure:demonstrationofmeaslesantigen‐specificlymphoproliferativeresponsesdespitelimitedserumantibodyproductionafterrevaccination.JournalofInfectiousDiseases.1995;172:p.1591‐1955.

35. CohenJI.Vaccine‐associatedcasesduetoimmunizationwithlivevirusvaccines.InKnoblerS,LederbergJ,PrayLA.ConsiderationsforViralDiseaseEradication.LessonslearnedandFuturestrategies.Washington,DC:NationalAcademyPress;2002.p.90‐97.

36. RotaPA,KhanAS,DurigonE,YuranT,VillamarzoYS,BelliniWJ.DetectionofMeaslesVirusRNAinUrineSpecimensfromVaccineRecipients.JournalofClinicalMicrobiology.1995;33:p.2485–2488.

37. Llanes‐RodasR,LiuC.Rapiddiagnosisofmeaslesfromurinarysedimentsstainedwithfluorescentantibody.NewEnglandJournalofMedicine.1966;275:p.516‐523.

Page 24: Risk analysis for measles reintroduction post global certification of

DrRaySanders.Measlesre‐introductionriskanalysis

Page24

38. TakedaM.Measlesvirusbreaksthroughepithelialcellbarrierstoachievetransmission.JournalofClinicalInvestigation.2008;118:p.2386‐2389.

39. LeonardVHJ,SinnPL,HodgeG,MiestT,DevauxP,OezguenN,etal.Measlesvirusblindtoitsepithelialcellreceptorremainsvirulentinrhesusmonkeysbutcannotcrosstheairwayepitheliumandisnotshed.JournalofClinicalInvestigation.2008;118:p.2448‐2458.

40. LudlowM,AllenI,Schneider‐SchauliesJ.Systemicspreadofmeaslesvirus:overcomingtheepithelialandendothelialbarriers.ThrombosisandHaemostasis.2009;102(6):p.1050‐1056.

41. HarrisonMS,SakaguchiT,SchmittAP.Paramyxovirusassemblyandbudding:Buildingparticlesthattransmitinfections.InternationalJournalofBiochemistryandCellBiology.2010;InPress(doi:10.1016/j.biocel.2010.04.005).

42. WorldHealthOrganization.Globaldistributionofmeaslesandrubellagenotypes‐update.WeeklyEpidemiologicalRecord.2006;81:p.474‐479.

43. RiddellMA,RotaJS,RotaPA.Reviewofthetemporalandgeographicaldistributionofmeaslesvirusgenotypesintheprevaccineandpostvaccineeras.VirologyJournal.2005;2:p.87.

44. RotaPA,FeatherstoneDA,BelliniWJ.Molecularepidemiologyofmeaslesvirus.Currenttopicsinmicrobiologyandimmunology.2009;330:p.129‐150.

45. RotaJS,WangZD,RotaPA,BelliniWJ.ComparisonofsequencesoftheH,F,andNcodinggenesofmeaslesvirusvaccinestrains.Virusresearch.1994;31:p.317‐330.

46. BelliniWJ,RotaPA.Geneticdiversityofwild‐typemeaslesviruses:implicationsforglobalmeasleseliminationprograms.EmergingInfectiousDieases.1998;4(1):p.29‐35.

47. ChristensenLS,SchollerS,SchierupMH,VestergaardBF,MordhorstCH.Sequenceanalysisofmeaslesvirusstrainscollectedduringthepre‐andearly‐vaccinationerainDenmarkrevealsaconsiderablediversityofancientstrains.Actapathologica,microbiologica,etimmunologicaScandinavica.2002;110:p.113‐122.

48. RotaPA,BloomAE,VanchiereJA,BelliniWJ.Evolutionofthenucleoproteinandmatrixgenesofwild‐typestrainsofmeaslesvirusisolatedfromrecentepidemics.Virology.1994;198(2):p.724‐730.

49. RotaPA,RotaJS,ReddSB,PapaniaMJ,BelliniWJ.Geneticanalysisofmeaslesvirusesisolatedintheunitedstatesbetween1989and2001:absenceofanendemicgenotypesince1994.Journalofinfectiousdiseases.2004;189Suppl1:p.S160‐164.

50. KremerJR,BrownKE,JinL,ale.Highgeneticdiversityofmeaslesvirus,WorldHealthOrganizationEuropeanRegion,2005‐2006.Emerginginfectiousdiseases.2008;14(1):p.107‐114.

51. ShulgaSV,RotaPA,KremerJR,NaumovaMA,MullerCP,TikhonovaNT,etal.Geneticvariabilityofwild‐typemeaslesviruses,circulatingintheRussianFederationduringtheimplementationoftheNationalMeaslesEliminationProgram,2003‐2007.Clinicalmicrobiologyandinfection.2009;15:p.528‐537.

52. ChiboD,BirchCJ,RotaPA,CattonMG.MolecularcharacterizationofmeaslesvirusesisolatedinVictoria,Australia,between1973and1998.JournalofGeneralVirology.2000;81:p.2511‐2518.

53. TipplesGA,GrayM,GarbuttM,RotaPA,ProgramCMS.GenotypingofmeaslesvirusinCanada:1979‐2002.Journalofinfectiousdiseases.2004;189Suppl1:p.S171‐176.

54. OutlawMC,PringleCR.SequencevariationwithinanoutbreakofmeaslesvirusintheCoventryareaduringspring/summer1993.VirusResearch.1995;39(1):p.3‐11.

55. ZhangY,ZhuZ,RotaPA,JiangX,HuJ,ale.MolecularepidemiologyofmeaslesvirusesinChina,1995–2003.VirologyJournal.2007February;4(14).

Page 25: Risk analysis for measles reintroduction post global certification of

DrRaySanders.Measlesre‐introductionriskanalysis

Page25

56. SantibanezS,HeiderA,GerikeE,AgafonovA,SchreierE.GenotypingofmeaslesvirusisolatesfromcentralEuropeandRussia.JournalofMedicalVirology.1999;58(3):p.313‐320.

57. TruongAT,KreisS,AmmerlaanW,HartterHK,AduF,OmilabuSA,etal.GenotypicandantigeniccharacterizationofhemagglutininproteinsofAfricanmeaslesvirusisolates.VirusResearch.1999;62(1):p.89‐95.

58. RamsayME,JinL,WhiteJ,LittonP,CohenB,BrownD.TheeliminationofindigenousmeaslestransmissioninEnglandandWales.JournalofInfectiousDiseases.2003;187(Suppl1):p.S198‐207.

59. MosqueraMM,OryF,EchevarríaJE.MeaslesvirusgenotypecirculationinSpainafterimplementationofthenationalmeasleseliminationplan2001‐2003.JournalofMedicalVirology.2005;75(1):p.137‐146.

60. RotaJS,RotaPA,ReddSB,ReddSC,PattamadilokS,BelliniWJ.GeneticanalysisofmeaslesvirusesisolatedintheUnitedStates,1995‐1996.JournalofInfectiousDiseases.1998;177:p.204‐208.

61. ChengWY,LeeL,RotaPA,YangDC.MolecularevolutionofmeaslesvirusescirculatedinTaiwan1992‐2008.Virologyjournal.2009;6:p.219.

62. KobuneF,FunatuM,TakahashiH,FukushimaM,KawamotoA,IizukaS,etal.Characterizationofmeaslesvirusesisolatedaftermeaslesvaccination.Vaccine.1995;13(4):p.370‐372.

63. BarreroPR,ZandomeniRO,MistchenkoAS.MeaslesviruscirculationinArgentina:1991–1999.BriefReport.ArchivesofVirology.2001;146:p.815‐823.

64. KreisS,VardasE,WhistlerT.SequenceanalysisofthenucleocapsidgeneofmeaslesvirusisolatesfromSouthAfricaidentifiesanewgenotype.JournalofGeneralVirology.1997;78(7):p.1581‐1587.

65. ZhangY,JiY,JiangX,XuS,ZhuZ,ZhengL,etal.GeneticcharacterizationofmeaslesvirusesinChina,2004.VirologyJournal.2008;5:p.120.

66. ZhangY,DingZ,WangH,LiL,PangY,BrownKE,etal.NewMeaslesVirusGenotypeAssociatedwithOutbreak,China.EmergingInfectiousDiseases.2010;16(6):p.943‐947.

67. VaidyaSR,WairagkarNS,RajaD,KhedekarDD,GunasekaranP,ShankarS,etal.FirstdetectionofmeaslesgenotypeD7fromIndia.VirusGenes.2008;36(1):p.31‐34.

68. JiY,ZhangY,XuS,ZhuZ,ZuoS,JiangX,etal.MeaslesresurgenceassociatedwithcontinuedcirculationofgenotypeH1virusesinChina,2005.VirologyJournal.2009;8(6):p.135.

69. MuwongeA,NanyunjaM,RotaPA,BwogiJ,LoweL,LiffickSL,etal.Newmeaslesgenotype,Uganda.EmergingInfectiousDiseases.2005;11(10):p.1522‐1526.

70. MbuguaFM,OkothFA,GrayM,KamauT,KaluA,EggersR,etal.MolecularepidemiologyofmeaslesvirusinKenya.JournalofMedicalVirology.2003;71(4):p.599‐604.

71. RotaPA,LiffickSL,RotaJS,KatzRS,ReddS,PapaniaM,etal.MolecularepidemiologyofmeaslesvirusesintheUnitedStates,1997‐2001.Emerginginfectiousdiseases.2002;8:p.902‐908.

72. ChenTH,KuttyP,LoweLE,HuntEA,BlosteinJ,EspinozaR,etal.MeaslesOutbreakAssociatedWithanInternationalYouthSportingEventintheUnitedStates,2007.PediatricInfectiousDiseaseJournal.2010April;[Epubaheadofprint].

73. SchmidD,HolzmannH,SchwarzK,KasperS,KuoHW,AberleSW,etal.MeaslesoutbreaklinkedtoaminoritygroupinAustria,2008.EpidemiologyandInfection.2010;138(3):p.415‐425.

74. NaganoH,JinushiM,TanabeH,YamaguchiR,OkanoM.Epidemiologicalandmolecularstudiesofmeaslesatdifferentclustersin

Page 26: Risk analysis for measles reintroduction post global certification of

DrRaySanders.Measlesre‐introductionriskanalysis

Page26

hokkaidodistrict,Japan,2007.JapaneseJournalofInfectiousDiseases.2009;62(3):p.209‐211.

75. GrothC,BottigerB,PlesnerA,ChristiansenA,GlismannS,HoghB.NosocomialmeaslesclusterinDenmarkfollowinganimportedcase,December2008‐January2009.EuroSurveillance.2009;14(8):p.19126.

76. CarrMJ,ConwayA,WatersA,MoranJ,HassanJ,HallWW,etal.MolecularepidemiologyofcirculatingmeaslesvirusinIreland2002‐2007.JournalofMedicalVirology.2009;81(1):p.125‐129.

77. NigatuW,JinL,CohenBJ,NokesDJ,EtanaM,CuttsFT,etal.MeaslesvirusstrainscirculatinginEthiopiain1998‐1999:molecularcharacterisationusingoralfluidsamplesandidentificationofanewgenotype.JournalofMedicalVirology.2001;65(2):p.373‐380.

78. LemmaE,SmitSB,BeyeneB,NigatuW,BabaniyiOA.GeneticcharacterizationandprogressionofB3measlesgenotypeinEthiopia:astudyoffivemeaslesoutbreakcases.EthiopianMedicalJournal.2008;46(1):p.79‐85.

79. KokotasSN,BolanakiE,SgourasD,PogkaV,LogothetiM,KossivakisA,etal.CocirculationofgenotypesD4andD6inGreeceduringthe2005to2006measlesepidemic.DiagnosticMicrobiologyandInfectiousDisease.2008;62(1):p.58‐66.

80. ChironnaM,PratoR,SallustioA,MartinelliD,GerminarioC,LopalcoP,etal.GeneticcharacterizationofmeaslesvirusstrainsisolatedduringanepidemicclusterinPuglia,Italy2006‐2007.VirologyJournal.2007Sept21;4:p.90.

81. WichmannO,HellenbrandW,SagebielD,SantibanezS,AhlemeyerG,VogtG,etal.LargemeaslesoutbreakataGermanpublicschool,2006.PediatricInfectiousDiseaseJournal.2007;26(9):p.782‐786.

82. JiY,XuS,ZhangY,ZhuZ,MaoN,JiangX,etal.Geneticcharacterizationofwild‐typemeaslesvirusesisolatedinChina,2006‐2007.VirologyJournal.2010;7(1):p.105.

83. TruongAT,MuldersMN,GautamDC,AmmerlaanW,deSwartRL,KingCC,etal.GeneticanalysisofAsianmeaslesvirusstrains‐‐newendemicgenotypeinNepal.VirusResearch.2001;76(1):p.71‐78.

84. GriffinDE.Measles.InKnipeDM,HowleyPM,GriffinDE,LambRA,MartinMA,RoizmanB,etal.,editors.FieldsVirology.5thed.Philadelphia:LippincottWilliams&Wilkins;2007.p.1551–1585.

85. SchragSJ,RotaPA,BelliniWJ.SpontaneousMutationRateofMeaslesVirus:DirectEstimationBasedonMutationsConferringMonoclonalAntibodyResistance.JournalofVirology.1999;73(1):p.51‐54.

86. HollandJJ,delaTorreJC,SteinhauerDA.RNAviruspopulationsasquasispecies.CurrentTopicsinMicrobiologyandImmunology.1992;176:p.1‐20.

87. deSwartRL,YükselS,OsterhausAD.Relativecontributionsofmeaslesvirushemagglutinin‐andfusionprotein‐specificserumantibodiestovirusneutralization.JournalofVirology.2005;79(17):p.11547‐11551.

88. TatsuoH,OnoN,TanakaK,YanagiY.SLAM(CDw150)isacellularreceptorformeaslesvirus.Nature.2000;406:p.893‐897.

89. VeilletteA.ImmuneregulationbySLAMfamilyreceptorsandSAP‐relatedadaptors.NatureReviewsImmunology.2006;6:p.56‐66.

90. HashiguchiT,KajikawaM,MaitaN,TakedaM,KurokiK,SasakiK,etal.Crystalstructureofmeaslesvirushemagglutininprovidesinsightintoeffectivevaccines.ProceedingsoftheNationalAcademyofSciences.2007;104(49):p.19535‐19540.

91. SantibanezS,NiewieskS,HeiderA,Schneider‐SchauliesJ,BerbersGA,ZimmermannA,etal.Probingneutralizing‐antibodyresponsesagainstemergingmeaslesviruses(MVs):immuneselectionofMVbyHprotein‐specificantibodies?JournalofGeneralVirology.2005;86(Pt2):p.365‐374.

92. RuigrokRW,GerlierD.StructureofthemeaslesvirusHglycoproteinshedslightonanefficientvaccine.ProceedingsoftheNationalAcademyofSciences.2007;104(52):p.20639‐20640.

Page 27: Risk analysis for measles reintroduction post global certification of

DrRaySanders.Measlesre‐introductionriskanalysis

Page27

93. MossWJ,GriffinDE.Globalmeasleselimination.NatureReviews.Microbiology.2006;4(12):p.900‐908.

94. RimaBK,DuprexWP.Molecularmechanismsofmeaslesviruspersistence.VirusResearch.2005;111(1):p.132‐147.

95. ForthalDN,AarnaesS,BlandingJ,delaMazaL,TillesJG.Degreeandlengthofviremiainadultswithmeasles.JournalofInfectiousDiseases.1992;166(2):p.421‐424.

96. GresserI,KatzSl.Isolationofmeaslesvirusfromurine.NewEnglandJournalofMedicine.1960;263:p.452‐454.

97. DossetorJ,WhittleHC,GeenwoodBM.Persistentmeaslesinfectioninmalnourishedchildren.BritishMedicalJournal.1977;1:p.1633‐1635.

98. ScheifeleDW,ForbesCE.ProlongedgiantcellexcretioninsevereAfricanmeasles.Pediatrics.1972;50(6):p.867‐873.

99. MitusAEJF,MCJ,HollowayA.Persistenceofmeaslesvirusanddepressionofantibodyformationinpatientswithgiant‐cellpneumoniaaftermeasles.NewEnglandJournalofMedicine.1959;261:p.882‐889.

100. BudkaH,UrbanitsS,LiberskiPP,EichingerS,Popow‐KrauppT.Subacutemeaslesvirusencephalitis:anewandfatalopportunisticinfectioninapatientwithAIDS.Neurology.1996;46(2):p.586‐587.

101. EndersJF,McCarthyK,MitusA,JCW.Isolationofmeaslesvirusatautopsyincasesofgiant‐cellpneumoniawithoutrash.NewEnglandJournalofMedicine.1959;261:p.875‐881.

102. MarkowitzLE,ChandlerFW,RoldanEO,SaldanaMJ,RoachKC,HutchinsSS,etal.FatalmeaslespneumoniawithoutrashinachildwithAIDS.JournalofInfectiousDiseases.1988;158(2):p.480‐483.

103. NakataY,NakayamaT,IdeY,KizuR,KoinumaG,BambaM.Measlesvirusgenomedetecteduptofourmonthsinacaseofcongenitalmeasles.ActaPaediatrica.2002;91(11):p.1263‐1265.

104. PermarS,MossWJ,RyonJJ,MonzeM,CuttsF,QuinnTC,etal.Prolongedmeaslesvirussheddinginhumanimmunodeficiencyvirus‐infectedchildren,detectedbyreversetranscriptase‐polymerasechainreaction.JournalofInfectiousDiseases.2001;183(4):p.532‐538.

105. RiddellMA,ChiboD,KellyHA,CattonMG,BirchCJ.InvestigationofoptimalspecimentypeandsamplingtimefordetectionofmeaslesvirusRNAduringameaslesepidemic.JournalofClinicalMicrobiology.2001;39(1):p.375‐376.

106. vanBinnendijkRS,vandenHofS,vandenKerkhofH,KohlRH,WooninkF,BerbersGA,etal.EvaluationofserologicalandvirologicaltestsinthediagnosisofclinicalandsubclinicalmeaslesvirusinfectionsduringanoutbreakofmeaslesinTheNetherlands.JournalofInfectiousDiseases.2003;188(6):p.898‐903.

107. RiddellMA,MossWJ,HauerD,MonzeM,GriffinDE.SlowclearanceofmeaslesvirusRNAafteracuteinfection.JournalofClinicalVirology.2007;39(4):p.312‐317.

108. PanCH,ValsamakisA,ColellaT,NairN,AdamsRJ,PolackFP,etal.Modulationofdisease,Tcellresponses,andmeaslesvirusclearanceinmonkeysvaccinatedwithH‐encodingalphavirusrepliconparticles.ProceedingsoftheNationalAcademyofSciences.2005;102(33):p.11581‐11588.

109. terMeulenV,StephensonJR,KrethHW.Subacutesclerosingpanencephalitis.InFraenkel‐ConratH,WagnerRR,editors.ComprehensiveVirology,vol.18.NewYork:PlenumPress;1983.p.105‐159.

110. CampbellH,AndrewsN,BrownKE,MillerE.ReviewoftheeffectofmeaslesvaccinationontheepidemiologyofSSPE.InternationalJournalofEpidemiology.2007;36:p.1334‐1348.

111. YoungVA,RallGF.Makingittothesynapse:Measlesvirusspreadinandamongneurons.CurrentTopicsinMicrobiologyandImmunology.2009;330:p.3‐30.

Page 28: Risk analysis for measles reintroduction post global certification of

DrRaySanders.Measlesre‐introductionriskanalysis

Page28

112. Paula‐BarbosaMM,CruzC.Nervecellfusioninacaseofsubacutesclerosingpanencephalitis.AnnalsofNeurobiology.1981;9:p.400‐403.

113. CattaneoR,SchmidA,BilleterMA,SheppardRD,UdemSA.Multipleviralmutationsratherthanhostfactorscausedefectivemeaslesvirusgeneexpressioninasubacutesclerosingpanencephalitiscellline.JournalofVirology.1988;62(4):p.1388‐1397.

114. AyataM,KomaseK,ShingaiM,MatsunagaI,KatayamaY,OguraH.Mutationsaffectingtranscriptionalterminationinthepgeneendofsubacutesclerosingpanencephalitisviruses.JournalofVirology.2002;76(2):p.13062‐13068.

115. HottaH,NiheiK,AbeY,KatoS,JiangDP,Nagano‐FujiiM,etal.Full‐lengthsequenceanalysisofsubacutesclerosingpanencephalitis(SSPE)virus,amutantofmeaslesvirus,isolatedfrombraintissuesofapatientshortlyafteronsetofSSPE.MicrobiologyandImmunology.2006;50(7):p.525‐534.

116. JiangDP,IdeYH,Nagano‐FujiiM,ShojiI,HottaH.Single‐pointmutationsoftheMproteinofameaslesvirusvariantobtainedfromapatientwithsubacutesclerosingpanencephalitiscriticallyaffectsolubilityandsubcellularlocalizationoftheMproteinandcell‐freevirusproduction.MicrobesandInfection.2009;11(4):p.467‐475.

117. BitnunA,ShannonP,DurwardA,RotaPA,BelliniWJ,GrahamC,etal.Measlesinclusion‐bodyencephalitiscausedbythevaccinestrainofmeaslesvirus.Clinicalinfectiousdiseases.1999;29:p.855‐861.

118. MustafaMMWSWNBWTCSJ.Subacutemeaslesencephalitisintheyoungimmunocompromisedhost:reportoftwocasesdiagnosedbypolymerasechainreactionandtreatedwithribavirinandreviewoftheliterature.ClinicalInfectiousDiseases.1993;16(5):p.654‐660.

119. FreemanAF,JacobsohnDA,ShulmanST,BelliniWJ,JaggiP,deLeonG,etal.Anewcomplicationofstemcelltransplantation:measlesinclusionbodyencephalitis.Pediatrics.2004;114(5):p.e657‐660.

120. KatayamaYKKNATYHMHH.DetectionofmeaslesvirusmRNAfromautopsiedhumantissues.JournalofClinicalMicrobiology.1998;36(1):p.299‐301.

121. KatayamaY,HottaH,NishimuraA,TatsunoY,HommaM.DetectionofmeaslesvirusnucleoproteinmRNAinautopsiedbraintissues.JournalofGeneralVirology.1995;76(12):p.3201‐3204.

122. MossWJ,FisherC,ScottS,MonzeM,RyonJJ,QuinnTC,etal.HIVtype1infectionisariskfactorformortalityinhospitalizedZambianchildrenwithmeasles.ClinicalInfectiousDiseases.2008;46(4):p.523‐527.

123. FrenkelLMNKGACJ.Asearchforpersistentmeasles,mumps,andrubellavaccinevirusinchildrenwithhumanimmunodeficiencyvirustype1infection.ArchivesofPediatricsandAdolescentMedicine.1994;148(1):p.57‐60.

124. GardnerMB,LuciwPA.Macaquemodelsofhumaninfectiousdisease.ILARJournal.2008;49(2):p.220‐255.

125. MacArthurJA,MannPG,OreffoV,ScottGB.Measlesinmonkeys:anepidemiologicalstudy.JournalofHygiene.1979;83(2):p.207‐212.

126. ElMubarakH,YükselS,vanAmerongenG,MulderPG,MukhtarMM,OsterhausAD,etal.Infectionofcynomolgusmacaques(Macacafascicularis)andrhesusmacaques(Macacamulatta)withdifferentwild‐typemeaslesviruses.JournalofGeneralVirology.2007;88:p.2028‐2034.

127. Jones‐EngelL,EngelGA,SchillaciMA,LeeB,HeidrichJ,ChaliseM,etal.Consideringhuman‐primatetransmissionofmeaslesvirusthroughtheprismofriskanalysis.AmericalJournalofPrimatology.2006;68(9):p.868‐879.

128. ZhuYD,HeathJ,CollinsJ,GreeneT,AntipaL,RotaP,etal.Experimentalmeasles.II.Infectionandimmunityintherhesusmacaque.Virology.1997;233(1):p.85‐92.

129. vanBinnendijkRS,vanderHeijdenRW,vanAmerongenG,UytdeHaagFG,OsterhausAD.Viralreplicationanddevelopmentofspecificimmunityinmacaquesafterinfectionwithdifferentmeaslesvirusstrains.JournalofInfectiousDiseases.1994;170(2):p.

Page 29: Risk analysis for measles reintroduction post global certification of

DrRaySanders.Measlesre‐introductionriskanalysis

Page29

443‐448.

130. deSwartRL.Measlesstudiesinthemacaquemodel.Currenttopicsinmiocrobiologyandimmunology.2009;330:p.55‐72.

131. ChoiYK,SimonMA,KimDY,YoonBI,KwonSW,WLK,etal.FatalmeaslesvirusinfectioninJapanesemacaques(Macacafuscata).VeterinaryPathology.1999;36(6):p.594‐600.

132. WillyME,WoodwardRA,ThorntonVB,WolffAV,FlynnBM,HeathJL,etal.ManagementofameaslesoutbreakamongOldWorldnonhumanprimates.LaboratoryAnimalScience.1999;49:p.42‐48.

133. YoshikawaY,OchikuboF,MatsubaraY,TsuruokaH,IshiiM,ShirotaK,etal.NaturalinfectionwithcaninedistempervirusinaJapanesemonkey(Macacafuscata).VeterinaryMicrobiology.1989;20(3):p.193‐205.

134. SunZ,LiA,YeH,ShiY,HuZ,ZengL.Naturalinfectionwithcaninedistempervirusinhand‐feedingRhesusmonkeysinChina.VeterinaryMicrobiology.2010;141(3‐4):p.374‐378.

135. BhattPN,BrandtCD,WeissR,FoxJP,ShafferMF.ViralinfectionsofmonkeysintheirnaturalhabitatinsouthernIndia.II.Serologicalevidenceofviralinfection.AmericanJournalofTropicalMedicineandHygiene.1966;15(4):p.561‐566.

136. Jones‐EngelL,EngelGA,SchillaciMA,BaboR,FroehlichJ.Detectionofantibodiestoselectedhumanpathogensamongwildandpetmacaques(Macacatonkeana)inSulawesi,Indonesia.AmericalJournalofPrimatology.2001;54(3):p.171‐178.

137. ShahKV,SouthwickCH.Prevalenceofantibodiestocertainvirusesinseraoffree‐livingrhesusandofcaptivemonkeys.IndianJournalofMedicalResearch.1965;53:p.488‐500.

138. GristNR.Hepatitisandotherinfectionsinclinicallaboratorystaff,1979.JournalofClinicalPathology.1981;34(6):p.655‐658.

139. GristNR.InfectionsinBritishclinicallaboratories1980‐81.JournalofClinicalPathology.1983;36(2):p.121‐126.

140. GristNR,EmslieJ.InfectionsinBritishclinicallaboratories,1982‐3.JournalofClinicalPathology.1985;38(7):p.721‐725.

141. GristNR,EmslieJA.InfectionsinBritishclinicallaboratories,1984‐5.JournalofClinicalPathology.1987;40(8):p.826‐829.

142. GristNR,EmslieJA.InfectionsinBritishclinicallaboratories,1986‐87.JournalofClinicalPathology.1989;42(7):p.677‐681.

143. GristNR,EmslieJA.InfectionsinBritishclinicallaboratories,1988‐1989.JournalofClinicalPathology.1991;44(8):p.667‐669.

144. WalkerD,CampbellD.AsurveyofinfectionsinUnitedKingdomlaboratories,1994‐1995.JournalofClinicalPathology.1999;52(6):p.415‐418.

145. SulkinSE,PikeRM.Surveyoflaboratory‐acquiredinfections.AmericanJournalofPublicHealthandtheNation'sHealth.1951;41(7):p.769‐781.

146. PikeRM,SulkinSE,SchulzeML.Continuingimportanceoflaboratory‐acquiredinfections.AmericanJournalofPublicHealthandtheNation'sHealth.1965;55:p.190‐199.

147. PikeRM.Laboratory‐associatedinfections:summaryandanalysisof3921cases.HealthLaboratoryScience.1976;13(2):p.105‐114.

148. PikeRM.Laboratory‐associatedinfections:incidence,fatalities,causes,andprevention.AnnualReviewofMicrobiology.1979;33:p.41‐66.

149. VesleyD,HartmannHM.Laboratory‐acquiredinfectionsandinjuriesinclinicallaboratories:a1986survey.AmericanJournalofPublicHealth.1988;78(9):p.1213‐1215.

Page 30: Risk analysis for measles reintroduction post global certification of

DrRaySanders.Measlesre‐introductionriskanalysis

Page30

150. ShimojoH.VirusinfectionsinlaboratoriesinJapan.BibliothecaHaematologica.1975;(40):p.771‐773.

151. KimmanTG,SmitE,KleinMR.Evidence‐basedbiosafety:areviewoftheprinciplesandeffectivenessofmicrobiologicalcontainmentmeasures.ClinicalMicrobiologyReviews.2008;21(3):p.403‐425.

152. CollinsCH.Laboratory‐acquiredinfections:history,incidence,causes,andprevention.3rded.Oxford:Butterworth‐HeinemannLtd;1993.

153. SewellDL.Laboratory‐AssociatedInfectionsandBiosafety.ClinicalMicrobiologyReviews.1995;8(3):p.398‐405.

154. GershonAA.MeaslesVirus(Rubeola).InMandellG,DouglasR,BennettJ,editors.PrinciplesandPracticeofInfectiousDiseases.3rded.NewYork:ChurchillLivingstone;1990.p.1279.

155. ReddS,MarkowitzE,KatzS.Measlesvaccine.InPlotkinSA,OrensteinWA,editors.Vaccines.3rded.Philadelphia:Saunders;1999.p.222‐266.

156. MusserSJ,UnderwoodGE,WeedSD,OssewaardeJL.StudiesonMeaslesVirus.II.PhysicalPropertiesandInactivationStudiesofMeaslesVirus.JournalofImmunology.1960;85:p.292‐297.

157. DowdleW,vanderAvoortH,deGourvilleE,DelpeyrouxF,DesphandeJ,HoviT,etal.ContainmentofpoliovirusesaftereradicationandOPVcessation:characterizingriskstoimprovemanagement.RiskAnalysis.2006;26(6):p.1449‐1469.

158. NorrbyE,OxmanMN.MeaslesVirus.InFieldsBN,KnipeDM,ChanockR,HirschMS,LMJ,PMT,etal.,editors.Virology.2nded.NewYork:RavenPressLtd;1990.p.1013‐1044.

159. HatchTF.Distributionanddepositionofinhaledparticlesintherespiratorytract.BacteriologicalReviews.1961;25:p.237‐240.

160. DamonSC.DecreaseofPolynesianRaces.TheFriend.1849;7(3):p.20.

161. LeeWS.TheIslandNewYork:Holt,RinehartandWinston;1966.

162. ThrumTG.HawaiianEpidemics.InThrumTG,editor.HawaiianAlmanacandAnnual.Honolulu:PressPublishingCompany;1897.p.97.

163. MumfordEP,MohrJL.ManualontheDistributionofCommunicableDiseasesandTheirVectorsintheTropics,PacificIslandsSection,PartI.SupplementtoAmericanJournalofTropicalMedicine.1944;24:p.1‐26.

164. HirschA.Handbookofgeographicalandhistoricalpathology.In.London:NewSydenhamSociety;1983.p.154‐170.

165. CorneyBG.ANoteonanEpidemicofMeaslesatRotuma,1911.ProceedingsoftheRoyalSocietyforMedicine.1913;6:p.138‐142.

166. SimmonsJS,WhayneTF,AndersonGW,HorackHM.PartTwo,ThePacificArea.InGlobalEpidemiology.Philadelphia:JBLippincottCo.;1944.p.264and437.

167. EnrightJR.SeasonalIncidenceofCommunicableDiseasesinHawaii.TheHawaiiHealthMessenger.1949.

168. BabbotFL,GordonJE.ModemMeasles.AmericanJournalofMedicalSciences.1954;228:p.334‐361.

169. CentersforDiseaseControlandPrevention.EmergencyPreparednessandResponse.[Online].;2007[cited2010June10.Availablefrom:HYPERLINK"http://www.bt.cdc.gov/bioterrorism/overview.asp"http://www.bt.cdc.gov/bioterrorism/overview.asp.

170. RotzLD,KhanAS,LillibridgeSR,OstroffSM,HughesJM.Publichealthassessmentofpotentialbiologicalterrorismagents.EmergingInfectiousDiseases.2002;8(2):p.225‐230.

Page 31: Risk analysis for measles reintroduction post global certification of

DrRaySanders.Measlesre‐introductionriskanalysis

Page31

171. DowdleWR,WolffC,SandersR,LambertS,BestM.Willcontainmentofwildpoliovirusinlaboratoriesandinactivatedpoliovirusvaccineproductionsitesbeeffectiveforglobalcertification?BulletinoftheWorldHealthOrganization.2004;82(1):p.59‐62.

172. WorldHealthOrganization.WHOglobalactionplanforlaboratorycontainmentofwildpolioviruses.Geneva:WorldHealthOrganization,VaccinesandBiologicals;1999.ReportNo.:WHO/V&B/99.32.

173. WorldHealthOrganization.WHOglobalactionplanforlaboratorycontainmentofwildpolioviruses.Secondedition.Geneva:WorldHealthOrganization,VaccinesandBiologicals;2004.ReportNo.:WHO/V&B/03.11.

174. WorldHealthOrganization.Laboratorybiosafetymanual.3rded.Geneva:WorldHealthOrganization;2004.

175. PützMM,BoucheFB,deSwartRL,MullerCP.Experimentalvaccinesagainstmeaslesinaworldofchangingepidemiology.InternationalJournalforParasitology.2003;33(5‐6):p.525‐545.

176. GriffinDE,PanCH.Measles:oldvaccines,newvaccines.CurrentTopicsinMicrobiologyandImmunology.2009;330:p.191‐212.

177. AylwardRB,SutterRW,CochiSL,ThompsonKM,JafariH,HeymannD.Riskmanagementinapolio‐freeworld.RiskAnalysis.2006;26(6):p.1441‐1448.

178. FinePE,RitchieS.Perspective:determinantsoftheseverityofpoliovirusoutbreaksintheposteradicationera.RiskAnalysis.2006;26(6):p.1533‐1540.

179. SangrujeeN,DuintjerTebbensRJ,CáceresVM,ThompsonKM.Policydecisionoptionsduringthefirst5yearsfollowingcertificationofpolioeradication.MedscapeGeneralMedicine.2003;5(4):p.35.

180. ThompsonKM,TebbensRJ,PallanschMA,KewOM,SutterRW,AylwardRB,etal.Therisks,costs,andbenefitsofpossiblefutureglobalpoliciesformanagingpolioviruses.AmericanJournalofPublicHealth.2008;98(7):p.1322‐1330.

181. TebbensRJD,PallanschMA,AlexanderJP,ThompsonKM.Optimalvaccinestockpiledesignforaneradicateddisease:Applicationtopolio.Vaccine.2010;28:p.4312‐4327.

182. TebbensRJD,PallanschMA,KewOM,CaceresVM,JafariH,CochiSL,etal.RisksofParalyticDiseaseDuetoWildorVaccine‐DerivedPoliovirusAfterEradication.RiskAnalysis.2006;26(6):p.1471‐1505.


Top Related