Transcript
Page 1: Engineering Circuit Analysis

Engineering Circuit AnalysisEngineering Circuit Analysis

CH8 Fourier Circuit AnalysisCH8 Fourier Circuit Analysis

8.1 Fourier Series8.1 Fourier Series8.2 Use of Symmetry8.2 Use of Symmetry

Page 2: Engineering Circuit Analysis

Ch8 Fourier Circuit Analysis

8.1 Fourier Series8.1 Fourier Series

- Most of the functions of a circuit are periodic functions

- They can be decomposed into infinite number of sine and cosine functions that are harmonically related.

- A complete responds of a forcing function =

Partial response to each harmonics. erpositonsup

Page 3: Engineering Circuit Analysis

Harmonies: Give a cosine function

- : fundamental frequency ( is the fundamental wave form)

- Harmonics have frequencies

0

0

01

21:

2:

cos2

wfTT

wff

twtv

0w tv1

tnwatv nn 0cos

Amplitude of the nth harmonics(amplitude of the fundamental wave form)

,4,3,2, 0000 wwww

Freq. of the 1st harmonics (=fund. freq)

Freq. of the 2nd harmonics

Freq. of the nth harmonics

Freq. of the 3rd harmonics

Freq. of the 4th harmonics

Ch8 Fourier Circuit Analysis

8.1 Fourier Series8.1 Fourier Series

Page 4: Engineering Circuit Analysis

8.1 Fourier Series8.1 Fourier SeriesExample Fundamental: v1 = 2cosw0t

v3a = cos3w0t v3b = 1.5cos3w0t

v3c = sin3w0t

Ch8 Fourier Circuit Analysis

Page 5: Engineering Circuit Analysis

- Fourier series of a periodic function

Given a periodic function

can be represented by the infinite series as

( ) ( ) ( )Ttftftf +=:

tf

1000

0201

02010

sincos

2sinsin

2coscos

nnn tnwbtnwaa

twbtwb

twatwaatf

?

?

?0

n

n

b

a

a

Ch8 Fourier Circuit Analysis

8.1 Fourier Series8.1 Fourier Series

Page 6: Engineering Circuit Analysis

Example 12.1

3.01.0,0

1.01.0,5cos

t

ttVtV m

mVa 0

Ch8 Fourier Circuit Analysis

8.1 Fourier Series8.1 Fourier Series

Given a periodic function

It is knowing

21mVa

1n

12cos2

2

n

nVa mn

00b

It can be seen , we can evaluate 50

3

22

mVa 03a 15

24

mVa 05a 35

26

mVa

tV

tV

tV

tVV

tV

m

mmmm

30cos35

2

20cos15

210cos

3

25cos

2

Page 7: Engineering Circuit Analysis

-Review of some trigonometry integral observations

(a)

(c)

(d)

0sin0 0 dttnwT

0cos0 0 dttnwT

(b)

(e)

0sinsin2

1cossin

0 000 00 dttwnktwnkdttnwtkwTT

nkif

nkifT

dttwnktwnk

dttnwtkw

T

T

,0

,2

coscos2

1

sinsin

0 00

0 00

nkif

nkifT

dttwnktwnk

dttnwtkw

T

T

,0

,2

coscos2

1

cossin

0 00

0 00

Ch8 Fourier Circuit Analysis

8.1 Fourier Series8.1 Fourier Series

Page 8: Engineering Circuit Analysis

-Evaluations of nn baa ,,0

0a

T

nnn

TTdttnwbtnwadtadttf

01

000 00sincos

Based on (a) (b)

0sincos0

100

T

nnn dttnwbtnwa

Tdttf

Ta

00

1

0a ( is also called the DC component of ) tf

Ch8 Fourier Circuit Analysis

8.1 Fourier Series8.1 Fourier Series

Page 9: Engineering Circuit Analysis

na

Based on (b)

T

nn

T

nn

TT

dttkwtnwb

dttkwtnwadttkwatdtkwtf

01

00

01

000 000 0

cossin

coscoscoscos

T

n

n

T

nn

tdtnwtfT

a

aT

dttkwtnwa

0 0

01

00

cos2

2coscos

0cossin0

100

T

nn dttkwtnwb

0cos0 00 dttkwaT

Based on (c)

Based on (e)

Ch8 Fourier Circuit Analysis

8.1 Fourier Series8.1 Fourier Series

When k=n

Page 10: Engineering Circuit Analysis

nb

Based on (a)

T

nn

T

nn

TT

dttkwtnwb

dttkwtnwadttkwatdtkwtf

01

00

01

000 000 0

sinsin

sincossinsin

T

n

n

T

nn

tdtnwtfT

b

bT

dttkwtnwb

0 0

01

00

sin2

2sinsin

0sincos0

100

T

nn dttkwtnwa

0sin0 00 dttkwaT

Based on (c)

Based on (d)

Ch8 Fourier Circuit Analysis

8.1 Fourier Series8.1 Fourier Series

When k=n

Page 11: Engineering Circuit Analysis

nnnnn tnwbatnwbtnwa 022

00 cossincos

)(Hzf

22nnn bav

Harmonic

amplitude

7v

07 f06 f05 f04 f03 f02 f0f

5v6v4v3v2v1v

Phase spectrum

0f 02 f 03 f 04 f 05 f 06 f 07 f)(Hzf

n

n

nn a

b 1tan

Ch8 Fourier Circuit Analysis

8.1 Fourier Series8.1 Fourier Series

Page 12: Engineering Circuit Analysis

- Depending on the symmetry (odd or even), the Fourier series can be further simplified.

Even Symmetry

Observation: rotate the function curve along axis, the curve will overlap with the curve on the other half of .

Example :

Odd Symmetry

Observation: rotate the function curve along the axis, then along the axis, the curve will overlap with the curve on the other half .

Example :

tftf

tftf

wttf cos

tf tf

wttf sin

t tf

Ch8 Fourier Circuit Analysis

8.2 Use of Symmetry8.2 Use of Symmetry

Page 13: Engineering Circuit Analysis

Symmetry Algebra

(a) odd func. =odd func. × even func.

Example:

(b) even func. =odd func. × odd func.

Example:

(c) even func. =even func. × even func.

Example:

tωtωtω

cossin=2

2sin

tωtωtω

cos×cos=2

1+2cos

tωtωtω

sin×sin=2

2cos-1

Ch8 Fourier Circuit Analysis

8.2 Use of Symmetry8.2 Use of Symmetry

Page 14: Engineering Circuit Analysis

(d) even func. =const. +∑ even func. (No odd func.)

Example:

(e) odd func. =∑odd func.

Example:

tωtωtω 22 sin2-1=1-cos2=2cos

( ) φtωφtωφtω sincos+cossin=+sin

odd func. odd func.

Ch8 Fourier Circuit Analysis

8.2 Use of Symmetry8.2 Use of Symmetry

Page 15: Engineering Circuit Analysis

Apply the symmetry algebra to analyze the Fourier series.

If is an even function

If is an odd function

1

000 sincosn

nn tnwbtnwaatf

100 cos

0

nn

n

tnwaatf

b

10

0

sin

00

nn

n

tnwbtf

aa

tf

tf

Ch8 Fourier Circuit Analysis

8.2 Use of Symmetry8.2 Use of Symmetry

Page 16: Engineering Circuit Analysis

Half-wave symmetry f(t) = -f(t - ) or f(t) = -f(t + )2

T2

T

Ch8 Fourier Circuit Analysis

8.2 Use of Symmetry8.2 Use of Symmetry

Page 17: Engineering Circuit Analysis

evenisn

oddisntdtnwtfTb

evenisn

oddisntdtnwtfTa

T

n

T

n

0

sin4

0

cos4

0

0

0

0

Fourier series:

Ch8 Fourier Circuit Analysis

8.2 Use of Symmetry8.2 Use of Symmetry


Top Related