Transcript
Page 1: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

A Tight Upper Bound on the Second-Order CodingRate of Parallel Gaussian Channels with Feedback

Vincent Y. F. Tan (NUS)

Joint work with Silas L. Fong (Toronto)

2017 Information Theory Workshop, Kaohsiung, Taiwan

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 1 / 22

Page 2: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Channel Model: The Parallel Gaussian Channel

Channel Law (g1 = g2 = . . . = gd = 1)

Yk = Xk + Zk,

Y1,kY2,k

...Yd,k

=

X1,kX2,k

...Xd,k

+

Z1,kZ2,k

...Zd,k

, k ∈ [1 : n]

and Zl,ki.i.d.∼ N (0,Nl) where l ∈ [1 : d].

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 2 / 22

Page 3: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Channel Model: The Parallel Gaussian Channel

Channel Law (g1 = g2 = . . . = gd = 1)

Yk = Xk + Zk,

Y1,kY2,k

...Yd,k

=

X1,kX2,k

...Xd,k

+

Z1,kZ2,k

...Zd,k

, k ∈ [1 : n]

and Zl,ki.i.d.∼ N (0,Nl) where l ∈ [1 : d].

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 2 / 22

Page 4: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Capacity of the Parallel Gaussian Channel

Consider a peak power constraint

Pr

1n

d∑l=1

n∑k=1

X2l,k ≤ P

= 1

Define the capacity functions

C(s) =

d∑l=1

C(

sl

Nl

), where C(P) :=

12

log(1 + P).

“Vanishing-error” capacity is given by the water-filling solution

C(P∗), where P∗ = (P∗1,P∗2, . . . ,P

∗d)

and

P∗l = (λ− Nl)+ and λ > 0 satisfies

d∑l=1

P∗l = P.

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 3 / 22

Page 5: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Capacity of the Parallel Gaussian Channel

Consider a peak power constraint

Pr

1n

d∑l=1

n∑k=1

X2l,k ≤ P

= 1

Define the capacity functions

C(s) =

d∑l=1

C(

sl

Nl

), where C(P) :=

12

log(1 + P).

“Vanishing-error” capacity is given by the water-filling solution

C(P∗), where P∗ = (P∗1,P∗2, . . . ,P

∗d)

and

P∗l = (λ− Nl)+ and λ > 0 satisfies

d∑l=1

P∗l = P.

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 3 / 22

Page 6: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Capacity of the Parallel Gaussian Channel

Consider a peak power constraint

Pr

1n

d∑l=1

n∑k=1

X2l,k ≤ P

= 1

Define the capacity functions

C(s) =

d∑l=1

C(

sl

Nl

), where C(P) :=

12

log(1 + P).

“Vanishing-error” capacity is given by the water-filling solution

C(P∗), where P∗ = (P∗1,P∗2, . . . ,P

∗d)

and

P∗l = (λ− Nl)+ and λ > 0 satisfies

d∑l=1

P∗l = P.

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 3 / 22

Page 7: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Capacity vs. Non-Asymptotic Fundamental Limits

Define the non-asymptotic fundamental limit

M∗(n, ε,P) := maxM ∈ N : ∃ (n,M, ε,P)-code.

Maximum number of messages that can be supported by alength-n code with peak power P and average error prob. ε.

Capacity result can be stated as

limε↓0

lim infn→∞

1n

log M∗(n, ε,P) = C(P∗).

In fact, the strong converse holds, and we have

lim infn→∞

1n

log M∗(n, ε,P) = C(P∗), ∀ ε ∈ (0, 1).

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 4 / 22

Page 8: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Capacity vs. Non-Asymptotic Fundamental Limits

Define the non-asymptotic fundamental limit

M∗(n, ε,P) := maxM ∈ N : ∃ (n,M, ε,P)-code.

Maximum number of messages that can be supported by alength-n code with peak power P and average error prob. ε.Capacity result can be stated as

limε↓0

lim infn→∞

1n

log M∗(n, ε,P) = C(P∗).

In fact, the strong converse holds, and we have

lim infn→∞

1n

log M∗(n, ε,P) = C(P∗), ∀ ε ∈ (0, 1).

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 4 / 22

Page 9: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Capacity vs. Non-Asymptotic Fundamental Limits

Define the non-asymptotic fundamental limit

M∗(n, ε,P) := maxM ∈ N : ∃ (n,M, ε,P)-code.

Maximum number of messages that can be supported by alength-n code with peak power P and average error prob. ε.Capacity result can be stated as

limε↓0

lim infn→∞

1n

log M∗(n, ε,P) = C(P∗).

In fact, the strong converse holds, and we have

lim infn→∞

1n

log M∗(n, ε,P) = C(P∗), ∀ ε ∈ (0, 1).

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 4 / 22

Page 10: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Strong Converse

ε = lim supn→∞

P(n)e , R = lim inf

n→∞

1n

log M∗(n, ε,P)

0 0.5 1 1.5 2 2.5 30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Peak

R

ε

C(P )

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 5 / 22

Page 11: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Second-Order Asymptotics

LetV(P) :=

P(P + 2)

2(P + 1)2

be the dispersion of the point-to-point AWGN channel.

Define the sum dispersion function to be

V(s) :=d∑

l=1

V(

sl

Nl

).

Then Polyanskiy (2010) and Tomamichel-T. (2015) showed that

log M∗(n, ε,P) = nC(P∗) +√

nV(P∗)Φ−1(ε) + O(log n).

where P∗ = (P∗1,P∗2, . . . ,P

∗d) is the optimal power allocation and

Φ(b) =

∫ b

−∞

1√2π

exp(− u2

2

)du.

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 6 / 22

Page 12: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Second-Order Asymptotics

LetV(P) :=

P(P + 2)

2(P + 1)2

be the dispersion of the point-to-point AWGN channel.Define the sum dispersion function to be

V(s) :=

d∑l=1

V(

sl

Nl

).

Then Polyanskiy (2010) and Tomamichel-T. (2015) showed that

log M∗(n, ε,P) = nC(P∗) +√

nV(P∗)Φ−1(ε) + O(log n).

where P∗ = (P∗1,P∗2, . . . ,P

∗d) is the optimal power allocation and

Φ(b) =

∫ b

−∞

1√2π

exp(− u2

2

)du.

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 6 / 22

Page 13: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Second-Order Asymptotics

LetV(P) :=

P(P + 2)

2(P + 1)2

be the dispersion of the point-to-point AWGN channel.Define the sum dispersion function to be

V(s) :=

d∑l=1

V(

sl

Nl

).

Then Polyanskiy (2010) and Tomamichel-T. (2015) showed that

log M∗(n, ε,P) = nC(P∗) +√

nV(P∗)Φ−1(ε) + O(log n).

where P∗ = (P∗1,P∗2, . . . ,P

∗d) is the optimal power allocation and

Φ(b) =

∫ b

−∞

1√2π

exp(− u2

2

)du.

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 6 / 22

Page 14: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Feedback

If feedback is present, then the encoder at time k has access tomessage W and previous channel outputs (Y1,Y2, . . . ,Yk−1), i.e.,

Xk = Xk(W,Yk−1), ∀ k ∈ [1 : n].

Define the non-asymptotic fundamental limit

M∗FB(n, ε,P) := maxM ∈ N : ∃ (n,M, ε,P)-feedback code.

Since feedback does not increase capacity of point-to-pointmemoryless channels [Shannon (1956)],

limε↓0

lim infn→∞

1n

log M∗FB(n, ε,P) = C(P∗).

Natural question: What happens to the second-order terms?

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 7 / 22

Page 15: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Feedback

If feedback is present, then the encoder at time k has access tomessage W and previous channel outputs (Y1,Y2, . . . ,Yk−1), i.e.,

Xk = Xk(W,Yk−1), ∀ k ∈ [1 : n].

Define the non-asymptotic fundamental limit

M∗FB(n, ε,P) := maxM ∈ N : ∃ (n,M, ε,P)-feedback code.

Since feedback does not increase capacity of point-to-pointmemoryless channels [Shannon (1956)],

limε↓0

lim infn→∞

1n

log M∗FB(n, ε,P) = C(P∗).

Natural question: What happens to the second-order terms?

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 7 / 22

Page 16: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Feedback

If feedback is present, then the encoder at time k has access tomessage W and previous channel outputs (Y1,Y2, . . . ,Yk−1), i.e.,

Xk = Xk(W,Yk−1), ∀ k ∈ [1 : n].

Define the non-asymptotic fundamental limit

M∗FB(n, ε,P) := maxM ∈ N : ∃ (n,M, ε,P)-feedback code.

Since feedback does not increase capacity of point-to-pointmemoryless channels [Shannon (1956)],

limε↓0

lim infn→∞

1n

log M∗FB(n, ε,P) = C(P∗).

Natural question: What happens to the second-order terms?

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 7 / 22

Page 17: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Feedback

If feedback is present, then the encoder at time k has access tomessage W and previous channel outputs (Y1,Y2, . . . ,Yk−1), i.e.,

Xk = Xk(W,Yk−1), ∀ k ∈ [1 : n].

Define the non-asymptotic fundamental limit

M∗FB(n, ε,P) := maxM ∈ N : ∃ (n,M, ε,P)-feedback code.

Since feedback does not increase capacity of point-to-pointmemoryless channels [Shannon (1956)],

limε↓0

lim infn→∞

1n

log M∗FB(n, ε,P) = C(P∗).

Natural question: What happens to the second-order terms?

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 7 / 22

Page 18: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Main Result

Theorem (Fong-T. (2017))

Feedback does not affect the second-order term for parallel Gaussianchannels with feedback, i.e.,

log M∗FB(n, ε,P) = nC(P∗) +√

nV(P∗)Φ−1(ε) + o(√

n).

Recall that without feedback

log M∗(n, ε,P) = nC(P∗) +√

nV(P∗)Φ−1(ε) + O(log n).

No guarantees on third-order term.For achievability, encoder can ignore feedback.Only need to prove converse part.

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 8 / 22

Page 19: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Main Result

Theorem (Fong-T. (2017))

Feedback does not affect the second-order term for parallel Gaussianchannels with feedback, i.e.,

log M∗FB(n, ε,P) = nC(P∗) +√

nV(P∗)Φ−1(ε) + o(√

n).

Recall that without feedback

log M∗(n, ε,P) = nC(P∗) +√

nV(P∗)Φ−1(ε) + O(log n).

No guarantees on third-order term.For achievability, encoder can ignore feedback.Only need to prove converse part.

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 8 / 22

Page 20: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Main Result

Theorem (Fong-T. (2017))

Feedback does not affect the second-order term for parallel Gaussianchannels with feedback, i.e.,

log M∗FB(n, ε,P) = nC(P∗) +√

nV(P∗)Φ−1(ε) + o(√

n).

Recall that without feedback

log M∗(n, ε,P) = nC(P∗) +√

nV(P∗)Φ−1(ε) + O(log n).

No guarantees on third-order term.

For achievability, encoder can ignore feedback.Only need to prove converse part.

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 8 / 22

Page 21: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Main Result

Theorem (Fong-T. (2017))

Feedback does not affect the second-order term for parallel Gaussianchannels with feedback, i.e.,

log M∗FB(n, ε,P) = nC(P∗) +√

nV(P∗)Φ−1(ε) + o(√

n).

Recall that without feedback

log M∗(n, ε,P) = nC(P∗) +√

nV(P∗)Φ−1(ε) + O(log n).

No guarantees on third-order term.For achievability, encoder can ignore feedback.

Only need to prove converse part.

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 8 / 22

Page 22: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Main Result

Theorem (Fong-T. (2017))

Feedback does not affect the second-order term for parallel Gaussianchannels with feedback, i.e.,

log M∗FB(n, ε,P) = nC(P∗) +√

nV(P∗)Φ−1(ε) + o(√

n).

Recall that without feedback

log M∗(n, ε,P) = nC(P∗) +√

nV(P∗)Φ−1(ε) + O(log n).

No guarantees on third-order term.For achievability, encoder can ignore feedback.Only need to prove converse part.

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 8 / 22

Page 23: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Comparison to AWGN channel with feedback

For the AWGN channel with feedback (d = 1), information density

logpn

Y|X(Yn|xn)

pnY∗(Yn)

= −‖Yn − xn‖2

2N+ c

=〈xn + Zn, xn〉

N+ c

=1N

n∑k=1

Zkxk + c

has the same distribution for all xn such that ‖xn‖2 = nP.

This spherical symmetry argument [Polyanskiy (2011, 2013) andFong-T. (2015)] yields

log M∗FB(n, ε,P) = nC(P) +√

nV(P)Φ−1(ε) + O(log n).

Symmetry argument doesn’t work for parallel Gaussians.

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 9 / 22

Page 24: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Comparison to AWGN channel with feedback

For the AWGN channel with feedback (d = 1), information density

logpn

Y|X(Yn|xn)

pnY∗(Yn)

= −‖Yn − xn‖2

2N+ c

=〈xn + Zn, xn〉

N+ c

=1N

n∑k=1

Zkxk + c

has the same distribution for all xn such that ‖xn‖2 = nP.

This spherical symmetry argument [Polyanskiy (2011, 2013) andFong-T. (2015)] yields

log M∗FB(n, ε,P) = nC(P) +√

nV(P)Φ−1(ε) + O(log n).

Symmetry argument doesn’t work for parallel Gaussians.

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 9 / 22

Page 25: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Comparison to AWGN channel with feedback

For the AWGN channel with feedback (d = 1), information density

logpn

Y|X(Yn|xn)

pnY∗(Yn)

= −‖Yn − xn‖2

2N+ c

=〈xn + Zn, xn〉

N+ c

=1N

n∑k=1

Zkxk + c

has the same distribution for all xn such that ‖xn‖2 = nP.

This spherical symmetry argument [Polyanskiy (2011, 2013) andFong-T. (2015)] yields

log M∗FB(n, ε,P) = nC(P) +√

nV(P)Φ−1(ε) + O(log n).

Symmetry argument doesn’t work for parallel Gaussians.

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 9 / 22

Page 26: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Comparison to AWGN channel with feedback

For the AWGN channel with feedback (d = 1), information density

logpn

Y|X(Yn|xn)

pnY∗(Yn)

= −‖Yn − xn‖2

2N+ c

=〈xn + Zn, xn〉

N+ c

=1N

n∑k=1

Zkxk + c

has the same distribution for all xn such that ‖xn‖2 = nP.

This spherical symmetry argument [Polyanskiy (2011, 2013) andFong-T. (2015)] yields

log M∗FB(n, ε,P) = nC(P) +√

nV(P)Φ−1(ε) + O(log n).

Symmetry argument doesn’t work for parallel Gaussians.

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 9 / 22

Page 27: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Comparison to AWGN channel with feedback

For the AWGN channel with feedback (d = 1), information density

logpn

Y|X(Yn|xn)

pnY∗(Yn)

= −‖Yn − xn‖2

2N+ c

=〈xn + Zn, xn〉

N+ c

=1N

n∑k=1

Zkxk + c

has the same distribution for all xn such that ‖xn‖2 = nP.This spherical symmetry argument [Polyanskiy (2011, 2013) andFong-T. (2015)] yields

log M∗FB(n, ε,P) = nC(P) +√

nV(P)Φ−1(ε) + O(log n).

Symmetry argument doesn’t work for parallel Gaussians.

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 9 / 22

Page 28: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Comparison to AWGN channel with feedback

For the AWGN channel with feedback (d = 1), information density

logpn

Y|X(Yn|xn)

pnY∗(Yn)

= −‖Yn − xn‖2

2N+ c

=〈xn + Zn, xn〉

N+ c

=1N

n∑k=1

Zkxk + c

has the same distribution for all xn such that ‖xn‖2 = nP.This spherical symmetry argument [Polyanskiy (2011, 2013) andFong-T. (2015)] yields

log M∗FB(n, ε,P) = nC(P) +√

nV(P)Φ−1(ε) + O(log n).

Symmetry argument doesn’t work for parallel Gaussians.

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 9 / 22

Page 29: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Elements of Converse Proof

Want to show

lim supn→∞

log M∗FB(n, ε,P)− nC(P∗)√n

≤√

V(P∗)Φ−1(ε).

Discretizing the power allocation: Turn power allocations intopower types

Apply the meta-converse [Polyanskiy-Poor-Verdú (2010)]

Apply Curtiss’ theorem to the information spectrum term forclose-to-optimal power types

Apply large deviations bounds to far-from-optimal power types

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 10 / 22

Page 30: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Elements of Converse Proof

Want to show

lim supn→∞

log M∗FB(n, ε,P)− nC(P∗)√n

≤√

V(P∗)Φ−1(ε).

Discretizing the power allocation: Turn power allocations intopower types

Apply the meta-converse [Polyanskiy-Poor-Verdú (2010)]

Apply Curtiss’ theorem to the information spectrum term forclose-to-optimal power types

Apply large deviations bounds to far-from-optimal power types

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 10 / 22

Page 31: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Elements of Converse Proof

Want to show

lim supn→∞

log M∗FB(n, ε,P)− nC(P∗)√n

≤√

V(P∗)Φ−1(ε).

Discretizing the power allocation: Turn power allocations intopower types

Apply the meta-converse [Polyanskiy-Poor-Verdú (2010)]

Apply Curtiss’ theorem to the information spectrum term forclose-to-optimal power types

Apply large deviations bounds to far-from-optimal power types

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 10 / 22

Page 32: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Elements of Converse Proof

Want to show

lim supn→∞

log M∗FB(n, ε,P)− nC(P∗)√n

≤√

V(P∗)Φ−1(ε).

Discretizing the power allocation: Turn power allocations intopower types

Apply the meta-converse [Polyanskiy-Poor-Verdú (2010)]

Apply Curtiss’ theorem to the information spectrum term forclose-to-optimal power types

Apply large deviations bounds to far-from-optimal power types

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 10 / 22

Page 33: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Elements of Converse Proof

Want to show

lim supn→∞

log M∗FB(n, ε,P)− nC(P∗)√n

≤√

V(P∗)Φ−1(ε).

Discretizing the power allocation: Turn power allocations intopower types

Apply the meta-converse [Polyanskiy-Poor-Verdú (2010)]

Apply Curtiss’ theorem to the information spectrum term forclose-to-optimal power types

Apply large deviations bounds to far-from-optimal power types

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 10 / 22

Page 34: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Turn Power Allocation into Types: Part I

Given a channel input xn ∈ Rd×n, define its power type to be

φ(xn) =1n

[‖xn

1‖2, ‖xn2‖2, . . . , ‖xn

d‖2]

=1n

[n∑

k=1

x21,k,

n∑k=1

x22,k, . . . ,

n∑k=1

x2d,k

]∈ Rd

+.

Create a new code such that almost surely,

n∑k=1

X2l,k = mlP, for some ml ∈ [1 : n] and ∀ l ∈ [1 : d]

andd∑

l=1

n∑k=1

X2l,k = nP, i.e.,

d∑l=1

ml = n.

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 11 / 22

Page 35: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Turn Power Allocation into Types: Part I

Given a channel input xn ∈ Rd×n, define its power type to be

φ(xn) =1n

[‖xn

1‖2, ‖xn2‖2, . . . , ‖xn

d‖2]

=1n

[n∑

k=1

x21,k,

n∑k=1

x22,k, . . . ,

n∑k=1

x2d,k

]∈ Rd

+.

Create a new code such that almost surely,

n∑k=1

X2l,k = mlP, for some ml ∈ [1 : n] and ∀ l ∈ [1 : d]

andd∑

l=1

n∑k=1

X2l,k = nP, i.e.,

d∑l=1

ml = n.

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 11 / 22

Page 36: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Turn Power Allocation into Types: Part II

Power allocation vector set

S(n) :=

Pn· a

∣∣∣∣∣ a = (a1, a2, . . . , ad) ∈ Zd+,

d∑l=1

al = n

-

6

a1

a2

u u uu

uuu

P/n

P/n

(n, 0)

(0, n) @@@@@

@@@

@@

@@@

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 12 / 22

Page 37: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Turn Power Allocation into Types: Part II

Power allocation vector set

S(n) :=

Pn· a

∣∣∣∣∣ a = (a1, a2, . . . , ad) ∈ Zd+,

d∑l=1

al = n

-

6

a1

a2

u u uu

uuu

P/n

P/n

(n, 0)

(0, n) @@@@@@@@@@@@@

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 12 / 22

Page 38: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Turn Power Allocation into Types: Part III

Set of quantized power allocation vectors s with quantization levelP/n that satisfy the equality power constraint

d∑l=1

sl = P.

With the above construction, almost surely,

φ(Xn) ∈ S(n).

So we can pretend that the codewords are discrete and leveragesome existing theory from second-order analysis for DMCs.

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 13 / 22

Page 39: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Turn Power Allocation into Types: Part III

Set of quantized power allocation vectors s with quantization levelP/n that satisfy the equality power constraint

d∑l=1

sl = P.

With the above construction, almost surely,

φ(Xn) ∈ S(n).

So we can pretend that the codewords are discrete and leveragesome existing theory from second-order analysis for DMCs.

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 13 / 22

Page 40: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Turn Power Allocation into Types: Part III

Set of quantized power allocation vectors s with quantization levelP/n that satisfy the equality power constraint

d∑l=1

sl = P.

With the above construction, almost surely,

φ(Xn) ∈ S(n).

So we can pretend that the codewords are discrete and leveragesome existing theory from second-order analysis for DMCs.

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 13 / 22

Page 41: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Application of the Meta-Converse (PPV’10)

By a relaxation of the meta-converse, for any ξ > 0,

log M∗FB(n, ε,P) ≤ log ξ−log

(1− ε−Pr

log

pnY|X(Yn|Xn)

qYn(Yn)≥ log ξ

)

Choose auxiliary output distribution qYn carefully.Inspired by Hayashi (2009), we choose

qYn(yn)=12· 1|S(n)|

∑s∈S(n)

∏l,k

N (yl,k; 0, sl+Nl)︸ ︷︷ ︸q(1)

Yn (yn)

+12·∏l,k

N (yl,k; 0,Pl+Nl)︸ ︷︷ ︸q(2)

Yn (yn)

q(1)Yn (yn): Unif. mixture of output dist. induced by input power types

q(2)Yn (yn): Capacity-achieving output dist.

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 14 / 22

Page 42: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Application of the Meta-Converse (PPV’10)

By a relaxation of the meta-converse, for any ξ > 0,

log M∗FB(n, ε,P) ≤ log ξ−log

(1− ε−Pr

log

pnY|X(Yn|Xn)

qYn(Yn)≥ log ξ

)

Choose auxiliary output distribution qYn carefully.

Inspired by Hayashi (2009), we choose

qYn(yn)=12· 1|S(n)|

∑s∈S(n)

∏l,k

N (yl,k; 0, sl+Nl)︸ ︷︷ ︸q(1)

Yn (yn)

+12·∏l,k

N (yl,k; 0,Pl+Nl)︸ ︷︷ ︸q(2)

Yn (yn)

q(1)Yn (yn): Unif. mixture of output dist. induced by input power types

q(2)Yn (yn): Capacity-achieving output dist.

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 14 / 22

Page 43: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Application of the Meta-Converse (PPV’10)

By a relaxation of the meta-converse, for any ξ > 0,

log M∗FB(n, ε,P) ≤ log ξ−log

(1− ε−Pr

log

pnY|X(Yn|Xn)

qYn(Yn)≥ log ξ

)

Choose auxiliary output distribution qYn carefully.Inspired by Hayashi (2009), we choose

qYn(yn)=12· 1|S(n)|

∑s∈S(n)

∏l,k

N (yl,k; 0, sl+Nl)︸ ︷︷ ︸q(1)

Yn (yn)

+12·∏l,k

N (yl,k; 0,Pl+Nl)︸ ︷︷ ︸q(2)

Yn (yn)

q(1)Yn (yn): Unif. mixture of output dist. induced by input power types

q(2)Yn (yn): Capacity-achieving output dist.

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 14 / 22

Page 44: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Application of the Meta-Converse (PPV’10)

By a relaxation of the meta-converse, for any ξ > 0,

log M∗FB(n, ε,P) ≤ log ξ−log

(1− ε−Pr

log

pnY|X(Yn|Xn)

qYn(Yn)≥ log ξ

)

Choose auxiliary output distribution qYn carefully.Inspired by Hayashi (2009), we choose

qYn(yn)=12· 1|S(n)|

∑s∈S(n)

∏l,k

N (yl,k; 0, sl+Nl)︸ ︷︷ ︸q(1)

Yn (yn)

+12·∏l,k

N (yl,k; 0,Pl+Nl)︸ ︷︷ ︸q(2)

Yn (yn)

q(1)Yn (yn): Unif. mixture of output dist. induced by input power types

q(2)Yn (yn): Capacity-achieving output dist.

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 14 / 22

Page 45: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Application of the Meta-Converse (PPV’10)

By a relaxation of the meta-converse, for any ξ > 0,

log M∗FB(n, ε,P) ≤ log ξ−log

(1− ε−Pr

log

pnY|X(Yn|Xn)

qYn(Yn)≥ log ξ

)

Choose auxiliary output distribution qYn carefully.Inspired by Hayashi (2009), we choose

qYn(yn)=12· 1|S(n)|

∑s∈S(n)

∏l,k

N (yl,k; 0, sl+Nl)︸ ︷︷ ︸q(1)

Yn (yn)

+12·∏l,k

N (yl,k; 0,Pl+Nl)︸ ︷︷ ︸q(2)

Yn (yn)

q(1)Yn (yn): Unif. mixture of output dist. induced by input power types

q(2)Yn (yn): Capacity-achieving output dist.

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 14 / 22

Page 46: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Almost-Optimal Types: Part I

Define the set of almost-optimal power types

Π(n) :=

s ∈ S(n)

∣∣∣∣ ‖s− P∗‖2 ≤1

n1/6

AAAAAAAAAAAAAAA

S(n)

q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q qq q q q q q q q q q q q q qq q q q q q q q q q q q qq q q q q q q q q q q qq q q q q q q q q q qq q q q q q q q q qq q q q q q q q qq q q q q q q qq q q q q q qq q q q q qq q q q qq q q qq q qq qq

XXXXXXz

P∗ t

CCCCCCCCW

Π(n)

q qq qq qq

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 15 / 22

Page 47: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Almost-Optimal Types: Part I

Define the set of almost-optimal power types

Π(n) :=

s ∈ S(n)

∣∣∣∣ ‖s− P∗‖2 ≤1

n1/6

AAAAAAAAAAAAAAA

S(n)

q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q qq q q q q q q q q q q q q qq q q q q q q q q q q q qq q q q q q q q q q q qq q q q q q q q q q qq q q q q q q q q qq q q q q q q q qq q q q q q q qq q q q q q qq q q q q qq q q q qq q q qq q qq qq

XXXXXXz

P∗ t

CCCCCCCCW

Π(n)

q qq qq qq

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 15 / 22

Page 48: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Almost-Optimal Types: Part I

Define the set of almost-optimal power types

Π(n) :=

s ∈ S(n)

∣∣∣∣ ‖s− P∗‖2 ≤1

n1/6

AAAAAAAAAAAAAAA

S(n)

q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q qq q q q q q q q q q q q q qq q q q q q q q q q q q qq q q q q q q q q q q qq q q q q q q q q q qq q q q q q q q q qq q q q q q q q qq q q q q q q qq q q q q q qq q q q q qq q q q qq q q qq q qq qq

XXXXXXz

P∗ t

CCCCCCCCW

Π(n)

q qq qq qq

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 15 / 22

Page 49: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Almost-Optimal Types: Part I

Define the set of almost-optimal power types

Π(n) :=

s ∈ S(n)

∣∣∣∣ ‖s− P∗‖2 ≤1

n1/6

AAAAAAAAAAAAAAA

S(n)

q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q qq q q q q q q q q q q q q qq q q q q q q q q q q q qq q q q q q q q q q q qq q q q q q q q q q qq q q q q q q q q qq q q q q q q q qq q q q q q q qq q q q q q qq q q q q qq q q q qq q q qq q qq qq

XXXXXXz

P∗ t

CCCCCCCCW

Π(n)

q qq qq qq

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 15 / 22

Page 50: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Almost-Optimal Types: Part II

Define threshold

log ξ := nC(P∗) +√

n(√

V(P∗)Φ−1(ε+ τ))

+ log(

2|S(n)|)

Contribution of information spectrum term on Π(n) is

Pr

1√

nV(P∗)

n∑k=1

U(P∗)k ≥ Φ−1(ε+ τ)

where

U(P∗)k :=

d∑l=1

−(

P∗l

Nl

)Z2

l,k + 2Xl,kZl,k + P∗l2(P∗l + Nl)

k ∈ [1 : n]

and φ(Xn) ∈ Π(n).

Because of feedback, U(P∗)k is not independent across time!

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 16 / 22

Page 51: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Almost-Optimal Types: Part II

Define threshold

log ξ := nC(P∗) +√

n(√

V(P∗)Φ−1(ε+ τ))

+ log(

2|S(n)|)

Contribution of information spectrum term on Π(n) is

Pr

1√

nV(P∗)

n∑k=1

U(P∗)k ≥ Φ−1(ε+ τ)

where

U(P∗)k :=

d∑l=1

−(

P∗l

Nl

)Z2

l,k + 2Xl,kZl,k + P∗l2(P∗l + Nl)

k ∈ [1 : n]

and φ(Xn) ∈ Π(n).

Because of feedback, U(P∗)k is not independent across time!

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 16 / 22

Page 52: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Almost-Optimal Types: Part II

Define threshold

log ξ := nC(P∗) +√

n(√

V(P∗)Φ−1(ε+ τ))

+ log(

2|S(n)|)

Contribution of information spectrum term on Π(n) is

Pr

1√

nV(P∗)

n∑k=1

U(P∗)k ≥ Φ−1(ε+ τ)

where

U(P∗)k :=

d∑l=1

−(

P∗l

Nl

)Z2

l,k + 2Xl,kZl,k + P∗l2(P∗l + Nl)

k ∈ [1 : n]

and φ(Xn) ∈ Π(n).

Because of feedback, U(P∗)k is not independent across time!

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 16 / 22

Page 53: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Almost-Optimal Types: Part III

Would like to approximate the nasty

U(P∗)k | k ∈ [1 : n] with the

independent and identically distributed random variables

V(P∗)k :=

d∑l=1

−(

P∗l

Nl

)Z2

l,k + 2√

PlZl,k + P∗l2(P∗l + Nl)

k ∈ [1 : n]

Due to our discretization procedure and the fact that φ(Xn) ∈ Π(n)

limn→∞

E

[exp

( t√n

n∑k=1

U(P∗)k

)]= lim

n→∞E

[exp

( t√n

n∑k=1

V(P∗)k

)]

for all t ∈ R.

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 17 / 22

Page 54: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Almost-Optimal Types: Part III

Would like to approximate the nasty

U(P∗)k | k ∈ [1 : n] with the

independent and identically distributed random variables

V(P∗)k :=

d∑l=1

−(

P∗l

Nl

)Z2

l,k + 2√

PlZl,k + P∗l2(P∗l + Nl)

k ∈ [1 : n]

Due to our discretization procedure and the fact that φ(Xn) ∈ Π(n)

limn→∞

E

[exp

( t√n

n∑k=1

U(P∗)k

)]= lim

n→∞E

[exp

( t√n

n∑k=1

V(P∗)k

)]

for all t ∈ R.

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 17 / 22

Page 55: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Almost-Optimal Types: Part IV

Curtiss’ (aka Lévy’s continuity) theorem:

limn→∞

E[exp(tXn)] = limn→∞

E[exp(tYn)], ∀ t ∈ R,

implies that

limn→∞

PrXn ≤ a = limn→∞

PrYn ≤ a, ∀ a ∈ R.

Thus,

limn→∞

Pr

1√

nV(P∗)

n∑k=1

U(P∗)k ≥ Φ−1(ε+ τ)

= limn→∞

Pr

1√

nV(P∗)

n∑k=1

V(P∗)k ≥ Φ−1(ε+ τ)

CLT= 1− (ε+ τ).

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 18 / 22

Page 56: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Almost-Optimal Types: Part IV

Curtiss’ (aka Lévy’s continuity) theorem:

limn→∞

E[exp(tXn)] = limn→∞

E[exp(tYn)], ∀ t ∈ R,

implies that

limn→∞

PrXn ≤ a = limn→∞

PrYn ≤ a, ∀ a ∈ R.

Thus,

limn→∞

Pr

1√

nV(P∗)

n∑k=1

U(P∗)k ≥ Φ−1(ε+ τ)

= limn→∞

Pr

1√

nV(P∗)

n∑k=1

V(P∗)k ≥ Φ−1(ε+ τ)

CLT= 1− (ε+ τ).

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 18 / 22

Page 57: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Almost-Optimal Types: Part IV

Curtiss’ (aka Lévy’s continuity) theorem:

limn→∞

E[exp(tXn)] = limn→∞

E[exp(tYn)], ∀ t ∈ R,

implies that

limn→∞

PrXn ≤ a = limn→∞

PrYn ≤ a, ∀ a ∈ R.

Thus,

limn→∞

Pr

1√

nV(P∗)

n∑k=1

U(P∗)k ≥ Φ−1(ε+ τ)

= limn→∞

Pr

1√

nV(P∗)

n∑k=1

V(P∗)k ≥ Φ−1(ε+ τ)

CLT= 1− (ε+ τ).

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 18 / 22

Page 58: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Almost-Optimal Types: Part IV

Curtiss’ (aka Lévy’s continuity) theorem:

limn→∞

E[exp(tXn)] = limn→∞

E[exp(tYn)], ∀ t ∈ R,

implies that

limn→∞

PrXn ≤ a = limn→∞

PrYn ≤ a, ∀ a ∈ R.

Thus,

limn→∞

Pr

1√

nV(P∗)

n∑k=1

U(P∗)k ≥ Φ−1(ε+ τ)

= limn→∞

Pr

1√

nV(P∗)

n∑k=1

V(P∗)k ≥ Φ−1(ε+ τ)

CLT= 1− (ε+ τ).

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 18 / 22

Page 59: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Far-From-Optimal Types

Contribution of information spectrum term on S(n) \Π(n) is

≈ Pr

1n

n∑k=1

U(s)k ≥ C(P∗)− C(s)

, ∀ s ∈ S(n) \Π(n)

Recall

S(n) \Π(n) =

s ∈ S(n)

∣∣∣∣ ‖s− P∗‖2 >1

n1/6

On this set,

C(P∗)− C(s) = Ω

(1

n1/3

).

Thus, by a standard exponential Markov inequality argument

maxs∈S(n)\Π(n)

Pr

1n

n∑k=1

U(s)k ≥ C(P∗)− C(s)

≤ exp

(− O(n1/3)

).

Polynomially many power types.

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 19 / 22

Page 60: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Far-From-Optimal Types

Contribution of information spectrum term on S(n) \Π(n) is

≈ Pr

1n

n∑k=1

U(s)k ≥ C(P∗)− C(s)

, ∀ s ∈ S(n) \Π(n)

Recall

S(n) \Π(n) =

s ∈ S(n)

∣∣∣∣ ‖s− P∗‖2 >1

n1/6

On this set,

C(P∗)− C(s) = Ω

(1

n1/3

).

Thus, by a standard exponential Markov inequality argument

maxs∈S(n)\Π(n)

Pr

1n

n∑k=1

U(s)k ≥ C(P∗)− C(s)

≤ exp

(− O(n1/3)

).

Polynomially many power types.

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 19 / 22

Page 61: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Far-From-Optimal Types

Contribution of information spectrum term on S(n) \Π(n) is

≈ Pr

1n

n∑k=1

U(s)k ≥ C(P∗)− C(s)

, ∀ s ∈ S(n) \Π(n)

Recall

S(n) \Π(n) =

s ∈ S(n)

∣∣∣∣ ‖s− P∗‖2 >1

n1/6

On this set,

C(P∗)− C(s) = Ω

(1

n1/3

).

Thus, by a standard exponential Markov inequality argument

maxs∈S(n)\Π(n)

Pr

1n

n∑k=1

U(s)k ≥ C(P∗)− C(s)

≤ exp

(− O(n1/3)

).

Polynomially many power types.

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 19 / 22

Page 62: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Far-From-Optimal Types

Contribution of information spectrum term on S(n) \Π(n) is

≈ Pr

1n

n∑k=1

U(s)k ≥ C(P∗)− C(s)

, ∀ s ∈ S(n) \Π(n)

Recall

S(n) \Π(n) =

s ∈ S(n)

∣∣∣∣ ‖s− P∗‖2 >1

n1/6

On this set,

C(P∗)− C(s) = Ω

(1

n1/3

).

Thus, by a standard exponential Markov inequality argument

maxs∈S(n)\Π(n)

Pr

1n

n∑k=1

U(s)k ≥ C(P∗)− C(s)

≤ exp

(− O(n1/3)

).

Polynomially many power types.

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 19 / 22

Page 63: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Far-From-Optimal Types

Contribution of information spectrum term on S(n) \Π(n) is

≈ Pr

1n

n∑k=1

U(s)k ≥ C(P∗)− C(s)

, ∀ s ∈ S(n) \Π(n)

Recall

S(n) \Π(n) =

s ∈ S(n)

∣∣∣∣ ‖s− P∗‖2 >1

n1/6

On this set,

C(P∗)− C(s) = Ω

(1

n1/3

).

Thus, by a standard exponential Markov inequality argument

maxs∈S(n)\Π(n)

Pr

1n

n∑k=1

U(s)k ≥ C(P∗)− C(s)

≤ exp

(− O(n1/3)

).

Polynomially many power types.Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 19 / 22

Page 64: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Wrap-Up and Future Work

For parallel Gaussian channels with feedback,

log M∗FB(n, ε,P) = nC(P∗) +√

nV(P∗)Φ−1(ε) + o(√

n).

Careful quantization of power allocation vector into power typesBounding main information spectrum term using Curtiss’ theoremFor third-order, need speed of convergence, i.e.,

supt∈R|E[exp(tXn)]− E[exp(tYn)]| ≤ f (n), for some f (n) = o(1),

do we have

supa∈R|PrXn ≤ a − PrYn ≤ a| ≤ g(n), for some desirable g(n)?

Esséen smoothing lemma? Stein’s method?

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 20 / 22

Page 65: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Wrap-Up and Future Work

For parallel Gaussian channels with feedback,

log M∗FB(n, ε,P) = nC(P∗) +√

nV(P∗)Φ−1(ε) + o(√

n).

Careful quantization of power allocation vector into power types

Bounding main information spectrum term using Curtiss’ theoremFor third-order, need speed of convergence, i.e.,

supt∈R|E[exp(tXn)]− E[exp(tYn)]| ≤ f (n), for some f (n) = o(1),

do we have

supa∈R|PrXn ≤ a − PrYn ≤ a| ≤ g(n), for some desirable g(n)?

Esséen smoothing lemma? Stein’s method?

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 20 / 22

Page 66: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Wrap-Up and Future Work

For parallel Gaussian channels with feedback,

log M∗FB(n, ε,P) = nC(P∗) +√

nV(P∗)Φ−1(ε) + o(√

n).

Careful quantization of power allocation vector into power typesBounding main information spectrum term using Curtiss’ theorem

For third-order, need speed of convergence, i.e.,

supt∈R|E[exp(tXn)]− E[exp(tYn)]| ≤ f (n), for some f (n) = o(1),

do we have

supa∈R|PrXn ≤ a − PrYn ≤ a| ≤ g(n), for some desirable g(n)?

Esséen smoothing lemma? Stein’s method?

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 20 / 22

Page 67: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Wrap-Up and Future Work

For parallel Gaussian channels with feedback,

log M∗FB(n, ε,P) = nC(P∗) +√

nV(P∗)Φ−1(ε) + o(√

n).

Careful quantization of power allocation vector into power typesBounding main information spectrum term using Curtiss’ theoremFor third-order, need speed of convergence, i.e.,

supt∈R|E[exp(tXn)]− E[exp(tYn)]| ≤ f (n), for some f (n) = o(1),

do we have

supa∈R|PrXn ≤ a − PrYn ≤ a| ≤ g(n), for some desirable g(n)?

Esséen smoothing lemma? Stein’s method?

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 20 / 22

Page 68: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Wrap-Up and Future Work

For parallel Gaussian channels with feedback,

log M∗FB(n, ε,P) = nC(P∗) +√

nV(P∗)Φ−1(ε) + o(√

n).

Careful quantization of power allocation vector into power typesBounding main information spectrum term using Curtiss’ theoremFor third-order, need speed of convergence, i.e.,

supt∈R|E[exp(tXn)]− E[exp(tYn)]| ≤ f (n), for some f (n) = o(1),

do we have

supa∈R|PrXn ≤ a − PrYn ≤ a| ≤ g(n), for some desirable g(n)?

Esséen smoothing lemma? Stein’s method?

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 20 / 22

Page 69: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Full paper

Oct 2017 issue of IEEE Transactions on Information Theory

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 21 / 22

Page 70: A Tight Upper Bound on the Second-Order ... - ece.nus.edu.sg2017 Information Theory Workshop, Kaohsiung, Taiwan Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017

Advertisement: Postdoc Positions in IT and ML at NUS

Vincent Tan (NUS) Second-Order Parallel AWGN with Feedback ITW 2017 22 / 22


Top Related