Transcript
Page 1: AN46 3-Phase Switching AN46 Amplifier - SA306-IHZ 3-Phase Switching Amplifier - SA306-IHZ · 2015. 9. 1. · AN46 3-Phase Switching Amplifier - SA306-IHZ INTRODUCTION The SA306-IHZ

AN46U 1

AN46AN46 3-PhaseSwitchingAmplifier-SA306-IHZ

INTRODUCTIONThe SA306-IHZ is a fully-integrated switching amplifier designed primarily to drive three-phase brushless DC(BLDC)motors.Threeindependenthalfbridges,eachcomprisingaP-FETandaN-FETinaconfiguration,providemorethan15AofPEAKoutputcurrentunderdigitalcontrol.Thermalandshortcircuitmonitoringisprovided,whichgeneratesfaultsignalsforthemicrocontrollertotakeappropriateaction.AblockdiagramofthisICisprovidedinFigure1.

Figure 1. Polarity is Easily Switched–DC-to-DCconverter,threeterminalmodulecanbeswitchedfromaposi-tivetoanegativeconverterbysimplyinterchangingthejumpersidentifiedbyNote2.

DRIVING BRUSHLESS MOTORSBrushlessmotorsofthesamehorsepowerastheirbrushcounterpartsaresmallerandlighter.Whatisabsentintheformeristhefamiliarbrush–commutatorarrangementthathasbeenattheheartofsingle-phaseDCbrushmotorsformorethanacentury.Becausetheylackthisbrush-commutatorinterface,brushlessmotorsexhibitloweracous-ticnoise;arevirtuallymaintenancefree;andabrushlessmotorwillexhibitalongerlifecycle.Asrecentlyas2004,brushlessmotorswereconsideredtobesignificantlymoreexpensivethanbrushmotors.Atthetimeofthiswritingin2008,brushlessmotorshavebenefitedfromadecreaseincostsothattodaythepricedifferentialisaslittleasa10%whenshoppedagainstanequivalentbrushmotor.

CYCLE-BY-CYCLE CURRENT LIMIT – THE BENEFITSTraditionally,inapplicationswherethecurrentflowtoabrushlessmotorisnototherwisedirectlycontrolled,thein-rushcurrenthadtobeconsideredwhenselectingaproperdriveramplifier.Thisisinadditiontotheaveragecurrentthatwillflow.Asanexample,a1Acontinuousmotormightrequireadrivethatcandeliverwellover10APEAKinordertodelivertheinitialinrushcurrentthatflowsduringstartup.Manydiscretemotordrivesuseover-sizedFETstowithstandstartupconditionswhichresultsinhighersystemcostsandlargerpackagesizes.Howeverwiththeuniqueandrobustcycle-by-cyclecurrentlimitschemedesignedintotheSA306-IHZ,theinrushcurrentrequirementsofthemotorarenolongeranissuewhenselectingthedrive.Currentlimitschemesinherentlyreduceaccelerationofthemotor;however,theaveragecurrentdeliveredbytheSA306-IHZduringstartupishigher

GateControl

ControlLogic

BrushlessMotor

VS+

VS-

SA306-IHZ Switching Amplifier

Out AOut BOut C

AB

C

Vs (phase A)

PGND(A&B) PGND(C)

Vs (phase B&C)

FaultLogic

MicrocontrollerorDSC

SCTemp

ILIM/DIS1Current IaMonitor IbSignals Ic

GNDDIS1

PWMSignals

SGND

Sensing CircuitsSensor – Hall SensorsorSensorless – Input from Stator leads

SGND

AtAbBt

BbCt

Cb

3-Phase Switching Amplifier - SA306-IHZ

AN46

Copyright © Apex Microtechnology, Inc. 2012(All Rights Reserved)www.apexanalog.com OCT 2012

AN46U REV2

Page 2: AN46 3-Phase Switching AN46 Amplifier - SA306-IHZ 3-Phase Switching Amplifier - SA306-IHZ · 2015. 9. 1. · AN46 3-Phase Switching Amplifier - SA306-IHZ INTRODUCTION The SA306-IHZ

2 AN46U

AN46

thanwouldbedeliveredbyothercurrentlimitschemes.ByusingtheSA306-IHZ,themotorwillreachitsoperatingRPMfaster.ThustheSA306-IHZisabletosafelyandeasilydrivevirtuallyanybrushlessmotorwhichrequires5Acontinuouslyorless,throughitsstartupinterval—withoutregardtowhatitsin-rushrequirementsare.(Upto8AcontinuouslyinthecaseoftheSA306A-FHZ).

SA306-IHZ APPLICATIONSTheSA306-IHZ isdesignedprimarily todrive three-phasemotors.However, it canbeused foranyapplicationrequiringthreehighcurrentoutputs.ThesignalsetoftheSA306-IHZisdesignedspecificallyto interfacewithaDSPormicrocontroller.AtypicalsystemblockdiagramisshowninFigure1.Asexplainedbelow,over-temperature,short-circuitandcurrentlimitfaultsignalsprovideimportantfeedbacktothesystemcontrollerthatcansafelydisabletheoutputdriversinthepresenceofafaultcondition.High-sidecurrentsensorsmonitortheoutputcurrentofallthreephases,providingperformanceinformationthatcanbeusedtoregulateorlimittorque.

A SYSTEM OVERVIEW OF THE SA306-IHZWiththeintroductionoftheSA306-IHZ,designersnowhaveanoff-the-shelfsolutionfordrivingBLDCmotorsver-susdevelopingdrivercircuitsbyconfiguringthreediscretegatedriversandsixFETs.Theperformancespecifica-tionsfortheSA306-IHZareunusualinthatitcandeliverover15APEAKwithupto60VappliedtoitsFETs1.Imparting Rotation–ThreeindependentDMOSFEThalfbridgespro¬videtheoutputcurrent.Inoperation,asthemotorrotorrevolves,thecontrollercausesonemotorterminaltobedrivenHIGH,asecondLOWandthethirdtoFLOATinahighimpedancestate,asdepictedinFigure2.Thiscausesthemagneticfieldtorotateinsixstepsperelectricalrevolutioninthesimplestcase,impartingrotationtothepermanentmagnetsintherotor.Propersynchro-nizationofthissequenceisassuredbythefeedbackfromeitherHallsensorsorasensorlesscontrolsystemthatkeepsthemicrocontrollercontinuouslyinformedofthepositionoftherotorwithregardtothestatorwindings.

Figure 2. Imparting Rotation–BymonitoringtheHallsensors–orbymonitoringBackEMFinasensorlesscon-figuration–thestatorwindingfieldscanbemadetorotatesothattheresultantfieldofthetwoenergizedstatorwindingsandthepoleofthepermanentmagnetrotorremainatrightangles,therebymaximizingtheinstantaneous

torque.

Shoot-Through Protection–Theshoot-throughprotectionfeatureofthisICidentifiesthestateinwhichboththeupperandlowerportionsofahalfbridgeareONatthesametime.Shootthroughmustbeavoided,forifitweretooccur,itwouldshortthesupplytoground,overloadthecircuitanddestroytheFETs.Consequently,a‘deadtime’isprogrammedtoallowaFETtoturnfullyoffbeforeitscompanionFETisturnedon.Duringdeadtime,inductivewindingcurrentscontinuetoflow,orcommutate,throughinternalorexternalreversebiaseddiodes.Faultstatus

COM

N

S

COM

N

S

COM

N

SCOM

N

S

COM

N

S

COM

Low

High

Float

N

S

Float

High

Low High

Float

Low

High

Low

Float Float

Low

High High

Float

Low

Page 3: AN46 3-Phase Switching AN46 Amplifier - SA306-IHZ 3-Phase Switching Amplifier - SA306-IHZ · 2015. 9. 1. · AN46 3-Phase Switching Amplifier - SA306-IHZ INTRODUCTION The SA306-IHZ

AN46U 3

AN46

indicationandcurrentlevelmonitorsareprovideddirectlytothecontroller.Outputcurrentsaremeasuredusinganinnovativelow-losstechniquediscussedinalatersection.TheSA306-IHZalsoofferssuperiorthermalperformancewithaflexiblefootprint.Controlling Brushless Motor Drivers–Mostbrushlessmotordriversarecontrolledbymicrocontrollersorsomeotherintelligentsystem.AnumberofmanufacturersincludingAnalogDevices,Freescale,MicrochipandTexasIn-strumentsmarketmicrocontrollersformotioncontrol–andmorespecificallyfordrivingbrushlessmotors.Choosing a Brushless Motor–Althoughthereareanumberofsourcesforassistanceinchoosingamotor,brush-lessorotherwise,agoodstartingpointisReference2.Astheauthorpointsout,choosingamotorrequireslookingatawholelistofissuesincludingefficiency,torque,powerreliabilityandcost.Whatcanbesaidcategoricallyisthatabrushlesspermanentmagnetmotoristhehighestperformingmotorintermsoftorqueversusefficiency.AlsoallthreestatorwindingscanbecontrolledwhichisnotthecaseinatraditionalDCmotorwherecommutationreliesonbrushes.

SENSOR VERSUS SENSORLESS COMMUTATIONHallSensorsarenotrequiredinsensorlesscommutation.InsteadtheinstantaneouspositionoftherotorrelativetothestatorisdeterminedbytheBackEMF(BEMF)developedinthestatorwindings.TheabsenceofboththeHallSensorsandtheattendantwiringlowersthemotor’scostandincreasesreliability,thoughderivingthelostinforma-tionfromtheBEMFrequiressomewhatmorecomplexcontrol.ThisapproachisattractiveinapplicationssuchasrefrigerationorHVACsystemswhichgenerateheatthatcouldacceleratefailuresoftheHallSensors.Ontheotherhand,startingpresentsaprobleminsensorlesscommutationsimplybecausethereisnoBEMFwhenthemotorisatrest.Secondly,abruptchangesinthemotorloadcancauseaBEMFdrivelooptogooutofsynchro-nization.Centraltobothsensorless-andsensor-basedcontrolsystemsisthepresenceofpulsewidthmodulation(PWM)whichisdiscussedintheAppendix.

CYCLE BY CYCLE CURRENT LIMITING – THE FUNDAMENTALSInapplicationswherethecurrentinthemotorisnotdirectlycontrolled,boththeaveragecurrentratingofthemotorandthein-rushcurrentmustbeconsideredwhenselectingaproperdrive.Forexample,amotorthatrequires1Awhenrunningatconstantspeed,mightrequireadrivethatcandeliverwellover10APEAKinordertosurvivetheinrushconditionatstartup.Butasthisdiscussionwillmakeclear,thisisnotthecasewhenusingtheSA306-IHZ.DepictedinFigure3aisthebehaviorinatraditionalmotorwherethereisnocycle-by-cyclecurrentlimit.(ThisisdiscussedinmoredetailintheAppendix)

Inthiscase,whentherotorisnotturning(noBEMF),thecurrentislimitedonlybytheresistanceoftherotorofthemotorplusanyseriesresistancethatmaybepresent.Asthemotoraccelerates,thebackEMFbuildsup,graduallyreducingthecurrentsothatitdiminishestothesteady-statecurrent.Figure3illustratesmotorbehaviorwhencycle-by-cyclecurrentlimitisappliedatstart-up.Inthiscase,thecurrentislimitedbycircuitrywithintheSA306-IHZ–notbytheimpedanceoftherotor.Asthemotorreachesitssteady-statespeed,thecurrenttailsoff.

Figure 3. Motor Current Behavior at Startup–(a)Withoutcycle-by-cyclecurrentlimit.(b)Withcycle-by-cyclecurrentlimit.

Time -milliseconds

Non-limited back EMF

Non-limited motor current

Cur

rent

- A

mpe

res

(a)Time - Milliseconds

Limited back EMF

Limited motor currentCur

rent

- A

mpe

res

(b)

Page 4: AN46 3-Phase Switching AN46 Amplifier - SA306-IHZ 3-Phase Switching Amplifier - SA306-IHZ · 2015. 9. 1. · AN46 3-Phase Switching Amplifier - SA306-IHZ INTRODUCTION The SA306-IHZ

4 AN46U

AN46

CYCLE-BY-CYCLE CURRENT LIMIT BEHAVIOR ShownalongthetopofFigure4isthecycle-by-cyclebehaviorofthePWMpulsetrainappliedtotheSA306-IHZbythemicrocontroller.Themotorcurrentisshowninblueatthebottomoftheillustration.Outlinedinred,andsuperim-posedoverthecurrentwaveform,istheactualPWMpulsetrain(‘PWMoutput’)deliveredbytheFETswhichhas,ineffect,beenmodulatedbythecurrentflow.Itshutsofftheoutputpulseshouldthecurrentexceedthe‘currentlimit’setexternallybytheuser.1st Pulse–Inthecaseofthe1stPWMpulse,nocurrentlimitingoccursbecausethepulseendsbeforetherisingcurrentreachesthecurrentlimitthreshold.Attheendofthe1stpulsethereisashortdecaybeforethePWMpulseturnsononcemoreandthecurrentresumesitsrise.Notethatbecausecurrentcannotchangeinstantaneouslyinaninductivereactance,whichis,infact,whattherotorofthebrushlessmotoris,thecurrentvalue,unlikethePWMvoltage,isalwayscontinuous.2nd Pulse–InthecaseofthesecondPWMpulse,thecurrentreachesthelimitvaluebeforethePWMinputpulseends.Consequently,thePWMoutputpulseisshutoffearlyinitscycle.Thenthemotorcurrentdecaysuntilthethirdpulseisappliedwhichonceagaincausesthecurrenttorise.Subsequent pulses–ThebehaviorjustdescribedcontinuesuntilthebackEMFrisestothepointwherethecurrentfallsbelowthecurrentlimitthreshold.Thisoccursasthemotorapproachesitsoperatingspeedandthecurrentde-scendstoitssteadystatevalue,asdepictedinFigure3b.Theratioofthepeak-to-averagemotorcurrentdependsontheinductanceofthemotorwinding,thebackEMFdevelopedinthemotor,mechanicalloadingofthesystemsandthewidthofthepulse.

Figure 4. Cycle by Cycle Current Limit

Time (milliseconds)

PWM input

Motor current

PWM output

Vol

tage

CurrentLimit

1 2 3

Page 5: AN46 3-Phase Switching AN46 Amplifier - SA306-IHZ 3-Phase Switching Amplifier - SA306-IHZ · 2015. 9. 1. · AN46 3-Phase Switching Amplifier - SA306-IHZ INTRODUCTION The SA306-IHZ

AN46U 5

AN46

CONTROL AND SENSE ARCHITECTUREAsdepictedinFigure5,theoutputcurrentoftheupperoutputFETU14forOUTAiscontinuallymeasured,(ThesameoccursforthecorrespondingoutputFETsforOUTBandOUTC).TheoutputofthecurrentsensecircuitisappliedtoacurrentmirrorcomprisingU1,U2andU3whichdevelopsavoltageacrosstheexternalcurrentlimitresistor.ThisvoltageiscomparedwiththecurrentlimitthresholdbyComparatorU6.

Figure 5. Control and Sense Architecture

Disabling Circuitry–IfthevoltageappliedtotheplusterminalofcomparatorU6exceedsthecurrentlimitthresholdvoltage(Vth),allthreeoutputsOUTA,OUTBandOUTCaredisabled.ThedisablingpathisviagatesU7andU8andgatesU12andU13.OncethevoltageappliedtoComparatorU6fallsbelowtheVththresholdvoltage,andthedisabledtopsideinputtothegatecontrolgoeslow,theoutputstagewillreturntoanactivestateontherisingedgeofanytopsideinputcommandsignal(At,Bt,orCt).NotethatthecorrespondingdisablesignalsfromphasesBandCarealsoappliedviagateU7andtheirbehaviorisexactlythesameasisthecaseforOUTA.AlsotheILIM/DIS1goesHIGHwhenanyofthethreecurrentsensecircuitsdetectsanovercurrentsituation.Thecycle-by-cyclecurrentlimitfeatureoftheSA306-IHZwillreseteachPWMcycle.ThusthePEAKcurrentislimitedineachphaseduringeachPWMcycle,asillustratedinFigure4.NoticealsothatthemomentatwhichthecurrentsensesignalexceedstheVththresholdisasynchronouswithrespecttotheinputPWMsignalbecausethiseventisgovernedbytheinter-sectionoftherisingcurrentwiththecurrentlimit–notthePWMdutycycle.ThedifferencebetweenthePWMperiodandthemotorwindingL/Rtimeconstantwilloftenresultinanaudiblebeatfrequencysometimescalleda‘sub-cycleoscillation’.Thisoscillationcanbeviewedwithanoscilloscopebyapplyingaprobetopin7,ILIM/DIS1.Undervoltage Lockout–SeeTable1andPage7.Limitations at High and Low Speeds–InputsignalsappliedtothePWMandcommandinga0%-ora100%-dutycycle,maybeincompatiblewiththecurrentlimitfeatureduetotheabsenceofrisingedgesofAt,Bt,andCt–exceptatinstanceswhentherotationofthemotorrequirestheoutputFETstochangestates.Athighmotorspeeds,thismayresultinpoorperformanceandsignificantlyincreasedtorqueripple.WhereasatlowmotorspeedsthemotormaystallifthecurrentlimittripsandthemotorcurrentreacheszerowithoutacommutationedgethatwouldchangethestateoftheoutputFETsandnormallyresetthecurrentlimitlatch.

SGND

GateControl

Vs

OUT A

PGND

At

Ab

Sc

TEMP

SCLogic

TempSense

Ref

Ia

DIS2

ILIM/DIS1

UVLO

Ia'+_

Lim bLim c

+

_

Vdd

Lim a

CurrentSense

12k

12k

12k

12k

VthU1 U2

U3

U4

U5U6

U7

U8

U9

U10

U11

U12

U13

U14

U15

RLIM

Page 6: AN46 3-Phase Switching AN46 Amplifier - SA306-IHZ 3-Phase Switching Amplifier - SA306-IHZ · 2015. 9. 1. · AN46 3-Phase Switching Amplifier - SA306-IHZ INTRODUCTION The SA306-IHZ

6 AN46U

AN46

Disabling Cycle-by-Cycle Current Limit–ThecurrentlimitfeaturemaybedisabledbypullingtheILIM/DIS1pintoGND.ThecurrentsensecircuitryidentifiedinFigure5,willcontinuetoprovidetopFEToutputcurrentinformation.External Current Control Options–Typicallythecurrentsensepinssourcecurrentintogroundedresistorswhichprovidevoltagesto thecurrent limitcomparators,asshown inFigure1. If insteadthecurrent limit resistorsareconnectedtoavoltageoutputDAC,thecurrentlimitcanbecontrolleddynamicallybythesystemcontroller.Thistechniqueessentiallyreducesthecurrentlimitthresholdvoltageto(Vth-VDAC).Duringexpectedconditionsofhightorquedemand,suchasstart-uporreversal,theDACcanadjustthecurrentlimitdynamicallytoallowperiodsofhighcurrent.Innormaloperationwhenalowcurrentisexpected,theDACoutputvoltagecanincrease,reducingthecurrentlimitsettingtoprovidemoreconservativefaultprotection.Thisisdiscussedindetailunder‘CurrentSense–AnAdvantage’.Three Degrees of Freedom–Theappliedvoltage,theswitchingfrequencyandthePWMdutycyclearethreecru-cialparametersthatcanbeprogrammedindependently.Howthesevariablesareselectedwillaffectthebehaviorofthemotorwithregardtohowfastitwillaccelerate,andconsequentlyhowfastitsspeedandtorquewillrise.

CONTROL AND SENSE PINSAsummaryofthecontrolandsensepins,andtheirfunctions,issuppliedinTable1.

Table 1. Control and Sense FeaturesNomenclature Pin # Function Description Remarks

DIS2 23 Control

When a HIGH is applied to thisSchmitttriggeredlogiclevel,itplac-esOUTA,OUTB,andOUTCinahighimpedancestate.

Pin DIS2 (23) has an internal12kΩpull-downresistorconnect-ed to ground and thereforemaybeleftunconnected.(SeeFigure5.)

ILIM/DIS1 7 Control/Sense

Control: Pulling this pin to logicHIGH placesOUTA, OUT B, andOUTC inahigh impedancestate.Pulling this pin to a logic LOWef-fectivelydisablesthecycle-by-cyclecurrentlimitfeature.Sense: This pin is also connectedinternallytotheoutputofthecurrentlimit latch through a 12kΩ resistorand can be monitored to observethe function of the cycle-by-cyclecurrentlimitfeature.

SC 3 Sense

GoesHIGH ifashort circuit isde-tected or an output occurs that isnot in accordance with the inputcommands,

TheSCsignal isblankedforap-proximately200nsduringswitch-ingtransitionsbutinhighcurrentapplications, short glitches mayappear on the SC pin. A highstate on the SC output will notautomaticallydisable thedevice.The SC pin includes an internal12kΩseriesresistor,asshowninFigure5.

TEMP 25 Sense

GoesHIGH if the SA306 die tem-perature reaches approximately135ºC.

ThispinWILLNOTautomaticallydisablethedevice.TheTEMPpinincludes a 12kΩ series resistor.SeeFigure5.

Page 7: AN46 3-Phase Switching AN46 Amplifier - SA306-IHZ 3-Phase Switching Amplifier - SA306-IHZ · 2015. 9. 1. · AN46 3-Phase Switching Amplifier - SA306-IHZ INTRODUCTION The SA306-IHZ

AN46U 7

AN46

Nomenclature Pin # Function Description RemarksUVLO (Under-voltage LockOut)

None Control/SenseDisablesalloutputFETsuntilVS isabove theUVLO thresholdvoltagewhichistypically8.3V.

SeediscussioninSection3.4.

Vth None Control

Ifthevoltageofanyofthethreecur-rentsensepinsexceedsthecurrentlimitthresholdvoltage(Vth),whichistypically 3.75 volts, all outputs aredisabled.AfterallcurrentsensepinsfallbelowtheVththresholdvoltageand theoffendingphase’s topsideinputgoeslow,theoutputstagewillreturntoanactivestateontheris-ingedgeofANYtopsideinputcom-mandsignal(At,Bt,orCt).

FAULT INDICATIONSIn thecaseofeitheranover-temperatureorshort-circuit fault, theSA306-IHZwill takenoaction todisable theoutputs.However,theSCandTEMPsignalscanbefedtoanexternalcontroller,asdepictedinFigure6,whereadeterminationcanbemaderegardingtheappropriatecourseofaction.Inmostcases,theSCpinwouldbecon-nectedtoaFAULTinputontheprocessor,whichwouldimmediatelydisableitsPWMoutputs.TheTEMPfaultdoesnotrequiresuchanimmediateresponse,andwouldtypicallybeconnectedtoaGPIO,orKeyboardInterruptpinoftheprocessor.Inthiscase,theprocessorwouldrecognizetheconditionasanexternalinterrupt,whichcouldbeprocessedinsoftwareviaanInterruptServiceRoutine.Theprocessorcouldoptionallybringallinputslow,orassertahighleveltoeitherofthedisableinputsontheSA306-IHZ.Figure6depictsanexternalSRflip-flopwhichprovidesahardwiredshutdownofalloutputsinresponsetoafaultindication.AnSCorTEMPfaultsetsthelatch,pullingtheDIS2pinHIGH.TheprocessorclearsthelatchedconditionwithaGPIO.Thiscircuitcanbeusedinsafetycriticalapplicationstoremovesoftwarefromthefault-shutdownloop,orsimplytoreduceprocessoroverhead.Inapplica-tionswhichmaynothaveavailableGPIO,theTEMPpinmaybeexternallyconnectedtotheadjacentILIM/DIS1pin.Ifthedevicetemperaturereaches~135ºCalloutputswillbedisabled,de-energizingthemotor.TheSA306-IHZwillre-energizethemotorwhenthedevicetemperaturefallsbelowapproximately95ºC.TheTEMPpinhysteresisiswidetoreducethelikelihoodofthermaloscillationsthatcangreatlyreducethelifeofthedevice.

Figure 6. External Latch Circuit

GateControl

ControlLogic

SA306-IHZ Switching Amplifier

AB

C

FaultLogic

Microcontrolleror

DSC

SC

Latched Fault

TEMP

Fault Reset

Interrupt

GPIO

DIS2

Page 8: AN46 3-Phase Switching AN46 Amplifier - SA306-IHZ 3-Phase Switching Amplifier - SA306-IHZ · 2015. 9. 1. · AN46 3-Phase Switching Amplifier - SA306-IHZ INTRODUCTION The SA306-IHZ

8 AN46U

AN46

UNDER-VOLTAGE LOCKOUTWithoutsufficientsupplyvoltage, theSA306-IHZcontrol circuit cannotsufficientlydrive thegatesof theoutputFETs.Theundervoltagelockoutconditionresults intheSA306-IHZunilaterallydisablingalloutputFETsuntilVSisabovetheUVLOthreshold indicated in thespecification table in theDataSheet1.There isnoexternalsignalindicatingthatanundervoltagelock-outconditionisinprogress.TheSA306-IHZhastwoVSconnections:oneforphaseA,andanotherforphasesB&C.Thesupplyvoltagesonthesepinsneednotbethesame,buttheUVLOwillengageifeitherisbelowthethreshold.HysteresisontheUVLOcircuitpreventsoscillationswithtypicalpowersupplyvariations.

CURRENT SENSE — AN ALTERNATIVE ExternalpowershuntresistorsarenotrequiredwiththeSA306-IHZ.Forwardcurrentineachtop,P-channeloutputFETismeasuredandmirroredtotherespectivecurrentsenseoutputpin,Ia,IbandIc,asdepictedinFigures1and5.Byconnectingaresistorbetweeneachcurrentsensepinandareference,suchasground,avoltagedevelopsacrosstheresistor that isproportional to theoutputcurrent for thatphase.AsanalternativethecurrentsIa, Ib,andIccanbefedtoasingleresistorandthevoltagedevelopedmonitoredbyahigh-impedanceA/Dconverter,asshowninFigure7.Asdepictedinthe‘CurrentSense’plotonpage4oftheSA306-IHZproductdatasheet,themaximumcurrentperphaseisslightlylessthan2milliamperes.Consequently,choosearesistorthatwilldevelopthevoltageappropriatefortheA/DConverterchosen.Thefullscalevoltagewillbethevoltagedevelopedacrosstheresistorbythesumofthethreecurrents—6milliamperes.Alsoallowaheadroomofapproximately0.5V.

Figure 7. Current Monitoring Circuit

EXTERNAL FLYBACK DIODESExternalfly-backdiodes(D1throughD6),depictedinFigure8,willoffersuperiorreverserecoverycharacteristicsandlowerforwardvoltagedropthantheinternalback-bodydiodes.Inhighcurrentapplications,externalflybackdiodescanreducepowerdissipationandheatingduringcommutationofthemotorcurrent.Reverserecoverytimeandcapacitancearethemostimportantparameterstoconsiderwhenselectingthesediodes.Ultra-fastrectifiersofferbetterreverserecovery timeandSchottkydiodestypicallyhave lowcapacitance. Individualapplicationre-quirementswillbetheguidewhendeterminingtheneedforthesediodesandforselectingthecomponentwhichismostsuitable.

SA306-IHZBrushless Motor Driver

AB

C

Microcontroller

High ImpedanceA/D Module R*

* See discussion in the text.

Ia IcIb

21 15

Page 9: AN46 3-Phase Switching AN46 Amplifier - SA306-IHZ 3-Phase Switching Amplifier - SA306-IHZ · 2015. 9. 1. · AN46 3-Phase Switching Amplifier - SA306-IHZ INTRODUCTION The SA306-IHZ

AN46U 9

AN46

Figure 8. Three-Phase Motor Drive Circuit

A SPECIFIC EXAMPLE Beginbychoosingamotorthatwillexhibitthemechanicalperformancerequired—whichistosaythetorque,theefficiency,andother issuesthatwill fulfill themotordriverequirementsofyoursystem.Wehavechosenasourexamplealow-inertia,brushlessmotorthatdelivers557mNmoftorqueat2000rpm.WeselectedaMaxonECFlatmotorwww.maxonmotor.com.Thecharacteristicsofthewindingsofthismotorarethatanystator-windingpairexhibitsaresistance(Rm)of2.3ohmsandaninductance(Lm)of2.5millihenries.Thetorqueconstant(Kt)ofthemotoris217mMmoz-in/A.

DEMONSTRATION BOARD FOR THE SA306-IHZIt isrecommendedthat thedesigneracquire theDB64DemonstrationBoard3andassembleaprototype. In theDB64 theSA306-IHZ inputPWMcontrol isachievedbymeansofaTexas Instrumenton-boardUCC3626PWmicrocontroller4.TheDB64isdesignedtodemonstratethecapabilitiesoftheSA306-IHZasa3-phasebrushlessDCmotordriverIC.FromthereonecaneasilyconvertthecircuitdevelopedwiththeDB64DemonstrationBoardintoacircuitsimilartotheoneshowninFigure8whichcanserveasthebasecircuitforaproductionversion.

GND

VREF

TACH-OUT

R-TACH

C-TACH

CT

SYNCH

-IN

SNS_NI

SNS_I

I-OUT

OC-REF

PWM_I

PWM_NI

TIMotor Controller

UCC3626

VDD

AHI

ALOW

BHI

BLOW

CHI

CLOW

DIR_IN

QUAD

BRAKE

COAST

HALLC

HALLB

HALLA

SA306-IHZ3 Phase Switching

Amplifier

OUT C

VDD

PGND C

PGND A & B

OUT A

VSB&C

VSA

OUT B

At

Bt

Bb

Ct

CHI

Cb

HS HS

ILIM/DIS1

575655

535251

49484746

353433

40393837

313029

444342

D1

D2

U1

D3

C3 C4 C6

D4

D5

C2 C5+VS

61

63

13

11

15

17

Hall Sensors

19 58 59

7D6

C16

U3

2 3 6 7

C1

8 1+12V

+5V

R4 R5

R3

R1

R2

01C 11CC9

+5V

-Vs

1

2

3

4

5

6

7

8

9

10

11

12

13

14

C8

U2

Pgn

d

Sgn

d

28

27

26

25

24

23

22

21

20

19

18

17

16

15

+12VC7

+5V

DIR_INILIM/DIS1

C14

R8

+12V

SpeedControl

LM78L05

R6

Page 10: AN46 3-Phase Switching AN46 Amplifier - SA306-IHZ 3-Phase Switching Amplifier - SA306-IHZ · 2015. 9. 1. · AN46 3-Phase Switching Amplifier - SA306-IHZ INTRODUCTION The SA306-IHZ

10 AN46U

AN46

LAYOUT CONSIDERATIONSAsimpletwo-layerprintedcircuitboardconstructionissufficientbecauseoftheconvenientpinoutoftheSA306-IHZPowerQuadpackage.InputsignalsareroutedintoonesideoftheSA306-IHZpackageandhigh-poweroutputsig-nalsareroutedfromtheothersidein2ouncecopper.Thiseliminatestheneedtoroutecontrolsignalsnearmotorconnectionswherenoisemightcorruptthesignals.Fillingtopandbottomlayerswithcopperreducesinductivecou-plingfromthehighcurrentoutputs.Use1nFcapacitorswithexcellenthighfrequencycharacteristicstobypasstheVSmotorsuppliesateachphaseaswellasswitchinggradeelectrolyticcapacitors.Thesix100VSchottkydiodes(D1–D6)conductthecommutationcurrentvialowforwardvoltagepathswhichreducesthepowerdissipationintheSA306-IHZ.Thesediodesareratedfor5Acontinuous.MountthemclosetotheSA306-IHZtoreduceinduc-tanceinthecommutatingcurrentloop.Forapplicationswithcontinuouscurrentslessthan5A,theSchottkydiodesmaynotbenecessary,butonemustconsiderthehigherforwardvoltageinternalbodydiodesandtheassociatedpowerdissipationthatresults.Output Traces–OutputtracescarrysignalswithveryhighdV/dtanddI/dt.Properroutingandadequatepowersupplybypassingensuresnormaloperation.Poorroutingandbypassingcancauseerraticandlowefficiencyop-erationaswellasringingattheoutputs.Bypassing–TheVSsupplyshouldbebypassedwithasurfacemountceramiccapacitormountedascloseaspossibletotheVSpins.TotalinductanceoftheroutingfromthecapacitortotheVSandGNDpinsmustbekepttoaminimumtopreventnoisefromcontaminatingthelogiccontrolsignals.AlowESRcapacitorofatleast25μFperampereofoutputcurrentshouldbeplacedneartheSA306-IHZaswell.Capacitortypesratedforswitchingapplica-tionsaretheonlytypesthatshouldbeconsidered.NotethatphasesB&CshareaVSconnectionandthebypassrecommendationshouldreflectthesumofB&Cphasecurrent.ThebypassingrequirementsoftheVDDsupplyarelessstringent,butstillnecessary.A0.1μFto0.47μFsurfacemountceramiccapacitor(X7RorNPO)connecteddirectlytotheVDDpinissufficient.Ground Connections and Ground Planes–SGNDandPGNDpinsareconnectedinternally.However,thesepinsmustbeconnectedexternallyinsuchawaythatthereisnomotorcurrentflowinginthelogicandsignalgroundtracesasparasiticresistancesinthesmallsignalroutingcandevelopsufficientvoltagedropstoerroneouslytrig-gerinputtransitions.Alternatively,agroundplanemaybeseparatedintopowerandlogicsectionsconnectedbyapairofback-to-backSchottkydiodes.Thisisolatesnoisebetweensignalandpowergroundtracesandpreventshighcurrentsfrompassingbetweentheplanesections.UnusedareaonthetopandbottomPCBplanesshouldbefilledwithsolidorhatchedcoppertominimizeinductivecouplingbetweensignals.Thecopperfillmaybeleftuncon-nected,althoughagroundplaneisrecommended.

Table 2. Parts List for Figure 7ReferenceDesignation DescriptionR1,R2,R3 470ΩR4,R5,R6 1kΩR8 20kΩpotentiometer(tocontrolthePWMdutycycle)R9,R10,R14,R15,R16,R17 5kΩC1,C7,C8 1µFC2,C3,C4,C5,C6 1nFC9,C10,C11 2.2nFC14,C16 0.1µFD1,D2,D3,D4,D5,D6 PDS5100U1 ApexMicrotechnologySA306-IHZorSA306A-FHZU2 TexasInstrumentUCC3626U3 LM78L05

Page 11: AN46 3-Phase Switching AN46 Amplifier - SA306-IHZ 3-Phase Switching Amplifier - SA306-IHZ · 2015. 9. 1. · AN46 3-Phase Switching Amplifier - SA306-IHZ INTRODUCTION The SA306-IHZ

AN46U 11

AN46

POWER DISSIPATIONThethermally-enhancedpackageoftheSA306-IHZallowsforseveraloptionsformanagingthepowerdissipatedinthethreeoutputstages.PowerdissipationintraditionalPWMapplicationsisacombinationofoutputpowerdis-sipationandswitchinglosses.Outputpowerdissipationdependsonthequadrantofoperationandwhetherexternalflybackdiodesareusedtocarrythereverseorcommutatingcurrents.SwitchinglossesaredependentonthefrequencyofthePWMcycleasdescribedinthetypicalperformancegraphs.ThesizeandorientationoftheheatsinkmustbeselectedtomanagetheaveragepowerdissipationoftheSA306-IHZ.Applicationsvarywidelyandvarious thermal techniquesareavailable tomatch the requiredperformance.ThepatentpendingmountingtechniqueshowninFigure9,withtheSA306-IHZinvertedandsuspendedthroughacutoutinthePCB,isadequateforpowerdissipationupto17WwiththeHS33(a1.5-inchlongaluminumextrusionwithfourfins).Infreeair,mountingthePCBperpendiculartotheground,sothattheheatedairflowsupwardalongthechannelsofthefinscanprovideatotalθJ-Aoflessthan14ºC/W(9WmaxaveragePD).MountingthePCBparalleltothegroundimpedestheflowofheatedairandprovidesaθJ-Aof16.66ºC/W(7.5WmaxaveragePD).Forapplicationsinwhichhigherpowerdissipationisexpectedorlowerjunctionorcasetemperaturesarerequired,alargerheatsinkorcirculatedaircansignificantlyimprovetheperformance.AlsoseeReferences5and6.

Figure 9. HS33 HeatsinkAppendix

A Brief Overview of PWMThefirstpulsewidthmodulation(PWM)ICsappearedonthemarketsome40yearsago.SotheconceptofPWMisatleastasold.Thoughtheearliestapplicationswereinswitchingpowersupplies,itwasnotmuchlaterthatthetechniquewasfirstemployedtodrivebrushlessmotors.TheprincipalbenefitofPWMasacontroltechniquebe-comesclearbyexaminingFigureA1.Thetraditionallinearpowerdeliverytechniqueforlimitingpowersimplyem-ploysavariableresistanceasdepictedinFigureA1(a).Whenmaximumoutputiscommanded,thedriverreducesresistanceofthepasselementtoaminimum.Atthisoutputlevel,lossesinthelinearcircuitarerelativelylow.Whenzerooutputiscommandedthepasselementresistanceagainapproachesinfinityandlossesagainapproachzero.However,thedisadvantageofthelinearcircuitbecomesclearinthemidrangewhentheoutputlevelisinthevicin-ityof50%.Attheselevelstheresistanceofthepasselementisequaltotheloadresistancewhichmeanstheheatgeneratedintheamplifierisequaltothepowerdeliveredtotheload!Inotherwords,alinearcontrolcircuitexhibitsaworstcaseefficiencyof50%whendrivingresistiveloadsatmidrangepowerlevels.What’smore,whentheloadisreactive,thisefficiencydropsevenfurther.

PatentPending

Page 12: AN46 3-Phase Switching AN46 Amplifier - SA306-IHZ 3-Phase Switching Amplifier - SA306-IHZ · 2015. 9. 1. · AN46 3-Phase Switching Amplifier - SA306-IHZ INTRODUCTION The SA306-IHZ

12 AN46U

AN46

Figure A1. PWM versus Linear Control–PWMcontrolin(b)exhibitsfarlowerlossesthanthetraditionallinearcontroltechniquein(a)

NowconsiderPWMoperationasdepictedinfigureA1(b).InaPWMcontrolsystemananaloginputleveliscon-vertedintoavariable-duty-cycleswitchdrivesignal,Theprocessofswitchingfromoneelectricalstatetoanother,whichinthiscaseissimplybetweenOFFandON,iscalled‘modulation’,whichaccountsforwhythistechniqueiscalled‘pulsewidthmodulation’.Beginningatzerodutycycle,whichistosayOFFallthetime,thedutycycleisoftenadvancedasthemotorbeginstorotate,untilitisrunningatthespeedand/orthetorquerequiredbytheapplica-tion.InthecaseofaPWMcontrolcircuit,therathernegligiblelossesareprimarilyduetotheONresistanceoftheswitchingFETandtheflybackdiodewhichiswhyefficienciesashighas80%to95%areroutine.However,athighswitchingfrequenciestheenergyrequiredtoturntheFETsonandoffcanbecomesignificant.

Figure A2. Linear versus PWM—Currentbehaviorwithasteady-stateexcitationin(a);CurrentbehaviorwithPWMexcitationin(b)

Pulse width controlLinear control(a)

V S

DriverLoad

Pass element

95%

50%

5%On

(b)

Off

Off

Off

V

t

t

V

t

V

On

On

OffOn On

V

tt

V

On

Imax. I = VR

VR

RtLI = (1 - e )

I (am

pere

s)

t

(a)

I = VR

Ioff

toff(b)

-VR

RtLI = (1 - e )-

Page 13: AN46 3-Phase Switching AN46 Amplifier - SA306-IHZ 3-Phase Switching Amplifier - SA306-IHZ · 2015. 9. 1. · AN46 3-Phase Switching Amplifier - SA306-IHZ INTRODUCTION The SA306-IHZ

AN46U 13

AN46

Inadditiontoenhancedefficiency,PWMcanplayadditionalroleswhichincludelimitingthestart-upcurrent,control-lingspeedandcontrollingtorque.Theoptimumswitchingfrequencywilldependoninertiaandinductanceofthebrushlessmotorchosenandtheapplication.Thechoiceoftheswitchingfrequencyaffectsbothlossesandthemag-nitudeoftheripplecurrent.AgoodruleofthumbisthatraisingtheswitchingfrequencyincreasesthePWMlosses.Ontheotherhand,loweringtheswitchingfrequencylimitsthebandwidthofthesystemandcanraisetheheightsoftheripplecurrentpulsestothepointthattheybecomedestructiveorshutdownthebrushlessmotordriverIC.TheripplecurrentpulsesaredepictedinFigureA2(a)andarediscussedbelow.

BRUSHLESS MOTOR BEHAVIOR – AN OVERVIEW Oneofthemostcriticalmomentswithregardtoabrushlessmotor–alsotrueforamotorwithbrushes–iswhenpowerisfirstappliedwhilethemotorisatrest.Atthistimetherotorisstationaryandisdeliveringno‘backEMF’(VBEMF).VBEMFcanbeexpressedas:

VBEMF=(Kb)(Speed) (Equation1)

Where:Kb=voltageconstant(volts/1000RPM) Speed=revolutionsperminute(expressedinthousands)

Onceavoltageisappliedtothemotor,therotorbeginsturning,generatingaVBEMFgovernedby(Equation1).IgnoreforthemomentthattheplanistodrivethemotorwithaPWMsource,andassumethemotorisdrivenbyasteady-statevoltage,thenwecanexpressthecurrentbythisequation:

I=[(V-VBEMF)/Rm][1-e-Rmt/Lm] (Equation2)

Where:V=theappliedvoltage VBEMF=backEMF Rm=statorresistance(windingpair) Lm=statorinductance(windingpair)

Notethatin(Equation2),thecurrent(I)atanymomentisafunctionofboththebackEMF(VEMF)andthetime(t).Thecurrentwhenthemotorisstopped(VBEMF=0)isillustratedinFigureA2(a)andisafamiliarwaveformforchar-acterizingthecurrentinanyL-RcircuitwithitsrisetimegovernedbythetimeconstantL/R.Nowlet’sexchangethesteady-stateexcitationvoltageforaPWMsource,asshowninFigureA2(b).ThecurrentrisesuntilthefirstONpulseends;whenthevoltageabruptlyfallstozeroattheendofthefirstappliedvoltagepulse,thecurrentbeginstodecaytowardszero.However,thenextpulsewillagaindrivethecurrentupwards,andsoforth,sothatthecurrentcontinuestorise.Asthemotoraccelerates,thecurrentwaveformwillexhibitasawtoothprofile.Thissawtoothcharacteristicisalsoknownasripple.Becausetorqueisdirectlyproportionaltocurrent,thesequenceof risingcurrentpulsesdrive themotor,whichdevelopsacorresponding torque thataccelerates themotor.Butthisisnotsointhecaseofcycle-by-cyclecurrentlimit.Becauseinthiscasethecurrentriseceasesim-mediatelyifthecurrentreachesthelimitvalueduringanyPWMpulseinterval.

REFERENCES1.SA306-IHZ Pulse Width Modulation Amplifier Data Sheet,www.apexanalog.com2.Motion Control PrimerbyDavidPalombo,www.aveox.com3.DB64 Demonstration Board For SA306EX,www.apexanalog.com4.UCC2626, UCC3626 Brushless DC Motor Controller,www.ti.com5.ApplicationNote22,SOA (Safe Operating Area) and Load Lines,www.apexanalog.com6.ApplicationNote11,Thermal Techniques,www.apexanalog.com

BIBLIOGRAPHY“Modeling,Simulation,andAnalysisofPermanent-MagnetMotorDrives,PartII:TheBrushlessDCMotorDrive”byPragasenandRamuKrishnan,IEEE Transactions on Industry Applications,Vol.25,No.2,March/April1989,pages274-279

“ANewSimulationModelofBLDCMotorwithRealBackEMFWaveform”byY.S.Jeon,H.S.Mok,G.H.Choe,D.K.Kim,J.S.Ryu,7th Workshop on Computers in Power Electronics, 2000;pages217-220

Page 14: AN46 3-Phase Switching AN46 Amplifier - SA306-IHZ 3-Phase Switching Amplifier - SA306-IHZ · 2015. 9. 1. · AN46 3-Phase Switching Amplifier - SA306-IHZ INTRODUCTION The SA306-IHZ

14 AN46U

AN46

NEED TECHNICAL HELP? CONTACT APEX SUPPORT!ForallApexMicrotechnologyproductquestionsandinquiries,calltollfree800-546-2739inNorthAmerica.Forinquiriesviaemail,pleasecontactapex.support@apexanalog.com.InternationalcustomerscanalsorequestsupportbycontactingtheirlocalApexMicrotechnologySalesRepresentative.Tofindtheonenearesttoyou,gotowww.apexanalog.comIMPORTANTNOTICE

ApexMicrotechnology,Inc.hasmadeeveryefforttoinsuretheaccuracyofthecontentcontainedinthisdocument.However,theinformationissubjecttochangewithoutnoticeandisprovided"ASIS"withoutwarrantyofanykind(expressedorimplied).ApexMicrotechnologyreservestherighttomakechangeswithoutfurthernoticetoanyspecificationsorproductsmentionedhereintoimprovereliability.ThisdocumentisthepropertyofApexMicrotechnologyandbyfurnishingthisinforma-tion,ApexMicrotechnologygrantsnolicense,expressedorimpliedunderanypatents,maskworkrights,copyrights,trademarks,tradesecretsorotherintellectualpropertyrights.ApexMicrotechnologyownsthecopyrightsassociatedwiththeinformationcontainedhereinandgivesconsentforcopiestobemadeoftheinforma-tiononlyforusewithinyourorganizationwithrespecttoApexMicrotechnologyintegratedcircuitsorotherproductsofApexMicrotechnology.Thisconsentdoesnotextendtoothercopyingsuchascopyingforgeneraldistribution,advertisingorpromotionalpurposes,orforcreatinganyworkforresale.

APEXMICROTECHNOLOGYPRODUCTSARENOTDESIGNED,AUTHORIZEDORWARRANTEDTOBESUITABLEFORUSEINPRODUCTSUSEDFORLIFESUPPORT,AUTOMOTIVESAFETY,SECURITYDEVICES,OROTHERCRITICALAPPLICATIONS.PRODUCTSINSUCHAPPLICATIONSAREUNDER-STOODTOBEFULLYATTHECUSTOMERORTHECUSTOMER’SRISK.

ApexMicrotechnology,ApexandApexPrecisionPoweraretrademarksofApexMicrotechnolgy,Inc.Allothercorporatenamesnotedhereinmaybetrademarksoftheirrespectiveholders.

Copyright © Apex Microtechnology, Inc. 2012(All Rights Reserved)www.apexanalog.com OCT 2012

AN46U REV2


Top Related