Transcript
Page 1: { Ch. 5 Review: Integrals AP Calculus. 5.2: The Differential dy 5.2: Linear Approximation 5.3: Indefinite Integrals 5.4: Riemann Sums (Definite Integrals)

{

Ch. 5 Review: Integrals

AP Calculus

Page 2: { Ch. 5 Review: Integrals AP Calculus. 5.2: The Differential dy 5.2: Linear Approximation 5.3: Indefinite Integrals 5.4: Riemann Sums (Definite Integrals)

5.2: The Differential dy5.2: Linear Approximation5.3: Indefinite Integrals5.4: Riemann Sums (Definite Integrals)5.5: Mean Value Theorem/Rolleโ€™s Theorem

Ch. 5 Test Topics

Page 3: { Ch. 5 Review: Integrals AP Calculus. 5.2: The Differential dy 5.2: Linear Approximation 5.3: Indefinite Integrals 5.4: Riemann Sums (Definite Integrals)

dx & dy: change in x and y for tangent (derivative)

The Differential dy

Tangent line

Page 4: { Ch. 5 Review: Integrals AP Calculus. 5.2: The Differential dy 5.2: Linear Approximation 5.3: Indefinite Integrals 5.4: Riemann Sums (Definite Integrals)

Find the differential dy:y =

dy = (6x โ€“ 4) dx

๐‘‘๐‘ฆ๐‘‘๐‘ฅ

= ๐‘“ โ€ฒ (๐‘ฅ ) , ๐‘ ๐‘œ๐‘‘๐‘ฆ= ๐‘“ โ€ฒ (๐‘ฅ) โˆ™๐‘‘๐‘ฅ

Page 5: { Ch. 5 Review: Integrals AP Calculus. 5.2: The Differential dy 5.2: Linear Approximation 5.3: Indefinite Integrals 5.4: Riemann Sums (Definite Integrals)

Linear Approximation

Write the equation of the line that bestfits at x = 2. Then find dx, and dy if f(2.01) is approximated.

Equation:

dx

dy

Page 6: { Ch. 5 Review: Integrals AP Calculus. 5.2: The Differential dy 5.2: Linear Approximation 5.3: Indefinite Integrals 5.4: Riemann Sums (Definite Integrals)

Linear Approximation

Write the equation of the line that bestfits at x = 2. Then find dx, and dy if f(2.01) is approximated.Point of tangency: f(2) = -2 Slope of tangent (deriv):

yโ€™ = 6x โ€“ 7 when x = 2 5

Sub into pt-slope equation:y โ€“

y + 2 = 5(x โ€“ 2) y = 5x โ€“ 12 If x = 2.01, y = -1.95

: Function change in y: f(2.01) โ€“ f(2) = .0503dx: Tangent line change in x -- 2.01 โ€“ 2 = .01dy: Tangent line change in y for x = 2 to 2.01: -1.95 - -2 = .05 or dy = fโ€™(x) dx at x = 2 (6(2) โ€“ 7)(.01) = .05

Page 7: { Ch. 5 Review: Integrals AP Calculus. 5.2: The Differential dy 5.2: Linear Approximation 5.3: Indefinite Integrals 5.4: Riemann Sums (Definite Integrals)

If a function is continuous and differentiable on the interval [a, b], then there is at least one point x = c at which the slope of the tangent equals the slope of the secant connecting f(a) and f(b)

Mean Value Theorem

Page 8: { Ch. 5 Review: Integrals AP Calculus. 5.2: The Differential dy 5.2: Linear Approximation 5.3: Indefinite Integrals 5.4: Riemann Sums (Definite Integrals)

If a function f is:1) Differentiable for all values of x in the

open interval (a, b) and2) Continuous for all values of x in the

closed interval [a, b]

Then there is at least one number x = c in (a, b) such that

Mean Value Theorem (MVT)

fโ€™(c) =

Page 9: { Ch. 5 Review: Integrals AP Calculus. 5.2: The Differential dy 5.2: Linear Approximation 5.3: Indefinite Integrals 5.4: Riemann Sums (Definite Integrals)

If a function is differentiable and continuous on the interval [a, b], and f(a) = f(b) = 0, then there is at least one value x = c such that fโ€™(c) = 0.

Rolleโ€™s Theorem

Page 10: { Ch. 5 Review: Integrals AP Calculus. 5.2: The Differential dy 5.2: Linear Approximation 5.3: Indefinite Integrals 5.4: Riemann Sums (Definite Integrals)

Remember โ€“ Function must be CONTINUOUS and DIFFERENTIABLE on interval! Otherwise, conclusion of MVT may not be met.

Mean Value Theorem

Page 11: { Ch. 5 Review: Integrals AP Calculus. 5.2: The Differential dy 5.2: Linear Approximation 5.3: Indefinite Integrals 5.4: Riemann Sums (Definite Integrals)

Integrals Self-Quiz

โˆซ 8๐‘ฅ1 /3๐‘‘๐‘ฅ=ยฟยฟโˆซ (5๐‘ฅ4+1 )๐‘‘๐‘ฅ=ยฟยฟโˆซ(7 ๐‘ฅ+3)8๐‘‘๐‘ฅ=ยฟยฟ

โˆซ5 ๐‘ ๐‘–๐‘›2 ๐‘ฅ ๐‘‘๐‘ฅ=ยฟยฟ

โˆซ ๐‘ ๐‘’๐‘ 5 ๐‘ฅ tan5 ๐‘ฅ ๐‘‘๐‘ฅ=ยฟยฟ

Page 12: { Ch. 5 Review: Integrals AP Calculus. 5.2: The Differential dy 5.2: Linear Approximation 5.3: Indefinite Integrals 5.4: Riemann Sums (Definite Integrals)

Integrals Self-Quiz

โˆซ 8๐‘ฅ1 /3๐‘‘๐‘ฅ=6 ๐‘ฅ4 /3+๐‘โˆซ (5๐‘ฅ4+1 )๐‘‘๐‘ฅ=๐‘ฅ5+๐‘ฅ+๐‘โˆซ(7 ๐‘ฅ+3)8๐‘‘๐‘ฅ=

163

(7๐‘ฅ+3)9+๐‘

โˆซ5 ๐‘ ๐‘–๐‘›2 ๐‘ฅ ๐‘‘๐‘ฅ=โˆ’52cos2๐‘ฅ+๐‘

โˆซ ๐‘ ๐‘’๐‘ 5 ๐‘ฅ tan5 ๐‘ฅ ๐‘‘๐‘ฅ=15sec 5 ๐‘ฅ+๐‘

Page 13: { Ch. 5 Review: Integrals AP Calculus. 5.2: The Differential dy 5.2: Linear Approximation 5.3: Indefinite Integrals 5.4: Riemann Sums (Definite Integrals)

Integrals Self-Quiz

โˆซ๐‘’sin ๐‘ฅ๐‘๐‘œ๐‘ ๐‘ฅ ๐‘‘๐‘ฅ=ยฟยฟ

โˆซ๐‘ฅ (๐‘ฅ2โˆ’3)5 ๐‘‘๐‘ฅ=ยฟยฟ

โˆซ๐‘๐‘œ๐‘ 4 ๐‘ฅ๐‘ ๐‘–๐‘›๐‘ฅ ๐‘‘๐‘ฅ=ยฟ ยฟ

โˆซ 2๐‘ฅ (๐‘ฅ3โˆ’7 )๐‘‘๐‘ฅ=ยฟยฟ

Page 14: { Ch. 5 Review: Integrals AP Calculus. 5.2: The Differential dy 5.2: Linear Approximation 5.3: Indefinite Integrals 5.4: Riemann Sums (Definite Integrals)

Integrals Self-Quiz

โˆซ๐‘’sin ๐‘ฅ๐‘๐‘œ๐‘ ๐‘ฅ ๐‘‘๐‘ฅ=๐‘’๐‘ ๐‘–๐‘›๐‘ฅ+๐‘

โˆซ๐‘ฅ (๐‘ฅ2โˆ’3)5 ๐‘‘๐‘ฅ=112

(๐‘ฅ2โˆ’3)6+๐‘

โˆซ๐‘๐‘œ๐‘ 4 ๐‘ฅ๐‘ ๐‘–๐‘›๐‘ฅ ๐‘‘๐‘ฅ=โˆ’15๐‘๐‘œ๐‘ 5๐‘ฅ+๐‘

โˆซ 2๐‘ฅ (๐‘ฅ3โˆ’7 )๐‘‘๐‘ฅ=25๐‘ฅ5โˆ’7 ๐‘ฅ2+๐‘

Page 15: { Ch. 5 Review: Integrals AP Calculus. 5.2: The Differential dy 5.2: Linear Approximation 5.3: Indefinite Integrals 5.4: Riemann Sums (Definite Integrals)

R Problems, pg. 260: R1 โ€“R5 ab


Top Related