Transcript
Page 1: Granular Micromechanics Model for Beams, Plates, and Shellsweb.ics.purdue.edu/~gonza226/research/ResearchSnapshot... · 2017. 8. 23. · Granular Micromechanics Model for Beams, Plates,

GranularMicromechanicsModelforBeams,Plates,andShells

CAUCHYHEXAGONVS.STRUCTURALELEMENTGRANULARMICROMECHANICSFORCONTINUUM

ADVANTAGES

cp3 NationalScienceFoundationwww.nsf.gov

CenterforParticulateProductsandProcessesengineering.purdue.edu/CP3

PayamPoorsolhjouyandMarcial Gonzalez www.marcialgonzalez.net

• Macroscopic mechanical behavior of materials depends upon theirmicrostructure and micromechanical properties.

• Methods at various scales and with different levels of computationaldemand may be used for incorporating material microstructure andmicromechanical properties.

• In Granular Micromechanics approach, the material is envisioned as acollection of grains interacting with each other through pseudo-bonds thatcharacterize material’s macroscopic behavior.

INTRODUCTION

• In this approach, material’s behavior is derived through micro-macrokinematic identification and an appropriate inter-granular constitutiverelationship, followed by Principle of Virtual Work.

KinematicIdentification

u

pi = u

ni +

@ui

@xj(xp

j � x

nj )

�i = upi � un

i = ✏ij lj

!

"

#$

#%

Microscopicforce-law

fi =@W↵

@�↵i= Kij�

↵j PVW

W = �ij✏ij =1

V

NcX

↵=1

W↵

kle ijs

ifkd

TensorialConstitutiveEquations

KinematicAssumption

PrincipleofVirtualWork

(PVW)

MicroscopicConstitutiveLaws

PrincipleofVirtualWork

(PVW)

StaticAssumption

TensorialContinuummechanics

GranularMicromechanicsKinematicapproach

GranularMicromechanicsStaticapproach

CauchyStress

�ij =@W

@✏ij=

1

V

NcX

↵=1

@W↵

@✏ij

Gra

nula

r sys

tem

, C

ompu

tatio

nal D

eman

d

10-2 10-3 10-5 10-6 10-9 10-8 10-7 10-4 Length scale, meters

Coarse grained – Molecular or bead-spring models.

Atomic models

Continuum models

Meso-scale particle models

Many intermediate scales and structures may be conceived. Structures and their coarse graining regimen are typically ill-defined.

Granular micromechanics – micromorphic continua.

Granular Micromechanics

Grains,boundaries,andcontacts:ill-definedforcomplexmaterials

Prohibitivelylargecomputations

Ignoresmicrostructureandmicromechanicalphenomena

Stiffnesstensor

Cijkl =1

V

NcX

↵=1

hK↵

ikl↵j l

↵l

i

• Modeling materials withdifferent levels of anisotropyusing distribution functions

• Capturing induced anisotropy automatically by using nonlinear inter-granular force laws.

Transverselyisotropic

OrthotropicIsotropic

0.05 0.1

30

210

60

240

90270

120

300

150

330

180

0

ρ = 0.55

Zavg = 5.93

ForcedistributionTriaxial loading

Stiffnesstensor

Cijkl = l2⇢

ZZ hKiklj ll

i⇠(✓,�) sin ✓d⌦

-60

-40

-20

0

20

-60 -40 -20 0 20

σ 22

(MPa

)

σ11 (MPa)

Initial

Pre-loaded (0.2σy)

Pre-loaded (0.4σy)

Pre-loaded (0.6σy)

Pre-loaded (0.8σy)

(b)

0 2.5 5 7.5 100

2

4

6

8 x 107

x (1/mm)

w (r

ad/s

)

Longitudinal

Wavenumber

Frequency

0 2.5 5 7.5 100

2

4

6

8 x 107

x (1/mm)

w (r

ad/s

)

Transverse

Wavenumber

Volumetric

Deviatoric

Average longitudinal Average transverse

Antisymmetricshear

Symmetricshear

(b)

(a)

Wave number Wave number

Frequency

Path-dependentfailure

• Minimal additional computational expense:o Only looking at different directions and not following every contact

Δ𝑥Δ𝑦

Δ𝑧𝜖&&

𝜖''

𝜖((

Δ𝑥𝑏

𝜖&&

ElementSize𝛥𝑥×𝛥𝑦×𝛥𝑧 𝛥𝑥×𝑏×ℎ

StraincomponentsConstant Varyinginheight

Constitutivelaws

𝜎./ = 𝐶./23𝜖23𝑁 = 𝐸𝐴𝜖𝑀 = 𝐸𝐼��

KIRCHHOFFPLATEELEMENT

!

"#

u1(x, y, z) = u(x, y)� z

@w

@x

u2(x, y, z) = v(x, y)� z

@w

@y

u3(x, y, z) = w(x, y)

Displacement Straintensor

✏ij

= u(i,j) =

2

4✏xx

+ zxx

✏xy

+ zxy

0✏xy

+ zxy

✏yy

+ zyy

00 0 0

3

5

Constitutiverelationships

8>>>>>><

>>>>>>:

N1

N2

M1

M2

V12

Q12

9>>>>>>=

>>>>>>;

=Eh

1� ⌫2

2

6666664

1 ⌫ 0 0 0 0⌫ 1 0 0 0 00 0 h2/12 h2⌫/12 0 00 0 h2⌫/12 h2/12 0 00 0 0 0 1�⌫

2 0

0 0 0 0 0 h2

121�⌫2

3

7777775

8>>>>>><

>>>>>>:

✏11✏2211

22

�12212

9>>>>>>=

>>>>>>;

PARTICLE-BINDERMATERIALSYSTEM

SHELLS

FUNCTIONALLYGRADEDMATERIALS(FGM)

0 0.002 0.004 0.006 0.008 0.0175 [1=m]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Norm

al fo

rce a

nd M

omen

t

NM

0 0.002 0.004 0.006 0.008 0.0175 [1=m]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Norm

al fo

rce a

nd M

omen

t

NM

NormalForce,N

[KN]

BendingMoment,M

[KN.m

]

Bending strain, [1/m]

Homogeneous

0 0.002 0.004 0.006 0.008 0.0175 [1=m]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Nor

mal

forc

e and

Mom

ent

NM

0 0.002 0.004 0.006 0.008 0.0175 [1=m]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Nor

mal

forc

e and

Mom

ent

NM

NormalForce,N

[KN]

BendingMoment,M

[KN.m

]

Bending strain, [1/m]

FGM

Microscopicforce law

Compression

0 0.5 1 1.575 [1=m]

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

Nor

mal

forc

e an

d M

omen

t

NM

Bending

0 0.5 1 1.575 [1=m]

-14

-12

-10

-8

-6

-4

-2

0

2

<11

[MPa

]

�11

CYCLICLOADING

Bend

ing

Axial

Constantgrainsize FGM

Straincomponents✏1 =

R1

R1 � z(✏1 + z1)

✏2 =R2

R2 � z(✏2 + z2)

�12 =R1

R1 � z(✏12 + z12) +

R2

R2 � z(✏21 + z21)

�23 = �13 = 0

In a spherical shell,constitutive laws willbe identical to thatof a Kirchhoff plate.

!

"

#

$

%

Coupledconstitutiverelationship

8>>>>>><

>>>>>>:

N1

N2

M1

M2

V12

Q12

9>>>>>>=

>>>>>>;

=Ch

1� ⌫2

2

66666664

kn kn⌫�knh

h2

12�knh

h2

12 ⌫ 0 0

kn⌫ kn�knh

h2

12 ⌫�knh

h2

12 0 0�knh

h2

12�knh

h2

12 ⌫ knh2/12 knh2⌫/12 0 0�knh

h2

12 ⌫�knh

h2

12 knh2⌫/12 knh2/12 0 0

0 0 0 0 kn1�⌫2

�knh

h2

121�⌫2

0 0 0 0 �knh

h2

121�⌫2 kn

h2

121�⌫2

3

77777775

8>>>>>><

>>>>>>:

✏k11✏k22k11

k22

�k12

2k12

9>>>>>>=

>>>>>>;

[1]

[2]

REFERENCES1- Misra, Anil, and Poorsolhjouy, Payam, Acta Mechanica 227, no. 5 (2016): 1393.2- Poorsolhjouy, Payam, and Misra, Anil, Intl. J. of Solids and Structures 108 (2017): 139-152.

-20 -15 -10 -5 070 [%]

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Nor

mal

forc

e an

d M

omen

t

NM

-1.5 -1 -0.5 0 0.5 1 1.575 [1=m]

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

Nor

mal

forc

e an

d M

omen

t

N

M

-1.5-1

-0.50

0.51

1.575

[1=m]

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05 0

0.05

Normal force and Moment

2 4 6 8 10 12 14 16 18

#10

4

-1.5 -1 -0.5 0 0.5 1 1.575 [1=m]

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

Nor

mal

forc

e an

d M

omen

t

N

M

Loadingprogress

-25 -20 -15 -10 -5 070 [%]

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Nor

mal

forc

e an

d M

omen

t

N

M

-25 -20 -15 -10 -5 070 [%]

-1

-0.8

-0.6

-0.4

-0.2

0

Nor

mal

forc

e an

d M

omen

t

N

M

Top Related