dna what is a dna test.....enjoy! ( deoxyribonucleic acid ) if that did not work one more try!

13
DNA What is a DNA TEST.....Enjoy! ( Deoxyribonucleic Acid ) IF THAT DID NOT WORK ONE MORE TRY!

Upload: cecil-mcgee

Post on 05-Jan-2016

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 2: DNA What is a DNA TEST.....Enjoy! ( Deoxyribonucleic Acid ) IF THAT DID NOT WORK ONE MORE TRY!

Humans have millions of base pairs in their nuclear DNA.These are Nitrogen Bases and they have rules they must follow.

Adenine

Thymine

Cytosine

Guanine

Page 3: DNA What is a DNA TEST.....Enjoy! ( Deoxyribonucleic Acid ) IF THAT DID NOT WORK ONE MORE TRY!
Page 4: DNA What is a DNA TEST.....Enjoy! ( Deoxyribonucleic Acid ) IF THAT DID NOT WORK ONE MORE TRY!

These patterns do not, however, give an individual "fingerprint," but they are able to determine whether two DNA samples are from the same person, related people, or non-related people. Scientists use a small number of sequences of DNA that are known to vary among individuals a great deal, and analyze those to get a certain probability of a match.

The chemical structure of everyone's DNA is the same. The only difference between people (or any animal and even plants) is the order of the base pairs. There are so many millions of base pairs in each person's DNA that every person has a different sequence.

Using these sequences, every person could be identified solely by the sequence of their base pairs. However, because there are so many millions of base pairs, the task would be very time-consuming. Instead, scientists are able to use a shorter method, because of repeating patterns in DNA.

Page 5: DNA What is a DNA TEST.....Enjoy! ( Deoxyribonucleic Acid ) IF THAT DID NOT WORK ONE MORE TRY!

ATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACT

IF THIS WAS IT, IT WOULD BE VERY EASY TO IDENTIFY SOMEONE!

ATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGGAATAGGGGGAGTGAGACCAGTGAT

EVEN THIS WOULD BE VERY EASY TO IDENTIFY SOMEONE!

ATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGGACTTGAAGTGACCCCATTGGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACCTTCATTCAAAAGTAGTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGATGACGTAGGACCGATTGAGAATCCCTGGTGGGGTAATGGTCCCCACTCAGCATCACTATCAGATGACTTTCACAGGGGATCCATTACTCATGATCCAGTGACTTGAAGTGACCCCATTGGACCGGTTAGATGAGTGATGGATGAATAGGGGGAGTGAGACCAGTGA

BUT THIS MULTIPLIED BY 6000 WOULD BE WAY TOO TIME CONSUMING! AND THE POSSIBLE MISTAKES WOULD MAKE IT UNTRUSTWORTHY!

ATCCCT GGT GGGGTAAT GGTCCT GCCACTCAGCAT GCACT

UNLESS WE COULD FIND A WAY TO MAKE IT SHORTER

Page 6: DNA What is a DNA TEST.....Enjoy! ( Deoxyribonucleic Acid ) IF THAT DID NOT WORK ONE MORE TRY!

What are some of the DNA technologies used in forensic investigations?

• Restriction Fragment Length Polymorphism (RFLP)RFLP is a technique for analyzing the variable lengths of DNA fragments that result from digesting a DNA sample with a special kind of enzyme. This enzyme, a restriction endonuclease, cuts DNA at a specific sequence pattern know as a restriction endonuclease recognition site. The presence or absence of certain recognition sites in a DNA sample generates variable lengths of DNA fragments, which are separated using gel electrophoresis. They are then hybridized with DNA probes that bind to a complementary DNA sequence in the sample. RFLP was one of the first applications of DNA analysis to forensic investigation. With the development of newer, more efficient DNA-analysis techniques, RFLP is not used as much as it once was because it requires relatively large amounts of DNA. In addition, samples degraded by environmental factors, such as dirt or mold, do not work well with RFLP.

• PCR AnalysisPolymerase chain reaction (PCR) is used to make millions of exact copies of DNA from a biological sample. DNA amplification with PCR allows DNA analysis on biological samples as small as a few skin cells. With RFLP, DNA samples would have to be about the size of a quarter. The ability of PCR to amplify such tiny quantities of DNA enables even highly degraded samples to be analyzed. Great care, however, must be taken to prevent contamination with other biological materials during the identifying, collecting, and preserving of a sample.

• STR AnalysisShort tandem repeat (STR) technology is used to evaluate specific regions (loci) within nuclear DNA. Variability in STR regions can be used to distinguish one DNA profile from another. The Federal Bureau of Investigation (FBI) uses a standard set of 13 specific STR regions for CODIS. CODIS is a software program that operates local, state, and national databases of DNA profiles from convicted offenders, unsolved crime scene evidence, and missing persons. The odds that two individuals will have the same 13-loci DNA profile is about one in a billion.

• Mitochondrial DNA AnalysisMitochondrial DNA analysis (mtDNA) can be used to examine the DNA from samples that cannot be analyzed by RFLP or STR. Nuclear DNA must be extracted from samples for use in RFLP, PCR, and STR; however, mtDNA analysis uses DNA extracted from another cellular organelle called a mitochondrion. While older biological samples that lack nucleated cellular material, such as hair, bones, and teeth, cannot be analyzed with STR and RFLP, they can be analyzed with mtDNA. In the investigation of cases that have gone unsolved for many years, mtDNA is extremely valuable. All mothers have the same mitochondrial DNA as their offspring. This is because the mitochondria of each new embryo comes from the mother's egg cell. The father's sperm contributes only nuclear DNA. Comparing the mtDNA profile of unidentified remains with the profile of a potential maternal relative can be an important technique in missing-person investigations.

• Y-Chromosome AnalysisThe Y chromosome is passed directly from father to son, so analysis of genetic markers on the Y chromosome is especially useful for tracing relationships among males or for analyzing biological evidence involving multiple male contributors.

Page 7: DNA What is a DNA TEST.....Enjoy! ( Deoxyribonucleic Acid ) IF THAT DID NOT WORK ONE MORE TRY!

STR AnalysisShort tandem repeat (STR) technology is used to evaluate specific regions (loci) within

nuclear DNA. Variability in STR regions can be used to distinguish one DNA profile from another. The Federal Bureau of Investigation (FBI) uses a standard set of 13 specific STR regions for CODIS. CODIS is a software program that operates local, state, and national databases of DNA profiles from convicted offenders, unsolved crime scene

evidence, and missing persons. The odds that two individuals will have the same 13-loci DNA profile is about one in a billion.

Identity Matching- both VNTR alleles from a specific location must match. If two samples are from the same individual, they must show the same

allele pattern.

Page 8: DNA What is a DNA TEST.....Enjoy! ( Deoxyribonucleic Acid ) IF THAT DID NOT WORK ONE MORE TRY!

Restriction enzyme: An enzyme normally found in bacteria which cuts DNA at specific sites (i.e. each time a specific nucleotide pattern occurs). Because a restriction enzyme always acts upon DNA in the same manner, a map can be made of a restriction enzymes actions on a known set of nucleotides.

Page 9: DNA What is a DNA TEST.....Enjoy! ( Deoxyribonucleic Acid ) IF THAT DID NOT WORK ONE MORE TRY!

Because DNA has a slightly negative charge, the pieces of DNA will be attracted towards the bottom of the gel; the smaller pieces, however, will be able to move more quickly and thus further towards the bottom than the larger pieces. The different-sized pieces of DNA will therefore be separated by size, with the smaller pieces towards the bottom and the larger pieces towards the top.

Sorting the DNA pieces by size. The process by which the size separation, "size fractionation," is done is called gel electrophoresis. The DNA is poured into a gel, such as agarose, and an electrical charge is applied to the gel, with the positive charge at the bottom and the negative charge at the top.

Page 10: DNA What is a DNA TEST.....Enjoy! ( Deoxyribonucleic Acid ) IF THAT DID NOT WORK ONE MORE TRY!
Page 11: DNA What is a DNA TEST.....Enjoy! ( Deoxyribonucleic Acid ) IF THAT DID NOT WORK ONE MORE TRY!
Page 12: DNA What is a DNA TEST.....Enjoy! ( Deoxyribonucleic Acid ) IF THAT DID NOT WORK ONE MORE TRY!
Page 13: DNA What is a DNA TEST.....Enjoy! ( Deoxyribonucleic Acid ) IF THAT DID NOT WORK ONE MORE TRY!

WHAT COULD GO WRONG?

• Contamination• Degrading of material• Amount of material obtained• (And weird but true) While almost all individuals

have a single and distinct set of genes, rare individuals, known as "chimeras", have at least two different sets of genes. There have been several cases of DNA profiling that falsely suggested that a mother was unrelated to her children.

• See Lydia Fairchild and Karen Keegan