Transcript
Page 1: 5.5.3 Means and Variances for Linear Combinations

5.5.3 Means and Variances for Linear Combinations

Page 2: 5.5.3 Means and Variances for Linear Combinations

What is called a linear combination of random variables?

aX+b, aX+bY+c, etc. 2X+3 5X+9Y+10

Page 3: 5.5.3 Means and Variances for Linear Combinations

If a and b are constants, then E(aX+b)=aE(X)+b.__________________________

β€’ Corollary 1. E(b)=b. β€’ Corollary 2. E(aX)=aE(X).

Page 4: 5.5.3 Means and Variances for Linear Combinations

Let π‘ˆ= π‘Ž0 + π‘Ž1𝑋+ π‘Ž2π‘Œ+ π‘Ž3𝑍+ β‹―

Means of Linear Combinations

πΈαˆΊπ‘ˆαˆ»= π‘Ž0 + π‘Ž1𝐸𝑋+ π‘Ž2πΈπ‘Œ+ π‘Ž3𝐸𝑍+ β‹―

Example X, Y, Z = values of three dice You win π‘ˆ= 5+ 2𝑋+ 3π‘Œ+ 4𝑍 dollars πΈαˆΊπ‘‹αˆ»= πΈαˆΊπ‘Œαˆ»= πΈαˆΊπ‘αˆ»= 3.5 Your total expected winnings are πΈαˆΊπ‘ˆαˆ»= 5+ 2ሺ3.5ሻ+ 3ሺ3.5ሻ+ 4ሺ3.5ሻ= 36.50

Page 5: 5.5.3 Means and Variances for Linear Combinations

Expected value (constant) = constant 𝐸ሺ5ሻ= 5

πΈαˆΊβˆ‘αˆ»= βˆ‘αˆΊπ‘’π‘₯𝑝𝑒𝑐𝑑𝑒𝑑 π‘£π‘Žπ‘™π‘’π‘’π‘ αˆ» 𝐸ሺ5+ 3𝑋+ 4π‘Œ+ 5π‘αˆ»= 𝐸ሺ5ሻ+ 𝐸ሺ3π‘‹αˆ»+ 𝐸ሺ4π‘Œαˆ»+ 𝐸ሺ5π‘αˆ» πΈαˆΊπ‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘βˆ™π‘‹αˆ»= π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ βˆ™πΈπ‘‹ 𝐸ሺ3π‘‹αˆ»= 3πΈαˆΊπ‘‹αˆ» 𝐸ሺ4π‘Œαˆ»= 4πΈαˆΊπ‘Œαˆ» Eሺ5π‘αˆ»= 5πΈαˆΊπ‘αˆ» πΈαˆΊπ‘Ž0 + π‘Ž1𝑋+ π‘Ž2π‘Œ+ π‘Ž3π‘αˆ» = πΈαˆΊπ‘Ž0ሻ+ πΈαˆΊπ‘Ž1π‘‹αˆ»+ πΈαˆΊπ‘Ž2π‘Œαˆ»+ πΈαˆΊπ‘Ž3π‘αˆ» = π‘Ž0 + π‘Ž1𝐸𝑋+ π‘Ž2πΈπ‘Œ+ π‘Ž3𝐸𝑍

Page 6: 5.5.3 Means and Variances for Linear Combinations

Variances of Linear Combinations

π‘‰π‘Žπ‘ŸαˆΊπ‘Ž0 + π‘Ž1𝑋+ π‘Ž2π‘Œ+ π‘Ž3π‘αˆ» = π‘Ž12π‘‰π‘Žπ‘ŸαˆΊπ‘‹αˆ»+ π‘Ž22π‘‰π‘Žπ‘ŸαˆΊπ‘Œαˆ»+ π‘Ž32π‘‰π‘Žπ‘ŸαˆΊπ‘αˆ» when X, Y and Z are independent.

π‘‰π‘Žπ‘ŸαˆΊπ‘Ž0ሻ= 0 π‘‰π‘Žπ‘ŸαˆΊπ‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘αˆ»= 0

π‘‰π‘Žπ‘ŸαˆΊπ‘Ž0 + π‘‹αˆ»= π‘‰π‘Žπ‘ŸαˆΊπ‘‹αˆ» Adding a constant doesn’t change variance

π‘‰π‘Žπ‘ŸαˆΊπ‘Ž1π‘‹αˆ»= π‘Ž12π‘‰π‘Žπ‘Ÿπ‘‹ Variances are in units2.

𝑆𝑑.π·π‘’π‘£αˆΊπ‘Ž1π‘‹αˆ»= ȁ&π‘Ž1ȁ& 𝑆𝑑.π·π‘’π‘£αˆΊπ‘‹αˆ»

Page 7: 5.5.3 Means and Variances for Linear Combinations

If X, Y, Z are independent or uncorrelated. π‘‰π‘Žπ‘ŸαˆΊπ‘‹+ π‘Œ+ π‘αˆ»= π‘‰π‘Žπ‘ŸαˆΊπ‘‹αˆ»+ π‘‰π‘Žπ‘ŸαˆΊπ‘Œαˆ»+ π‘‰π‘Žπ‘ŸαˆΊπ‘αˆ» Putting these facts together π‘‰π‘Žπ‘ŸαˆΊπ‘Ž0 + π‘Ž1𝑋+ π‘Ž2π‘Œ+ π‘Ž3π‘αˆ» = ሺif independentሻ π‘‰π‘Žπ‘ŸαˆΊπ‘Ž0ሻ+ π‘‰π‘Žπ‘ŸαˆΊπ‘Ž1π‘‹αˆ»+ π‘‰π‘Žπ‘ŸαˆΊπ‘Ž2π‘Œαˆ»+ π‘‰π‘Žπ‘ŸαˆΊπ‘Ž3π‘αˆ» = π‘Ž12π‘‰π‘Žπ‘ŸαˆΊπ‘‹αˆ»+ π‘Ž22π‘‰π‘Žπ‘ŸαˆΊπ‘Œαˆ»+ π‘Ž32π‘‰π‘Žπ‘ŸαˆΊπ‘αˆ» For independent X, Y

πœŽπ‘‹+π‘Œ = ΰΆ₯π‘‰π‘Žπ‘ŸαˆΊπ‘‹αˆ»+ π‘‰π‘Žπ‘ŸαˆΊπ‘Œαˆ»

Page 8: 5.5.3 Means and Variances for Linear Combinations

πœŽπ‘‹+π‘Œ2 = πœŽπ‘‹2 + πœŽπ‘Œ2

πœŽπ‘‹+π‘Œ = ΰΆ§πœŽπ‘‹2 + πœŽπ‘Œ2

Like Pythagorean Theorem 𝑐2 = ȁ2 + b2, 𝑐= ΞΎπ‘Ž2 + 𝑏2

Page 9: 5.5.3 Means and Variances for Linear Combinations

Most useful facts:

If X1, X2, X3, … , Xn are independent measurements each with 𝐸(𝑋1) = πœ‡ and π‘‰π‘Žπ‘ŸαˆΊπ‘₯π‘–αˆ»= 𝜎2 then

πΈαˆΊπ‘‹ΰ΄€αˆ»= πœ‡ π‘‰π‘Žπ‘ŸαˆΊπ‘‹ΰ΄€αˆ»= 𝜎2𝑛 𝑆𝑑.π·π‘’π‘£αˆΊπ‘‹ΰ΄€αˆ»= πœŽΞΎπ‘›

To see this:

𝐸࡬1𝑛 βˆ‘ 𝑋𝑖ࡰ= 1𝑛 πΈαˆΊβˆ‘ π‘‹π‘–αˆ»= 1𝑛 βˆ‘ πΈαˆΊπ‘‹π‘–αˆ»= 1𝑛 πœ‡π‘›

𝑖=1 = 1π‘›αˆΊπ‘›πœ‡αˆ»= πœ‡

The sample mean 𝑋ഀ is an unbiased estimator of the population mean πœ‡.

π‘‰π‘Žπ‘Ÿΰ΅¬1𝑛 βˆ‘ 𝑋𝑖ࡰ= ࡬1𝑛ࡰ2 π‘‰π‘Žπ‘ŸαˆΊβˆ‘ π‘‹π‘–αˆ»= 1𝑛2 π‘‰π‘Žπ‘ŸαˆΊπ‘‹π‘–αˆ»= 1𝑛2 𝜎2𝑛

𝑖=1 = 1𝑛2αˆΊπ‘›πœŽ2ሻ= 𝜎2𝑛

Page 10: 5.5.3 Means and Variances for Linear Combinations

5.5.5 The Central Limit Effect

β€’ If X1, X2,…, Xn are independent random variables with mean m and variance s2, then for large n, the variable is approximately normally distributed.

Page 11: 5.5.3 Means and Variances for Linear Combinations

If a population has the N(m,s) distribution, then the sample mean x of n independent observations has the distribution.

For ANY population with mean m and standard deviation s the sample mean of a random sample of size n is approximately

when n is LARGE.( , )Nn

sm

( , )Nn

sm

x

Page 12: 5.5.3 Means and Variances for Linear Combinations

Central Limit Theorem

If the population is normal or sample size is large, mean follows a normal distribution

and

follows a standard normal distribution.

x( , )N

ns

m

n

xxzx

x

sm

sm

Page 13: 5.5.3 Means and Variances for Linear Combinations

β€’ The closer x’s distribution is to a normal distribution, the smaller n can be and have the sample mean nearly normal.

β€’ If x is normal, then the sample mean is normal for any n, even n=1.

Page 14: 5.5.3 Means and Variances for Linear Combinations

β€’ Usually n=30 is big enough so that the sample mean is approximately normal unless the distribution of x is very asymmetrical.

β€’ If x is not normal, there are often better procedures than using a normal approximation, but we won’t study those options.

Page 15: 5.5.3 Means and Variances for Linear Combinations
Page 16: 5.5.3 Means and Variances for Linear Combinations

β€’ Even if the underlying distribution is not normal, probabilities involving means can be approximated with the normal table.

β€’ HOWEVER, if transformation, e.g. , makes the distribution more normal or if another distribution, e.g. Weibull, fits better, then relying on the Central Limit Theorem, a normal approximation is less precise. We will do a better job if we use the more precise method.

Page 17: 5.5.3 Means and Variances for Linear Combinations

If X1, X2, … , Xn are normal, then 𝑋ഀ is exactly normal.

Example: Bags of potatoes weigh

πœ‡= 5.0 pounds

𝜎= 0.1 pounds

If we buy 4 bags, what is PαˆΊπ‘‹ΰ΄€< 4.9ሻ?

πΈαˆΊπ‘‹ΰ΄€αˆ»= πœ‡= 5 ΰΆ₯π‘‰π‘Žπ‘ŸαˆΊπ‘‹ΰ΄€αˆ»= πœŽΞΎπ‘› = 0.1ΞΎ4 = 0.05

PαˆΊπ‘‹ΰ΄€< 4.9ሻ= Pα‰†π‘‹ΰ΄€βˆ’ 𝐸𝑋ഀΰΆ₯VȁrሺXΰ΄₯ሻ< 4.9βˆ’ 5.00.05 ቇ= PαˆΊπ‘§< βˆ’2ሻ= 0.0228

Page 18: 5.5.3 Means and Variances for Linear Combinations

Exampleβ€’ X=ball bearing diameterβ€’ X is normal distributed with m=1.0cm and s=0.02cmβ€’ =mean diameter of n=25β€’ Find out what is the probability that will be off by

less than 0.01 from the true population mean.

%76.98)5.25.2(

)004.0

0.101.1004.0

0.199.0()01.199.0(

004.02502.0

0.1

zP

zPxP

nx

x

ss

m

xx

Page 19: 5.5.3 Means and Variances for Linear Combinations

Exercise

The mean of a random sample of size n=100 is going to be used to estimate the mean daily milk production of a very large herd of dairy cows. Given that the standard deviation of the population to be sampled is s=3.6 quarts, what can we assert about he probabilities that the error of this estimate will be more then 0.72 quart?


Top Related