Download - Physics Laboratory

Transcript
Page 1: Physics Laboratory

Antonis LeisosAntonis Leisos

A sea top infrastructure for A sea top infrastructure for calibrating an underwater calibrating an underwater

neutrino telescopeneutrino telescope

• the calibration principle using atmospheric showersthe calibration principle using atmospheric showers

• construction and performance of the prototype detector stationconstruction and performance of the prototype detector station

• Monte Carlo Studies Monte Carlo Studies

TeV Particle Astrophysics  2007

27-31 August 2007 Venice, Italy

G. Bourlis, P. Christopoulou, N. A. B. Gizani, A. Leisos, P. Razis ,A. G. Tsirigotis and S.E. Tzamarias

Page 2: Physics Laboratory

1 km

2 km

SPASE air shower arrays

calibration of AMANDA angular resolution and pointing !

resolution Amanda-B10 ~ 3.5°

spase-amanda

IceCube IceTop

Page 3: Physics Laboratory

The General Idea…

•Angular offset

•Efficiency

•Resolution

•Position

Physics ?

C.R. composition

UHE ν - Horizontal Showers

Veto atmospheric background – Study background

Page 4: Physics Laboratory

~4km

~20km

Isotropic on the top of the atmosphere

BUT …

~ coscos

dN

d

Page 5: Physics Laboratory

Pierre Auger: M. Are et al. Ast.Part. 14: 109-120 2000

0 23 4km instrumented area

17

0 2

for detection Ε 6×10 eV

θ 80 0.35/km /year 1.4showers/year

Haverah Park (www.ast.leeds.ac.uk/haverah/havpark.html):

12km2 effective area and 2π coverage in φ

for 10 years operation less than 100 detected showers with 0θ 80

reweightingBlind fit

Okada model NESTOR: muon flux @ 4000m

Page 6: Physics Laboratory

Floating stations

The Concept

3 stations with at 16 m2 scintillator detectors each

•Angular offset

•Efficiency

•Resolution

•Position

reweightingBlind fit

Okada model

~ coscos

dN

d

NESTOR: muon flux @ 4000m

Page 7: Physics Laboratory

HELYCON Station

GPSScintillator-PMT

Scintillator-PMT

Scintillator-PMT

DAQ

~20 m

1 m2

Single Station Set-Up

Triangulation

Shower Direction

Scintillator-PMT

4·(1W/counter)+30W(PC+electronics)

Page 8: Physics Laboratory

Simulation Tools

CORSIKA(Extensive Air Shower

Simulation)

GEANT4(Scintillation, WLS & PMT response)

Fast Simulation also available

Page 9: Physics Laboratory

Simulation Tools

DAQSIM(DAQ Simulation)

HOUANA(Analysis &

Track Reconstruction)

Time (ns)

Height (mV)

Zentih (degrees)

Page 10: Physics Laboratory

Simulation Tools

GEANT4Muon Propagation to KM3

HOU-KM3Muon track (s) reconstruction

dm

L-dm

(Vx,Vy,Vz) pseudo-vertex

d

Track Parameters

θ : zenith angle φ: azimuth angle (Vx,Vy,Vz): pseudo-vertex coordinates

θc

(x,y,z)

Page 11: Physics Laboratory

Monte Carlo Studies- Outlook 1014 - 5·1015 eV

E~ 1014 - 5·1015 eV: 2500 showers/m2/year

Single station detection: 351m2 effective area (depends on geometry and selection cuts)

Multi-Station: separation <100m, better resolution

E> 1016 eV: 1 shower/m2/year

TO BE STUDIED

35% of the detected showers include a muon which arrives at the Neutrino Telescope (depth 4000m) with an energy >300GeV

General Remark: 3 stations operating for 10 days can identify an angular offset with an accuracy of 0.15o

Specifically…Specifically…

Page 12: Physics Laboratory

Monte Carlo Studies

Depends on:

Detector separation

Selection criteria

Shower direction

Typical Values

1) No cut: σ= 4.5ο

2) Total Collected Charge > 10 mips: σ=2.22ο

3) Total Collected Charge > 25 mips: σ=1.33ο

4) Total Collected Charge > 30 mips: σ=1.2ο

Atmospheric shower simulation by CORSIKA - muon transportation to the detector DEPTH by GEANT4 - Sea-Top Detector detailed simulation GEANT4_HOU

PRELIMINARY

Θrec-Θtrue

Angular Resolution inSingle Shower Reconstruction

Page 13: Physics Laboratory

Multi Station Set upimprove resolution – higher energies

GPS Synchronisation

Δt <±6ns using sawtooth correction

Page 14: Physics Laboratory

curvature

thickness

Total collected charge [pe]

Tim

e D

ela

y (

ns

)T

ime

Sp

rea

d (

ns

)

Multi-Station Operation Monte Carlo Studies in Progress

Total collected charge [pe]

Page 15: Physics Laboratory

The HELYCON Detector Module

Scintillator 2

Scintillator 3

GPS timestamp

Station Server

Scintillator 3

Page 16: Physics Laboratory

HELYCON ReadOut Electronics

GPS Input

USB PortTrigger Ouput4 PMT Signal Inputs

25ps accuracy TDC

HPTDC

• 32 channels (LR) – 8 Channels (HR)

•25ps (HR) to 800 ps (LR) accuracy

•Self Calibrating

D. Loucas INP DEMOKRITOS

Page 17: Physics Laboratory

Response to Showers

Discriminator

(1.5 MIP)

Trigger

Input A

Input B

~10m

trigger arrival time

~60 mip’s

~50 mip’s

14.2ns

5.4ns

θ=31ο ± 8ο

Page 18: Physics Laboratory

Response to Minimum Ionizing Particles

Scintillator A

Scintillator B

Lead

DAQ based on TDS5052 Tektronix (5 Gsamples/s)

discriminators

Inputs

Trigger

Page 19: Physics Laboratory

Response to a MIP

DAQ S/W based on LabView

On-Line analysis - distributions

Charge (in units of mean p.e. charge)

At the Detector Center

Data

- Monte Carlo Prediction

Detailed Monte Carlo description

PRELIMINARY

Digitized Waveforms saved on hard disk

Page 20: Physics Laboratory

Response to a MIP

Detector Uniformity (the worst case)

Charge (in units of mean p.e. charge)

X Y

Typical Mean Numb. of p.e. per m.i.p. : 23 (± 16% variation)

PRELIMINARY

Page 21: Physics Laboratory

Response to a MIP

Detector Uniformity - Timing

Scintillator A

Scintillator B

Lead

discriminators

Inputs

Trigger

ΔΤ consistent with the difference of optical path (fiber refractive index n=1.6)

PRELIMINARY

Page 22: Physics Laboratory

Timing vs Pulse Hight

thickness

Input A

Input B

Discriminator

(1.5 MIP)

Trigger

Slewing

Resolution

Page 23: Physics Laboratory

Response to Showers

Trigger Detectors >1 mip

Detectors A.and.B > 0.5 mip’s

~ coscos

8.5 0.4

dN

d

zenith angle [degrees] zenith angle [degrees]

~ coscos

9.4 0.6

dN

d

Trigger Detectors > 1 mip

Detectors A.and.B > 1.5 mip’s

α=9.4±0.2

PRELIMINARY PRELIMINARY

Page 24: Physics Laboratory

Lab Measurements (a)

Discriminator

(1.5 MIP)Input C Trigger

A1

A2

A3

B1

B2

B3θΑ-θΒ

μ=-0.1±0.3

σ=7.6 ± 0.2

Pull

• Deposited Charge per counter > 4 mips 6 Active counters

μ=-0.06±0.05

σ=1.02 ± 0.03

MC -Data Data

___ M.C. Prediction

Page 25: Physics Laboratory

Lab Measurements (b)

Discriminator

(1.5 MIP)Input C Trigger

A1

A2

A3

B1

B2

B3

• Deposited Charge per counter > 4 mips 6 Active counters

μ=0.1±0.6

σ=4.5 ± 0.5

θm-θtr

Pull

μ=0.01±0.1

σ=0.9 ± 0.1

MC PredictionGROUP A

GROUP Bμ=0.3±0.8

σ=5.2 ± 0.8

θm-θtr

Pull

μ=0.02±0.1

σ=0.9 ± 0.1

DATA

δθ=4.6

DATA

δθ=5.6

Page 26: Physics Laboratory

dt=0

16m2 Scintillator Station

19m

19m

5m

1 m2 Scintillation Counter

dt1

dt2

dt3

2

exp2 i

hits dt

dt dt

Page 27: Physics Laboratory

Time corrections

deposited charge (mip)

delay (ns)

delay spread (ns)

deposited charge (mip)

Time residual

Time Residual meas true

dt

dt dt

Page 28: Physics Laboratory

Detection Efficiency

Distance from Shower Impact (meters)

Distance from Shower Impact (meters)

Efficiency

Events

Number of Active Counters (trigger)

A hit is considered when there is more than 4 mips deposited charge

Page 29: Physics Laboratory

Muon Propagation

μ track

km3

Geant Simulation

(propagation & Energy Loss)

Accepted if muon with E>2TeV goes through

km3

Muon Track Reconstruction

(A. Tsirigotis talk)

Zenith angle < 13 deg

Page 30: Physics Laboratory

Muon vs Shower Axis

muon primaryθ - θ (deg) μ-shower Space angle (deg)

Page 31: Physics Laboratory

Primary Zenith Angle Resolution

reconstructed true

Θ

θ - θ

σreconstructed trueθ - θ (deg)

• Deposited Charge per counter > 4 mips

• Number of Hits > 10

Page 32: Physics Laboratory

Primary Azimuth and Space angle Resolution

reconstructed trueφ - φ (deg) Space angle (deg)

• Deposited Charge per counter > 4 mips Number of Hits > 10

Page 33: Physics Laboratory

Performance Plots

Minimum number of Active counters

Minimum number of Active countersMinimum number of Active counters

2Effective Area (m )

θ resolution (deg)

Telescope Offset Resoltuion (deg)

Page 34: Physics Laboratory

Charge

Time (ns)Charge (in units of mean p.e. charge)

At the Detector Center

Data

- Monte Carlo Prediction

Scintillator A

Scintillator B

Lead

discriminators

Inputs

Trigger

Data

___ M.C. Prediction

Page 35: Physics Laboratory

Charge parameterization

Distance from shower core (m) Distance from shower core (m)

2Mean density (mip/m )2RMS density (mips/m )

2

( ) 1 11000

a h a

M M

r r rr C

R R

AGASA parameterization (S. Yoshida et al., J Phys. G: Nucl. Part. Phys. 20,651 (1994)

Parameters depend on

(θ, Ε, primary)

“Mean particle density registered by an active

counter”

Page 36: Physics Laboratory

Primary Impact determination

total charge collected (mip)

Impact Resolution (m)

Impact x (m)

Absolute Position resolution ~ 0.5 m

Page 37: Physics Laboratory

Performance Plots

Minimum number of Active counters

Minimum number of Active countersMinimum number of Active counters

2Effective Area (m )

Spatial Resolution (m)

Telescope Offset Resoltuion (deg)

Page 38: Physics Laboratory

Telescope Resolution

Telescope resolution ~ 0.1 deg

Surface Area resolution ~ 1 deg

Telescope’s resolution measurement Impossible

Inter calibration

σ=0.014

σ=0.094

σ=0.062

Page 39: Physics Laboratory

Conclusions

The operation of 3 stations (16 counters) for 10 days will provide:

• The determination of a possible offset with an accuracy ~ 0.05 deg

• The determination of the absolute position with an accuracy ~ 0.6 m

• Efficiency vs Energy and Zenith angle…• Resolution No!


Top Related