dmrg in quantum chemistry: from its relation to traditional methods … · 2016. 11. 14. · the...

77
DMRG in Quantum Chemistry: From its relation to traditional methods to n-orbital density matrices and beyond Markus Reiher Laboratorium f¨ ur Physikalische Chemie, ETH Z¨ urich, Switzerland http://www.reiher.ethz.ch April 2016 DMRG in Quantum Chemistry Markus Reiher 1 / 77

Upload: others

Post on 04-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • DMRG in Quantum Chemistry:

    From its relation to traditional methods to n-orbital

    density matrices and beyond

    Markus Reiher

    Laboratorium für Physikalische Chemie, ETH Zürich, Switzerland

    http://www.reiher.ethz.ch

    April 2016

    DMRG in Quantum Chemistry Markus Reiher 1 / 77

  • Outline

    DMRG in Quantum Chemistry Markus Reiher 2 / 77

  • Non-Relativistic Many-Electron Hamiltonian

    many-electron Hamiltonian in position space (Hartree atomic units)

    Hel =

    N∑i

    (−1

    2∇2i −

    ∑I

    ZIriI

    )+

    N∑i

  • Standard Procedure: Construction of Many-Electron Basis

    Construct many-electron (determinantal) basis set {ΦI} from a given(finite) one-electron (orbital) basis set φi

    From the solution of the Roothaan–Hall equations, one obtains n

    orbitals from n one-electron basis functions.

    From the N orbitals with the lowest energy, the Hartree–Fock (HF)

    Slater determinant is constructed.

    The other determinants (configurations) are obtained by subsequent

    substitution of orbitals in the HF Slater determinant Φ0:

    Φ0 → {Φai } → {Φabij } → {Φabcijk} → ... (3)

    Determinants are classified by number of ’excitations’

    (= substitutions in HF reference determinant).

    DMRG in Quantum Chemistry Markus Reiher 4 / 77

  • Standard Full Configuration Interaction (FCI)

    Including all possible excited Slater determinants for a finite or infinite

    one-electron basis set leads to the so-called full CI approach.

    Number of Slater determinants nSD for N spin orbitals chosen from a

    set of L spin orbitals (colloquial: N electrons in L spin orbitals):

    nSD =

    (L

    N

    )=

    L!

    N !(L−N)! (4)

    Example: There are ≈ 1012 different possibilities to distribute 21electrons in 43 spin orbitals.

    CI calculations employing a complete set of Slater determinants are

    only feasible for small basis sets.

    DMRG in Quantum Chemistry Markus Reiher 5 / 77

  • Truncated CI Wave Functions

    Standard recipe to avoid the factorial scaling of the many-electron

    basis-set size: truncate basis! Note: basis is pre-defined!

    Assumption: Substitution hierarchy is a useful measure to generate a

    systematically improvable basis set.

    CIS: all singly-(S)-excited determinants are included:

    ΨCISel = C0Φ0 +∑(ai)

    C(ai)Φai (5)

    CISD: all singly- and doubly-(D)-excited determinants are included:

    ΨCISDel = C0Φ0 +∑(ai)

    C(ai)Φai +

    ∑(ai)(bj)

    C(ai,bj)Φabij (6)

    C0, C(ai), C(ai,bj) ∈ {CI} (7)DMRG in Quantum Chemistry Markus Reiher 6 / 77

  • Determination of the CI Expansion Coefficients CI

    ECIel =

    〈ΨCIel

    ∣∣Hel ∣∣ΨCIel 〉〈ΨCIel

    ∣∣ΨCIel 〉 =∑

    I,J C∗ICJ 〈ΦI |Hel |ΦJ〉∑

    I,J C∗ICJ 〈ΦI |ΦJ〉

    (8)

    CI determined from variational principle:

    Calculate all derivatives ∂ECIel / ∂C∗K and set them equal to zero, which

    yields the CI eigenvalue problem:

    H ·C = Eel ·C (9)

    Essential: H is constructed from matrix elements 〈ΦI |Hel |ΦJ〉 inpre-defined determinantal basis {ΦI}

    DMRG in Quantum Chemistry Markus Reiher 7 / 77

  • Standard ’Technical’ Trick: Second Quantization

    Operators and wave functions are expressed in terms of creation and

    annihilation operators to implement the Slater–Condon rules for the

    evaluation of matrix elements 〈ΦI |Hel |ΦJ〉 directly into the formalism.

    Hel in second quantization (i, j, k, l are spin orbital indices):

    ⇒ Hel =∑ij

    〈φi|h(i) |φj〉 c†i cj

    +1

    2

    ∑ijkl

    〈φi(1) 〈φk(2)| g(1, 2) |φl(2)〉φj(1)〉c†i c†jckcl (10)

    CI wave function in second quantization:

    ΨFCIel = C0Φ0 +∑(ai)

    C(ai)c†aciΦ0 +

    ∑(ai)(bj)

    C(ai,bj)c†bcjc

    †aciΦ0 · · · (11)

    DMRG in Quantum Chemistry Markus Reiher 8 / 77

  • CI Energy in Second Quantization

    ECIel =D

    ΨCIel

    ˛̨̨Hel

    ˛̨̨ΨCIel

    E(12)

    =

    LXij

    nSDXIJ

    C∗ICJ tIJij| {z }

    γij

    〈φi(1)|h(1) |φj(1)〉| {z }≡hij

    +LXijkl

    nSDXIJ

    C∗ICJTIJijkl| {z }

    Γijkl

    〈φi(1) 〈φk(2)| g(1, 2) |φl(2)〉φj(1)〉| {z }gijkl

    (13)

    =LXij

    γijhij +LXijkl

    Γijklgijkl (14)

    tIJij or TIJijkl are matrix elements of determinantal basis functions over

    pairs or quadruples of elementary operators c† and c.

    γij are Γijkl are density matrix elements (compare: RDMFT and 2RDM

    methods).

    DMRG in Quantum Chemistry Markus Reiher 9 / 77

  • Is there a better way to construct the finite-dimensional

    determinantal basis set in order to avoid the factorial scaling?

    DMRG in Quantum Chemistry Markus Reiher 10 / 77

  • Coupled-Cluster — An Advanced CI-type Wave FunctionAnsatz:

    ΨCCel = exp (T ) Φ0 (15)

    Excitation operator:

    T = T1 + T2 + T3 + · · · (16)

    where

    Tα =X

    ab · · ·| {z }α times

    ij · · ·| {z }α times

    cluster-amplitudesz}|{tab···ij··· · · · c†bcjc

    †aci| {z }

    α pairs c†c

    ⇒ T1 =Xai

    tai c†aci (17)

    Notation:

    CCS (T = T1), CCSD (T = T1 + T2), CCSDT (T = T1 + T2 + T3) ,· · ·Coupled-cluster improves on truncated CI, because certain (disconnected)

    higher excited configurations (e.g., tai c†acit

    bcjkc†cckc

    †bcj) are included.

    DMRG in Quantum Chemistry Markus Reiher 11 / 77

  • However, all of this is too expensive and often too limited

    (MRCC would be nice, but requires 5e-RDMs ...)

    DFT is the workhorse in transition metal chemistry

    (structures(!), energies, spectroscopic signatures)

    in critical cases, its accuracy is difficult to assess

    ... illustrated by an example

    DMRG in Quantum Chemistry Markus Reiher 12 / 77

  • The Spin State Problem in Quantum ChemistryTo predict the correct energy gaps between states of different spin S

    is crucial in chemistry (e.g., two-state reactivity); in kJ/mol

    Present-day DFT has difficulties to cope with this problem

    E.g., the results strongly depend on exact exchange admixture c3

    Example: the thermal spin-crossover complex [Fe(phen)2(NCS)2]

    N

    N

    N

    N

    Fe

    N

    NCS

    CS

    0 0.05 0.1 0.15 0.2

    c3 parameter

    −75

    −25

    25

    75

    ∆ E

    a/b / k

    J/m

    ol

    S=0/S=2 splitting

    S=0/S=1 splitting

    M. Reiher, Inorg. Chem. 41 (2002) 6928;

    M. Reiher, Faraday Discus. 135 (2007) 97

    DFT ∆EeLS/HS

    B3LYP(c3=0.00) 82.6

    BP86/RI 66.0

    BLYP 48.1

    B3LYP(c3=0.12) 11.0

    B3LYP(c3=0.13) 5.5

    B3LYP(c3=0.14) −0.3B3LYP(c3=0.15) −6.1B3LYP −33.4HF −407.5DMRG in Quantum Chemistry Markus Reiher 13 / 77

  • Ab initio Methods for benchmarks needed

    Well-established for open-shell transition metal complexes:

    CASSCF/CASPT2 and MRCI

    (incl. RASSCF/RASPT2)

    DMRG in Quantum Chemistry Markus Reiher 14 / 77

  • Orbital subspaces in CAS approaches

    inactive orbitals ~ 50 - 100

    active orbitals CASSCF: up to 18

    DMRG-SCF: up to 100

    virtual orbitals ~ 102 - 103

    orbitals are subdivided in doubly occupied

    inactive orbitals, active orbitals and

    unoccupied virtual orbitals

    huge virtual orbital subspace is not

    considered in CAS approaches (but should

    be (dynamic correlation)!)

    Exponential scaling of many-particle basis

    set size permits exact diagonalization up to

    only CAS(18,18)

    DMRG in Quantum Chemistry Markus Reiher 15 / 77

  • Ab initio Methods for benchmarks needed

    Well-established for open-shell transition metal complexes:

    CASSCF/CASPT2 and MRCI

    (incl. RASSCF/RASPT2)

    ... but what if active orbital space is too large?

    Promising new approaches?

    DMRG in Quantum Chemistry Markus Reiher 16 / 77

  • Parameterization of the Wave Function

    |Ψ〉 =∑

    i1i2···iN

    Ci1i2···iN |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |iN 〉

    Restricted sum over basis states with a certain excitation pattern

    → yields a pre-defined (!) many-particle basis setConfiguration Interaction ansatz

    |CI〉 =(

    1 +∑µ

    Cµτ̂µ

    )|HF〉

    Coupled Cluster ansatz

    |CC〉 =(∏

    µ

    [1 + tµτ̂µ])|HF〉

    numerous specialized selection/restriction protocols

    DMRG in Quantum Chemistry Markus Reiher 17 / 77

  • Instead of standard CI-type calculations by

    diagonalization/projection

    |Ψ〉 =∑

    i1i2···iN

    Ci1i2···iN |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |iN 〉

    construct CI coefficients from correlations among orbitals

    |Ψ〉 =∑

    i1i2···iN

    Ci1i2···iN |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |iN 〉

    DMRG in Quantum Chemistry Markus Reiher 18 / 77

  • Density Matrix Renormalization Group: Principles

    New wavefunction parametrization:

    |ψ〉 =∑σ

    cσ|σ〉 −→ |ψ〉 =∑σ

    Mσ1 Mσ2 · · · MσL |σ〉

    complete active space (CAS) partitioning and iterative sweeping:

    In essence: dimension reduction by least-squares fitting

    DMRG in Quantum Chemistry Markus Reiher 19 / 77

  • Reviews on DMRG in Quantum Chemistry

    1 Ö Legeza, R. M. Noack, J. Sólyom and L. Tincani, Applications of Quantum Information in the Density-Matrix

    Renormalization Group, Lect. Notes Phys., 739,653-664 (2008)

    2 G. K.-L. Chan, J. J. Dorando, D. Ghosh, J. Hachmann, E. Neuscamman, H. Wang, T. Yanai, An Introduction to the

    Density Matrix Renormalization Group Ansatz in Quantum Chemistry, Prog. Theor. Chem. and Phys., 18, 49 (2008)

    3 D. Zgid and G. K.-L. Chan, The Density Matrix Renormalisation Group in Quantum Chemistry, Ann. Rep. Comp.

    Chem., 5, 149, (2009)

    4 K. H. Marti, M. Reiher, The Density Matrix Renormalization Group Algorithm in Quantum Chemistry, Z. Phys. Chem.,

    224, 583-599 (2010)

    5 G. K.-L. Chan and S. Sharma, The density matrix renormalization group in quantum chemistry, Ann. Rev. Phys. Chem.,

    62, 465 (2011)

    6 K. H. Marti, M. Reiher, New Electron Correlation Theories for Transition Metal Chemistry, Phys. Chem. Chem. Phys.,

    13, 6750-6759 (2011)

    7 Y. Kurashige, Multireference electron correlation methods with density matrix renormalisation group reference functions,

    Mol. Phys. 112, 1485-1494 (2014)

    8 S. Wouters and D. Van Neck, The density matrix renormalization group for ab initio quantum chemistry, Eur. Phys. J.

    D 68, 272 (2014)

    9 T. Yanai, Y. Kurashige, W. Mizukami, J. Chalupský, T. N. Lan, M. Saitow, Density matrix renormalization group for ab

    initio Calculations and associated dynamic correlation methods,Int. J. Quantum Chem. 115, 283-299 (2015)

    10 S. Szalay, M. Pfeffer, V. Murg, G. Barcza, F. Verstraete, R. Schneider, Ö. Legeza, Tensor product methods and

    entanglement optimization for ab initio quantum chemistry, arXiv:1412.5829 (2015)

    DMRG in Quantum Chemistry Markus Reiher 20 / 77

  • DMRG Parameters

    Active space selection, as in MCSCF, but need additional parameters:

    Number of renormalized basis states m

    Orbital ordering

    Choice of initial environment guess

    These parameters do depend on each other.

    S. Keller, M. Reiher, Chimia, 2014, 68, 200–203

    DMRG in Quantum Chemistry Markus Reiher 21 / 77

  • Two variants of DMRG:

    Traditional DMRG

    |ψ〉 =∑LR CLR|σL〉 ⊗ |σR〉

    coefficients valid for one

    bipartition into L and R

    (need basis

    transformations)

    Excited states only with

    state averaging

    faster for ground states?

    MPS DMRG (2nd generation)

    |ψ〉 =∑σM

    σ1 Mσ2 · · · MσL |σ〉

    coefficients valid for the whole

    system

    Easy and efficient

    implementation of

    〈φ|ψ〉〈ψ|a†i Ĥaj |ψ〉3- and 4-body RDMs

    excited states

    DMRG in Quantum Chemistry Markus Reiher 22 / 77

  • Matrix product states (MPS) and Matrix product

    operators (MPO)

    |ψ〉 =∑σ

    cσ|σ〉 → |ψ〉 =∑σ

    ∑a1,...,aL−1

    Mσ11a1 Mσ2a1a2 · · · MσLaL−11 |σ〉

    Ŵ =∑σ,σ′

    wσσ′ |σ〉〈σ′| →

    Ŵ =∑σσ′

    ∑b1,...,bL−1

    Wσ1σ′11b1

    · · ·W σlσ′lbl−1bl · · ·WσLσ

    ′L

    bL−11|σ〉〈σ′|

    S. Keller, M. Dolfi, M. Troyer, M. Reiher, J. Chem. Phys. 143, 244118 (2015)

    DMRG in Quantum Chemistry Markus Reiher 23 / 77

  • Matrix product operators (MPO)

    Ĥ =L∑ij σ

    tij ĉ†iσ ĉjσ +

    1

    2

    L∑ijklσ σ′

    Vijklĉ†iσ ĉ†kσ′ ĉlσ′ ĉjσ,

    DMRG in Quantum Chemistry Markus Reiher 24 / 77

  • MPO compression

    Consider the terms c†1c†2c5c7 + c

    †1c†3c6c7

    DMRG in Quantum Chemistry Markus Reiher 25 / 77

  • MPS-MPO operations: expectation values

    DMRG in Quantum Chemistry Markus Reiher 26 / 77

  • Spin symmetry adaptation: MPS and MPO put together

    F[a′]i′j′(l + 1) =

    ∑aijkss′

    Wigner-9j[jsj′

    aka′is′i′

    ]M

    [s′]†

    i′i W[k]ss

    aa′ F[a]ij (l)M

    [s]j′j

    S. Keller, M. Reiher, J. Chem. Phys. 144, 134101 (2016)

    DMRG in Quantum Chemistry Markus Reiher 27 / 77

  • The QCMaquis DMRG program

    Input: tij and Vijkl integrals, target state quantum numbers

    The system (atom, molecule, ...) is encoded in tij

    Co-developed with the ALPS MPS project (Troyer).

    Integrated into the Molcas program package.

    Source code available from www.reiher.ethz.ch/software

    Parallelized by MPI and threading

    C++ / C++11, 60k lines core program + 50k lines associated libs

    + standard libs (boost, etc.)

    S. Keller, M. Dolfi, M. Troyer, M. Reiher, J. Chem. Phys. 143, 244118 (2015)

    DMRG in Quantum Chemistry Markus Reiher 28 / 77

    www.reiher.ethz.ch/software

  • DMRG in Quantum Chemistry Markus Reiher 29 / 77

  • A well working example: FCI for N2 (14e, 28o)

    DMRG in Quantum Chemistry Markus Reiher 30 / 77

  • A well working example: FCI for N2 (14e, 28o)

    DMRG in Quantum Chemistry Markus Reiher 31 / 77

  • Does DMRG Work for Compact Molecules?

    Original ’opinion’ in the DMRG community:

    Works only for pseudo-one-dimensional, non-compact systems!

    Test for a mononuclear transition metal system CAS(10,10): CoH

    m Esinglet/Eh Etriplet/Eh ∆E/kJmol−1

    64 −1381.952 054 −1381.995 106 113.0376 −1381.952 063 −1381.995 109 113.0291 −1381.952 070 −1381.995 110 113.00109 −1381.952 073 −1381.995 110 112.99CAS(10,10) −1381.952 074 −1381.995 110 112.99CASPT2(10,10) −1382.189 527 −1382.241 333 130.57DFT/BP86 −1383.504 019 −1383.585 212 213.1DFT/B3LYP −1383.202 267 −1383.279 574 203.0

    K. Marti, I. Malkin Ondik, G. Moritz, M. Reiher, J. Chem. Phys 128 (2008) 014104

    DMRG in Quantum Chemistry Markus Reiher 32 / 77

  • Example: Analysis of Spin Density Distributions

    with DMRG

    DMRG in Quantum Chemistry Markus Reiher 33 / 77

  • Noninnocent Iron Nitrosyl Complexes

    (a) Fe(salen)(NO) conformation a

    (b) Fe(salen)(NO) conformation b

    (c) Fe(porphyrin)(NO)

    transition metal nitrosyl complexes

    have a complicated electronic

    structure

    qualitatively different spin

    densities reported by Conradie

    & GhoshJ. Conradie, A. Ghosh, J. Phys. Chem. B 2007, 111,

    12621.

    systematic comparison of DFT

    spin densities with CASSCF:K. Boguslawski, C. R. Jacob, M. Reiher, J. Chem.

    Theory Comput. 2011, 7, 2740;

    see also work by K. Pierloot et al.

    DMRG in Quantum Chemistry Markus Reiher 34 / 77

  • DFT Spin Densities: A Case Study

    (a) OLYP (b) OPBE (c) BP86 (d) BLYP

    (e) TPSS (f) TPSSh (g) M06-L (h) B3LYP

    Only for high-spin complexes similar spin densities are obtained

    ⇒ [Fe(NO)]2+ moiety determines the spin density

    DMRG in Quantum Chemistry Markus Reiher 35 / 77

  • The Model System for Accurate Reference Calculations

    zyx

    Fe

    N

    O

    dpc dpc

    dpcdpc

    Structure:

    Four point charges of −0.5 e model a square-planarligand field (ddp = 1.131 Å)

    ⇒ Similar differences in DFT spin densities as present forlarger iron nitrosyl complexes

    Advantage of the small system size:

    Standard correlation methods (CASSCF, . . .) can be efficiently

    employed

    Study convergence of the spin density w.r.t. the size of the active

    orbital space

    K. Boguslawski, C. R. Jacob, M. Reiher, J. Chem. Theory Comput. 2011, 7, 2740.

    DMRG in Quantum Chemistry Markus Reiher 36 / 77

  • DFT Spin Densities

    (a) OLYP (b) OPBE (c) BP86 (d) BLYP

    (e) TPSS (f) TPSSh (g) M06-L (h) B3LYP

    Spin density isosurface plots Spin density difference plots w.r.t.

    OLYP

    ⇒ Similar differences as found for the large iron nitrosyl complexes

    DMRG in Quantum Chemistry Markus Reiher 37 / 77

  • Reference Spin Densities

    from Standard Electron Correlation Methods

    DMRG in Quantum Chemistry Markus Reiher 38 / 77

  • Reference Spin Densities from CASSCF Calculations

    Defining the active orbital space:

    Minimal active space: Fe 3d- and both NO π∗-orbitals ⇒ CAS(7,7)

    Consider also both NO π-orbitals ⇒ CAS(11,9)

    Additional shell of Fe d-orbitals (double-shell orbitals) is gradually

    included ⇒ CAS(11,11) to CAS(11,14)

    Include one ligand σ-orbital and the antibonding σ∗-orbital upon the

    CAS(11,11) ⇒ CAS(13,13)

    ⇒ Analyze convergence of spin density w.r.t. the dimension of the activeorbital space

    DMRG in Quantum Chemistry Markus Reiher 39 / 77

  • CASSCF Results: Oscillating Spin Densities

    CAS(7,7) CAS(11,9) CAS(11,11) CAS(11,12) CAS(11,14)

    CAS(11,13) CAS(13,13) CAS(13,14) CAS(13,15) CAS(13,16)

    CAS(11,14): spin

    density; all others:

    spin density

    differences

    stable CAS with all

    important orbitals is

    difficult to obtain

    ⇒ Reference spindensities for very

    large CAS required

    DMRG in Quantum Chemistry Markus Reiher 40 / 77

  • DMRG Spin Densities — Measures of Convergence

    Qualitative convergence measure: spin density difference plots

    Quantitative convergence measure:

    ∆abs =

    ∫|ρs1(r)− ρs2(r)|dr < 0.005 (18)

    ∆sq =

    √∫|ρs1(r)− ρs2(r)|2dr < 0.001 (19)

    Quantitative convergence measure: quantum fidelity Fm1,m2

    Fm1,m2 = |〈Ψ(m1)|Ψ(m2)〉|2 (20)

    ⇒ Reconstructed CI expansion of DMRG wave function can be used!K. Boguslawski, K. H. Marti, M. Reiher, J. Chem. Phys. 2011, 134, 224101.

    DMRG in Quantum Chemistry Markus Reiher 41 / 77

  • DMRG Spin Densities for Large Active Spaces∆abs and ∆sq for DMRG(13,y)[m] calculations w.r.t. DMRG(13,29)[2048] reference

    Method ∆abs ∆sq Method ∆abs ∆sq

    DMRG(13,20)[128] 0.030642 0.008660 DMRG(13,29)[128] 0.032171 0.010677

    DMRG(13,20)[256] 0.020088 0.004930 DMRG(13,29)[256] 0.026005 0.006790

    DMRG(13,20)[512] 0.016415 0.003564 DMRG(13,29)[512] 0.010826 0.003406

    DMRG(13,20)[1024] 0.015028 0.003162 DMRG(13,29)[1024] 0.003381 0.000975

    DMRG(13,20)[2048] 0.014528 0.003028

    DMRG(13,20;128) DMRG(13,20;256) DMRG(13,20;512) DMRG(13,20;1024) DMRG(13,20;2048)

    DMRG(13,29;128) DMRG(13,29;256) DMRG(13,29;512) DMRG(13,29;1024) DMRG(13,29;2048)

    DMRG in Quantum Chemistry Markus Reiher 42 / 77

  • Importance of Empty Ligand Orbitals

    Table: Some important Slater determinants with large CI weights from DMRG(13,29)[m]Upper part: Slater determinants containing an occupied dx2−y2 -double-shell orbital (marked in

    bold face). Bottom part: Configurations with occupied ligand orbitals (marked in bold face). 2:

    doubly occupied; a: α-electron; b: β-electron; 0: empty.

    CI weight

    Slater determinant m = 128 m = 1024

    b2b222a0a0000000 0000000 a 00000 0.003 252 0.003 991

    bb2222aa00000000 0000000 a 00000 −0.003 226 −0.003 611222220ab00000000 0000000 a 00000 −0.002 762 −0.003 328ba2222ab00000000 0000000 a 00000 0.002 573 0.003 022

    b2a222a0b0000000 0000000 a 00000 −0.002 487 −0.003 017202222ab00000000 0000000 a 00000 0.002 405 0.002 716

    b222a2a0b0000000 0000000 0 0000a 0.010 360 0.011 558

    22b2a2a0a0000000 0000000 0 b0000 0.009 849 0.011 366

    22b2a2a0b0000000 0000000 0 a0000 −0.009 532 −0.011 457b2222aab00000000 0000000 0 0000a −0.009 490 −0.010 991a2222baa00000000 0000000 0 0000b −0.009 014 −0.010 017b2b222a0a0000000 0000000 0 0a000 0.008 820 0.010 327

    DMRG in Quantum Chemistry Markus Reiher 43 / 77

  • Assessment of CASSCF Spin Densities (Differences)

    CAS(11,11) CAS(11,12) CAS(11,13) CAS(11,14)

    CAS(13,13) CAS(13,14) CAS(13,15) CAS(13,16)

    ⇒ CASSCF spin densities oscillate around DMRG reference distribution

    DMRG in Quantum Chemistry Markus Reiher 44 / 77

  • DFT–DMRG Spin Densities Differences

    OLYP OPBE BP86 BLYP

    TPSS TPSSh M06-L B3LYP

    K. Boguslawski, K. H. Marti, Ö. Legeza, M. Reiher, J. Chem. Theory Comput. 8 2012 1970

    DMRG in Quantum Chemistry Markus Reiher 45 / 77

  • Analyzing DMRG and correlated wave functions

    with concepts from quantum information theory

    DMRG in Quantum Chemistry Markus Reiher 46 / 77

  • Entanglement Measures for Embedded Subsystems

    See pioneering work by Ö. Legeza within QC-DMRG

    Consider one or two orbitals embedded in a CAS

    Measure for entanglement of states on orbital i with those defined on

    environment:

    Ö. Legeza, J. Sólyom, Phys. Rev. B 2003, 68, 195116.

    von-Neumann-type single-orbital entropy

    s(1)i = −4∑

    α=1

    ωα,i lnωα,i (21)

    (ωα,i is an eigenvalue of the 1o-RDM of spatial orbital i — states

    defined on all other orbitals of the CAS have been traced out)

    DMRG in Quantum Chemistry Markus Reiher 47 / 77

  • Entanglement Measures for Embedded Subsystems

    Measure for entanglement of states living on orbital i and orbital j

    with those in the environment:

    von-Neumann-type two-orbital entropy

    s(2)ij = −16∑α=1

    ωα,ij lnωα,ij (22)

    (ωα,ij is an eigenvalue of the 2o-RDM of two spatial orbitals i and j

    — states defined on all other orbitals of the CAS have been traced

    out)

    Note the difference between ne-RDMs and no-RDMs !

    DMRG in Quantum Chemistry Markus Reiher 48 / 77

  • Entanglement Measures for Embedded Subsystems

    s(2)ij contains also the ’on-site’ entropies for the two orbitals

    ⇒ Subtract these contributions to obtain the ’inter-orbital entropy’:J. Rissler, R.M. Noack, S.R. White, Chem. Phys. 2006, 323, 519.

    Mutual information

    Iij ∝ s(2)ij − s(1)i − s(1)j (23)

    Successfully applied to optimize orbital ordering and to enhance

    DMRG convergence by Ö. Legeza

    DMRG in Quantum Chemistry Markus Reiher 49 / 77

  • How To Read the (New) Mutual Information Plots

    DMRG in Quantum Chemistry Markus Reiher 50 / 77

  • Entanglement and Orbitals — Single Orbital Entropy

    0 5 10 15 20 25 300

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    Orbital index

    s(1

    )

    K. Boguslawski, P. Tecmer, Ö. Legeza, M. Reiher,

    J. Phys. Chem. Lett. 2012, 3, 3129.

    Three groups of orbitals

    ⇒ large single orbital entropy⇒ medium single orbital entropy⇒ tiny single orbital entropyConfigurations belonging to the

    third block have small CI ⇒important for dynamic

    correlation

    Note: more structure than in

    spectrum of 1e-RDM

    zyx

    Fe

    N

    O

    dpc dpc

    dpcdpc

    4 point charges in xy-plane at dpc = 1.133 Å

    Natural orbital basis: CAS(11,14)SCF/cc-pVTZ

    DMRG(13,29) with DBSS (mmin = 128,mmax = 1024)

    DMRG in Quantum Chemistry Markus Reiher 51 / 77

  • Entanglement and Orbitals — Mutual Information

    1

    3

    5

    7

    9

    11

    1315

    17

    19

    21

    23

    25

    27

    29

    2

    4

    6

    8

    10

    12

    1416

    18

    20

    22

    24

    26

    28

    A

    100

    10−1

    10−2

    10−3

    K. Boguslawski, P. Tecmer, Ö. Legeza, M. Reiher,

    J. Phys. Chem. Lett. 2012, 3, 3129.

    Three groups of orbitals

    ⇒ high entanglement⇒ medium entanglement⇒ weak entanglementStrong entanglement for pairs:

    (d, π∗)⇐⇒ (d, π∗)∗π ⇐⇒ π∗

    σMetal ⇐⇒ σLigand⇒ Important for static correlation (⇐⇒

    chemical intuition of constructing a

    CAS)

    zyx

    Fe

    N

    O

    dpc dpc

    dpcdpc

    4 point charges in xy-plane at dpc = 1.133 Å

    Natural orbital basis: CAS(11,14)SCF/cc-pVTZ

    DMRG(13,29) with DBSS (mmin = 128,mmax = 1024)

    DMRG in Quantum Chemistry Markus Reiher 52 / 77

  • Entanglement Measures can Monitor

    Bond Breaking/Formation Processes: Dinitrogen

    K. Boguslawski, P. Tecmer, G. Barcza, O. Legeza, M. Reiher, J. Chem. Theory Comput. 9 2013

    2959–2973 [arxiv: 1303.7207]

    DMRG in Quantum Chemistry Markus Reiher 53 / 77

  • Bond Breaking in Dinitrogen at 1.12 Ångström

    Part of entanglement is already encoded in molecular orbitals changing with the structure !

    Atomic-like non-orthogonal basis fcts. exhibit large entanglement measures among each other.

    DMRG in Quantum Chemistry Markus Reiher 54 / 77

  • Bond Breaking in Dinitrogen at 1.69 Ångström

    Part of entanglement is already encoded in molecular orbitals changing with the structure !

    Atomic-like non-orthogonal basis fcts. exhibit large entanglement measures among each other.

    DMRG in Quantum Chemistry Markus Reiher 55 / 77

  • Bond Breaking in Dinitrogen at 2.22 Ångström

    Part of entanglement is already encoded in molecular orbitals changing with the structure !

    Atomic-like non-orthogonal basis fcts. exhibit large entanglement measures among each other.

    DMRG in Quantum Chemistry Markus Reiher 56 / 77

  • Bond Breaking in Dinitrogen at 3.18 Ångström

    Part of entanglement is already encoded in molecular orbitals changing with the structure !

    Atomic-like non-orthogonal basis fcts. exhibit large entanglement measures among each other.

    DMRG in Quantum Chemistry Markus Reiher 57 / 77

  • Artifacts of Small Active Space CalculationsComparison of DMRG(11,9)[220] and DMRG(11,11)[790] to

    DMRG(13,29)[128,1024,10−5] for [Fe(NO)]2+

    1

    3

    5

    7

    9

    2

    4

    6

    8

    A

    100

    10−1

    10−2

    10−3

    1

    3

    5

    7

    9

    11

    2

    4

    6

    8

    10

    A

    100

    10−1

    10−2

    10−3

    1

    3

    5

    7

    9

    11

    1315

    17

    19

    21

    23

    25

    27

    29

    2

    4

    6

    8

    10

    12

    1416

    18

    20

    22

    24

    26

    28

    A

    100

    10−1

    10−2

    10−3

    Iij (and s(1)i) overestimated for

    small active spaces

    ⇒ Entanglement of orbitals too large⇒ Missing dynamic correlation is

    captured in an artificial way

    DMRG in Quantum Chemistry Markus Reiher 58 / 77

  • How to choose an active space?

    DMRG in Quantum Chemistry Markus Reiher 59 / 77

  • How to choose an active space? — Opinions

    “... the choice of the active space actually used in more complex

    systems is highly subjective and can lead to serious problems.“

    R. D. Bach in The Chemistry of Peroxides, Z. Rappoport (Ed.), John Wiley & Sons, (2006) 4.

    ”CAS-based methods are another alternative, although the selection

    of the active space is a tremendous challenge.“

    Y. Shao, L. Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld et al., Phys. Chem. Chem. Phys., 8, (2006) 3172–3191.

    “Choosing the “correct” active space for a specific application is by

    no means trivial; often the practitioner must “experiment” with

    different choices in order to assess adequacy and convergence

    behavior. While every chemical system poses its own challenges,

    certain rules of thumb apply.”

    P. Å. Malmqvist, K. Pierloot, A. R. M. Shahi, C. J. Cramer, L. Gagliardi, J. Chem. Phys., 128, (2008) 204109.

    DMRG in Quantum Chemistry Markus Reiher 60 / 77

  • How to choose an active space? — Recipes

    B. O. Roos (1989)The Complete Active Space Self-Consistent Field Method and Its Applications in

    Electronic Structure Calculations; in Ab Initio Methods in Quantum Chemistry,

    K.P. Lawley (Ed.), John Wiley & Sons Ltd., 399–446.

    - most active orbitals should appear paired (one highly occupied and

    one corresponding almost empty orbital)

    - conjugated and aromatic bonds should be included in the CAS

    - both the bonding and antibonding orbitals of a bond that is broken

    have to be included

    - orbitals describing C-H bonds are not to be included in active space

    DMRG in Quantum Chemistry Markus Reiher 61 / 77

  • How to choose an active space? — Recipes

    J. M. Bofill, P. Pulay (1989)J. Chem. Phys. 90, 3637–3646.

    - unrestricted Hartree-Fock natural orbitals (UNOs) are used as

    starting orbitals for CASSCF calculations

    - orbitals with occupation numbers between 0.02 and 1.98 are

    selected for the active space

    - the idea has been explored further by comparison to DMRG results:

    S. Keller, K. Boguslawski, T. Janowski, M. Reiher, P. Pulay (2015)J. Chem. Phys. 142, 244104.

    DMRG in Quantum Chemistry Markus Reiher 62 / 77

  • Can one choose the CAS in an automated way?

    DMRG in Quantum Chemistry Markus Reiher 63 / 77

  • Exploit Two Advantages of DMRG for the CAS choice

    DMRG results obtained after (micro)iterations, qualitative structure

    of wave function converges quickly

    The CAS is not limited by exponentially scaling basis size (the scaling

    depends on the no. of orbitals, not on the no. of electrons; 100

    orbitals are about the limit)

    DMRG in Quantum Chemistry Markus Reiher 64 / 77

  • Example: Transition Structure of Ozone

    0 5 10 15 20 25 30DMRG microiteration steps

    -224.40

    -224.38

    -224.35

    -224.33

    -224.30

    -224.28

    ener

    gy

    / H

    artr

    ee

    HFCASCIDMRG

    O3

    transition state energy

    15 20 25 30iteration

    -224.3845

    -224.3840

    -224.3835

    -224.3830

    ener

    gy

    / H

    artr

    ee

    0 5 10 15 20 25 30DMRG microiteration steps

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    abs.

    CI

    coef

    fici

    ent

    SD1: 111001000000110110SD2: 110110000000111001SD3: 111100000000111100SD4: 111100000000111001SD5: 111010000000110101SD6: 101101000000111100

    O3

    transition state CI coefficients

    G. Moritz, M. Reiher, J. Chem. Phys. 126 (2007) 244109

    (see this reference also for a ’first-generation’ DMRG flow chart)

    DMRG in Quantum Chemistry Markus Reiher 65 / 77

  • Example: Transition Structure of Ozone

    0 5 10 15 20 25 30DMRG microiteration steps

    -224.40

    -224.38

    -224.35

    -224.33

    -224.30

    -224.28

    ener

    gy

    / H

    artr

    ee

    HFCASCIDMRG

    O3

    transition state energy

    15 20 25 30iteration

    -224.3845

    -224.3840

    -224.3835

    -224.3830

    ener

    gy

    / H

    artr

    ee

    0 5 10 15 20 25 30DMRG microiteration steps

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    abs.

    CI

    coef

    fici

    ent

    SD1: 111001000000110110SD2: 110110000000111001SD3: 111100000000111100SD4: 111100000000111001SD5: 111010000000110101SD6: 101101000000111100

    O3

    transition state CI coefficients

    G. Moritz, M. Reiher, J. Chem. Phys. 126 (2007) 244109

    (see this reference also for a ’first-generation’ DMRG flow chart)

    DMRG in Quantum Chemistry Markus Reiher 66 / 77

  • Example: Transition Structure of Ozone

    0 5 10 15 20 25 30DMRG microiteration steps

    -224.40

    -224.38

    -224.35

    -224.33

    -224.30

    -224.28

    ener

    gy

    / H

    artr

    ee

    HFCASCIDMRG

    O3

    transition state energy

    15 20 25 30iteration

    -224.3845

    -224.3840

    -224.3835

    -224.3830

    ener

    gy

    / H

    artr

    ee

    0 5 10 15 20 25 30DMRG microiteration steps

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    abs.

    CI

    coef

    fici

    ent

    SD1: 111001000000110110SD2: 110110000000111001SD3: 111100000000111100SD4: 111100000000111001SD5: 111010000000110101SD6: 101101000000111100

    O3

    transition state CI coefficients

    G. Moritz, M. Reiher, J. Chem. Phys. 126 (2007) 244109

    (see this reference also for a ’first-generation’ DMRG flow chart)

    DMRG in Quantum Chemistry Markus Reiher 67 / 77

  • Exploit Two Advantages of DMRG for the CAS choice

    DMRG is iterative

    DMRG can handle large CAS sizes

    =⇒ ... towards an automated CAS determination

    DMRG in Quantum Chemistry Markus Reiher 68 / 77

  • Partially converged entanglement information is sufficient

    E = -2658.144420 EH E = -2665.877397 EH E = -2665.878045 EH

    E = -1449.266845 EH E = -1449.290301 EH E = -1449.302426 EH

    HF orbitals, m = 2004 sweepsHF guess

    HF orbitals, m = 2004 sweepsHF guess

    HF orbitals, m = 5008 sweeps

    CI-DEAS guess

    HF orbitals, m = 200016 sweeps

    CI-DEAS guess

    HF orbitals, m = 5008 sweeps

    CI−DEAS guess

    HF orbitals, m = 200016 sweeps

    CI−DEAS guess

    sufficiently accurate entanglement information can be obtained from partially

    converged calculations C. J. Stein, M. Reiher, J. Chem. Theory Comput, 2016, 12, 1760–1771.

    DMRG in Quantum Chemistry Markus Reiher 69 / 77

  • Complete Automation of CAS Selection

    generate initial orbitals recommended: CASSCF with small CAS or DMRG-SCF

    initial DMRG calculation with a large CAS around the Fermi level

    recommended settings: CI-DEAS guess, m = 500, 8 sweeps

    max. si (1) > 0.14 ?

    single-configuration case

    generate threshold diagrams

    calculate entanglement measures

    plateaus?Can orbitals with

    si (1) < 1-2 % max. si (1) be excluded? include orbitals kept in the first,

    clearly identifiable plateau at low thresholds

    converge calculation with

    CASSCF or DMRG-SCF

    consistency test: Do entanglement measures of the final calculation agree qualitatively with those of the initial calculation?YES

    YES

    NO

    NO

    Flowchart for the Automated Selection of Active Orbital Spaces

    select CAS anyway

    YES

    Is it feasible to converge a calculation with this CAS size?

    YES

    NO

    consistency test:

    increase initial CAS

    NO

    STOP: unfeasible for DMRG

    C. J. Stein, M. Reiher, J. Chem. Theory Comput, 2016, 12, 1760–1771.

    DMRG in Quantum Chemistry Markus Reiher 70 / 77

  • Same CAS selection for different types of orbitals

    MnO4-

    HF orbitals

    CAS(10,10)-SCF orbitals

    split-localized orbitals

    DMRG(38,25)[500]-SCF orbitals

    the same CAS is automatically selected for all orbital bases

    considered C. J. Stein, M. Reiher, J. Chem. Theory Comput, 2016, 12, 1760–1771.DMRG in Quantum Chemistry Markus Reiher 71 / 77

  • Subtile correlation effects are automatically captured

    DMRG-SCF orbitalsm = 1000, 20 sweeps

    HF guess

    CrF63- CrF6

    correlation effects attributed to the covalency of the bonds are automatically

    accounted for

    C. J. Stein, M. Reiher, J. Chem. Theory Comput, 2016, 12, 1760–1771.

    DMRG in Quantum Chemistry Markus Reiher 72 / 77

  • The Cu2O2+2 torture track

    ·−1

    bis(µ-oxo) peroxo

    F

    CR-CCSD(TQ)LCAS(16,14)-SCFDMRG(48,36)[500]-SCFDMRG(32,28)[1000]-SCF#DMRG(48,36)[500]-SCF

    automated approach gives qualitatively correct wave

    function C. J. Stein, M. Reiher, J. Chem. Theory Comput, 2016, 12, 1760–1771.

    discrepancy to coupled-cluster result can be explained by (still) missing

    dynamical correlation C. J. Cramer et al., JPC A (2006), 110, 1991.

    DMRG in Quantum Chemistry Markus Reiher 73 / 77

  • Regularizing effect of short-range DFT: Water

    E. D. Hedeg̊ard, S. Knecht, J. S. Kielberg, H. J. A. Jensen, and M. Reiher, J. Chem. Phys. 142 2015 224108

    DMRG in Quantum Chemistry Markus Reiher 74 / 77

  • DMRG–srDFT for the WCCR10 test set

    N

    NCu N

    N

    N

    NCu N

    N

    Calculated dissociation energies in kJ/mol

    Method De (kJ/mol) D0 (kJ/mol)

    DMRG[2000](30,22) 173.5 165.1

    DMRG[2000](20,18) 169.9 161.5

    DMRG[2000](10,10) 132.8 124.3

    DMRG[2000](30,22)-srPBE 225.1 216.6

    DMRG[2000](20,18)-srPBE 227.9 219.4

    DMRG[2000](10,10)-srPBE 216.5 208.0

    PBE 240.2 231.8

    PBE (full complex/def2-TZVP) 257.5 249.0

    PBE (full complex/def2-QZVPP from WCCR10) 247.5 239.0

    Exp. (from WCCR10) 226.7 218.2

    E. D. Hedeg̊ard, S. Knecht, J. S. Kielberg, H. J. A. Jensen, and M. Reiher, J. Chem. Phys. 142 2015 224108;WCCR10: T. Weymuth, E. P. A. Couzijn, P. Chen, M. Reiher, J. Chem. Theory Comput. 10 2014 3092

    DMRG in Quantum Chemistry Markus Reiher 75 / 77

  • Conclusion

    new and efficient second-generation DMRG program for full

    Schrödinger–Coulomb (Dirac–Gaunt/Breit) Hamiltonian available:

    QCMaquis

    HF-, split-localized- and CASSCF-orbitals allow to select an active

    space that is in line with the literature suggestions

    the whole CAS evaluation procedure is fast

    ... and can be automatized

    dynamic correlation introduced through short-range DFT regularizes

    the CAS

    DMRG in Quantum Chemistry Markus Reiher 76 / 77

  • Acknowledgments

    Christopher Stein, Sebastian Keller

    Stefan Knecht, Arseny Kovyrshin

    Yingjin Ma, Erik Hedeg̊ard

    Andrea Muolo, Pawel Tecmer

    Katharina Boguslawski

    ... as well as the rest

    of the group −→

    2nd editionFinancial Support: ETH, SNF, FCI

    Thank you for your kind

    attention!

    DMRG in Quantum Chemistry Markus Reiher 77 / 77