Transcript
  • Relativistic reconnection at the origin of the Crab gamma-ray flares

    Benoît Cerutti

    Center for Integrated Plasma StudiesUniversity of Colorado, Boulder, USA

    Collaborators: Gregory Werner (CIPS), Dmitri Uzdensky (CIPS), Mitch Begelman (JILA)

    Variable Galactic Gamma-ray Sources, April 16-18, 2013, Barcelona.

  • [http://fermi.gsfc.nasa.gov/ssc/data/access/lat/msl_lc/]

    B. Cerutti

    April 2011

    Sep. 2010

    March 2013

    Feb. 2009 July 2012

    Agile and Fermi discovered gamma-ray flares in the Crab Nebula

    Oct. 2007

    [Tavani et al., Science, 2011] ; [Fermi-LAT, Science, 2011]

  • The ultra-short time variability put strong constraints on the acceleration region

    B. Cerutti

    [Buehler et al., 2012]

    April 11, 9 days Flux ×30

    Flare few days =► emitting region size ctflare

    ~1016 cm > 200 μG, and PeV pairs !

  • Spectral variability at high energies

    Synchrotron photons > 100 MeV No obvious counter-parts (radio, IR, opt., X, TeV) April 2011 spectrum very hard, inconsistent with shock-acceleration

    B. Cerutti

    [Weisskopf et al. 2013]

    Synchrotron

    Inverse Compton

    375 MeV!April 2011

    Flare

  • The production of synchrotron emission >160 MeV challenges classical models of acceleration

    Under ideal MHD conditions: E B!

    B. Cerutti

    e+

  • Particle acceleration above the radiation reaction limit could occur at reconnection sites

    The reconnecting magnetic field vanishes inside the current layer:

    +B0

    -B0

    x

    y

    2δE0>B0

    Non ideal MHD!

    B. Cerutti

    +B0

    -B0

    E0Synchrotron

    Photons

    ObserverCurrent layer

    Current layer

    Ultra-relativistic, collisionless pair plasma reconnection

  • Zeltron: A new radiative PIC codeGeneral properties:

    • 3D, parallel (OpenMPI), relativistic, electromagnetic PIC code.• Developed from scratch by B. Cerutti• Includes the radiation reaction force

    Zeltron solves the Abraham-Lorentz-Dirac equation: [e.g. Jackson, 1975]

    Lorentz 4-force

    Radiation reaction 4-force

    : 4-velocity: External electromagnetic field-strength tensor: Relativistic interval

    B. Cerutti

  • Numerical setup: Harris equilibrium

    Layer thickness: 2δ

    -B0

    +B0

    +B0=5mG

    Ultrarelativistic reconnection, with radiation reaction force!

    System size: L = 7×1015 cm or 2.7 light-days

    Numerical parameters:

    - 100 particles per cell- 1440² grid cells- 9000 time steps- 8 cells per δ- Periodic boundary cond.

    Physical parameters:

    - B0 = 5mG =► γ

    rad ≈ 109

    - Thermal drifting particles, kT=4×107 mc²

    - Non-thermal background particles:

    dN/dγ = Kγ-2,4×107 < γ < 4×108

    B. Cerutti

  • Overall time evolution of reconnection

    B. Cerutti

    Particles are accelerated at X-points along the ±z-direction, and deflected along the ±x-directions by the magnetic tension.

  • Time evolution of the particle energy distribution

    tω1 = 0 γrad

    B. Cerutti[Cerutti et al., submitted, 2013, arXiv:1302.6247]

  • Time evolution of the particle energy distribution

    tω1 = 0 tω

    1 = 220

    B. Cerutti

    γrad

    [Cerutti et al., submitted, 2013, arXiv:1302.6247]

  • Time evolution of the particle energy distribution

    tω1 = 440

    tω1 = 0 tω

    1 = 220

    B. Cerutti

    γrad

    [Cerutti et al., submitted, 2013, arXiv:1302.6247]

  • Time evolution of the particle energy distribution

    tω1 = 440

    tω1 = 660

    tω1 = 0 tω

    1 = 220

    B. Cerutti

    γrad

    [Cerutti et al., submitted, 2013, arXiv:1302.6247]

  • Energetic particles are bunched into the layers and magnetic islands

    B. Cerutti

    γ > 5x108

    [Cerutti et al., submitted, 2013, arXiv:1302.6247]

  • Evidence for relativistic Speiser orbitsSample of 150 particle orbits

    Particles well magnetized

    ≈ ideal MHD

    Particles’ beamE>B, non-ideal

    MHD!

    Speiser orbits!y/

    ρ 1

    z/ρ1B. Cerutti

  • A typical high-energy particle orbit with γ > γrad

    START

    END

    “Speiser orbit”Orbit shrinks

    E>B

    Phase 1. Drifting towards the layerPhase 2. Linear acceleration, weak rad.losses, where E>B (non-ideal MHD)Phase 3. Ejection, fast cooling and emission of >160 MeV synchrotron

    B. Cerutti

  • B. Cerutti

  • Evidence for >160 MeV synchrotron photons!

    >160 MeV!

    Isotropic

    B. Cerutti

    Total synchrotron flux (optically thin)

    [Cerutti et al., submitted, 2013, arXiv:1302.6247]

  • B. Cerutti

    Energy-resolved radiation’ angular distribution

    +z +x-x-z -z

    +y

    -y

  • B. Cerutti

    Energy-resolved radiation’ angular distribution

  • Energy-resolved radiation’ angular distribution

    B. Cerutti

  • Energy-resolved radiation’ angular distribution

    B. Cerutti

  • Energy-resolved radiation’ angular distribution

    B. Cerutti

    Strong energy-dependent anisotropy of the energetic particle.

    =► beaming of the high-energy radiation !

  • Evidence for >160 MeV synchrotron photons!

    >160 MeV!

    Isotropic

    B. Cerutti

    Total synchrotron flux (optically thin)

    Anisotro

    pic !

    Apparent high-energy flux INCREASED! =► « KINETIC BEAMING »[Cerutti et al., 2012b]

    Observer

    [Cerutti et al., submitted, 2013, arXiv:1302.6247]

  • B. Cerutti

    Time variation of the >100 MeV flux

    The beam of high-energy radiation sweeps across the line of sight intermittently =► bright symmetric flares.

  • Expected lightcurves, including the light propag. time

    Ultra-short time variability < 6 hours due to particle bunching and

    anisotropy

    Apr. 11 flare

    [Buehler et al., 2012]

    Observed ultra-short time variability < 8 hours

    Observer

    MODEL

    OBSERVATIONS

    B. Cerutti

    Symmetric shape Δt

  • Expected correlation Flux/Energy

    Flux = K εcut

    +3.8±0.6

    εcut

    [MeV]

    Flux

    Flux = K εcut

    +3.42±0.86

    [Buehler et al., 2012]

    OBSERVATIONS MODEL

    B. Cerutti[Cerutti et al., submitted, 2013, arXiv:1302.6247]

  • Where could magnetic reconnection operate in the Crab?

    © NASA-CXC-SAO F.Seward et al.

    Pulsar windCurrent sheet (striped wind)

    [Coroniti 1990]

    © Kirk et al. 2009

    Termination shockDissipation of the striped wind

    [Lyubarsky 2003]

    © Sironi & Spitkovsky 2011b

    Polar region- High magnetic field (Z-pinch)- Kink unstable [Begelman 1998]

    (See also Lyubarsky 2012)Flares: Analog of Sawtooth crashes

    in tokamaks? [Uzdensky + 2011]

    © Porth et al. 2012B. Cerutti

  • The discovery of these flares has a considerable impact in high-energy astrophysics!

    Poynting Flux-dominated plasma

    RECONNECTION (?)

    Particle kinetic- energy-dominated

    plasma

    DISSIPATION

    B. Cerutti

    • Smoking gun of rapid magnetic dissipation in the NebulaSolution to the long-standing « σ-problem »?

    • The model of the Crab Nebula is a prototype for ALL the other high-energy astrophysical sources: AGN jets, lobes, gamma-ray bursts, magnetars, …

    Slide 1Slide 2Slide 3Slide 4Slide 5Slide 6Slide 7Slide 8Slide 9Slide 10Slide 11Slide 12Slide 13Slide 14Slide 15Slide 16Slide 17Slide 18Slide 19Slide 20Slide 21Slide 22Slide 23Slide 24Slide 25Slide 26Slide 27Slide 28Slide 29


Top Related