Transcript
Page 1: Capsella bursa-pastoris L. Medik. (shepherd’s purse) … · Capsella bursa‐pastoris L. Medik. (shepherd’s purse) myxospermous seed mucilage mechanically stabilises clay soil

Capsellabursa‐pastorisL.Medik.(shepherd’spurse)myxospermousseedmucilagemechanicallystabilisesclaysoil

Methods:Seedswerewashedind.H20(1:10[w/v])withshaking,8h.A>ercentrifugaBon(5000rpm,20min),themucilage‐containingsupernatantwasfreeze‐dried.Mucilagewasaddedtosoil(aCa‐montmorillonite(clay)at0,0.5and1%[w/w],atsoilwatercontentsrangingfrom140‐200%[w/w]ofclayweight.Shearstress(τ)wasapplied(0.1‐10000Pa@Temp.=20°C;frequency=0.5Hz;gap=2mm).

Results

WenniDeng1,2,3,*,Dong‐ShengJeng1,PeterToorop4,PaulD.Halle\3,GeoffreyR.Squire3,PietroP.M.Ianne\a3

1DivisionofCivilEngineering,UniversityofDundee,DundeeDD14HN,ScotlandUK2CentreforEnvironmentalChangeandHumanResilience(CECHR),UniversityofDundee3TheJamesHuFonInsHtute,Invergowrie,DundeeDD25DA,ScotlandUK4RoyalBotanicGardens,Kew,WakehurstPlace,Ardingly,WestSussexRH176TN,UK

Email:wenni.deng@[email protected]

Figure3.(a)typicalflowcurveofan‘oscillatorystresssweeptest’.(b)–(f)Plotsofrheologyparameters:lossfactor,shearmodulus,viscosity,yieldstressandflowpointstressversussoilwatercontent(%)(respecKvely),forclaysoilscontainingnomucilage(blackdiamond/solidline),0.5%(bluecross/dashedline)and1%(pinktriangle/do@edline)mucilageat20°C.Allexperimentaldatawerefi@edusinganexponenKalcurve,anderrorsbarsdenotetheSEofthemean.

Acknowledgements:ThisPhDstudentshipisfundedbythe

CECHR.PH,GRSandPPMIaresupportedbytheSco\shGovernment.SpecialthanksareextendedtoPaulDHalle@.

IntroducKon• Capsellabursa‐pastorisL.Medik(shepherd’spurse)seedsare

myxospermous.Thatis,theyexudemucilageuponhydraBon.

• Myxospermyappearstobeofgreatecologicalimportancein

waterlimitedenvironments.

• TheuBlityofthemucilagetoimprovesoilmechanicalproperBes

wasinvesBgated.

• RheologymeasuresassessedthephysicalproperBesofamodel

(clay)soil,beforeanda>ertheaddiBonofextractedseedmucilage.

Conclusions• Soilrheologyparameters(G*,η,τy,τf)decreaseaswatercontentincreases.

• Therateofthisdecreaseisreducedwhenisseedmucilagepresent.

• Thereislessaffectofseedmucilageofsoilshearmodulusandviscosity.

• Thegreatestaffectoftheseedmucilageisseenforyield‐andflow‐stress(soilsBffness).

• Thisinfluenceisgreatestathighsoilwatercontent,evenforonly0.5[w/w]mucilage.

• Atlowwatercontents1%mucilagehasgreaterinfluencethan0.5%mucilage.

• Soilwatercontentandrheology‐measurerelaBonshipsareexplainedbyexponenBalcurvefits.

• Seedmucilageincreasessoilresistancetomechanicalstress,evenatlowconcentraBons

• ThisinsightwillbeexploitedusingmathemaKcalmodelling,tofacilitateanassessmentofthe

ecosystemservicesprovisionsthatmightbemadebymyxospermousseeds.

Figure1.Lightmicrographsofshepherd’spurseseedsvisualizeda^er:(a)rutheniumredstainingandilluminaKonwithwhitelight,showingthelocalisaKonofpecKn;(b)calcofluorandilluminaKonwithUVlight,showingcellulose.Where‘m’denotesthemucilage,and‘s’theseed.NotethatthemucilageisabilayerstructurecomprisingpecKnhadcellulose‐thecelluloseconcentratedattheinnerlayer.Scalebar=500μm.

Thetheoryofrheology• RheologyisthescienceofmaterialdeformaBonandflow.

• Materialsmayrangefromideal‐elasBctoideal‐viscous.

• Theparametersassessedforthisstudyaredefinedbelow.

Parameter Rheologyτ RotaBonalshearstress(Pa),appliedforceγ Shearstrain(1)η Viscosity(Pa∙s),G* Complexshearmodulus(Pa),ameasureofsBffness,G' Storagemodulus(Pa),representelasBcbehaviour,G" Lossmodulus(Pa),representviscousbehaviour,

tanδ Lossfactor(1),whereisthephaseshi>angle,

τyYieldstress(Pa),representacriBcalstressthatcauses

irrecoverabledeformaBon

τf Stressatflowpoint(Pa),wherematerialstarttoflow

Figure2.(a)freezedriedmucilage;(b)Ca‐montmorillonit;(c)RotaKonalrheometer

(c)(a) (b)

1000

10000

100000

140 150 160 170 180 190 200

Shearmod

ulusG*(Pa)

Soilwatercontent(%)

100

1000

10000

140 150 160 170 180 190 200Viscosity

η(P

a∙s)

Soilwatercontent(%)

10

100

1000

140 150 160 170 180 190 200

Yieldstressτy(Pa)

Soilwatercontent(%)

0

0.5

1

1.5

2

1

10

100

1000

10000

100000

0.1 1 10 100 1000

tanδ,‐

G',G'',(P

a)

Shearstress,(Pa)τy τf

G’

G’’

tanδ

Flowpoint

LinearViscoelasBcRange YieldStress

0

0.05

0.1

0.15

0.2

0.25

0.3

140 150 160 170 180 190 200

Lossfactorta

Watercontent(%)

(b)(a)

(c) (d)

(e) (f)

10

100

1000

140 150 160 170 180 190 200

Flow

Pointstressτf(P

a)

Soilwatercontent(%)

m m

(a) (b)

s s

[email protected]‐3‐642‐14870‐5Penfieldetal.2001.PlantCell13:2777‐2791.Puocietal.2008.Amer.J.Agri.Biol.Sci.3:299‐314,200VanOudtshoorn,VanRooyen1999.Dispersalbiologyofdesertplants.Springer.ISBN978‐3‐642‐08439‐3

Top Related