Transcript
Page 1: Dynamic axial crush response of circular honeycombs by Royan J. D'Mello, Sophia Guntupalli, Lucas R. Hansen, and Anthony M. Waas Proceedings A Volume ():rspa20110722

Dynamic axial crush response of circular honeycombs

by Royan J. D'Mello, Sophia Guntupalli, Lucas R. Hansen, and Anthony M. Waas

Proceedings AVolume ():rspa20110722

May 23, 2012

©2012 by The Royal Society

Page 2: Dynamic axial crush response of circular honeycombs by Royan J. D'Mello, Sophia Guntupalli, Lucas R. Hansen, and Anthony M. Waas Proceedings A Volume ():rspa20110722

Diagram of the 3-cell and 7-cell circular polycarbonate honeycombs.

Royan J. D'Mello et al. Proc. R. Soc. A doi:10.1098/rspa.2011.0722

©2012 by The Royal Society

Page 3: Dynamic axial crush response of circular honeycombs by Royan J. D'Mello, Sophia Guntupalli, Lucas R. Hansen, and Anthony M. Waas Proceedings A Volume ():rspa20110722

Micro-section of the contact site of two cells in the polycarbonate honeycombs as seen under an optical microscope.

Royan J. D'Mello et al. Proc. R. Soc. A doi:10.1098/rspa.2011.0722

©2012 by The Royal Society

Page 4: Dynamic axial crush response of circular honeycombs by Royan J. D'Mello, Sophia Guntupalli, Lucas R. Hansen, and Anthony M. Waas Proceedings A Volume ():rspa20110722

Schematic showing the experimental set-up of the wave loading device (WLD).

Royan J. D'Mello et al. Proc. R. Soc. A doi:10.1098/rspa.2011.0722

©2012 by The Royal Society

Page 5: Dynamic axial crush response of circular honeycombs by Royan J. D'Mello, Sophia Guntupalli, Lucas R. Hansen, and Anthony M. Waas Proceedings A Volume ():rspa20110722

Typical rest–ramp displacement of the incident bar at the specimen end.

Royan J. D'Mello et al. Proc. R. Soc. A doi:10.1098/rspa.2011.0722

©2012 by The Royal Society

Page 6: Dynamic axial crush response of circular honeycombs by Royan J. D'Mello, Sophia Guntupalli, Lucas R. Hansen, and Anthony M. Waas Proceedings A Volume ():rspa20110722

Plot showing the initial deformation response of the 3-cell specimen under dynamic crush loading using the WLD method.

Royan J. D'Mello et al. Proc. R. Soc. A doi:10.1098/rspa.2011.0722

©2012 by The Royal Society

Page 7: Dynamic axial crush response of circular honeycombs by Royan J. D'Mello, Sophia Guntupalli, Lucas R. Hansen, and Anthony M. Waas Proceedings A Volume ():rspa20110722

Images of the initial stages of deformation in a 3-cell specimen loaded in the WLD set-up from t=0 to t=0.2 ms.

Royan J. D'Mello et al. Proc. R. Soc. A doi:10.1098/rspa.2011.0722

©2012 by The Royal Society

Page 8: Dynamic axial crush response of circular honeycombs by Royan J. D'Mello, Sophia Guntupalli, Lucas R. Hansen, and Anthony M. Waas Proceedings A Volume ():rspa20110722

Plot showing the initial deformation response of the 7-cell specimen under dynamic crush loading using the WLD set-up.

Royan J. D'Mello et al. Proc. R. Soc. A doi:10.1098/rspa.2011.0722

©2012 by The Royal Society

Page 9: Dynamic axial crush response of circular honeycombs by Royan J. D'Mello, Sophia Guntupalli, Lucas R. Hansen, and Anthony M. Waas Proceedings A Volume ():rspa20110722

Images of the initial stages of deformation in a 7-cell specimen loaded in the WLD setup from t=0 to t=0.2 ms.

Royan J. D'Mello et al. Proc. R. Soc. A doi:10.1098/rspa.2011.0722

©2012 by The Royal Society

Page 10: Dynamic axial crush response of circular honeycombs by Royan J. D'Mello, Sophia Guntupalli, Lucas R. Hansen, and Anthony M. Waas Proceedings A Volume ():rspa20110722

Schematic showing the set-up for the direct impact method (DIM).

Royan J. D'Mello et al. Proc. R. Soc. A doi:10.1098/rspa.2011.0722

©2012 by The Royal Society

Page 11: Dynamic axial crush response of circular honeycombs by Royan J. D'Mello, Sophia Guntupalli, Lucas R. Hansen, and Anthony M. Waas Proceedings A Volume ():rspa20110722

Load–time plot of the 3-cell specimen when impacted directly by the striker bar.

Royan J. D'Mello et al. Proc. R. Soc. A doi:10.1098/rspa.2011.0722

©2012 by The Royal Society

Page 12: Dynamic axial crush response of circular honeycombs by Royan J. D'Mello, Sophia Guntupalli, Lucas R. Hansen, and Anthony M. Waas Proceedings A Volume ():rspa20110722

Load–time plot of a 3-cell specimen when directly impacted by a striker bar.

Royan J. D'Mello et al. Proc. R. Soc. A doi:10.1098/rspa.2011.0722

©2012 by The Royal Society

Page 13: Dynamic axial crush response of circular honeycombs by Royan J. D'Mello, Sophia Guntupalli, Lucas R. Hansen, and Anthony M. Waas Proceedings A Volume ():rspa20110722

Load–time plot of a 7-cell specimen when directly impacted by a striker bar.

Royan J. D'Mello et al. Proc. R. Soc. A doi:10.1098/rspa.2011.0722

©2012 by The Royal Society

Page 14: Dynamic axial crush response of circular honeycombs by Royan J. D'Mello, Sophia Guntupalli, Lucas R. Hansen, and Anthony M. Waas Proceedings A Volume ():rspa20110722

Diagram showing the boundary conditions used on the honeycomb during eigenbuckling analysis.

Royan J. D'Mello et al. Proc. R. Soc. A doi:10.1098/rspa.2011.0722

©2012 by The Royal Society

Page 15: Dynamic axial crush response of circular honeycombs by Royan J. D'Mello, Sophia Guntupalli, Lucas R. Hansen, and Anthony M. Waas Proceedings A Volume ():rspa20110722

Eigenmodes for 3-cell and 7-cell specimens that are chosen to perturb the mesh for explicit FE simulations.

Royan J. D'Mello et al. Proc. R. Soc. A doi:10.1098/rspa.2011.0722

©2012 by The Royal Society

Page 16: Dynamic axial crush response of circular honeycombs by Royan J. D'Mello, Sophia Guntupalli, Lucas R. Hansen, and Anthony M. Waas Proceedings A Volume ():rspa20110722

The rate-dependent compressive behaviour of polycarbonate taken from Mulliken & Boyce (2006).

Royan J. D'Mello et al. Proc. R. Soc. A doi:10.1098/rspa.2011.0722

©2012 by The Royal Society

Page 17: Dynamic axial crush response of circular honeycombs by Royan J. D'Mello, Sophia Guntupalli, Lucas R. Hansen, and Anthony M. Waas Proceedings A Volume ():rspa20110722

Images from the FE dynamic crush simulation of 3-cell and 7-cell models with WLD inputs.

Royan J. D'Mello et al. Proc. R. Soc. A doi:10.1098/rspa.2011.0722

©2012 by The Royal Society

Page 18: Dynamic axial crush response of circular honeycombs by Royan J. D'Mello, Sophia Guntupalli, Lucas R. Hansen, and Anthony M. Waas Proceedings A Volume ():rspa20110722

(a) Load–time plot obtained from the FE simulations (WLD method) of 7-cell honeycombs of varying amounts of geometrical imperfections.

Royan J. D'Mello et al. Proc. R. Soc. A doi:10.1098/rspa.2011.0722

©2012 by The Royal Society

Page 19: Dynamic axial crush response of circular honeycombs by Royan J. D'Mello, Sophia Guntupalli, Lucas R. Hansen, and Anthony M. Waas Proceedings A Volume ():rspa20110722

Images from the FE dynamic crush simulation of 3-cell and 7-cell models with loading velocity 5000 mm s−1 (DIM simulation).

Royan J. D'Mello et al. Proc. R. Soc. A doi:10.1098/rspa.2011.0722

©2012 by The Royal Society

Page 20: Dynamic axial crush response of circular honeycombs by Royan J. D'Mello, Sophia Guntupalli, Lucas R. Hansen, and Anthony M. Waas Proceedings A Volume ():rspa20110722

Load–time plot (shown on the left-hand axix) obtained from the FE simulation for the 7-cell honeycomb model with varying amounts of geometrical imperfections being crushed at the rate

of 5000 mm s−1 (DIM simulation).

Royan J. D'Mello et al. Proc. R. Soc. A doi:10.1098/rspa.2011.0722

©2012 by The Royal Society

Page 21: Dynamic axial crush response of circular honeycombs by Royan J. D'Mello, Sophia Guntupalli, Lucas R. Hansen, and Anthony M. Waas Proceedings A Volume ():rspa20110722

Plot showing the variation of material strain rate and normalized plateau load per cell with crush velocity for 3-cell and 7-cell models.

Royan J. D'Mello et al. Proc. R. Soc. A doi:10.1098/rspa.2011.0722

©2012 by The Royal Society

Page 22: Dynamic axial crush response of circular honeycombs by Royan J. D'Mello, Sophia Guntupalli, Lucas R. Hansen, and Anthony M. Waas Proceedings A Volume ():rspa20110722

Plot showing the FE-simulated crush and peak load values that are normalized by number of cells for 3-cell, 4-cell, 7-cell, 13-cell and 19-cell specimens.

Royan J. D'Mello et al. Proc. R. Soc. A doi:10.1098/rspa.2011.0722

©2012 by The Royal Society


Top Related