Transcript
Page 1: 1 DC/AC IPing Wang, Minjie Chen CDC/AC LI L C I AC/DC I C L I C I Power Electronics …minjie/files/multiport_poster.pdf · 2018. 6. 22. · Power Electronics Research Lab, Princeton

max

o

Towards Power FPGA: Architecture, Modeling and Control of Multiport Power Converters

Ping Wang, Minjie Chen

Power Electronics Research Lab, Princeton University

Background & Motivation

Power Rating & Convergence Analysis

Control Framework

V1 V2

y12I1 I2

y1n

y2n

Vn

In

V3, , Vn-1

y1

yn

y2

V1 V2

C1 L12 C2I1 I2

L1n

L2n

Vn

Cn

In V3, , Vn-1

V1 V2

Vn

C1 L1

CnLn

C2L2

Lm

I1 I2

In

Fig. 1: Energy system with numerous modular power converters.

➢ Future applications need multiport power converters➢ Equivalent circuit of the multi-winding transformer

➢ Control framework

Fig. 4: Equivalent circuit.

Fig. 5: Control framework.

(a) Star model (b) Inductor Delta model (c) Impedance Delta model

➢ Power rating of the multiport converters

➢ Convergence analysis

Fig. 6: Power rating analysis.

Fig. 7: Convergence analysis.

▪ Maximal and minimal power in trapezoidal mode

▪ Maximal and minimal power in resonant mode

▪ If Ci is very large: trapezoidal mode,

▪ If Ci resonates with Li: resonant mode,

V1

V2

V3

DC/AC

DC/AC

DC/AC

AC/DCVBUF

Circuit Topology for Multiport Converters

➢ Multi-stage v.s. single-stage multiport converters

Number of Devices Multi-stage Single-stage Benefits

Dc-ac cells 6 4 33% size/cost reduction

Transformers 3 1 66% size/cost reduction

Dc-ac-dc stages 2 1 50% loss reduction

Fig. 2: (a) Multi-stage dc-ac-dc; (b) single-stage dc-ac-dc.

(a) (b)

➢ Circuit topology of a generalized multiport power converter

V1

C1 L1

Port 1

V2

C2 L2

Port 2

Vn

CnLn

Port n

V3

C3L3

Port 3

Fig. 3: Example topology of a multiport power converter.

Experimental Results

➢ Experimental results of three cases

Power (w) Port 1 Port 2 Port 3 Port 4

Case I

Target -30.00 0.00 30.00 0.00

Trapezoidal -27.25 0.9 32.4 0.6

Resonant -27.90 0.30 30.90 0.90

Case II

Target -30.00 10.00 20.00 0.00

Trapezoidal -27.67 10.8 21.3 0.6

Resonant -27.40 9.30 20.40 0.90

Case III

Target -30.00 5.00 10.00 15.00

Trapezoidal -27.83 5.1 11.4 15.6

Resonant -27.23 4.80 9.90 15.30

➢ Three example cases

Fig. 11: Experimental setup.

Fig. 12: Experimental waveforms.

Passive

Network

Port 1 Port 2

Port 3Port 4

10W

20W

Passive

Network

Port 1 Port 2

Port 3Port 4

5W

10W

15W

Passive

Network

Port 1 Port 2

Port 3Port 4

30W

(a) Case I

(b) Case II (c) Case III

Fig. 13: Three typical power flow.

Simulation Results

Vo

lta

ge

(V

)V

olt

ag

e (

V)

Vo

lta

ge

(V

)V

olt

ag

e (

V)

Cu

rre

nt

(A)

Cu

rre

nt

(A)

Cu

rre

nt

(A)

Cu

rre

nt

(A)

Time (us)

Vo

lta

ge

(V

)V

olt

ag

e (

V)

Vo

lta

ge

(V

)V

olt

ag

e (

V)

Cu

rre

nt

(A)

Cu

rre

nt

(A)

Cu

rre

nt

(A)

Cu

rre

nt

(A)

Time (us)

f: 500000Delay: -1.332E-07

L1L: 1e-6

R1R: 3e-3Half Bridge1

+-PWM

f: 500000Delay: -2.464E-08

L2L: 1e-6

R2R: 3e-3Half Bridge2

+-PWM

f: 500000Delay: 5.087E-08

L3L: 1e-6

R3R: 3e-3Half Bridge3

+-PWM

f: 500000Delay: 1.04E-07

L4L: 1e-6

R4R: 3e-3Half Bridge4

+-PWM

f: 500000Delay: -2.464E-08

L5L: 1e-6

R5R: 3e-3Half Bridge5

+-PWM

f: 500000Delay: -1.962E-08

L6L: 1e-6

R6R: 3e-3Half Bridge6

+-PWM

f: 500000Delay: -4.588E-09

L7L: 1e-6

R7R: 3e-3Half Bridge7

+-PWM

f: 500000Delay: 5.087E-08

L8L: 1e-6

R8R: 3e-3Half Bridge8

+-PWM

f: 500000Delay: -7.639E-08

L9L: 1e-6

R9R: 3e-3Half Bridge9

+-PWM

f: 500000Delay: -2.464E-08

L10L: 1e-6

R10R: 3e-3Half Bridge10

+-PWM

f: 500000Delay: 5.087E-08

L11L: 1e-6

R11R: 3e-3Half Bridge11

+-PWM

f: 500000Delay: 5.087E-08

L12L: 1e-6

R12R: 3e-3Half Bridge12

+-PWM

f: 500000Delay: -1.0393E-07

L13L: 1e-6

R13R: 3e-3Half Bridge13

+-PWM

f: 500000Delay: -2.464E-08

L14L: 1e-6

R14R: 3e-3Half Bridge14

+-PWM

f: 500000Delay: 5.087E-08

L15L: 1e-6

R15R: 3e-3Half Bridge15

+-PWM

f: 500000Delay: 7.6789E-08

L16L: 1e-6

R16R: 3e-3Half Bridge16

+-PWM

f: 500000Delay: -5.0094E-08

L17L: 1e-6

R17R: 3e-3Half Bridge17

+-PWM

f: 500000Delay: -7.6396E-08

L18L: 1e-6

R18R: 3e-3Half Bridge18

+-PWM

f: 500000Delay: 5.087E-08

L19L: 1e-6

R19R: 3e-3Half Bridge19

+-PWM

f: 500000Delay: 7.6789E-08

L20L: 1e-6

R20R: 3e-3Half Bridge20

+-PWM

f: 500000Delay: -1.3933E-07

L21L: 1e-6

R21R: 3e-3Half Bridge21

+-PWM

f: 500000Delay: -2.9682E-08

L22L: 1e-6

R22R: 3e-3Half Bridge22

+-PWM

f: 500000Delay: 4.5788E-08

L23L: 1e-6

R23R: 3e-3Half Bridge23

+-PWM

f: 500000Delay: 9.8460E-08

L24L: 1e-6

R24R: 3e-3Half Bridge24

+-PWM

f: 500000Delay: -2.9682E-08

L25L: 1e-6

R25R: 3e-3Half Bridge25

+-PWM

Transformer

C1C: 10e-6

C2C: 10e-6

C3C: 10e-6

C4C: 10e-6

C5C: 10e-6

C6C: 10e-6

C7C: 10e-6

C8C: 10e-6

C9C: 10e-6

C10C: 10e-6

C11C: 10e-6

C12C: 10e-6

C13C: 10e-6

C14C: 10e-6

C15C: 10e-6

C16C: 10e-6

C17C: 10e-6

C18C: 10e-6

C19C: 10e-6

C20C: 10e-6

C21C: 10e-6

C22C: 10e-6

C23C: 10e-6

C24C: 10e-6

C25C: 10e-6

f: 500000Delay: -2.464E-08

L26L: 1e-6

R26R: 3e-3 Half Bridge26

+- PWM

f: 500000Delay: -9.599E-09

L27L: 1e-6

R27R: 3e-3 Half Bridge27

+- PWM

f: 500000Delay: 4.579E-08

L28L: 1e-6

R28R: 3e-3 Half Bridge28

+- PWM

f: 500000Delay: -8.179E-08

L29L: 1e-6

R29R: 3e-3 Half Bridge29

+- PWM

f: 500000Delay: -2.968E-08

L30L: 1e-6

R30R: 3e-3 Half Bridge30

+- PWM

f: 500000Delay: 4.579E-08

L31L: 1e-6

R31R: 3e-3 Half Bridge31

+- PWM

f: 500000Delay: 4.579E-08

L32L: 1e-6

R32R: 3e-3 Half Bridge32

+- PWM

f: 500000Delay: -1.096E-07

L33L: 1e-6

R33R: 3e-3 Half Bridge33

+- PWM

f: 500000Delay: -2.968E-08

L34L: 1e-6

R34R: 3e-3 Half Bridge34

+- PWM

f: 500000Delay: 4.579E-08

L35L: 1e-6

R35R: 3e-3 Half Bridge35

+- PWM

f: 500000Delay: 7.152E-08

L36L: 1e-6

R36R: 3e-3 Half Bridge36

+- PWM

f: 500000Delay: -5.528E-08

L37L: 1e-6

R37R: 3e-3 Half Bridge37

+- PWM

f: 500000Delay: -8.179E-08

L38L: 1e-6

R38R: 3e-3 Half Bridge38

+- PWM

f: 500000Delay: 4.579E-08

L39L: 1e-6

R39R: 3e-3 Half Bridge39

+- PWM

f: 500000Delay: 7.152E-08

L40L: 1e-6

R40R: 3e-3 Half Bridge40

+- PWM

f: 500000Delay: -1.272E-07

L41L: 1e-6

R41R: 3e-3 Half Bridge41

+- PWM

f: 500000Delay: -1.962E-08

L42L: 1e-6

R42R: 3e-3 Half Bridge42

+- PWM

f: 500000Delay: 5.598E-08

L43L: 1e-6

R43R: 3e-3 Half Bridge43

+- PWM

f: 500000Delay: 1.097E-07

L44L: 1e-6

R44R: 3e-3 Half Bridge44

+- PWM

f: 500000Delay: -1.962E-08

L45L: 1e-6

R45R: 3e-3 Half Bridge45

+- PWM

f: 500000Delay: -1.461E-08

L46L: 1e-6

R46R: 3e-3 Half Bridge46

+- PWM

f: 500000Delay: 4.251E-10

L47L: 1e-6

R47R: 3e-3 Half Bridge47

+- PWM

f: 500000Delay: 5.598E-08

L48L: 1e-6

R48R: 3e-3 Half Bridge48

+- PWM

f: 500000Delay: -7.105E-08

L49L: 1e-6

R49R: 3e-3 Half Bridge49

+- PWM

f: 500000Delay: -1.962E-08

L50L: 1e-6

R50R: 3e-3 Half Bridge50

+- PWM

C26C: 10e-6

C27C: 10e-6

C28C: 10e-6

C29C: 10e-6

C30C: 10e-6

C31C: 10e-6

C32C: 10e-6

C33C: 10e-6

C34C: 10e-6

C35C: 10e-6

C36C: 10e-6

C37C: 10e-6

C38C: 10e-6

C39C: 10e-6

C40C: 10e-6

C41C: 10e-6

C42C: 10e-6

C43C: 10e-6

C44C: 10e-6

C45C: 10e-6

C46C: 10e-6

C47C: 10e-6

C48C: 10e-6

C49C: 10e-6

C50C: 10e-6

f: 500000Delay: 5.598E-08

L51L: 1e-6

R51R: 3e-3Half Bridge51

+-PWM

f: 500000Delay: 5.598E-08

L52L: 1e-6

R52R: 3e-3Half Bridge52

+-PWM

f: 500000Delay: -9.830E-08

L53L: 1e-6

R53R: 3e-3Half Bridge53

+-PWM

f: 500000Delay: -1.962E-08

L54L: 1e-6

R54R: 3e-3Half Bridge54

+-PWM

f: 500000Delay: 5.598E-08

L55L: 1e-6

R55R: 3e-3Half Bridge55

+-PWM

f: 500000Delay: 8.211E-08

L56L: 1e-6

R56R: 3e-3Half Bridge56

+-PWM

f: 500000Delay: -4.495E-08

L57L: 1e-6

R57R: 3e-3Half Bridge57

+-PWM

f: 500000Delay: -7.105E-08

L58L: 1e-6

R58R: 3e-3Half Bridge58

+-PWM

f: 500000Delay: 5.598E-08

L59L: 1e-6

R59R: 3e-3Half Bridge59

+-PWM

f: 500000Delay: 8.211E-08

L60L: 1e-6

R60R: 3e-3Half Bridge60

+-PWM

f: 500000Delay: -1.456E-07

L61L: 1e-6

R61R: 3e-3Half Bridge61

+-PWM

f: 500000Delay: -3.474E-08

L62L: 1e-6

R62R: 3e-3Half Bridge62

+-PWM

f: 500000Delay: 4.072E-08

L63L: 1e-6

R63R: 3e-3Half Bridge63

+-PWM

f: 500000Delay: 9.295E-08

L64L: 1e-6

R64R: 3e-3Half Bridge64

+-PWM

f: 500000Delay: -3.474E-08

L65L: 1e-6

R65R: 3e-3Half Bridge65

+-PWM

f: 500000Delay: -2.968E-08

L66L: 1e-6

R66R: 3e-3Half Bridge66

+-PWM

f: 500000Delay: -1.461E-08

L67L: 1e-6

R67R: 3e-3Half Bridge67

+-PWM

f: 500000Delay: 4.072E-08

L68L: 1e-6

R68R: 3e-3Half Bridge68

+-PWM

f: 500000Delay: -8.723E-08

L69L: 1e-6

R69R: 3e-3Half Bridge69

+-PWM

f: 500000Delay: -3.474E-08

L70L: 1e-6

R70R: 3e-3Half Bridge70

+-PWM

f: 500000Delay: 4.072E-08

L71L: 1e-6

R71R: 3e-3Half Bridge71

+-PWM

f: 500000Delay: 4.072E-08

L72L: 1e-6

R72R: 3e-3Half Bridge72

+-PWM

f: 500000Delay: -1.154E-07

L73L: 1e-6

R73R: 3e-3Half Bridge73

+-PWM

f: 500000Delay: -3.474E-08

L74L: 1e-6

R74R: 3e-3Half Bridge74

+-PWM

f: 500000Delay: 4.072E-08

L75L: 1e-6

R75R: 3e-3Half Bridge75

+-PWM

C51C: 10e-6

C52C: 10e-6

C53C: 10e-6

C54C: 10e-6

C55C: 10e-6

C56C: 10e-6

C57C: 10e-6

C58C: 10e-6

C59C: 10e-6

C60C: 10e-6

C61C: 10e-6

C62C: 10e-6

C63C: 10e-6

C64C: 10e-6

C65C: 10e-6

C66C: 10e-6

C67C: 10e-6

C68C: 10e-6

C69C: 10e-6

C70C: 10e-6

C71C: 10e-6

C72C: 10e-6

C73C: 10e-6

C74C: 10e-6

C75C: 10e-6

f: 500000Delay: 6.629E-08

L76L: 1e-6

R76R: 3e-3 Half Bridge76

+- PWM

f: 500000Delay: -6.050E-08

L77L: 1e-6

R77R: 3e-3 Half Bridge77

+- PWM

f: 500000Delay: -8.723E-08

L78L: 1e-6

R78R: 3e-3 Half Bridge78

+- PWM

f: 500000Delay: 4.072E-08

L79L: 1e-6

R79R: 3e-3 Half Bridge79

+- PWM

f: 500000Delay: 6.629E-08

L80L: 1e-6

R80R: 3e-3 Half Bridge80

+- PWM

f: 500000Delay: -1.212E-07

L81L: 1e-6

R81R: 3e-3 Half Bridge81

+- PWM

f: 500000Delay: -1.461E-08

L82L: 1e-6

R82R: 3e-3 Half Bridge82

+- PWM

f: 500000Delay: 6.112E-08

L83L: 1e-6

R83R: 3e-3 Half Bridge83

+- PWM

f: 500000Delay: 1.154E-07

L84L: 1e-6

R84R: 3e-3 Half Bridge84

+- PWM

f: 500000Delay: -1.461E-08

L85L: 1e-6

R85R: 3e-3 Half Bridge85

+- PWM

f: 500000Delay: -9.599E-09

L86L: 1e-6

R86R: 3e-3 Half Bridge86

+- PWM

f: 500000Delay: 5.443E-09

L87L: 1e-6

R87R: 3e-3 Half Bridge87

+- PWM

f: 500000Delay: 6.112E-08

L88L: 1e-6

R88R: 3e-3 Half Bridge88

+- PWM

f: 500000Delay: -6.575E-08

L89L: 1e-6

R89R: 3e-3 Half Bridge89

+- PWM

f: 500000Delay: -1.461E-08

L90L: 1e-6

R90R: 3e-3 Half Bridge90

+- PWM

f: 500000Delay: 6.112E-08

L91L: 1e-6

R91R: 3e-3 Half Bridge91

+- PWM

f: 500000Delay: 6.112E-08

L92L: 1e-6

R92R: 3e-3 Half Bridge92

+- PWM

f: 500000Delay: -9.273E-08

L93L: 1e-6

R93R: 3e-3 Half Bridge93

+- PWM

f: 500000Delay: -1.461E-08

L94L: 1e-6

R94R: 3e-3 Half Bridge94

+- PWM

f: 500000Delay: 6.112E-08

L95L: 1e-6

R95R: 3e-3 Half Bridge95

+- PWM

f: 500000Delay: 8.750E-08

L96L: 1e-6

R96R: 3e-3 Half Bridge96

+- PWM

f: 500000Delay: -3.983E-08

L97L: 1e-6

R97R: 3e-3 Half Bridge97

+- PWM

f: 500000Delay: -6.575E-08

L98L: 1e-6

R98R: 3e-3 Half Bridge98

+- PWM

f: 500000Delay: 6.112E-08

L99L: 1e-6

R99R: 3e-3 Half Bridge99

+- PWM

f: 500000Delay: 8.750E-08

L100L: 1e-6

R100R: 3e-3 Half Bridge100

+- PWM

C76C: 10e-6

C77C: 10e-6

C78C: 10e-6

C79C: 10e-6

C80C: 10e-6

C81C: 10e-6

C82C: 10e-6

C83C: 10e-6

C84C: 10e-6

C85C: 10e-6

C86C: 10e-6

C87C: 10e-6

C88C: 10e-6

C89C: 10e-6

C90C: 10e-6

C91C: 10e-6

C92C: 10e-6

C93C: 10e-6

C94C: 10e-6

C95C: 10e-6

C96C: 10e-6

C97C: 10e-6

C98C: 10e-6

C99C: 10e-6

C100C: 10e-6

➢ Simulation with 4 ports ➢ Simulation with 100 ports

Fig. 8: Simulated waveforms.

Fig. 9: 100-port “Power FPGA”.

Fig. 10: 100-port power programming.

V1

V2

V3

VBUF

DC/AC

DC/AC

DC/AC AC/DC

AC/DC

AC/DC

Newton-

Raphson Solver

Port 1

Measured Pi ,Vi

Port 2

Port n

Pa

ss

ive

Ne

two

rk

PID

Controller

Vi*, θi* Pi_ref,

Vi_ref

Vi_base ,

θi_base

...

P1

P2

Pn

𝑃𝑖 =

𝑘≠𝑖

𝑉𝑖𝑉𝑘𝜔𝐿𝑖𝑘

𝜙𝑖𝑘 1 −𝜙𝑖𝑘𝜋

𝑃𝑖 =8

𝜋2

𝑘=1

𝑛

𝑉𝑖𝑉𝑘(𝐺𝑖𝑘 cos𝜙𝑖𝑘 + 𝐵𝑖𝑘 sin𝜙𝑖𝑘)

𝑃1𝑃2⋮

𝑃𝑛−1

= 𝑓: 𝑅𝑛−1 → 𝑅𝑛−1

𝜙1𝜙2⋮

𝜙𝑛−1

𝑃𝑖_ max =𝜋

4

𝑘≠𝑖

𝑉𝑖𝑉𝑘𝜔𝐿𝑖𝑘

𝑃𝑖_ min = −𝜋

4

𝑘≠𝑖

𝑉𝑖𝑉𝑘𝜔𝐿𝑖𝑘

𝑏 =8

𝜋2

𝑘≠𝑖

𝑉𝑘_ max 𝐺𝑖𝑘2 + 𝐵𝑖𝑘

2

𝑎 ≥ 0

𝑃max =

8

𝜋2

𝑘≠𝑖

V𝑘maxG𝑖𝑘2 + B𝑖𝑘

2 − V𝑖_ max G𝑖𝑘 V𝑖_ max

8

𝜋2

σ𝑘≠𝑖 V𝑘_ max G𝑖𝑘2 + B𝑖𝑘

2

2

4σ𝑘≠𝑖 G𝑖𝑘8

𝜋2

𝑘≠𝑖

V𝑘maxG𝑖𝑘2 + B𝑖𝑘

2 − V𝑖_ max G𝑖𝑘 V𝑖_ max

𝑎 = −8

𝜋2

𝑘≠𝑖

𝐺𝑖𝑘

𝑎 < 0 & −𝑏

2𝑎≤ V𝑖_ max

𝑎 < 0 & −𝑏

2𝑎> V𝑖_ max

𝑎 < 0

𝑃min =

−8

𝜋2

𝑘≠𝑖

V𝑘maxG𝑖𝑘2 + B𝑖𝑘

2 + V𝑖_ max G𝑖𝑘 V𝑖_ max

8

𝜋2

σ𝑘≠𝑖 V𝑘_ max G𝑖𝑘2 + B𝑖𝑘

2

2

4σ𝑘≠𝑖 G𝑖𝑘

−8

𝜋2

𝑘≠𝑖

V𝑘maxG𝑖𝑘2 + B𝑖𝑘

2 + V𝑖_ max G𝑖𝑘 V𝑖_ max

𝑎 ≥ 0 &𝑏

2𝑎≤ V𝑖_ max

𝑎 ≥ 0 &𝑏

2𝑎> V𝑖_ max

(a) Trapezoidal

(b) Sinusoidal▪ Solver tool in Github: https://github.com/PingWang3741/Multiport-Power-Converter.git

(a) Trapezoidal

(b) Sinusoidal

Table II: Simulation & experimental results.

Table II: Advantages of the single-stage architecture.

Top Related