Transcript
Page 1: Experimental evidence for Chirality

Experimental evidence for ChiralityS. Frauendorf

Department of Physics

University of Notre Dame

USA

IKH, Forschungszentrum

Rossendorf, Dresden

Germany

Page 2: Experimental evidence for Chirality

In collaboration withJ. Meng, PKUV. Dimitrov, ISUF. Doenau, FZRU. Garg, NDK. Starosta, MSUS. Zhu, ANL

Page 3: Experimental evidence for Chirality

Consequence of chirality: Two identical rotational bands.

Page 4: Experimental evidence for Chirality

The prototype of a chiral rotor

Frauendorf, Meng, Frauendorf, Meng, Nucl. Phys. A617, 131 (1997Nucl. Phys. A617, 131 (1997) )

Page 5: Experimental evidence for Chirality

Particle – Rotor model:

Frauendorf, Meng, Nuclear Physics A617, 131 (1997)Frauendorf, Meng, Nuclear Physics A617, 131 (1997)

Doenau, Frauendorf, Zhang, PRC , in preparation

Page 6: Experimental evidence for Chirality

312 ,

Dynamical (Particle Rotor) calculation

Chiral vibration

Page 7: Experimental evidence for Chirality

Frozen alignment approximation:

They are numbers

One dimensional -very well suited for analysis.

Page 8: Experimental evidence for Chirality

312 44 JJJ

chiralvibration

chiralrotation

jJ crit 3

24

Page 9: Experimental evidence for Chirality
Page 10: Experimental evidence for Chirality

out

in

out

out

in

in

yrast yrare

out

in

Page 11: Experimental evidence for Chirality

312 ,

Dynamical (Particle Rotor) calculation

Chiral vibration

Page 12: Experimental evidence for Chirality

chiralregime

2/112/11 21 jj

8 10 12 14 16 18 20 22 24 26 28 300.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

=90o

E2-

E1

I

omega1 E2E1

rotEE 3.012

Page 13: Experimental evidence for Chirality

10 12 14 16 18 20 22

0.0

0.1

0.2

0.3

0.4

=90o

1->1 1->2 2->1 2->2

B(E

2,I-

>I-

2)

I

8 10 12 14 16 18 20 22-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

=90o

1->1 1->2 2->1 2->2

B(M

1,I-

>I-

1)

I

8 10 12 14 16 18 20 22

0.0

0.1

0.2

0.3

0.4

0.5

=90o

1->1 1->2 2->1 2->2

B(E

2,I-

>I-

1)

I

Page 14: Experimental evidence for Chirality

band 2 band 1134Pr

h11/2 h11/2

10 12 14 16 18 20 220

100

200

300

400

500

600

700

800

900

1000

backbend

134Prexperiment

E2-

E1

I

E2E1 omega1

Page 15: Experimental evidence for Chirality

10 15 20 250.0

0.2

0.4

0.6

0.8

1.0

=90o 1:2E

2-E

1

I

omega1 E2E1

2/192/11 21 jj

Page 16: Experimental evidence for Chirality

10 15 20 25

0.00

0.05

0.10

0.15

0.20

0.25

0.30 =90o 1:2B

(E2

,I->

I-1

)

I

BE2u(11) BE2u(12) BE2u(21) BE2u(22)

10 15 20 25

0

1

2

3

4

5

=90o 1:2

B(M

1,I-

>I-

1)

I

BM1(11) BM1(12) BM1(21) BM1(22)

10 15 20 25-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40 =90o 1:2

B(E

2,I-

>I-

2)

I

BE2s(11) BE2s(12) BE2s(21) BE2s(22)

Page 17: Experimental evidence for Chirality

Microscopic moments of inertia

Cranking of the core about the 3 axes

1:4:1:: 321 JJJIrrotational flow

1:55.3:52.1:: 321 JJJ

o3018.0

Page 18: Experimental evidence for Chirality

10 12 14 16 18 20 220

100

200

300

400

500

600

700

800

900

1000

PR + TAC

E2-

E1

I

E2E1 omega1

10 12 14 16 18 20 220

100

200

300

400

500

600

700

800

900

1000

backbend

134Prexperiment

E2-

E1

I

E2E1 omega1

Page 19: Experimental evidence for Chirality

10 12 14 16 18 20 220.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

PR + TAC

B(M

1,I-

>I-

1)

I

BM111 BM112 BM121 BM122

10 12 14 16 18 20 22

0.0

0.1

0.2

0.3

0.4

0.5

0.6

PR + TAC

B(E

2,I-

>I-

2)

I

BE2s11 BE2s12 BE2s21 BE2s22

10 12 14 16 18 20 220

100

200

300

400

500

600

700

800

900

1000

PR + TAC

E2-

E1

I

E2E1 omega1

Page 20: Experimental evidence for Chirality

10

12

13

14

15

16

17

18

19

11 10

12

13

14

15

16

17

18

19

11

112 2

Page 21: Experimental evidence for Chirality

10 15 20 25

0

1

2

3

4

5

=80o

B(M

1,I-

>I-

1)

I

BM1(11) BM1(12) BM1(21) BM1(22)

10 12 14 16 18 20 22 240.0

0.1

0.2

0.3

0.4

0.5

=80o

B(E

2,I-

>I-

2)

I

BE2s(11) BE2s(12) BE2s(21) BE2s(22)

10 15 20 250.0

0.1

0.2

0.3

0.4

0.5

=80o

B(E

2,I

->I-

1)

X Axis Title

BE2u(11) BE2u(12) BE2u(21) BE2u(22)

10 15 20 250.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

=80o

E2-

E1

I

E2E1 omega1

Page 22: Experimental evidence for Chirality

5910445 Rh 2/11

12/9 hg

C. Vaman et alPhys. Rev. Lett.92, 032501 (2004)

Page 23: Experimental evidence for Chirality

10 15 20 25

0.00

0.05

0.10

0.15

0.20

0.25

0.30 =90o 1:2B

(E2

,I->

I-1

)

I

BE2u(11) BE2u(12) BE2u(21) BE2u(22)

10 15 20 25

0

1

2

3

4

5

=90o 1:2

B(M

1,I-

>I-

1)

I

BM1(11) BM1(12) BM1(21) BM1(22)

10 15 20 25-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40 =90o 1:2

B(E

2,I-

>I-

2)

I

BE2s(11) BE2s(12) BE2s(21) BE2s(22)

Page 24: Experimental evidence for Chirality

S. Zhu et al.Phys. Rev. Lett. 91, 132501 (2003)

Composite chiral band in 7513560 Nd

Page 25: Experimental evidence for Chirality

Chiral sister bands

Representativenucleus I

observed13 0.21 145910445 Rh 2/11

12/9 hg

13 0.21 4011118877 Ir

2/912/9 gg

447935 Br

12/132/13

ii

13 0.21 14

predicted

predicted

9316269 Tm 1

2/112/13ii predicted45 0.32 26

12/112/11

hh observed13 0.18 267513459 Pr

31/37

Page 26: Experimental evidence for Chirality

Chiral vibrator

2/1 2

1

12

12

)()(2/1

2

1

1

222

233

211

IIA

j

Ij

JAjJAjJAH

ii

W

J

JJ

J

Page 27: Experimental evidence for Chirality

[8] K. Starosta et al., Physical Review Letters 86, 971 (2001)

Page 28: Experimental evidence for Chirality

Conclusions

Energy condition rotEE 3.012 met for several cases.

Left-right coupling (LRC) displaces the two bands

LCR makes the transition rates in the two bands somewhat different.Seen in BM1/BE2. Lifetimes needed.

LCR distributes the classical transition strength between intrabandand interband transitions. Sensitive to details. Inter/Intra not a good indicator for chirality.

B(intra)+B(inter) can be compared with classical strength (from TAC).

New regions : A=190, A=162 TSD


Top Related