dna topology de witt sumners department of mathematics florida state university tallahassee, fl...

100
DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL [email protected]

Upload: easter-thomas

Post on 23-Dec-2015

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

DNA TOPOLOGY

De Witt Sumners

Department of Mathematics

Florida State University

Tallahassee, FL

[email protected]

Page 2: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

Pedagogical School: Knots & Links: From Theory to Application

Page 3: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

Pedagogical School: Knots & Links: From Theory to Application

De Witt Sumners: Florida State University

Lectures on DNA Topology: Schedule

• Introduction to DNA Topology

Monday 09/05/11 10:40-12:40

• The Tangle Model for DNA Site-Specific Recombination

Thursday 12/05/11 10:40-12:40

• Random Knotting and Macromolecular Structure Friday 13/05/11 8:30-10:30

Page 4: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

RANDOM KNOTTING

• Proof of the Frisch-Wasserman-Delbruck conjecture--the longer a random circle, the more likely it is to be knotted

• Knotting of random arcs

• Writhe of random curves and arcs

• Random knots in confined volumes

Page 5: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

TOPOLOGAL ENTANGLEMENT IN

POLYMERS

Page 6: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

WHY STUDY RANDOM ENTANGLEMENT?

• Polymer chemistry and physics: microscopic entanglement related to macroscopic chemical and physical characteristics--flow of polymer fluid, stress-strain curve, phase changes (gel formation)

• Biopolymers: entanglement encodes information about biological processes--random entanglement is experimental noise and needs to be subtracted out to get a signal

Page 7: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

BIOCHEMICAL MOTIVATION

Predict the yield from a random cyclization experiment in a dilute solution of linear polymers

Page 8: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

SEMICRYSTALLINE POLYMERS

Page 9: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

CHEMICAL SYNTHESIS OF CIRCULAR MOLECULES

Frisch and Wasserman JACS 83(1961), 3789

Page 10: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

MATHEMATICAL PROBLEM

• If L is the length of linear polymers in dilute solution, what is the yield (the spectrum of topological products) from a random cyclization reaction?

• L is the # of repeating units in the chain--# of monomers, or # of Kuhn lengths (equivalent statistical lengths, persistence lengths)--for polyethylene, Kuhn length is about 3.5 monomers. For duplex DNA, persistence length is about 300-500 base pairs

Page 11: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

MONTE CARLO RANDOM KNOT SIMULATION

• Thin chains--random walk in Z3 beginning at 0, no backtracking, perturb self-intersections away, keep walking. Force closure--the further you are along the chain, the more you want to go toward the origin.

• Detect knot types: (-1)

Vologodskii et al, Sov. Phys. JETP 39 (1974), 1059

Page 12: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

IMPROVED MONTE CARLO

• Start with phantom closed circular polymer (equilateral polygon), point mass vertices, semi-rigid edges (springs), random thermal forces (random 3D vector field), molecular mechanics, edges pass through each other, take snapshots of equilibrium distribution, detect knots with (-1).

Michels & Wiegel Phys Lett. 90A (1984), 381

Page 13: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

THIN CHAIN RANDOM KNOTTING

Page 14: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

FRISCH-WASSERMAN-DELBRUCK CONJECTURE

• L = # edges in random polygon• P(L) = knot probability

lim P(L) = 1 L

Frisch & Wasserman, JACS 83(1961), 3789Delbruck, Proc. Symp. Appl. Math. 14 (1962), 55

Page 15: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

RANDOM KNOT MODELS

• Lattice models: self-avoiding walks (SAW) and self-avoiding polygons (SAP) on Z3, BCC, FCC, etc--curves have volume exclusion

• Off-lattice models: Piecewise linear arcs and circles in R3--can include thickness

Page 16: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

RANDOM KNOT METHODS

• Small L: Monte Carlo simulation

• Large L: rigorous asymptotic proofs

Page 17: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

SIMPLE CUBIC LATTICE

Page 18: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

PROOF OF FWD CONJECTURE

THEOREM:

P(L) ~ 1 - exp(-L)

Sumners & Whittington, J. Phys. A: Math. Gen. 23 (1988), 1689

Pippenger, Disc Appl. Math. 25 (1989), 273

Page 19: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

KESTEN PATTERNS

Kesten, J. Math. Phys. 4(1963), 960Kesten, J. Math. Phys. 4(1963), 960

Page 20: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

TIGHT KNOTS

Page 21: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

Z3

Page 22: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

TIGHT KNOT ON Z3

19 vertices, 18 edges19 vertices, 18 edges

Page 23: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

TREFOIL PATTERN FORCES KNOTTING OF SAP

• Any SAP which contains the trefoil Kesten pattern is knotted--each occupied vertex is the barycenter of a dual 3-cube (the Wigner-Seitz cell)--the union of the dual 3-cubes is homeomorphic to B3, and this B3 contains a red knotted arc.

Page 24: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

SMALLEST TREFOIL

LL = 24 = 24

Page 25: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

SLIGHTLY LARGER TREFOIL

LL = 26 = 26

Page 26: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

RANDOM KNOT QUESTIONS

• For fixed length n, what is the distribution of knot types?

• How does this distribution change with n?

• What is the asymptotic behavior of knot complexity--growth laws ~n ?

• How to quantize entanglement of random arcs?

Page 27: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

KNOTS IN BROWNIAN FLIGHT

• All knots at all scales

Kendall, J. Lon. Math. Soc. 19 (1979), 378

Page 28: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

ALL KNOTS APPEAR

Every knot type has a tight Kesten pattern representative on Z3

Page 29: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

ALL KNOTS APPEAR: PROOF

Take a projection of your favorite knot on Z2. Bump up crossovers, saturate holes to get a decorated pancake

Page 30: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

LONG RANDOM KNOTS

Page 31: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

MEASURING KNOT COMPLEXITY

Page 32: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

LONG RANDOM KNOTS ARE VERY COMPLEX

THEOREM: All good measures of knot complexity diverge to + at least linearly with the length--the longer the random polygon, the more entangled it is.

Examples of good measures of knot complexity:

crossover number, unknotting number, genus, bridge number, braid number, span of your favorite knot polynomial, total curvature, etc.

Page 33: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

WRITHE

Page 34: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

KESTEN WRITHE

Van Rensburg et al., J. Phys. A: Math. Gen 26 (1993), 981

Page 35: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

WRITHE GROWS LIKE n

Page 36: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

WRITHE GROWTH: PROOF

Page 37: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

WRITHE GROWTH: PROOF

Page 38: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

GROWTH OF WRITHE FOR FIGURE 8 KNOT

Page 39: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

RANDOM KNOTS ARE CHIRAL

Page 40: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

ENTANGLEMENT COMPLEXITY OF GRAPHS AND ARCS

Page 41: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

DETECTING KNOTTED ARCS

Page 42: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

LONG RANDOM ARCS (GRAPHS) ARE VERY COMPLEX

Page 43: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

NEW SIMULATION: KNOTS IN CONFINED VOLUMES

• Parallel tempering scheme• Smooth configuration to remove extraneous

crossings• Use KnotFind to identify the knot--ID’s prime

and composite knots of up to 16 crossings• Problem--some knots cannot be ID’d--might be

complicated unknots!

Page 44: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

SMOOTHING

Page 45: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

UNCONSTRAINED KNOTTING PROBABILITIES

Page 46: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

CONSTRAINED UNKNOTTING PROBABILITY

Page 47: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

CONSTRAINED UNKOTTING PROBABILITY

Page 48: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

CONSTRAINED TREFOIL KNOT PROBABILITIES

Page 49: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

CONSTRAINED TREFOIL PROBABILITY

Page 50: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

ANALYTICAL PROOFS FOR KNOTS IN CONFINED

VOLUMES

• CONJECTURE: THE KNOT PROBABILITY GOES TO ONE AS LENGTH GOES TO INFINITY FOR RADOM CONFINED KNOTS--AND THAT THE KNOTTING PROBABILITY GROWS MUCH FASTER THAN RANDOM KNOTTING IN FREE 3-SPACE

Page 51: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

RANDOM KNOTTING IN HIGHER DIMENSIONS

• A similar result should hold for d-spheres in Zd+2, d > 2.

• CONJECTURE: For d > 2, let Sd be a “plaquette” d-sphere containing the origin in Zd+2. If V(Sd) denotes the d-volume of Sd, and P(Sd) denotes the probability that Sd is knotted, then P(Sd) goes to 1 as V(Sd) goes to infinity.

Page 52: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

COLLABORATORS

• Stu Whittington• Buks van Rensburg• Carla Tesi• Enzo Orlandini• Chris Soteros• Yuanan Diao• Nick Pippenger

• Javier Arsuaga• Mariel Vazquez• Joaquim Roca• P. McGuirk• Christian Micheletti• Davide Marenduzzo• Enzo Orlandini

Page 53: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

REFERENCES• J. Phys. A: Math. Gen. 21(1988), 1689• J. Phys. A: Math. Gen. 25(1992), 6557• Math. Proc. Camb. Phil. Soc. 111(1992), 75• J. Phys. A: Math. Gen. 26(1993), L981• J. Stat. Phys. 85 (1996), 103• J. Knot Theory and Its Apps. 6 (1997), 31• Proc. National Academy of Sciences USA 99(2002), 5373-5377.• Proc. National Academy of Sciences USA 102(2005), 9165-9169.• J. Chem. Phys. 124(2006), 064903• Biophys. J. 95 (2008), 3591-3599

Page 54: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

DNA KNOTS IN VIRAL CAPSIDS

De Witt Sumners

Department of Mathematics

Florida State University

Tallahassee, FL 32306

[email protected]

Page 55: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

THE PROBLEM

• Ds DNA of bacteriophage is packed to near-crystalline density in capsids (~800mg/ml), and the pressure inside a packed capsid is ~50 atmospheres.

• PROBLEM: what is the packing geometry?

Page 56: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

T4 EM

Page 57: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

HOW IS THE DNA PACKED?

Page 58: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

THE METHOD: VIRAL KNOTS REVEAL PACKING

• Compare observed DNA knot spectrum to simulation of knots in confined volumes

Page 59: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

Crossover Number

Page 60: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

CHIRALITY

Page 61: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

Knots and Catenanes

Page 62: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

+ TORUS KNOTS

Page 63: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

DNA (2,13) + TORUS KNOT

Spengler et al. CELL Spengler et al. CELL 4242 (1985), 325 (1985), 325

Page 64: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

TWIST KNOTS

Page 65: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

T4 TWIST KNOTS

Wassserman & Cozzarelli, J. Biol. Chem. 266 (1991), 20567

Page 66: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

GEL VELOCITY IDENTIFIES KNOT COMPLEXITY

Vologodskii et al, JMB Vologodskii et al, JMB 278278 (1988), 1 (1988), 1

Page 67: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

P4 DNA has cohesive ends that form closed circular molecules

GGCGAGGCGGGAAAGCAC

CCGCTCCGCCCTTTCGTG…...

….

GGCGAGGCGGGAAAGCAC CCGCTCCGCCCTTTCGTG

Page 68: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

EFFECTS OF CONFINEMENT ON P4 DNA KNOTTING (10.5 kb)

• No confinement--3% knots, mostly trefoils

• Viral knots--95% knots, very high complexity--average crossover number 27!

Page 69: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

PIVOT ALGORITHM

• Ergodic--no volume exclusion in our simulation

• as knot detector

• Reject swollen conformations—a problem!!

• Space filling polymers in confined volumes--very difficult to simulate

Page 70: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

VOLUME EFFECTS ON KNOT SIMULATION

• On average, 75% of crossings are extraneous

Arsuaga et al, PNAS Arsuaga et al, PNAS 99 99 (2002), 5373(2002), 5373

Page 71: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

2D GEL RESOLVES SMALL KNOTS

Arsuaga et al, PNAS Arsuaga et al, PNAS 102 (2005), 9165102 (2005), 9165

Page 72: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

SIMULATION vs EXPERIMENT

Arsuaga et al, PNAS Arsuaga et al, PNAS 102 (2005), 9165102 (2005), 9165

n=90, R=4n=90, R=4

Page 73: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

EFFECT OF WRITHE-BIASED SAMPLING

Arsuaga et al, PNAS Arsuaga et al, PNAS 102 (2005), 9165102 (2005), 9165

n=90, R=4n=90, R=4

Page 74: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

CONCLUSIONS

• Viral DNA not randomly embedded (41and 52 deficit, 51 and 71 excess in observed knot spectrum)

• Viral DNA has a chiral packing mechanism--writhe-biased simulation close to observed spectrum

• Torus knot excess favors toroidal or spool-like packing conformation of capsid DNA

• Next step--EM (AFM) of 3- and 5- crossing torus knots to see if they all have same chirality

Page 75: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

NEW SIMULATION SCHEME

• Multiple chain Monte Carlo (parallel tempering)

• Several Monte Carlo evolutions run in parallel, each evolution labeled by temperature (pressure)

• Periodically, conformations are swapped (Metropolis energy probability) between adjacent runs

• Scheme greatly enhances exploration of phase space

Page 76: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

SMOOTH CONFORMATIONS

• Need to reduce complexity—70% of crossings are extraneous

• Smoothing of conformations to reduce crossing number

Page 77: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

IDENTIFYING KNOTS

• Use KNOTFIND to identify knots of 16 crossings or less

• Problem--some knots cannot be ID’d--might be complicated unknots!

Page 78: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

CONCLUSIONS FROM MCMC

• Get precise determination of knot type (if < 16 crossings after smoothing!), volume exclusion, model tuned to P4 DNA bending rigidity

• Get confining volume down to 2.5 times P4 capsid volume

• Get excess of chiral knots

• Do not get excess torus over twist knots

Page 79: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

NEW PACKING DATA—4.7 KB COSMID

• Trigeuros & Roca, BMC Biotechnology 7 (2007) 94

Page 80: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

CRYO EM VIRUS STRUCTUREJiang et al NATURE 439 (2006) 612

Page 81: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

DNA-DNA INTERACTIONS GENERATE KNOTTING AND SURFACE ORDER

• Contacting DNA strands (apolar cholosteric interaction) assume preferred twist angle

Marenduzzo et al PNAS 106 (2009) 22269

Page 82: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

SIMULATED PACKING GEOMETRY

Marenduzzo et al PNAS 106 (2009) 22269

Page 83: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

THE BEAD MODEL

• Semiflexible chain of 640 beads--hard core diameter 2.5 nm

• Spherical capsid 45 nm

• Kink-jump stochastic dynamic scheme for simulating packing

Page 84: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

KNOTS DELOCALIZED

Marenduzzo et al PNAS 106 (2009) 22269

Black—unknot; 91—red; complex knot--green

Page 85: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

SIMULATED KNOT SPECTRUM

Marenduzzo et al PNAS 106 (2009) 22269

Page 86: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

DNA-DNA INTERACTION CONCLUSIONS

• Reproduce cryo-em observed surface order

• Reproduce observed knot spectrum—excess of torus knots over twist knots

• Handedness of torus knots—no excess of right over left at small twist angles—some excess at larger twist angles and polar interaction

Page 87: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

REFERENCES

• Nucleic Acids Research 29(2001), 67-71.• Proc. National Academy of Sciences USA

99(2002), 5373-5377.• Biophysical Chemistry 101-102 (2002), 475-484.• Proc. National Academy of Sciences USA

102(2005), 9165-9169.• J. Chem. Phys 124 (2006), 064903• Biophys. J. 95 (2008), 3591-3599• Proc. National Academy of Sciences USA

106(2009), 2269-2274.

Page 88: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

JAVIER ARSUAGA, MARIEL VAZQUEZ, CEDRIC, EITHNE

Page 89: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

CHRISTIAN MICHELETTI, ENZO ORLANDINI, DAVIDE MARENDUZZO

Page 90: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

ANDRZEJ STASIAK

Page 91: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

Thank You

•National Science Foundation

•Burroughs Wellcome Fund

Page 92: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

UNCONSTRAINED KNOTTING PROBABILITIES

Page 93: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

CONSTRAINED UNKNOTTING PROBABILITY

Page 94: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

CONSTRAINED UNKOTTING PROBABILITY

Page 95: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

CONSTRAINED TREFOIL KNOT PROBABILITIES

Page 96: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

CONSTRAINED TREFOIL PROBABILITY

Page 97: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

4 vs 5 CROSSING PHASE DIAGRAM

Page 98: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

CONFINED WRITHE

Page 99: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

GROWTH OF CONFINED WRITHE

Page 100: DNA TOPOLOGY De Witt Sumners Department of Mathematics Florida State University Tallahassee, FL sumners@math.fsu.edu

Thank You

•National Science Foundation

•Burroughs Wellcome Fund