Transcript
Page 1: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

Microbial BiofilmsSunita Panchawat*

Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur (Rajasthan), India

Email: [email protected]

Chapter 1

Current Research inMicrobiology

1. Introduction and Historical Perspective

Biofilmexhibit twotypesofgrowthmodei.e.planktoniccellandsessileaggregate.Inbiofilm(associationofmicro-organisms),cellssticktoeachotheronasurfaceencasedwithinmatrix of extracellular polymeric substance produced by bacteria themselves [1].ADutchresearcher,AntonivanLeeuwenhoek,forthefirsttimeobserved‘animalcule’onsurfacesoftoothbyusingasimplemicroscopeandthiswasconsideredasthemicrobialbiofilmdiscovery[2].Formarinemicroorganismi.e.bacterialgrowthandactivityweresubstantiallyenhancedby the incorporationofa surface towhich thesemicroorganismscouldattach isknownas“bottleeffect”observedbyHeukelekianandHeller [3].Zobellobservedthatthenumberofbacteriaonsurfaceswashigherthaninthesurroundingmedium[4].ZoBellintroducedfirstaboutmulticellularprokaryoticcommunitiesonsubmergedsurfaceswhostatedthepresenceofadherentmicrobialassociationsinallnaturalenvironments[5,6].

Theextensivephysicalandchemicalanalysisofbacterialbiofilmsdidnotbeginuntilthelate1960sandearly1970s,whensomeoftheinvestigatorsidentifiedtheextensivenessofbacterialbiofilms.ScanningandtransmissionelectronmicroscopywasusedbyJoneset al. toexaminebiofilmsontricklingfiltersinawastewatertreatmentplantandshowedthemtobecomposedofavarietyoforganisms(basedoncellmorphology).Byusingaspecificpolysaccharide-stain such as ruthenium red when coupled with osmium tetroxide fixativeto show that the matrix material surrounding and enclosing cells in these biofilms waspolysaccharide.In1973Characklis studiedmicrobialslimesinindustrialwatersystemsandreportedthattheywerenotonlyadheringverycloselybutalsohighlyresistanttodisinfectantssuchaschlorine.Costertonet al. in1978givesa theoryofbiofilmsbasedonobservationsofdentalplaqueandsessilecommunitiesinmountainstreamsthatexplainthemechanismswherebymicroorganismsadheretolivingandnonlivingmaterialsandthebenefitsarisesby

Page 2: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

2

www.openaccessebooks.com

CurrentResearchinMicrobiologyPanchawatS

thisecologicniche[7-9].

Costerton and Geesey specified that glycocalyx acted as an ionic exchangematrix,trappingnutrientsthatweretransportedintocellsbyhighlyefficientpermeases[10].In1981glycocalyx was characterised as a hydrated polyanionic polysaccharide matrix which isproducedbypolymerasesthatisattachedtothelipopolysaccharidecomponentofthebacterialcellwall. Biofilmproductionofglycocalyxinaqueousenvironmentisprevalentwithorganicandinorganicnutrientsbeingconcentratedatthesolid/liquidinterface.Theglycocalyxprovidesa physical/chemical barrier, offers partial protection against antibacterial agents [11]. Thestructuresofdifferentbiofilmshavedistinctfeaturesbecauseitformsunderdiverseconditionsandcomposedofsingleormultiplespecies.Thestudyrelatedtobiophysical,structuralandchemicalpropertiesofbiofilmhaveledtoausefulbasicconceptof“biofilmmodel”[12].

The important advances of the development andbehavior of biofilmsweremade in1998,whenmoleculargeneticsapproachescombinedwithconfocallaserscanningmicroscopy(CLSM). Traditionally, microbiologists have performed physiological experiments withmicroorganisms grown in liquid monocultures where the cells are “free swimming” orplanktonic[13].Itisnowwidelyacceptedthat99%ofallmicro-organismsattachtoasurfaceandgrowasa bioflim.Animportantsurvivalstrategyformicro-organismsinthehealthcareenvironment is thegrowthof biofilmmode.According to theCenters forDiseaseControlandPrevention,theassociationofbiofilmsisapproximately65%ofall healthcare-associatedinfections.Thus,theirpresenceinmedicaldevices, chronicwounds and surgicalsiteinfectionsisofgrowingconcern[14].

Figure 1:HistoricalDevelopmentofBiofilm

2. Definition

Manynovel,organiccompoundshavebeendevelopedinlastfewyearsthatarereleasedintotheenvironment.Thesecompoundsincludeheavymetals,poly-aromatichydrocarbons,polychlorinated biphenyls, pesticides, chemical fertilizers, detergents, paints, disinfectants,

Page 3: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

3

CurrentResearchinMicrobiology

lubricants, antibiotics and nanoparticles. Many of them are toxic to humans and otherorganisms.Managing the harmful effects of these pollutants is a challenge to sustainabledevelopmentglobally.Usingbiofilmsinbioremediationcanallownewtechnologiestoremainenvironmentallysustainableifintegratedmethodsarecorrectlydevelopedandapplied[15]. Biofilms vary greatly in structure and composition from one environmental condition toanothersothattheyarenoteasilydefined.Microbialbiofilmsareextremelycomplexmicrobialecosystemsconsistingofmicroorganismsattachedtoasurfaceandembeddedinanorganicpolymermatrixofmicrobialorigin.Non-cellularmaterialssuchasmineralcrystals,corrosionparticles,andclayorsiltparticles,bloodcomponentsmayalsobefoundinthebiofilmmatrix.Thereforebiofilmmaybedefinedas“microbialcellsimmobilizedinamatrixofextracellularpolymersactingasan independentfunctioningecosystem,homeostaticallyregulated”[16]. Biofilmisacommunityofbacteriathatattachtoasurfacebyexcretingasticky,sugarysubstancethatencompassesthebacteriainamatrix. Bacteria,fungiandprotistsarethemicroorganismsthatformbiofilms.Biofilmsarecomplexsystemsthataresometimescomparedtomulticellularorganisms.Biofilmshavebeenfoundgrowingonmineralsandmetals.Theyhavebeenfoundunderwater,undergroundandabovetheground.Theycanalsogrowonplanttissuesandanimaltissues, implantedmedicaldevicessuchascathetersandpacemakersetc [17,18].Bacterialbiofilmscanbeconsideredtobeanemergentformofbacteriallife,inwhichcommunallifeiscompletelydifferentfrombacteriathatliveasfree-livingcells[19].Biofilmsmayformonlivingornon-livingsurfacesandcanbeprevalentinnatural,industrialandhospitalsettings[1,20].Themicrobialcellsgrowsonbiofilmarephysiologicallydistinctfromplanktoniccellsofthesameorganism,which,bycontrast,aresingle-cellsthatmayfloatorswiminaliquidmedium[21].ThemorphologicalstructuresofbiofilmareshowninFigure 2[22].

Figure 2ThemorphologicalsimilarityinthestructureofaP. aeruginosa biofilmandaMyxococcus fruitingbodyisevidentinthesetop-downphotographs.Bothorganismsformdistinctaggregatesofcellsthatarewellseparatedfromtheirneighbors.Left:8-h-oldbiofilmofP. aeruginosa grownonPVCplasticat400_magnification.Right:FruitingbodiesofMyxococcus xanthus after6honstarvationagarplatesat5_magnification.Microcoloniesandfruitingbodiesareindicatedbyarrows.

Page 4: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

4

CurrentResearchinMicrobiology

3. Classification of Biofilms [23].

3.1 On basis of its location:

a. Supragingival-Presentcoronaltothegingivalmargin

b. Subgingival-Presentapicaltothegingivalmargin

3.2. On basis of pathogenicity

a. Cariogenic-Generallyacidogenicandgram-positive

b. Periopathogenic-Mostlybasophilicandgram-negative

4. Composition of Biofilm

Abiofilmcomprisesanysyntrophicconsortiumofmicroorganismsinwhichcellssticktoeachotherandalso toasurface.Theseadherentcellsbecomeembeddedwithinaslimyextracellularmatrixthatiscomposedofextracellularpolymericsubstances(EPS).ThecellswithinthebiofilmproducetheEPScomponents,whicharetypicallyapolymericconglomerationofextracellularpolysaccharides,proteins,lipidsandDNA[1,24,25].Theyhavebeendescribed(metaphorically) as “cities for microbes” because they have three-dimensional structureand represent a community lifestyle formicroorganisms [26,27].TheEPShas a complexbiochemical composition, comprising predominantly carbohydrates and proteins, althoughlipidsandextracellularDNA(eDNA)havealsobeenidentified[28],alongwithexogenousinorganicororganicsubstanceswhichmaybecomeentrappedwithintheEPS,forexample,ironormanganese[29].EPSprimarilycomposedofpolysaccharidesandmayvaryinchemicalandphysicalproperties.FortheEPSgram-negativebacteria,someofthesepolysaccharidesareneutralorpolyanionic.Thepresenceofuronicacids(suchasD-glucuronic,D-galacturonic,andmannuronicacids)orketal-linkedpryruvatesconferstheanionicpropertyofEPS[30]. Thispropertyallowsassociationofdivalentcationssuchascalciumandmagnesium,whichhavebeenshowntocross-linkwiththepolymerstrandsandprovidegreaterbindingforceinadevelopedbiofilm[31].AbiofilmisanimmobilemicrobialcommunitycomposedofcellsimmersedinamatrixofEPSattachedtoasubstratumorinterface.Essentiallythematrixisofmicrobialoriginandthecellsencasedinthismatrixpresentamodifiedphenotype,especiallywithregardtogrowthrateandgenetranscription[32].Thetermofslime wasusedtodefinetheglycocalixproducedbythestronglyadherentstrainsofStaphylococcus epidermidis isolatedfromtheinfectedsurfaceofmedicalimplants[33,34].

Biofilms are group or micro-organisms in which microbes produced extracellularpolymericsubstances(EPS)suchasproteinsincludingenzymes,DNA,polysaccharidesandRNAandinadditiontothesecomponentswater(upto97%)isthemajorpartofbiofilmwhich

Page 5: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

5

CurrentResearchinMicrobiology

is responsible for theflowofnutrients inside thematrixofbiofilm.Thecomplexstructureof biofilm consists of twomain components i.e.water channel (for transport of nutrients)anddenselypackedcells(aregionhavingnoprominentporesinit)[35].Thecomponentsofbiofilms(Table1)havethecapacitytomakeitresistantagainstvariousenvironmentalfactorsandsignify thebiofilm integrity [36,37].Thechemicalcompositionofbiofilm is shown inTable 1.

5.Role and Importance of Biofilm in Different Field

5.1 In Medical Field

Microorganismsareabletoadheretovarioussurfacesandtoformathree-dimensionalstructureknownasbiofilm.Bacteriaembeddedinthebiofilmcanescapeandformwellknownplanktoniccells(freeflowingbacteriainsuspension),thatareonlyapartofthebacteriallifecycle.Bacteriaalsoadheretomedicaldevicessuchascatheters,eitherurinaryorintravenous,artificialheartvalves,orthopedicimplantsthatcausesdevice-relatedinfectionslikecystitis,catheter-related sepsis, endocarditis etc.Once a biofilmhas been establishedon a surface,thebacteriaholdinsidearelessexposedtothehost’simmuneresponseandlesssusceptibletoantibiotics.Asanimportantcauseofnosocomialinfectionsthebiofilmmustremaininthecentreofthemicrobiologist’sattention[38].

ThefourthleadingcauseofdeathintheUnitedStatesisnosocomialinfections(infectionsacquiredatahospital).About65%oftheseinfectionsareduetobiofilmsonimplantedmedicaldevices[39].BiofilmsdifferfromaninfectionofplanktonicbacteriaisduetotheEPSmatrixof the biofilm,which is important in cell adhesion and aggregation.ThisEPSmatrix alsohinders the normal functions of antibodies and the phagocytic cells of the host’s immunesystem[40].Anotherkeyfactorthatmakesbiofilmsparticularlydifficultinmedicalsituationsistheirheightenedresistancetoantibiotics.Therearethreeproposedmethods[41]:

a. Theantibiotic isdeactivated faster than it candiffuseandalsonot able topenetrate thesurfacelayersofthebiofilm.

b.Thedifferentchemicalenvironmentsofbiofilmcanaffecttheactionoftheantibiotic.Thecauseofnon-growingstateofbacteriaislowlevelofnutrientsinthelowerlayersofbiofilm.

Table 1: ChemicalCompositionofBiofilms

S. No. Components Percentage

1 Microbialcells 2-5%

2 Polysaccharides 1-2%

3 DNAandRNA <1-2%

4 Proteinsincludingenzymes <1-2%

5 Water Upto97%

Page 6: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

6

CurrentResearchinMicrobiology

c.About1%ofthepopulationmayexhibitaphenotypicstate(whichpersistsundercontinuedexposuretoanantibiotic),evenwhenthebiofilmistoothintoinhibitdiffusionoftheantibioticorofnutrients.

Becauseoftheseproperties,cells(existinbiofilms)canbe1000timesmoreresistantto antimicrobial agents than the same cells in planktonic form.Cells at the surface of thebiofilmcaninfectthehostwhendetachfromthebiofilmmatrix.Therefore,biofilmscanactasareservoirofprotectedbacteria(oninsertedmedicaldevices)oftenpersistsuntiltheremovaloftheinfecteddevices[42,43].TogetridcompletelyfromtheInfectionsassociatedwiththebiofilmgrowtharechallengingtaskduetothefactmaturebiofilmsdisplaytolerancetowardsantibioticsand the immune response.The rapidlygrowing industry forbiomedicaldevicesandtissueengineeringrelatedproductsisalreadyat$180billionperyearworldwide.Theseindustries continue to suffer frommicrobial colonization [44,45].VariousmicroorganismsdevelopedonmedicaldevicesareshowninTable 2.

5.2. In Industry

Biofilmformedwhenbacteriaareabletoattachtoandcolonizeenvironmentalsurfaceswhichallowtheorganismstopersistintheenvironmentandresistdesiccation,UVlightandtreatment with antimicrobials and sanitizing agents. Biofilms are formed when microbesattach toa solidsupportand toeachotherbyextracellularpolymericsubstances (EPS)onawidevarietyofsurfaces includingmetal,plastic, rockand livingordead tissue.Bacteriacanbeseveralordersofmagnitudeinbiofilmwhichismoreresistanttoantimicrobialsthantheir planktonic forms [46]. Inmarine and other aquatic environments algae, diatoms andbacteriathatareabletoattachandformbiofilmsonships’hullsandbecomeresistanttothedifferentantifoulingpaints(developedtopreventtheinitialcolonization)resultsinincreasedfluidfrictionalresistanceandfuelconsumption.Inthefoodindustry,contaminationoffoodprocessingand/orfoodcontactequipmentoftenleadstopost-processcontaminationandreducetheshelflifeofproducts[47].

Table 2:Microorganismsassociatedwithbiofilmdevelopedonmedicaldevices

S. No. Microorganism Medical Devices

1. Psudomonas aeuginosa Artificialhipprosthesis,Centralvenouscatheter,Urinarycatheter

2. Candida albicans Artificialhipprosthesis,Centralvenouscatheter,Prostheticheartvalves,Intra-uterinedevices

3. Staphylococcus aureus Artificialhipprosthesis,Centralvenouscatheter,Prostheticheartvalves,Intra-uterinedevices

4. Enterococcus Spp. Artificialhipprosthesis,Urinarycatheter,Prostheticheartvalves

5. Klebsiella pneumoniae Centralvenouscatheter,Urinarycatheter

6. C o a g u l a s e - n e g a t i v e staphylococci

Central venous catheter, Urinary catheter, Intra-uterine devices,Prostheticheartvalves

Page 7: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

7

CurrentResearchinMicrobiology

Biofilms can also be utilized for useful purposes. Sewage treatment plants includeasecondarytreatmentstageinwhichwastewaterpassesoverbiofilmsgrownonfilterswhichextract and digest organic compounds. In such condition of biofilms, bacteria are mainlyresponsibleforremovaloforganicmatter,whileprotozoaandrotifersaremainlyresponsibleforremovalofsuspendedsolids,includingpathogensandothermicroorganisms.Slowsandfiltersdependsonbiofilmdevelopmenttofiltersurfacewaterfromlake,springorriversourcesfordrinkingpurposes.Toeliminatepetroleumoilfromcontaminatedoceansormarinesystems,biofilmscanbehelpfulbythehydrocarbondegradingactivitiesofmicrobialcommunities[48].Biofilmsareusedtogenerateelectricityfromavarietyofstartingmaterials,includingcomplexorganicwasteandrenewablebiomassintheformofinmicrobialfuelcells(MFCs).Biofilmsarealsousedtoenhancethemetaldissolutioninbioleachingindustry[49-52].

5.3. In Food industry

Biofilmformationisadynamicprocessinwhichvariousmechanismsareinvolvedintheirattachmentandgrowth.Biofilmshavebeenamatterofinterestinthecontextoffoodhygiene.Ifthemicroorganismsfromfood-contactsurfacesarenotcompletelyremoved,theymayleadtoformbiofilmwhichincreasesthebiotransferpotential[53].Biofilmsarecomplexmicrobialecosystemsformedbyoneormorespeciesimmersedinanextracellularmatrixofdifferentcompositionswhichdependsonthefoodmanufacturingconditionsandthecolonizingspecies[54].TheformationofBiofilmsinfoodindustryenvironmentsisveryfast.Thefirsttwostepsare;a)theconditioningofthematerialssurfacesb)thereversiblebindingofthecellstothatsurface.Thebindingbecomesirreversiblethatcausesdevelopmentofmicrobialcolonies.Finally,thetridimensionalstructureofbiofilmisformed,andthiscomplexecosystemisreadyfordispersion[55-57].Theextracellularmatrixismainlycomposedofpolysaccharides,suchascellulose,proteinsorexogenousDNAand itcanbefixed tohardsurfacessuchas foodindustry equipment, transport, dispensing and storage surfaces, soil, etc. or to biologicalstructuresviz.vegetables,meat,bones,fruits.Theextracellularmatrixisresponsibleforthestrongpersistenceofthesebiofilmsinthefoodindustry.Thisgeneratescomplexgradientswithrespecttonutrientsandoxygendiffusion,containsextracellularenzymesusedfornutritionalpurposes.Thesecomplexgradientsallowforthetransferofcellcommunicationmolecules,andprotecttheembeddedcellsagainsttoxiccompounds[58].

The biofilm layer is foundon themesocarp inherently formedby various yeast andlacticacidbacteria.ThesebacteriaandyeaststrainsplayaroleinthefermentationofoliveandalsotheybecomeadominantfloraonthefruitwhichpreventstheolivefrommicrobialspoilageoriginatedbyGramnegativebacteria. In this regard, thequalityandsafetyof thetableoliveandalsothetasteandflavourofthelastproducthasbeendeterminedbybiofilmformingmicroorganismsfoundonthemesocarpofthefruit.Biofilmformingabilityisadesiredpropertyoffermentedfruitproducts[59].Beneficialeffectofthebiofilmformationisaboutthe

Page 8: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

8

CurrentResearchinMicrobiology

yeaststrainsusedcommonlyinthefoodindustry.SomeyeastspecieshavingbiotechnologicalrelevancesuchasSaccharomyces cerevisiae mightregulatetheQStype.IntheQSmechanismoftheyeaststrains,aromaticalcoholsarethemostobservedsignalmoleculeswhichcanresultinmodificationandimprovementofindustrialprocesses[60].Themicrobialinteractionshaveanimportanceforfoodindustry.Fermentation,brewingandcheeseripeningaresomeareaswheremicrobialinteractionshavebeenobserved.Mixtureoffungi,yeastandbacterialspeciesplayaledroleintheproductionofwine,fromripeningofgrapesinvineyardstowinebottling.Thegrowthofsomebacterialspecies,suchasLeucobacter sp.orBrevibacterium aurantiacum,significantlyreliesonthepresenceoftheyeast[61].

5.4 In aquaculture

Aquacultureisdefinedastheproductionofaquaticplantsandanimalsandthisisafastestgrowingfoodindustry(FAO-FisheriesandAquacultureDepartment2012).Aquaculturehasexpanded12‐foldwithanannualgrowthrateof8.8%andthisdatawasobservedduringthelast30years.In2010,ithasreachedatotalvolumeof60milliontonnesperyear.Amajorshareofglobalaquacultureproductioniscoveredbyfreshwaterfish(56.4%),mostnotablybycarpcultureinChina(16milliontonnes).Approximately38%ofthetotalaquacultureproductionisfrommarineaquaculture[62].Infishculture,presentlythemostcommonformisfloatingnetcages,whichcontainslargeamountsoffishatminimalcosts.Tankandpondculturesaremoreexpensive;howevertheyareeasiertoaccessandarethusthebestchoiceforlabor‐intensiveculturessuchaslarvae,juvenilesandbroodstock.Are-circulatingaquaculturesystemareafurtherdevelopmentofpondor tankculturesandisarelativelynewculturetechniquethatpresupposedtheavailabilityofdurabletechnicalequipmentaswellasbiologicalandtechnicalknowledge originating from wastewater treatment research [63].Microbial community ofbiofilmoccursinblocksof20-60uinwaterandsediment,harvestablebymanyplanktonicfishlikesilvercarp,rohu,catla,mulletsandmilkfish.Themicrobialcommunityflourishesusingorganicandmineralfractionsoforganicmanureassourceofenergyandnutrients.Fishesareabletoharvesttheseorganismsdirectlyinsignificantquantities.Themicrobialfilmcoatingthatisrelativelyindigestiblesubstrateofthedetritusanditisdigestedwhilethesubstrateitselfpassesthroughthefishgutwhichthengetre-colonizedbymicrobesandre-harvestedbyfish[64].Numerousstudieshaveshownthatbiofilmcanbeareservoirforpotentiallypathogenicbacteriainfreshwateraquaculture[65,66].

6. Functions of Biofilm in Microbial Communities

6.1 Environmental protection

ExtracellularPolymericSubstances(EPS)playsdifferentrolesinstructureandfunctionof biofilm communities. EPS act as an anion exchanger to prevent the access of certainantimicrobialagentsintothebiofilm.Itrestrictsthediffusionofcompounds fromsurroundings

Page 9: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

9

CurrentResearchinMicrobiology

into the biofilm. Antibiotics that are hydrophilic and positively charged such as amino-glycosidesshowmorepronouncedattractiontowardsthiseffect.EPShasalsobeenreportedtosequestermetalions,cationsandtoxinsthatprovideprotectionfromvarietyofenvironmentalstressessuchaspH-shift,UVradiation,osmoticshockanddesiccation[34,67-69].

6.2 Availability of nutrients

Theeffectivemeansofexchangingnutrientandmetabolitesiswaterchannel.Aqueousphaseenhancestheavailabilityofnutrientandalsoremovesthepotentiallytoxicmetabolites.Fermentivebacteriaproduceacidsandalcoholsinitiatedbytheprocessofcatabolism,whicharethenutilizedassubstratebyacetogenicbacteria.Biofilmsprovidesanidealenvironmentfor the establishment of syntrophic relationship.Syntrophism is a symbiosis inwhich twometabolicallydistinctbacteriadependsoneachothertoutilizecertainsubstratestypicallyforenergyrequirements[70,71].

6.3. Acquisition of new genetic trait

Acquisitionofnewgenetictraitgiveschancestothemicrobialcommunitiestotranscribethenecessarygamestobecometheactivememberofbiofilmcommunities.TheproductionofalginatewhichinvolvesthetranscriptionofalgCgeneisincreasedapproximatelyfourfoldinbiofilmassociatedcellsascomparedtoplanktoniccells[12,72].

6.4. Penetration of antimicrobial agent

Diffusionistherate limitingsteptoinactivatethebiofilmformingmicrobialcommunitybyantimicrobialagents.EPSactsasdiffusionbarrierforthesemoleculesthatinfluencestherateoftransportofthereactionofantimicrobialagentswiththematrixmaterial.Advantagesofbiofilmgrowthtowardsthemicrobialcommunityare:

a.AsthegrowthisrestrictedalltheenergyisusedupbythebacteriainmakingtheEPSthatwillgiveprotectiontothemicrobialcommunity[73].

b.Asthegrowthisrestricted,bacteriawillremainindormantstagesthatwillgiveprotectiontothemicrobialcommunityagainstantibiotics(mostoftheantibioticsareactiveagainstthegrowthphaseofthebacteria)[74].

7. Formation of Biofilm

Biofilmformationbeginswithplanktonic(free-swimming)bacteriawhichcanattachtoavarietyofsurfaces,fromwoods,metals,andplasticstolivingtissuesandstagnantwater.The cells are excreted a sugarymolecule called extracellular polymeric substance or EPShasastrand-likestructurethatholdsthecellstogetherandattachesthemtothesurfaceandcreatingamatrix.Thismatrixofcellsandstrandscanbequitecomplex:thecellsmayshare

Page 10: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

10

CurrentResearchinMicrobiology

geneticmaterialandhaveorganizedstructure.Abiofilmcanbeasthinasasinglecellorasthickasseveralinchesdependontheconditionsoftheenvironment.Biofilmsbecomematureandthickensastheygrowsanddevelop.Inthepresenceofsufficientwaterandnutrients,thebiofilmwilldevelopuntilsmallportionsdetachandfloattoanothersurfaceandcolonize[75].Complexprocessofbiofilmformationinvolvesseveraldistinctphasesstartwithadsorptionontothetoothsurfaceofaconditioningfilmderivedfrombacterialandhostmoleculesformstootheruptionortoothcleaning.Thisadsorptionprocessisfollowedbypassivetransportofbacteriamediatedbyweaklong-rangeforcesofattraction.Covalentandhydrogenbondscreatestrong,short-rangeforcesthatresultinirreversibleattachment.Theprimarycolonizersformabiofilmbyauto-aggregation(attractionbetweensamespecies)andco-aggregation(attractionbetween different species). Co-aggregation results in a functional organization of plaquebacteriaandformationofdifferentmorphologicalstructuressuchasCorncobsandRosettes.Themicroenvironmentnowchangesfromaerobic/capnophilictofacultativeanaerobic.Theattachedbacteriamultiplyandsecreteanextracellularmatrix(EPS),whichresultsinamixed-populationofmaturebiofilm.Organizationtakesplacewithinbiofilmafteroneday.Formationofaclimaxcommunitytakesplaceduringtransmissionthatoccursfromothersites,leadingtoincorporationofnewmembersintothebiofilm.Thethicknessoftheplaqueincreasesslowlywithtime,increasingto20to30μmafterthreedays[76].

Theformationofabiofilmbeginswiththeattachmentoffree-floatingmicroorganisms(Planktonic) to a surface [77]. The first colonist bacteria of a biofilm may adhere to thesurface initiallyby theweakvanderWaals forcesandhydrophobiceffects. If theyarenotimmediately separated from the surface, they can anchor themselves more permanentlyusingcelladhesionstructuressuchaspili. Hydrophobicityaffectstheabilityofbacteriatoformbiofilms.With increasedhydrophobicitybacteriahave reduced repulsionbetween thesubstratumandthebacterium.Bacteriawithincreasedhydrophobicityhavereducedrepulsionbetweenthesubstratumandthebacterium.Motilebacteriacanrecognizesurfacesandaggregatetogethereasilythannon-motilebacteria.Bacteriacellsareabletocommunicateusingquorumsensing(QS)productssuchasN-acylhomoserinelactone(AHL)duringsurfacecolonizationprocess.Bacterialbiofilmsenclosespolysaccharidematricesthatalsocontainmaterialfromthesurroundingenvironment[78].Biofilmsaretheproductofamicrobialdevelopmentalprocess.ThediagramofbiofilmformationisshowninFigure3[79].

Theprocessissummarizedbyfivemajorstagesofbiofilmdevelopment[80]:

1.Initial/reversibleattachment(bindingof1stcolonist)

2.Irreversibleattachment(theyanchorthemselvesusingpili)

3.MaturationI(intercommunicationthroughquorumsensing)

Page 11: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

11

CurrentResearchinMicrobiology

4.MaturationII/Development(finalstageofmodification)

5.Dispersion(essentialstageforbiofilmformationandlifecycle)

8. Chracterization/Evaluation of Biofilm

Mostcommonlyusedmethodsofbiofilmcharacterizationarequantitativecharacterizationandqualitativecharacterization.

8.1 Quantitative Characterization Methods

Biofilmdynamicsandcomplexarchitecturecreateschallengesforbasicmeasurementsregarding the number of viable cells, mass accumulation, biofilm morphology, and othercriticalproperties.Thesechallengesarenotinthemeasurementsthemselvesbutinthelackofstandardizedprotocolsforcharacterizationanduniformtrainingavailabilityforindividuals.Oneofthemostbasicandmostcommonlyacquiredtypesofbacterialmeasurements,whetherinplanktonicorbiofilmcultures is thedeterminationofhowmuch ispresent.Avarietyofdirectandindirectmethodshavebeenusedtoquantifycellsinbiofilms[81].

8.1.1. Direct Quantification Methods

Direct countingmethodspermit enumerationof cells that canbecultured, includingplatecounts,microscopiccellcounts,Coultercellcounting,flowcytometry,andfluorescencemicroscopy.Directmethodsforbiofilmquantificationarethosethatrelyondirectobservationfor quantification of the desired parameter (number of cells, total biofilm volume, etc.).Imagingandautomatedcellcountingarethemostcommonmethodsofbiofilmquantification.Furthermore,theuseofstainsorfluorescentmarkers,inordertomoreaccuratelyidentifycellsofinterestanddistinguishfromculturedebris,allowforeasierandincreasedaccuracyofcellcountinganddatainterpretation.Imagingmethods,includinglightandconfocalmicroscopyprovide manual platforms to count cells and determine total biofilm volume. Instruments

Figure 3: BiofilmFormation

Page 12: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

12

CurrentResearchinMicrobiology

incorporatingflow,suchasautomatedcellcountersandflowcytometers,providemechanizedmethods.Differentdirectmethodsforthecharacterizationofbiofilmare[82]:

8.1.1.1. Plate Count Method (colony forming units/ml or CFUs)

Thismethodisusedforthedeterminationofviablecellnumbersby akaCFU/mlassayoraerobicplatecount[83-86]. Thisassayisusedtoseparatetheindividualcellsonanagarplateandgrowcolonies fromcells, thereforedifferentiatesandquantifies living fromdeadcellswithoutuseofdyesorinstrumentation.Thefirststepofthisprocedurestartswithaliquidplanktoniccultureoramaturebiofilmwhichissuspendedandhomogenizedinliquidmediumvia scraping, vortexing or sonicating.The platingmethod involves the aseptic removal ofaliquotsofthesuspendedbiofilm,followedbyserialdilutionandplatingontonutrientagar.After24-72hours(whenincubationiscomplete)coloniesarecountedontheplatesandthenumberofcellspermilliliter(cfu/mL)arecalculatedusingthemeancolonycounts.Duringtheprocessitisimportanttonotetheincubationtimeandkeepituniformtoexpandeachculturebythesameamount.Itisadvisabletohaveanexperimentcontrolwithnotreatment[85].Opticaldensity(OD)canbemeasuredpriortoplatingtoobtainacalibrationcurveusedtocorrelatecellnumberandabsorbanceinpureculturebyenumerationmethod.Therebyabsorbanceofasampleofunknowncellnumbercanthenbemeasuredtodeterminethecellconcentration[87,88].TheCFUtechniquecanbeperformedbytrainedindividualinlaboratoryscaleanddoesnotrequirehighlyspecializedadvancedequipment.However,thistechniqueistimeandlaborintensive,sometimesrequiredaystoperformenoughreplicatestoobtainreproducibleresults.Thistechniqueisalsovulnerabletocountingerrorespeciallywhenthegivennumberofcoloniesishighand/orthecountisdonemanually[89].

8.1.1.2. Flow-based Cell Counting

Inthismethodcellsinliquidcultureflowthroughnarrowaperturesandaremeasuredastheypass.Coultercountingandflowcytometrybothrequirehomogenizedandsuspendedbiofilm in liquid cultures.TheCoultermethod involves passing of charged particles in anelectrolytesolutionthroughanaperture(partofanelectricalcircuit).FlowcytometrygivesmoreinformationaboutcellsduringmeasurementwhileCoultercountersarelessexpensive[90,91].Thevoltagepulsesarethencountedoveraperiodoftimeandcorrelatedwithcellnumber.Thistechniqueisverysimplebutcannotdifferentiateliveanddeadcells[92].Inflowcytometertechnique,cellsflowthroughanarrowopening(topassthroughsinglefile).Alaserisrequredtodetectthecellsastheypassviascattering,absorbanceorintrinsicandextrinsicfluorescencemeasurements.Themajoradvantagesofthismethodarethespeed,simplicityandaccuracyassociatedwithmeasurements.Additionalinformationaboutthecellsalsogatheredby using this method including the cell dimensions, surface properties metabolic activityandthedifferentiationstateofthecellswithendogenousfluorescenttags(suchasGFP).The

Page 13: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

13

CurrentResearchinMicrobiology

maindisadvantageofthismethodisthecostoftheinstrumentapproximatebetween$50,000-100,000[93].

8.1.1.3. Light and Fluorescence Microscopy

Biofilm3Dcharacterizationandcellcountingcanbedonebyusingseveralmicroscopymethodsrangingfromsimplelightmicroscopytoconfocallaserscanningmicroscopy(CLSM)[81].

Compound light and fluorescence microscopes

Smallstructuresofbacterialcellscanbevisualizedbyacompoundlightmicroscope.Resolutionofbacterialcells(2-8μminlength)requirestotalmagnificationof200xorgreater.Use of Contrast enhancement methods such as phase contrast or differential interferencecontrast(DIC)canimprovetotalqualityoftheimages.Fluorescencemicroscopyenlargestheopticalcapabilitiesoflightmicroscopytointrinsicoraddedfluorescentlightemission[94].

Confocal laser scanning microscopy

Confocallaserscanningmicroscopy(CLSM)produceshigh-resolution,sharpimagesof biofilms in three dimensions [97-100].The area of focus is scanned across the sampletoproducehigh-resolution2-D“slices”atvariousheights that areassembled toproduceafinal3Dimage.Confocalmicroscopycanutilizesingleormultipleexcitationlaserstoviewmultiplefluorescentmarkerssimultaneously.Theseinstrumentsalsorequireexperiencedandhighlytrainedusersforaccuratemeasurementandanalysis[95].

Fluorescent dyes and proteins

Intrinsic biomolecules, such as NADH and NAD(P)H or chlorophyll which havefluorescentpropertiescanbeusedinfluorescencemicroscopy.Fluorescentdyesandproteinsareusedtointroducefluorescenceintoasample.Fluorescentdyesarefluorescentmolecules(knownasfluorophores)absorbsandemitslightwhileincorporatedinthebiologicalstructure.The emitted light is detected to analyze biofilm features, such as spatial cellular viability,shapeand function [96].Someexamplesoffluorescentdyes areDAPI (4’,6-Diamidino-2-phenylindole dilactate), lipophilic dyes such as FM 4-64, SYTO 9 and Propidium Iodide(PI)[97].Greenfluorescentprotein(GFP),enhancedgreenfluorescentprotein(EGFP)[98],CyanFluorescentProtein(CFP)andYellowFluorescentProtein(YFP)aretheexamplesoffluorescentprotein[99].

8.1.2. Indirect Quantification Methods

Thegrowthofbiofilm(quantityofbiofilm)canbedetermined indirectlyusingaproxymarkersuchasdrymass,totalproteincontent,DNA,RNA,polysaccharidesormetabolites.

Page 14: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

14

CurrentResearchinMicrobiology

Alltheindirectquantificationmethodsinvolvebasicassumptionthatthesubstanceorpropertytobequantifiedcorrelatestothenumberofcellsoramountofprotein/DNA/mass[100].

8.1.2.1. Dry Mass Measurement

Drymass(massperunitarea)orbiofilmdensityisawidelyusedmarkerforquickgrowthquantification.Thebiofilmtogetherwithgrowthsubstrateisplacedinanovenataconstanttemperature(dependsonsubstrateheattolerancecapacity)untilthewaterisremovedandaconstantweightisachievedtofindthedrymass.Ifthesubstrateisheatsensitive,thebiofilmcanbescrapedfromthesurfacethensuspendedinphysiologicalsalineafterthatprecipitatedwithcoldethanolandprecipitatesarecollectedforanalysis.Aftercompletedryingthesampleisweighed, the biomass is scraped from the substrate and then substrate isweighed.Drybiomassiscalculatedas thedifferenceinweightbetweenbiomassonthesubstrateandthesubstratewithnobiomass[101,102].

8.1.2.2. Total Organic Carbon (TOC) Quantification

Totalorganiccarbon(TOC)isanindirectmeasurementoftheamountofcarboninasampleassociatedwithorganiccompoundsorcarboncompoundsderivedfromlivingthingssuchasproteins,lipids,ureaetc.Thisisopposedtoelementalcarbon(EC)suchasgraphiteorcoal,andinorganiccarbon(IC)consistingofsimplecompoundsincludingsimplecarbonoxides(COandCO2),carbonates,carbides,andcyanides[103].TOCmeasurementisgenerallyusedtodeterminethequalityofenvironmentalwaterandfortestingofinstrumentcleanlinessusedinthepharmaceuticalindustry.Thismethodisalsousedinthequantificationofbiofilmaccumulation[104,105].TheTOCquantificationofbiofilmsfollowsatwo-stepprocessinwhichtotalcarbon(TC)andICaremeasuredandTOCiscalculatedbythedifferencebetweenthesetwovalues(TOC=TC–IC).Theexactmethodisdeterminedusinginstrumentssuchas theOceanic International CarbonAnalyzer,Analytik JenaMulti N/C 2100S, or aUICincorporatedModelCM5012CO2coulometer[106,107].

8.1.2.3. Crystal violet assay

The primary component and commonly used dye for gram staining (identificationandvisualizationofbacteria)iscrystalviolet,abasictri-anilinedyewhichiscellmembranepermeable[108].Forbothgrampositiveandnegativecells,thecrystalvioletisusedandthedyewillfreelypassfromthecellduringthede-decolorizationstepallowingforthequantificationofcrystalvioletviaspectroscopy.Thisquantificationhasprovenextremelyusefulasacellestimateforbiofilmgrowth[109,110].

8.1.2.4. Tetrazolium salt

Tetrazoliumsaltsaremostwidelyusedinbiologyformonitoringmetabolismin vitro

Page 15: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

15

CurrentResearchinMicrobiology

[111].AvarietyofsaltssuccessfullyutilizedforbiofilmevaluationwhichallowforquantificationandvisualizationofcellularviabilityandmetabolismwiththehelpofUV-Visandfluorescencespectroscopy.Thetetrazoliumsaltisdilutedintoaphysiologicallyrelevantsolution,suchasmediaorsaline,andthebiofilmisallowedtoincubatefor1-3hoursatculturetemperatureorroomtemperatureandcellularviabilityisdetectedbyvisualorfluorescentspectrometersormicroscopes[112,113].Thereductioncanresultinwatersolubleorwaterinsolubleformazan,water soluble formazans solubilize in the treatmentbufferused for real-timeevaluationofcellularviabilityandmetabolism[114,115].Water-insolubleformazancrystallizesandtrappedwithinthecellmembrane,crystalscanbeevaluatedviaflowcytometryandmicroscopy[116].SomeexamplesofcommonlyusedtetrazoliumsaltsaregiveninTable 3.

8.1.2.5. ATP bioluminescence test

ATPbioluminescence isawell-establishedmicrobial testused todetect thepresenceof microbial contamination on surfaces in food and biomedical communities. Adenosinetriphosphate(ATP)isanucleosidetriphosphatewhichactsastheprimaryenergysourceinallorganisms,soitisusedasaprimemarkerforviability.Intheprocessofbioluminescenceorganismsconvertchemicalenergytolightandtheamountoflightcanbeusedinferbiofilmviabilityandbiomass.Thisassayisveryreliable,canbeperformedquickly,andonlyrequiresaluminometerforanalysis.TheassayishighlyaccurateatlowATPlevels[117-119].

8.1.2.6. Total protein determination

Proteincontenthasbeenfoundtocorrelatewiththenumberofcellsinbiofilms.Totalproteincontentdeterminationiswidelyacceptedmethodtodetectthegrowthofbiofilm[107].In thisprocess thebiofilmsare removed from their substrate andhomogenized in a liquidsuspensionandthecellsarelysed.Someprotocolsrequireincubation(at55°C)inthepresenceofastrongbaseordetergentsolutionandproteinprecipitateswithtrichloroaceticacid(TCA).Thislysismadeproteasefreeinthepresenceofproteasesenzymethatbreakdownproteins.After lysis, the protein content canbemeasuredby color change (eg.CoomassieBrilliantBlueG-250dye),andcolourchangeresultfromthedye-proteininteraction.ThechangeinabsorbanceofthecoloredspeciesataparticularwavelengthisproportionaltotheconcentrationofproteinbytheBeers-Lambertlaw.Bradford,Lowry,andbicinchoninicacid(BCA)aresome

Table 3. Commonlyusedtetrazoliumsaltsusedforin vitro studyofbiofilms

S. No. Name

1. 2-(4,5-dimethyl-2-thiazolyl)-3,5-diphenyl-2H-tetrazoliumbromide(MTT)

2. 5-Cyano-2,3-di-(p-tolyl)tetrazoliumchloride(CTC)

3. 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl-2H-tetrazoliumchloride(INT)

4. 2,3,5-TriphenylTetrazoliumChloride(TTC)

5. (2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide)(XTT)

Page 16: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

16

CurrentResearchinMicrobiology

establishedmethodsusedfortotalproteindetermination[120].

8.1.2.7. Quartz crystal microbalance

Quartz crystalmicrobalance (QCMs) is used for the nondestructivemeasurement ofbiofilmaccumulation.TheinstrumentconsistsofasmalldiscofAstatine(AT)-cutsinglecrystalquartzthatisdrivenattheresonantfrequencybyanappliedoscillatingpotentialdifference.ThediscmaybecoatedbyGold(Au)orSiliconOxide(SiO2)andservesasthegrowthsubstrate.Inthisstudy,adirectcorrelationbetweenwetmassofthefilmandQCMfrequencyshiftisshown,givingaquantitativemeasureofmassfromtheQCMdevice.Themajoradvantageofthistechniqueisthemonitoringofmassaccumulationtong/cm2accuracyinreal-timewithoutsacrificingthesampleandallowsfortheinvestigationwithmultipleanalytictechniques[121-123].

8.2.Qualitative Characterization Methods

The characteristics which are helpful in the qualitative determination of biofilmare imaging the physiological biofilm surface, structure evaluation of surface roughness,morphology,spatialorganization,andinteractionofthebiofilmwiththeenvironment.Surfacestructureanalysisisdonebylightandfluorescentmicroscopy,ScanningElectronMicroscopy(SEM)methodsthroughhighresolutionimaging.

8.2.1. Scanning Electron Microscopy (SEM)

SEMisusedforhighresolutionmagnifiedimageofsurfacetopography.ThemagnificationrangeofSEMisabout10-500,000timeswhichmakesthistechniqueinvaluableintheanalysisof microscopic structures and biofilm morphology. SEM utilizes a concentrated beam ofelectrons to observe a sample through a number of electromagnetic lenses [124, 125].Anadvantageofelectronmicroscopyistheeasyavailabilityoftandemspectroscopictechniquesforquantitativeelementalanalysisandthehighresolutionofthesurfaceimagescanrevealdetailsaboutbiofilmstructureandtopography.SEManalysiscannotbeperformedonlivingsamplesandtestingisdoneunderhighvacuum,extensivepreparationisrequiredpriortotheanalysisofbiologicalsamples[126].

8.2.2. Alternative Qualitative Characterization Methods

Alternative methods used for qualitative characterization of biofilm growth arescanningelectrochemicalmicroscopy(SECM)[127],Infrared(IR)andRamanspectroscopiccharacterization[128],SurfaceEnhancedRamanSpectroscopy(SERS)[129],Smallanglex-rayscattering(SAXS)[130],SurfacePlasmonResonanceimaging(SPRi)andElectrochemicalSurfacePlasmonResonance(EC-SPR)[131].

Page 17: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

17

CurrentResearchinMicrobiology

9. Management of Biofilms

Theimportancefromapublichealthperspectiveistheroleofbiofilminantimicrobialdrugresistance,posesaseriousthreattothePharmaceuticalindustries.Thereforepreventionofbiofilmformationisrecommendedratherthantreatment[132].Biofilmformationcanbepreventedbysignalingmoleculesthatblocktheattachmentofbacterialcellstosubstratesurface[133] andbychemical reactions thatprevent synthesisofpolymers in extracellularmatrix[134]. Substancesthatblockcommunicationbetweenbacteriacanpreventbiofilmformationorstimulateitsdispersion[135,136].Biofilmdispersioncanbeinducedbytheuseofenzymesthatbreakdownpolymersinextracellularmatrix[137].

Treatmentofperiodontalbiofilms- In these treatment individual considerationsmustbetakencareof.Biofilmcontrolisfundamentaltothemaintenanceoforalhealthandtothepreventionofdentalcariesgingivitisandperiodontitis[138].

9.1. Possible strategies to control oral biofilms [138]

Inhibitionofbacterialcolonization•

Inhibitionofbacterialgrowthandmetabolism•

Disruptionofestablishedplaque•

Modificationofplaquebiochemistry•

Alterationofplaqueecology•

9.2. Clinical approaches

a. Mechanical plaque control [139]

Toothbrushes•

Manual•

Electrical•

Interdentalcleaningaids/brushes•

Woodenandrubbertips•

Dentalfloss•

Oralirrigationdevices•

Page 18: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

18

CurrentResearchinMicrobiology

b.Chemical plaque control [140]

Enzymes(Mucinase,Dehydratedpancrease,Lactoperoxidasehypothiocyanate)•

Antibiotics(Penicillin,Vancomycin,Erythromycin)•

Phenols(Thymol,Delmopenol)•

Quaternary Ammonium Compounds (Benzalkonium chloride, Cetylpyridinium•chloride)

Bisbiguanides(Chlorhexidine,Alexidine)•

Bispyridines(Octenidine)•

MetallicSalts(Zinc,Tin,Copper)•

Aminoalchohols(Octapenol,Decapenol)•

Herbalextracts(Sanguinarine)•

Surfactant(Sodiumlaurylsulfate)•

10.Application of Biofilm

Specific applications of bound bioactivemolecules to surfaces (biofilm) in differentsectorsorscientificdisciplinesaredescribedbelow;

10.1. Food industry application

In food processing industry antimicrobial polymers (active packaging) can be usedto improve the safetyof food [141]. Immobilized lysozyme, glucoseoxidase and chitosanhavebeenusedaspackagingfilms.Thesepackagingtechnologiesplayanimportantroleinextendingshelf-lifeoffoodsandreducetheriskofgrowthofpathogenicmicroorganisms[142].Material/compoundsproposedandtestedforantimicrobialactivityinfoodpackagingincludesorganic acids, antibacterial peptides and fungicides [143-145]. Triclosan containing foodcontactsurfacessuchasincludecuttingboardsanddishclothseffectivelyreducesthebacterialcontamination. Enzyme immobilization reduced the overall bioactivity after denaturation[146].Whensurfacemodificationstrategiesareappliedtoobtainantibacterialfoodprocessingsurfaces,theycanhelpreducebiofoulingandcross-contamination[147].TheeffectivenessofcoatingSSwithanticorrosionundercoatpaintwasreportedinvariousstudies[148].Biofilmformationinfoodmaybeavoidedbyequipmentdesign,temperaturecontrolandbyreductionofwaterandnutrients.Effectivecleaning(alkalicompounds)isthemainfocustocontrolthegrowthofbiofilm.Thesanitizersusedinfoodindustryarehalogens,acids,peroxygensand

Page 19: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

19

CurrentResearchinMicrobiology

quaternaryammoniumcompounds(cationicsurfactantsanitizers)[132].

10.2. Biomedical application

Modifiedmaterialsarenotrecommendedforthemedicalpurposebecauseifthesubstanceswill leachout itmaycausecytotoxicity [149].Ametallicmaterialwhich is implanted intohumanbodyreleasemetalionsmaycausevarioushealthproblemsduetometalaccumulationinorgans,allergyandcarcinoma[150-152].Biocompatibilityisthemostimportantpropertythatmust involve in amodified abiotic surface. Biocompatibility can be divided into twokinds,oneisthebulkpropertyofthebiomaterialandotherisitssurfaceproperty.Therigidityofmodified implantsmustmatchwith that of the adjacent tissueotherwisehyperplasia orabsorptionofthetissuewilloccurresultinginfailureofimplantation[153].

11. A Future Prospectus for Research

Thebiofilmisviscoelasticinnaturewhichisuniversalbutwhenexposedtodifferentenvironment,hydrodynamicconditionswillchangethestructure,compositionandphysicalproperties of theirmatrix. Biofilm science is highly exciting research area because it is amixtureofbiology,microbiology,biotechnology,biophysic,chemistryandmuchmore[154].Researchonmicrobialbiofilmsopensmanyfrontswithspecialattentiononelucidationofthegenesexpressedbybiofilm-associatedorganisms,evaluationofcontrolstrategiestocontrolorpreventbiofilmcolonizationofmedicaldevicesanddevelopmentofnewmethodsforassessingor evaluating the efficacyof these treatments.The focused research area shouldbeon theroleofbiofilmsinantimicrobialresistance,biofilmsasareservoirforpathogenicorganismsandtheparticipationofbiofilmsinchronicdiseases.Asthepharmaceuticalandhealth-careindustries embrace this approach, novel strategies for biofilm prevention and control willdefinitelyemergeinfuture.Thekeytosuccessmaydependuponacompleteunderstandingofwhatmakesthebiofilmphenotypesodifferentfromtheplanktonicphenotype[155].

12. References

1.Hall-StoodleyL,WilliamCostertonJ,StoodleyP.“Bacterialbiofilms:fromthenaturalenvironmenttoinfectiousdiseases”,NatureReviewsMicrobiology.2004;2(2):95-108.

2.CostertonJW,StewartPS,GreenbergEP.“Bacterialbiofilms:acommoncauseofpersistent infections”.Science.1999;284(5418):1318-1322.

3.HeukelekianH,HellerA.“Relationbetweenfoodconcentrationandsurfaceforbacterialgrowth”.JBacteriol.1940Oct;40(4):547-58.

4.ZobellCE.“Theeffectofsolidsurfacesonbacterialactivity”.J.Bacteriol.1943Jul;46(1):39-56.

5.ZoBellCE,AllenEC.“Attachmentofmarinebacteriatosubmergedslides”.Proc.Soc.Exp.Biol.Med.1933;30:1409-1411.

6.ZoBellCE,AllenEC.Thesignificanceofmarinebacteriainthefoulingofthesubmergedsurfaces.J.Bacteriol.1935

Page 20: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

20

CurrentResearchinMicrobiology

Mar;29(3):239-251.

7.JonesHC,RothIL,SaundersWMIII.“Electronmicroscopicstudyofaslimelayer”.JBacteriol.1969Jul;99(1):316-325.

8.CharacklisWG.“Attachedmicrobialgrowths-II.Frictionalresistanceduetomicrobialslimes”.WaterRes.1973Sep;7(9):1249-1258.

9.CostertonJW,GeeseyGG,ChengK-J.“Howbacteriastick”.ScientificAmerican,1978Jan;238(1):86–95.

10.CostertonJW,IrvinRT,ChengKJ.“Thebacterialglycocalyxinnatureanddisease”.AnnuRevMicrobiol.1981;35:299-324.

11.CostertonJW,GeeseyGG.In:CostertonJW,ColwellRR(eds).“Nativeaquaticbacteria:enumeration,activity,andecology”.ASTMPress,Philadelphia.1979.Pp7-18.

12. Costerton JW, Lewandowski Z, CaldwellDE,KorberDR, Lappin-ScottHM. “Microbial biofilms”.AnnuRevMicrobiol.1995;49:711–745.

13.StevenLP,SladjanaM,HelenaC,DavidW.Williams.Ch. Introduction toBiofilms; inBiofilmsandVeterinaryMedicine.SpringerseriesonBiofilms,Vol.6;July2011.Pp.41-68.

14.SaraMcCarty,EmmaWoods,StevenL.Percival.“AHistoricalBasis”.EmergInfectDis.2002Sep;8(9):881-890.

15.https://www.researchgate.net/publication/316581155_Book_Review_Role_of_Biofilms_in_Bioremediation.

16. Introduction toBiofilms.StevenL.Percival,SladjanaMalic,HelenaCruz, andDavidW.Williams. June2011.https://www.researchgate.net/publication/227033178.

17.https://www.livescience.com/57295-biofilms.html.

18.https://study.com/academy/lesson/what-are-biofilms-definition-formation-examples.html

19.Hans-Curt Flemming, JostWingender,Ulrich Szewzyk, Peter Steinberg, ScottA, Rice and StaffanKjelleberg.“Biofilms:anemergentformofbacteriallife”.NatureReviewsMicrobiology.2016;14:563–575.

20.LearG,LewisGDeds.MicrobialBiofilms:CurrentResearchandApplications.CaisterAcademicPress.ISBN978-1-904455-96-7.2012.

21.O’TooleGA,Kolter,R.“InitiationofbiofilmformationinPseudomonasfluorescensWCS365proceedsviamultiple,convergentsignallingpathways:ageneticanalysis”.MolecularMicrobiology.1998May;28(3):449-461.

22.O’TooleG,KaplanHBandKolterR.“Biofilmformationasmicrobialdevelopment”.Annu.Rev.Microbiol.2000;54:49-79.

23.Ximénez-FyvieLA,HaffajeeAD,SocranskySS.“Comparisonofmicrobiotaofsupra-andsubgingivalplaqueinsubjectsinhealthandperiodontitis”.JClinPeriodontol.2000;27:648-57.

24.López,Daniel,Vlamakis,Hera,Kolter,Roberto.“Biofilms”.ColdSpringHarborPerspectivesinBiology.2010;2(7):a000398.

25.Hall-StoodleyL,CostertonJW,StoodleyP(February2004).“Bacterialbiofilms:fromthenaturalenvironmenttoinfectiousdiseases”.NatureReviewsMicrobiology.2(2):95–108.

26.WatnickP,KolterR.“Biofilm,cityofmicrobes”.JournalofBacteriology.2000May;182(10):2675-2679.

27.ArnoldC.“BuildingCodesforBacterialCities”.QuantaMagazine.2017July;07-25.

Page 21: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

21

CurrentResearchinMicrobiology

28.NeuT,LawrenceJ.Extracellularpolymericsubstancesinmicrobialbiofilms.MicrobialGlycobiology:Structures,RelevanceandApplications.Elsevier,SanDiego.2009.pp.735-758.

29.DenkhausE,MeisenS,TelghederU,WingenderJ.“Chemicalandphysicalmethodsforcharacterisationofbiofilms”.MicrochimActa.2007;158:1-27.

30.SutherlandIW.“Biofilmexopolysaccharides:astrongandstickyframework”.Microbiology.2001;147:3-9.

31.FlemmingHC,Wingender J,Griegbe,MayerC.Physico-chemical properties of biofilms. In:EvansLV, editor.Biofilms:recentadvancesintheirstudyandcontrol.Amsterdam:HarwoodAcademicPublishers.2000.Pp.19-34.

32.DonlanRM,CostertonJW.(2002).“Biofilms:Survivalmechanismsofclinicallyrelevantmicroorganisms”.Clin.Microbiol.Rev.2002;15:167-193.

33.ChristensenGD,SimpsonWA,BisnoAL,BeacheyEH.“Adherenceofslime-producingstrainsofStaphylococcusepidermidistosmoothsurfaces”.Infect.Immun.1982;37:318-326.

34.DunneWMJ.“Bacterialadhesion;seenanygoodbiofilmslately?”.Clin.MicrobiolRev.2002Apr;15(2):155-66.

35.http://www.horizonpress.com/biofilms.

36.VinodkumarCS,KalsurmathS,NeelagundYF.“Utilityoflyticbacteriophageinthetreatmentofmultidrug-resistantPseudomonasaeruginosasepticemiainmice”.IndianJPatholMicrobiol.2008Jul-Sep;51(3):360-366.

37.LuTKandCollinsJJ.“Dispersingbiofilmswithengineeredenzymaticbacteriophage”.PNAS.2007;104:11197-11202.

38.CernohorskáL,VotavaM.“Biofilmsandtheirsignificanceinmedicalmicrobiology”.EpidemiolMikrobiolImunol.2002Nov;51(4):161-4.

39.BryersJ.“MedicalBiofilms.”BiotechnologyandBioengineering.2008May;100(1):1-18.

40.MahT,O’TooleG.“MechanismsofBiofilmResistancetoAntimicrobialAgents”.TrendsinMicrobiology.2001Jan;9(1):34-39.

41.GristinaA,HobgoodC,WebbL,MyrvikQ.“AdhesiveColonizationofBiomaterialsandAntibioticResistance.”Biomaterials.1987Nov;8(6):423-426.

42.StewartP,CostertonJ.“AntibioticResistanceofBacteriainBiofilms.”TheLancet.2001Jul;358:135-138.

43.TalsmaS.“BiofilmsonMedicalDevices”.HomeHealthcareNurse:TheJournalfortheHomeCareandHospiceProfessional.2007Oct;25(9):589-94.

44.ThomasBjarnsholt.Biofilminfections.NewYork:Springer.2011.ISBN9781441960832.

45.BryersJD.“Medicalbiofilms”.BiotechnologyandBioengineering.2008;100(1):1-18.

46.SchachterB.“Slimybusinessthebiotechnologyofbiofilms”.NatureBiotechnology.2003;21:361.

47.KumarCGandAnandSK.Significanceofmicrobialbiofilmsinfoodindustry:areview,InternationalJournalofFoodMicrobiology.1998;42:9-27.

48.MartinsdosSantosVA,YakimovMM,TimmisKN,GolyshinPN(2008).”GenomicInsightsintoOilBiodegradationinMarineSystems”.InDíazE.MicrobialBiodegradation:GenomicsandMolecularBiology.HorizonScientificPress.p.1971.ISBN978-1-904455-17-2.

49.ChuaSL,WangVB,CaiZ,SivakumarK,KjellebergS,CaoB,LooSC,YangL.“Astablesynergisticmicrobialconsortiumforsimultaneousazodyeremovalandbioelectricitygeneration”.BioresourceTechnology.2014;155:71-

Page 22: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

22

CurrentResearchinMicrobiology

76.

50.ChuaSL,WangVB,CaoB,LooSC,YangL.“Astablesynergisticmicrobialconsortiumforsimultaneousazodyeremovalandbioelectricitygeneration”.PLoSONE.2013;8(5):e63129.

51.ZhangRY,BellenbergS,SandW,NeuTR,VeraM.TheBiofilmLifestyleofAcidophilicMetal/Sulfur-OxidizingMicroorganisms.In:BiotechnologyofExtremophiles:AdvancesandChallenges.RampelottoPabuloH(Ed.).SpringerInternationalPublishing,Cham,Switzerland.2016.Pp.177-213.

52.VeraM,SchippersA,SandW.“Progressinbioleaching:fundamentalsandmechanismsofbacterialmetalsulfideoxidation--partA”.Appl.Microbiol.Biotechnol.2013Sep;97(17):7529-41.

53.KumarCG,AnandSK.“Significanceofmicrobialbiofilmsinfoodindustry:areview”.IntJFoodMicrobiol.1998Jun;42(1-2):9-27.

54.GiaourisE,HeirE,DesvauxM,HebraudM,MoretroT,LangsrudS,DoulgerakiA,NychasGJ,KacaniovaM,CzaczykK,OlmezH,SimoesM.“Intraandinter-speciesinteractionswithinbiofilmsofimportantfoodbornebacterialpathogens”.FrontMicrobiol.2015Aug;6:841.

55.NikolaevYA,PlakunovVK.Biofilm“CityofMicrobes”orananalogueofmulticellularorganisms?2007;76:125-138.

56.SreyS,JahidIK,HaS.“Biofilmformationinfoodindustries:afoodsafetyconcern”.2013;31:572–585.

57.CoughlanLM,CotterPD,HillC,Alvarez-OrdonezA.“Newweaponstofightoldenemies:novelstrategiesforthe(bio)controlofbacterialbiofilmsinthefoodindustry”.2016;7:1641.

58.FlemmingH-C,Wingender J,SzewzykU,SteinbergP,RiceSA,KjellebergS. “Biofilms:anemergent formofbacteriallife”.2016;14:563-575.

59.BerlangaM,GuerreroR.“Livingtogetherinbiofilms:themicrobialcellfactoryanditsbiotechnologicalimplications”.MicrobialCellFactories.2016;15.1:165.

60.BarriusoJ.“Quorumsensingmechanismsinfungi”.AIMSMicrobiol.2015;1.1:37-47.

61.Frey-KlettP,BurlinsonP,DeveauA,BarretM,TarkkaM,SarniguetA.“Bacterial-fungal interactions:hyphensbetweenagricultural,clinical,environmental,andfoodmicrobiologists”.MicrobiologyandMolecularBiologyReviews.2011;75.4:583-609.

62. QuayleD, NewkirkG. “Farming bivalvemolluscs:Methods for study and development”.Advances inWorldAquaculture.TheWorldAquacultureSociety.2012.

63. Bohl, M. “Some initial aquaculture experiments in recirculating water systems”. Aquaculture. 1977; 11(4):323‐328.

64. http://ecoursesonline.iasri.res.in/pluginfile.php/45552/mod_resource/content/1/10.role_of_biofilm_in_aquaculture.pdf.

65.CaiW,DeLaFuenteL,AriasCR.“BiofilmformationbythefishpathogenFlavobacteriumcolumnare:developmentandparametersaffectingsurfaceattachment”.Appl.Environ.Microbiol.2013Sep;79(18):5633-42.

66.KingRK,FlickJrGJ,PiersonD,SmithSA,BoardmanGD,CoaleJrCW.“Identificationofbacterialpathogensinbiofilmsofrecirculatingaquaculturesystems”.JournalofAquaticFoodProductTechnology.2004;13:125-133.

67.GilbertP,DasJ,FoleyI.“Biofilmsusceptibilitytoantimicrobials”.AdvDentRes.1997Apr;11(1):160-7.

68.NicholsWW,Dorrington SM, SlackMP andWalmsleyHL. “Inhibition of tobramycin diffusion by binding toalginate”.AntimicrobAgentsChemother.1988Apr;32(4):518-523.

Page 23: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

23

CurrentResearchinMicrobiology

69.NicholsWW,EvansMJ,SlackMP,WalmsleyHL.“Thepenetrationofantibioticsintoaggregatesofmucoidandnon-mucoidPseudomonasaeruginosa”.JGenMicrobiol.1989May;135(5):1291-303.

70. DechoAW. “Microbial exopolymer secretions in ocean environments: Their role(s) in food webs and marineprocesses”.OceanographyandMarineBiolologyAnnualReview.1990;28:73-153.

71.FlemmingHC.“Biofilm&EnvironmentalProtection”.WaterSciTechnol.1993;27:1-10.

72.SchinkB.“Energeticsofsyntrophiccooperationinmethanogenicdegradation”.MicrobiolMolBiolRev.1997Jun;61(2):262-80.

73. Garrett ES, Perlegas D,Wozniak DJ. “Negative control of flagellum synthesis in Pseudomonas aeruginosa ismodulatedbythealternativesigmafactorAlgT(AlgU)”.JournalofBacteriology.Dec1999;181(23):7401-7404.

74. Kokare CR, Chakraborty S, Khopade AN, Mahadik KR. “Biofilms; Importance and Applications”. Indian JBiotechnonogy.2009April;8:159-168.

75.https://study.com/academy/lesson/what-are-biofilms-definition-formation-examples.html

76.QuirynenM,TeughelsW,HaakeSK,NewmanMG.“MicrobiologyofPeriodontalDiseases”.In:NewmanMG,TakeiHH,Klokkevold PR,Carranza FA, editors.Carranza’sClinical Periodontology. 10th ed. St Louis,Missouri:Elsevier(Saunders);2006.pp.134-69.

77.WatnickP.KolterR.“Biofilm,cityofmicrobes”.JournalofBacteriology.2000May;182(10):2675-2679.

78.BriandetR,HerryJ,Bellon-FontaineM.“DeterminationofthevanderWaals,electrondonorandelectronacceptorsurfacetensioncomponentsofstaticGram-positivemicrobialbiofilms”.ColloidsSurfBBiointerfaces.2001Aug;21(4):299-310.

79.MaricSandVranesJ.“Characteristicsandsignificanceofmicrobialbiofilmformation”.PeriodicumBiologorum.2007;109(2):1-7.

80.MonroeDon.“LookingforChinksintheArmorofBacterialBiofilms”.PLoSBiology.2007;5(11):e307.

81.ChristinaWilson,RachelLukowicz,StefanMerchant,HelenaValquier-Flynn,JenifferCaballero,JasminSandoval,MacduffOkuom,ChristopherHuber,TessaDurhamBrooks,ErinWilson,BarbaraClement,ChristopherDWentworth,andAndreaEHolmes.“QuantitativeandQualitativeAssessmentMethodsforBiofilmGrowth:AMini-review”.Research&Reviews:JournalofEngineeringandTechnology.2017Dec;6(4):1-25.

82.AdetunjiV andOdetokun IA. “Assessment of biofilm inE. coliO157:H7 andSalmonella strains: influenceofculturalconditions”.AmJFoodTechnol.2012;7:582-595.

83.CloeteTE,BrozelV,HolyAV.“Practicalaspectsofbiofoulingcontrolinindustrialwatersystems”.IntBiodeteriorBiodegrad.1992;29(3-4):299-341.

84.PettitRK,WeberCA,KaenMJ,HoffmannH,PettitGR,TanR,FranksKS,HortonML.“MicroplatealamarblueassayforStaphylococcusepidermidisbiofilmsusceptibilitytesting”.AntimicrobAgentsChemother.2005;49(7):2612-2617.

85.BakkeR,KommedalR,KalvenesS.“Quantificationofbiofilmaccumulationbyanopticalapproach”.JMicrobiolMethods.2001Feb;44(1):13-26.

86.RomanovaNA,GawandePV,BrovkoLY,GriffithsMW.“RapidmethodstoassesssanitizingefficacyofbenzalkoniumchloridetoListeriamonocytogenesbiofilms”.JMicrobiolMethods.2007;71:231-237.

87.BuchholzF,HarmsH,MaskowT.“Biofilmresearchusingcalorimetry–amarriagemadeinheaven?”BiotechnolJ.2010Dec;5(12):1339-1350.

Page 24: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

24

CurrentResearchinMicrobiology

88.EllenMS,WilliamAC,HowardEL.“Experienceswith theCoultercounter inbacteriology”.JApplMicrobiol.1962;10:480-485.

89.ZhangW,McLamoreES,GarlandNT,LeonJV,BanksMK.“Asimplemethodforquantifyingbiomasscellandpolymerdistributioninbiofilms”.JMicrobiolMethods.2013Sep;94(3):367-374.

90.BerneyM.“Assessmentandinterpretationofbacterialviabilitybyusingthelive/deadBacLightkitincombinationwithflowcytometry”.ApplEnvironMicrobiol.2007;73:3283-3290.

91.MullerSandNebe-von-CaronG.“Functionalsingle-cellanalyses:flowcytometryandcellsortingofmicrobialpopulationsandcommunities”.FEMSMicrobiolRev.2010;34:554-587.

92.DatabaseJSE.Introductiontofluorescencemicroscopy.GenLabTech.2017.

93.BandaraHMHN.“ResearcharticlePseudomonasaeruginosainhibitsin-vitroCandidabiofilmdevelopment”.BMCMicrobiol.2010;10:1-9.

94.BjarnsholtT.“Applyinginsightsfrombiofilmbiologytodrugdevelopmentcananewapproachbedeveloped?”DrugDiscovNatRev.2013;12:791-808.

95.JakobsS.“EGFPandDsRedexpressingculturesofEscherichiacoliimagedbyconfocal,two-photonandfluorescencelifetimemicroscopy”.FEBSLett.2000;479:131-135.

96.NwaneshiuduA.“Introductiontoconfocalmicroscopy”.JInvestDermatol.2012;132:1-5.

97.HeydornA.“QuantificationofbiofilmstructuresbythenovelcomputerprogramCOMSTAT”.Microbiology.2000;146:2395-2407.

98.TawakoliPN.“Comparisonofdifferentlive/deadstainingsfordetectionandquantificationofadherentmicroorganismsintheinitialoralbiofilm”.ClinOralInvestig.2012;17:841-850.

99.ChalfieM.“Greenfluorescentproteinasamarkerforgeneexpression”.Science.1994;263:802-805.

100.ShanerNC.“Aguidetochoosingfluorescentproteins”.NatMethods.2005;2:905-909.

101.TrulearMGandCharacklisWG.“Dynamicsofbiofilmprocesses”.JWaterPollutControlFed.1982;54:1288-1301.

102.CharacklisWG.“LaboratoryBiofilmReactors”.In:CharacklisWG,MarshallKC(eds.).Biofilm.JohnWiley&Sons,NewYork.1990;1:55-89.

103.KooH.“InhibitionofStreptococcusmutansbiofilmaccumulationandpolysaccharideproductionbyapigeninandttfarnesol”.JAntimicrobChemother.2003;52:782-789.

104.https://www.britannica.com/science/chemical-compound

105.CritchleyMM.“Biofilmsandmicrobiallyinfluencedcuprosolvencyindomesticcopperplumbingsystems”.JApplMicrobiol.2001;91:646-651.

106.FlemmingHC.“Biofilms:Investigativemethods&applications:.CRCPress.2000.

107.RagusaSR.“Indicatorsofbiofilmdevelopmentandactivity inconstructedwetlandsmicrocosms”.WaterRes.2004;38:2865-2873.

108.BakkeR.“ActivityofPseudomonasaeruginosainbiofilms:Steadystate”.BiotechnolBioeng.1984;26:1418-1424.

109.BeveridgeTJ.Useofthegramstaininmicrobiology.BiotechHistochem.2001;76:111-118.

Page 25: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

25

CurrentResearchinMicrobiology

110.BasakS.Biofilms:AChallengetoMedicalFraternityinInfectionControl.InfectControl.2013.

111.DjordjevicD.“MicrotiterplateassayforassessmentofListeriamonocytogenesbiofilmformation”.ApplEnvironMicrobiol.2002;68:2950-2958.

112.BerridgeMV.“Tetrazoliumdyesastoolsincellbiology:newinsightsintotheircellularreduction”.BiotechnolAnnuRev.2005;11:127-152.

113.BernasTandDobruckiJW.“Theroleofplasmamembraneinbioreductionoftwotetrazoliumsalts,MTT,andCTC”.ArchBiochemBiophys.2000;380:108-116.

114.KoleckaA.“TheimpactofgrowthconditionsonbiofilmformationandthecellsurfacehydrophobicityinfluconazolesusceptibleandtolerantCandidaalbicans”.FoliaMicrobiol(Praha).2015;60:45-51.

115.SabaeifardP.“OptimizationoftetrazoliumsaltassayforPseudomonasaeruginosabiofilmusingmicrotiterplatemethod”.JMicrobiolMethods.2014;105:134-140.

116.SchwartzT.“FormationofnaturalbiofilmsduringchlorinedioxideandU.V.disinfectioninapublicdrinkingwaterdistributionsystem”.JApplMicrobiol.2003;95:591-601.

117.CholletRandRibaultS.“UseofATPbioluminescenceforrapiddetectionandenumerationofcontaminants:Themilliflexrapidmicrobiologydetectionandenumerationsystem”.Biolumin-RecentAdvOceanMeasLabAppl.2012.

118.ShimodaT.“ATPbioluminescencevaluesaresignificantlydifferentdependinguponmaterialsurfacepropertiesofthesamplinglocationinhospitals”.BMCResNotes.2015;8:1-8.

119.McElroyWD.“Theenergysourceforbioluminescenceinanisolatedsystem”.ProcNatlAcadSciUSAm.1947;33:342-345.

120.BradfordMM.“Arapidandsensitivemethodforthequantitationofmicrogramquantitiesofproteinutilizingtheprincipleofprotein-dyebinding”.AnalBiochem.1976;72:248-254.

121.NivensDE. “Long-term, on-linemonitoring ofmicrobial biofilms using a quartz crystalmicrobalance”.AnalChem.1993;65:65-69.

122.RodahlM.“QuartzcrystalmicrobalancesetupforfrequencyandQ‐factormeasurementsingaseousandliquidenvironments”.RevSciInstrum.1995;66:3924-30.

123.TamK.“Real-timemonitoringofStreptococcusmutansbiofilmformationusingaquartzcrystalmicrobalance”.CariesRes.2007;41:474-483.

124.Arnold JW andBaileyGW. “Surface finishes on stainless steel reduce bacterial attachment and early biofilmformation:scanningelectronandatomicforcemicroscopystudy”.PoultSci.2000;79:1839-1845.

125.DehmG.“In-situElectronMicroscopy:ApplicationsinPhysics,ChemistryandMaterialsScience”.Wiley-VCH.2012.

126.ChaoYandZhangT.“Optimizationoffixationmethodsforobservationofbacterialcellmorphologyandsurfaceultrastructuresbyatomicforcemicroscopy”.ApplMicrobiolBiotechnol.2011;92:381-392.

127.DastjerdiEV.“EffectofPunicagranatumL.flowerwaterextractonfivecommonoralbacteriaandbacterialbiofilmformationonorthodonticwire”.IranJPublicHealth.2014;43:1688-1694.

128.BodelonG.“DetectionandimagingofquorumsensinginPseudomonasaeruginosabiofilmcommunitiesbysurfaceenhancedresonanceRamanscattering”.NatMater.2016;15:1203-1211.

129. BoschA, et al. “Characterization of Bordetella pertussis growing as biofilm by chemical analysis and FT-IRspectroscopy”.ApplMicrobCellPhysiol.2006;71:736-747.

Page 26: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

26

CurrentResearchinMicrobiology

130.AllecN,etal.“Small-anglex-rayscatteringmethodtocharacterizemolecularinteractions:proofofconcept”.SciRep.2015;5:1-12.

131.AbadianPN,etal.“Usingsurfaceplasmonresonanceimagingtostudybacterialbiofilms”.Biomicrofluidics.2014;8:1-11.

132.KokareCR,ChakrabortyS.,KhopadeANandMahadikKR.“Biofilm:Importanceandapplication”.IndianJournalofBiotechnology.2009April;8:159-168.

133.ChicurelM.“Bacterialbiofilmsandinfections”.Nature.2000;408:284-6.

134.YasudaH,AjikiY,KogaT,KawadaH,YokotaT.“InteractionbetweenbiofilmsformedbyPseudomonasaeruginosaandclarithromycin”.AntimicrobAgentsChemother.1993;37:1749-55.

135.SugaH,SmithK.“Molecularmechanismsofbacterialquorumsensingasanewdrugtarget”.CurrOpinChemBiol.1993;7:586-91.

136.ZhanglH.“Quorumquenchingandproactivehostdefense”.TrendsPlantSci.2003;8:238-44.

137.JohansenC,FalholtP,GramL.“Enzymaticremovalanddisinfectionofbacterialbiofilms”.ApplEnvironMicrobiol.1997;9:3724-28.

138.PetersonFC,ScheieAA.ChemicalPlaqueControl:AComparisonofOralHealthCareProducts.In:BusscherHJ,EvansLV,editors.OralBiofilmsandPlaqueControl.India:HarwoodAcademicPublishers;1998.pp.277-94.

139. PetersilkaGJ, Ehmke B, FlemmigTF. “Antimicrobial effects ofmechanical debridement”. Periodontol.2000;2008(28):56-71.

140.QuirynenM,TeughelsW,DeSoeteM,vanSteenbergheD.“Topicalantisepticsandantibioticsintheinitialtherapyofchronicadultperiodontitis:microbiologicalaspects”.Periodontol.2000;2008(28):72-90.

141.Hotchkiss JH. “Foodpackaging interactions influencingquality and safety”.FoodAdditives&Contaminants.1997;14:601-607.

142.AppendiniP,HotchkissJH,“ReviewofAntimicrobialFoodPackaging”.InnovativeFoodScience&EmergingTechnologies.2002;3:113-126.

143.HalekGW,GargA.“Fungalinhibitionbyafungicidecoupledtoanionomericfilm”.JournalofFoodSafety.1989;9:215-222.

144.WengY-M,HotchkissJH.“Inhibitionofsurfacemoldsoncheesebypolyethylenefilmcontainingtheantimycoticimazalil”.JournalofFoodProtection.1992;55:367-369.

145.QuintavallaS,ViciniL.Antimicrobial foodpackaging inmeat industry.MeatScience.2002Nov;62(3):373-380.

146.BayramogluG,KacarY,DenizliA,YakupArıcaM.“Covalentimmobilizationoflipaseontohydrophobicgroupincorporatedpoly(2-hydroxyethylmethacrylate)basedhydrophilicmembranematrix.JournalofFoodEngineering.2002;52:367-374.

147.HunkelerF,FrankelGS,BohniH.“TechnicalNote:OntheMechanismofLocalizedCorrosion”.Corrosion.1987;43(3):189-191.

148. Elsner C, Cavalcanti E, FerrazO,Di SarliA. Evaluation of the surface treatment effect on the anticorrosiveperformanceofpaintsystemsonsteelProgressinOrganicCoatings.2003Nov;48(1):50-62.

149.NishiC,NakajimaN,IkadaY.“Invitroevaluationofcytotoxicityofdiepoxycompoundsusedforbiomaterialmodification”.JournalofBiomedicalMaterialsResearch.1995Jul;29(7):829-834.

Page 27: Department of Pharmaceutical Sciences, Mohanlal Sukhadia ...openaccessebooks.com/current-research-in-microbiology/microbial-biofilms.pdfDepartment of Pharmaceutical Sciences, Mohanlal

27

CurrentResearchinMicrobiology

150.HanawaT.“Metalionreleasefrommetalimplant”.MaterialsScienceandEngineering:C.2004;24:745-752.

151.OkazakiY,GotohE.“Comparisonofmetalreleasefromvariousmetallicbiomaterialsinvitro”.Biomaterials.2005Jan;26(1):11-21.

152.ZhangZ,WangZ,NongJ,NixCA,JiH-F.“Metalion-assistedself-assemblyofcomplexesforcontrolledandsustainedreleaseofminocyclineforbiomedicalapplications”.Biofabrication.2015Jan;7(1):015006.

153.HanssonKM,TosattiS,IsakssonJ,WetteroJ,TextorM,LindahlTL,TengvallP.“Wholebloodcoagulationonproteinadsorption-resistantPEGandpeptidefunctionalisedPEG-coatedtitaniumsurfaces”.Biomaterials.2005March;26(8):861-872.

154.LembreP,LorentzC,DiMartinoP.Ch.13.ExopolysaccharidesoftheBiofilmmatrix;Acomplexbiophysicalworld.In:KarunaratneDN(Ed.).ThecomplexWorldofPolysaccharedes.InTech-Publisher.2012.Pp.371-392.

155.DonlanRM.“Biofilms:MicrobialLifeonSurfaces”.EmergInfectDis.2002Sep;8(9):881-890.


Top Related