Transcript

4033-Properties of the Definite Integral (5.3)

AB Calculus

Properties of Definite Integrals

 

    

A)

 

B)

 

C)  

D)

A b h

D r t

β€’ Think rectanglesβ€’ Distance

( ) 0a

af x dx

1 ( )b

adx b a ( ) ( )

b a

a bf x dx f x dx

a dx b

f (x)

( ) ( )b b

a akf x dx k f x dx

a to a

nowhere

rectan

gle

Oppos

ite

direc

tion

Constant

multiplier

π‘Ž

𝑏

𝑓 (π‘₯ )𝑑π‘₯=2π‘Žβˆ’π‘

π‘Ž

𝑏

( 𝑓 (π‘₯ )+5ΒΏ)𝑑π‘₯ΒΏ

π‘Ž

𝑏

𝑓 (π‘₯ )𝑑π‘₯+ΒΏπ‘Ž

𝑏

5𝑑π‘₯ΒΏ

2π‘Žβˆ’π‘+5π‘Žβˆ’5𝑏

Properties of Definite Integrals  

A b h

D r t

β€’ Think rectanglesβ€’ Distance

a c b

( ( ) ( )) ( ) ( )b b b

a a af x g x dx f x dx g x dx E)

NOTE: Same Interval

(2). IMPORTANT: Finding Area between curves.

(1). Shows the method to work Definite Integrals – like Ξ£

𝑓 (π‘₯ )βˆ’π‘”(π‘₯

)

𝑓subtract

Properties of Definite Integrals

 

  

A b h

D r t

β€’ Think rectanglesβ€’ Distance

a c b

( ) ( ) ( )b c b

a a cf x dx f x dx f x dx

F) If c is between a and b , then:

 

Placement of c important: upper bound of 1st, lower bound of 2nd.

REM: The Definite Integral is a number, so may solve the above like an equation.

( ) ( ) ( )b c b

a a cf x dx f x dx f x dx

Examples:

Show all the steps to integrate.

3 2

1(2 3 5)x x dx

Step 1:Break into parts

1

3

2π‘₯2𝑑π‘₯+1

3

3 π‘₯𝑑π‘₯βˆ’1

3

5𝑑π‘₯

21

3

π‘₯2𝑑π‘₯+31

3

π‘₯𝑑π‘₯βˆ’51

3

𝑑π‘₯

FTC FTC rectangle

Remove constant multiplier

Examples:

GIVEN: 5

0( ) 10f x dx

7

5( ) 3f x dx

5

0( ) 4g x dx

1)

7

0( )f x dx 2)

0

5( )f x dx

3)7

54 ( )f x dx

5

3( ) 2g x dx

βˆ’0

5

𝑓 (π‘₯ )𝑑π‘₯=βˆ’10

0

5

𝑓 (π‘₯ )𝑑π‘₯+5

7

𝑓 (π‘₯ )𝑑π‘₯=10+3=13

45

7

𝑓 (π‘₯ )𝑑π‘₯=4 (3 )=12

Examples: (cont.)

GIVEN: 5

0( ) 10f x dx

7

5( ) 3f x dx

5

0( ) 4g x dx

4)

5)

5

3( ) 2g x dx

3

3( )g x dx

3

0( )g x dx

0

0

5

𝑔 (π‘₯ )𝑑π‘₯βˆ’3

5

𝑔 (π‘₯ )𝑑π‘₯=βˆ’4βˆ’2=βˆ’6

Properties of Definite Integrals

 

Distance  

A b h

D r t

* Think rectangles

(min)( ) ( ) (max)( )c

af b a f x dx f b a

G) If f(min) is the minimum value of f(x) and f(max) is the maximum value of f(x) on the closed interval [a,b], then

 

a c b

Example:

1 2

0sin( )x dx

Show that the integral cannot possibly equal 2.

Show that the value of lies between 2 and 3 1

08x dx

sin (1)2

sin (0 )2

0<0

1

sin (π‘₯ )2≀1βˆ΄π‘π‘Žπ‘›π‘›π‘œπ‘‘=2

√0+8=2√2√1+8=32√2≀

0

1

√π‘₯+8𝑑π‘₯≀3

βˆ΄π‘šπ‘’π‘ π‘‘ 𝑙𝑖𝑒𝑏𝑒𝑑𝑀𝑒𝑒𝑛2π‘Žπ‘›π‘‘3

AVERAGE VALUE THEOREM (for Integrals)

Remember the Mean Value Theorem for Derivatives.

( ) ( )( ) ( )

F b F aF c f c

b a

And the Fundamental Theorem of Calculus

( ) ( ) ( )b

af x dx F b F a

Then:

( )( )

b

af x dx

f cb a

1( )

b

a

f x dxb a

a c b

1

4

π‘₯2𝑑π‘₯1

4βˆ’1

( )( )

b

af x dx

f cb a

1( )

b

a

f x dxb a

π‘₯3

3 |41643βˆ’

13=

633 ΒΏ21

( 13 )21=7

AVERAGE VALUE THEOREM (for Integrals)

( )( )

b

af x dx

f cb a

f (c)f (c) is the average of the function under consideration

i.e. On the velocity graph f (c)is the average velocity (value).

c is where that average occurs.

AVERAGE VALUE THEOREM (for Integrals)

( )( )

b

af x dx

f cb a

f (c)f (c) is the average of the function under consideration

NOTICE: f (c) is the height of a rectangle with the exact area of the region under the curve.

( ) ( )b

af c b a f x dx

Method:

Find the average value of the function

on [ 2,4].

2( ) 2 1f x x x

14βˆ’2

2

4

(π‘₯2+2 π‘₯+1 )𝑑π‘₯

12 ( π‘₯

3

3+2

π‘₯2

2+π‘₯)|42

12 ( 64

3+16+4)βˆ’ 1

2 ( 83+4+2)

12 ( 56

3+14)=1

2 ( 56+423 )

12 ( 98

3 )=986

= 493

Example 2:

A car accelerates for three seconds. Its velocity in meters

per second is modeled by on

t = [ 1, 4].

Find the average velocity.

2( ) 3 2v t t t

14βˆ’1

1

4

( 3 𝑑2βˆ’2 𝑑 )𝑑𝑑

13 (3

1

4

𝑑 2π‘‘π‘‘βˆ’21

4

𝑑𝑑𝑑 )13 (3 𝑑

3

3 )βˆ’ 13 (2

𝑑 2

2 )|41𝑑3

3βˆ’π‘‘ 2

3 |41

( 643βˆ’

163 )βˆ’( 1

3βˆ’

13 )

483βˆ’

03=

483

=16

Last Update:

β€’ 01/27/11

β€’ Assignment: Worksheet

Example 3 (AP):At different altitudes in the earth’s atmosphere, sound travels at different speeds The speed of sound s(x) (in meters per second) can be modeled by:

4 341, 0 11.5

295 11.5 22

3278.5 22 32

4( )3

254.5 32 5023

404.5 50 802

x x

x

x xs x

x x

x x

Where x is the altitude in kilometers. Find the average speed of sound over the interval [ 0,80 ].

SHOW ALL PROPERTY STEPS .


Top Related