Transcript
Page 1: Pendulum With Vibrating Base - University of Arizonamath.arizona.edu/.../Inverted_Pendulum_presentation.pdfPendulum With Vibrating Base MATH 485 PROJECT TEAM THOMAS BELLO, EMILY HUANG,

Pendulum With Vibrating BaseMATH 485 PROJECT TEAM

THOMAS BELLO, EMILY HUANG, FABIAN LOPEZ, KELLIN RUMSEY, TAO TAO

Page 2: Pendulum With Vibrating Base - University of Arizonamath.arizona.edu/.../Inverted_Pendulum_presentation.pdfPendulum With Vibrating Base MATH 485 PROJECT TEAM THOMAS BELLO, EMILY HUANG,

BackgroundRegular vs. Inverted Pendulum: http://www.youtube.com/watch?v=rwGAzy0noU0

History: In 1908, A. Stephenson found that the upper vertical position of the pendulum might be stable when

the driving frequency is fast

In 1951, a Russian scientist Pyotr Kapitza successfully analyzed this unusual and counterintuitive phenomenon by splitting the motion into 1. β€œfast” and β€œslow” variables

2. introducing the effective potentials

Simple Vibrating

Page 3: Pendulum With Vibrating Base - University of Arizonamath.arizona.edu/.../Inverted_Pendulum_presentation.pdfPendulum With Vibrating Base MATH 485 PROJECT TEAM THOMAS BELLO, EMILY HUANG,

Tasks

Derive the Lagrangian for the vertical position

Find Effective Potential using the Averaging technique

Analyze the stability at each stationary position

Page 4: Pendulum With Vibrating Base - University of Arizonamath.arizona.edu/.../Inverted_Pendulum_presentation.pdfPendulum With Vibrating Base MATH 485 PROJECT TEAM THOMAS BELLO, EMILY HUANG,

Variables 𝑑0 = π‘Žπ‘šπ‘π‘™π‘–π‘‘π‘’π‘‘π‘’ π‘œπ‘“ π‘π‘Žπ‘ π‘’ π‘œπ‘ π‘π‘–π‘™π‘™π‘Žπ‘‘π‘–π‘œπ‘›π‘ 

πœ” = π‘“π‘Ÿπ‘’π‘žπ‘’π‘’π‘›π‘π‘¦ π‘œπ‘“ π‘π‘Žπ‘ π‘’ π‘œπ‘ π‘π‘–π‘™π‘™π‘Žπ‘‘π‘–π‘œπ‘›π‘ 

𝑙 = π‘™π‘’π‘›π‘”π‘‘β„Ž π‘œπ‘“ π‘π‘’π‘›π‘‘π‘’π‘™π‘’π‘š

πœƒ = π‘π‘œπ‘’π‘›π‘‘π‘’π‘Ÿπ‘π‘™π‘œπ‘π‘˜π‘€π‘–π‘ π‘’ π‘Žπ‘›π‘”π‘’π‘™π‘Žπ‘Ÿ π‘‘π‘–π‘ π‘π‘™π‘Žπ‘π‘’π‘šπ‘’π‘›π‘‘ π‘œπ‘“ π‘π‘’π‘›π‘‘π‘’π‘™π‘’π‘š

𝑔 = π‘”π‘Ÿπ‘Žπ‘£π‘–π‘‘π‘Žπ‘‘π‘–π‘œπ‘›π‘Žπ‘™ π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ 9.81

𝐾 = π‘˜π‘–π‘›π‘’π‘‘π‘–π‘ π‘’π‘›π‘’π‘Ÿπ‘”π‘¦

π‘ˆ = π‘π‘œπ‘‘π‘’π‘›π‘‘π‘–π‘Žπ‘™ π‘’π‘›π‘’π‘Ÿπ‘”π‘¦

Page 5: Pendulum With Vibrating Base - University of Arizonamath.arizona.edu/.../Inverted_Pendulum_presentation.pdfPendulum With Vibrating Base MATH 485 PROJECT TEAM THOMAS BELLO, EMILY HUANG,

Equation of MotionPosition and Velocity

The X and Y coordinates:

x = 𝑙 sin πœƒ

y =𝑙 cos πœƒ + 𝑑0 sin(𝑀𝑑)

The Velocity:

Vx = αΊ‹ = πœƒ 𝑙 cos πœƒ

Vy = ẏ= - πœƒ 𝑙 sin πœƒ + 𝑑0𝑀𝑠𝑖𝑛 (𝑀𝑑)

Page 6: Pendulum With Vibrating Base - University of Arizonamath.arizona.edu/.../Inverted_Pendulum_presentation.pdfPendulum With Vibrating Base MATH 485 PROJECT TEAM THOMAS BELLO, EMILY HUANG,

Kinetic and Potential Energy Kinetic Energy

β—¦ K = 1

2π‘š 𝑉π‘₯

2 + 𝑉𝑦2

=1

2π‘š( πœƒ2𝑙2 cos2 πœƒ + πœƒ2𝑙2 sin2 πœƒ + 𝑑0

2πœ”2 sin2(πœ”π‘‘) βˆ’ 2 πœƒπ‘™ (sin πœƒ)𝑑0πœ” sin(πœ”π‘‘)

=1

2π‘š( πœƒ2𝑙2 + 𝑑0

2πœ”2 sin2(πœ”π‘‘) βˆ’ 2 πœƒπ‘™ (sin πœƒ)𝑑0πœ” sin(πœ”π‘‘) )

Potential Energy

β—¦ U = mgy

= mg (𝑙 cos πœƒ + 𝑑0 sin(πœ”π‘‘))

Page 7: Pendulum With Vibrating Base - University of Arizonamath.arizona.edu/.../Inverted_Pendulum_presentation.pdfPendulum With Vibrating Base MATH 485 PROJECT TEAM THOMAS BELLO, EMILY HUANG,

The Lagrangianβ€’ The Lagrangian (L) is defined as: L = K – U

β€’ Take the simple case of a ball being thrown straight up.

Kinetic (K)

Potential (U)

Page 8: Pendulum With Vibrating Base - University of Arizonamath.arizona.edu/.../Inverted_Pendulum_presentation.pdfPendulum With Vibrating Base MATH 485 PROJECT TEAM THOMAS BELLO, EMILY HUANG,

The Lagrangianβ€’ The Lagrangian (L) is defined as: L = K – U

β€’ Take the simple case of a ball being thrown straight up.

Kinetic (K)

Potential (U)

Lagrangian

Page 9: Pendulum With Vibrating Base - University of Arizonamath.arizona.edu/.../Inverted_Pendulum_presentation.pdfPendulum With Vibrating Base MATH 485 PROJECT TEAM THOMAS BELLO, EMILY HUANG,

The Lagrangianβ€’ The Lagrangian (L) is defined as: L = K – U

β€’ Take the simple case of a ball being thrown straight up.

β€’ The area under the Lagrangian vs. Time curve is known as the action of the system

Lagrangian

Page 10: Pendulum With Vibrating Base - University of Arizonamath.arizona.edu/.../Inverted_Pendulum_presentation.pdfPendulum With Vibrating Base MATH 485 PROJECT TEAM THOMAS BELLO, EMILY HUANG,

The Lagrangianβ€’ The Lagrangian (L) is defined as: L = K – U

β€’ In the case of the Pendulum with a Vibrating Base:

K =1

2π‘š πœƒ2𝑙2 + 𝑑0

2πœ”2 sin2 πœ”π‘‘ βˆ’ 2 πœƒ 𝑙 (sin πœƒ)𝑑0πœ” sin πœ”π‘‘

π‘ˆ = mg (𝑙 cos πœƒ + 𝑑0 sin(πœ”π‘‘) )

Page 11: Pendulum With Vibrating Base - University of Arizonamath.arizona.edu/.../Inverted_Pendulum_presentation.pdfPendulum With Vibrating Base MATH 485 PROJECT TEAM THOMAS BELLO, EMILY HUANG,

The Lagrangianβ€’ The Lagrangian (L) is defined as: L = K – U

β€’ In the case of the Pendulum with a Vibrating Base:

K =1

2π‘š πœƒ2𝑙2 + 𝑑0

2πœ”2 sin2 πœ”π‘‘ βˆ’ 2 πœƒ 𝑙 (sin πœƒ)𝑑0πœ” sin πœ”π‘‘

π‘ˆ = mg (𝑙 cos πœƒ + 𝑑0 sin(πœ”π‘‘) )

𝐿 =1

2π‘š πœƒ2𝑙2 + 𝑑0

2πœ”2 sin2 πœ”π‘‘ βˆ’ 2 πœƒ 𝑙 (sin πœƒ)𝑑0πœ” sin πœ”π‘‘ βˆ’ mg (𝑙 cos πœƒ + 𝑑0 sin(πœ”π‘‘) )

Page 12: Pendulum With Vibrating Base - University of Arizonamath.arizona.edu/.../Inverted_Pendulum_presentation.pdfPendulum With Vibrating Base MATH 485 PROJECT TEAM THOMAS BELLO, EMILY HUANG,

The Lagrangianβ€’ The Lagrangian (L) is defined as: L = K – U

β€’ In the case of the Pendulum with a Vibrating Base:

𝐿 = π‘šπ‘™1

2 πœƒ2𝑙 +

1

2𝑙𝑑0

2πœ”2 sin2 πœ”π‘‘ + πœƒ (sin πœƒ)𝑑0πœ” sin πœ”π‘‘ βˆ’ g cos πœƒ βˆ’π‘”π‘‘0𝑙

cos(πœ”π‘‘)

β€’ We can take advantage of the following two properties to simplify our Lagrangian

i) The Lagrangian does not depend on constants

ii) The Lagrangian does not depend on functions of only time.

𝐿 =1

2 πœƒ2𝑙 + πœƒ (sin πœƒ)𝑑0πœ” sin πœ”π‘‘ βˆ’ g cos πœƒ

Page 13: Pendulum With Vibrating Base - University of Arizonamath.arizona.edu/.../Inverted_Pendulum_presentation.pdfPendulum With Vibrating Base MATH 485 PROJECT TEAM THOMAS BELLO, EMILY HUANG,

The Euler - Lagrange Equationβ€’ Formulated in the 1750’s by Leonhard Euler and Joseph Lagrange.

β€’ Yields a Differential Equation whose solutions are the functions for which a functional is stationary

β€’ The Equation:

𝐿 =1

2 πœƒ2𝑙 + πœƒ (sin πœƒ)𝑑0πœ” sin πœ”π‘‘ βˆ’ g cos πœƒ

d

dt

πœ•L

πœ•ΞΈβˆ’πœ•L

πœ•ΞΈ= 0

πœƒ +𝑑0πœ”

2

𝑙cos πœ”π‘‘ βˆ’

𝑔

π‘™π‘ π‘–π‘›πœƒ = 0

Page 14: Pendulum With Vibrating Base - University of Arizonamath.arizona.edu/.../Inverted_Pendulum_presentation.pdfPendulum With Vibrating Base MATH 485 PROJECT TEAM THOMAS BELLO, EMILY HUANG,

Averaging & Effective Potential From our Euler-Lagrange Equation we want to derive Effective Potential Energy

Effective Potential (Ueff) : is a mathematical expression combining multiple (perhaps opposing) effects into a single potential

Separate fast and slow components from Euler-Lagrangian into: Ẍ(t) : β€œslow” motion: Smooth Motion

πœ‰(t): β€œfast” motion: Rapid Oscillation

Averaging Technique: take an average over the period of the rapid oscillation in order to treat motion as single, smooth function

Assumptions Fast components have MUCH higher frequency than slow components and a relatively low amplitude Slow motion is treated as constant with respect to rapid motion period

Page 15: Pendulum With Vibrating Base - University of Arizonamath.arizona.edu/.../Inverted_Pendulum_presentation.pdfPendulum With Vibrating Base MATH 485 PROJECT TEAM THOMAS BELLO, EMILY HUANG,

Finding Effective Potential….. Begin by separating variables into rapid oscillations due to vibrating base and slow motion of pendulum

πœƒ = 𝑋 + πœ‰

Final differential equation can be written as a total derivative in position, which corresponds to the effective potential energy of the system

𝑋 = βˆ’π‘‘

𝑑𝑋

βˆ’π‘”

𝑙cos πœƒ +

1

4

𝑑02πœ”2

𝑙2sin2 πœƒ

General equation of motion relates positions and potential energy

π‘₯ = βˆ’π‘‘π‘ˆ(π‘₯)

𝑑π‘₯

Page 16: Pendulum With Vibrating Base - University of Arizonamath.arizona.edu/.../Inverted_Pendulum_presentation.pdfPendulum With Vibrating Base MATH 485 PROJECT TEAM THOMAS BELLO, EMILY HUANG,

Effective Potential Continued….. Effective potential treats entire motion as single smooth motion and can be used for analysis as if it were the actual potential energy

π‘ˆπ‘’π‘“π‘“ =βˆ’π‘”

𝑙cos πœƒ +

1

4

𝑑02πœ”2

𝑙2sin2 πœƒ

Effective potential looks like potential energy of slow motion and kinetic energy of rapid motion

π‘ˆπ‘’π‘“π‘“ =βˆ’π‘”

𝑙cos πœƒ +

1

2 πœ‰2

Page 17: Pendulum With Vibrating Base - University of Arizonamath.arizona.edu/.../Inverted_Pendulum_presentation.pdfPendulum With Vibrating Base MATH 485 PROJECT TEAM THOMAS BELLO, EMILY HUANG,

Stability AnalysisStability occurs at points of minimum potential energy

Angles 0 and πœ‹ are always equilibrium, but πœ‹ is unstable

When frequency exceeds minimum value, two additional unstable equilibria appear, and πœ‹ becomes stable

πœ” β‰₯2𝑔𝑙

𝑑02

πœƒπ‘  = 0, πœ‹, cosβˆ’12𝑔𝑙

𝑑02πœ”2 , 2πœ‹ βˆ’ cosβˆ’1

2𝑔𝑙

𝑑02πœ”2

Two angles correspond to range of stability: inside those angles, pendulum returns to πœ‹, outside, pendulum falls down to 0

Page 18: Pendulum With Vibrating Base - University of Arizonamath.arizona.edu/.../Inverted_Pendulum_presentation.pdfPendulum With Vibrating Base MATH 485 PROJECT TEAM THOMAS BELLO, EMILY HUANG,

Unstable Caseg = 9.8, 𝑙 = 1, d = 0.1, πœ” = 20

Page 19: Pendulum With Vibrating Base - University of Arizonamath.arizona.edu/.../Inverted_Pendulum_presentation.pdfPendulum With Vibrating Base MATH 485 PROJECT TEAM THOMAS BELLO, EMILY HUANG,

Stable Caseg = 9.8, 𝑙 = 1, d = 0.1, πœ” = 50

Page 20: Pendulum With Vibrating Base - University of Arizonamath.arizona.edu/.../Inverted_Pendulum_presentation.pdfPendulum With Vibrating Base MATH 485 PROJECT TEAM THOMAS BELLO, EMILY HUANG,

Stable Caseg = 9.8, 𝑙 = 1, d = 0.1, πœ” = 70

Page 21: Pendulum With Vibrating Base - University of Arizonamath.arizona.edu/.../Inverted_Pendulum_presentation.pdfPendulum With Vibrating Base MATH 485 PROJECT TEAM THOMAS BELLO, EMILY HUANG,

Applications

http://www.youtube.com/watch?v=Df6Rfsi6zSY

Page 22: Pendulum With Vibrating Base - University of Arizonamath.arizona.edu/.../Inverted_Pendulum_presentation.pdfPendulum With Vibrating Base MATH 485 PROJECT TEAM THOMAS BELLO, EMILY HUANG,

Future AnalysisAnalyzing Critical Values for the Horizontal Case

Analyzing Critical Values for Arbitrary Angles

Experimentation for comparison with theoretical findings.

Page 23: Pendulum With Vibrating Base - University of Arizonamath.arizona.edu/.../Inverted_Pendulum_presentation.pdfPendulum With Vibrating Base MATH 485 PROJECT TEAM THOMAS BELLO, EMILY HUANG,

Thank You

Questions?


Top Related