distortion type theorems for functions in the logarithmic ...journaloffunctionspaces 3 that...

11
Research Article Distortion Type Theorems for Functions in the Logarithmic Bloch Space Armando J. GarcΓ­a-OrtΓ­z, 1 Milton del Castillo Lesmes Acosta, 2 and Julio C. Ramos-FernΓ‘ndez 3 1 Β΄ Area de MatemΒ΄ atica, Universidad Nacional Experimental de Guayana, Pto. Ordaz, BolΒ΄ Δ±var, Venezuela 2 Proyecto Curricular de MatemΒ΄ aticas, Facultad de Ciencias y EducaciΒ΄ on, Universidad Distrital Francisco JosΒ΄ e de Caldas, Carrera 3 No. 26 A-40, BogotΒ΄ a, Colombia 3 Departamento de MatemΒ΄ atica, Universidad de Oriente, 6101 CumanΒ΄ a, Sucre, Venezuela Correspondence should be addressed to Julio C. Ramos-FernΒ΄ andez; [email protected] Received 23 January 2017; Revised 22 March 2017; Accepted 2 April 2017; Published 16 April 2017 Academic Editor: John R. Akeroyd Copyright Β© 2017 Armando J. GarcΒ΄ Δ±a-OrtΒ΄ Δ±z et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We establish distortion type theorems for locally schlicht functions and for functions having branch points satisfying a normalized Bloch condition in the closed unit ball of the logarithmic Bloch space B log . As a consequence of our results we have estimations of the schlicht radius for functions in these classes. 1. Introduction One of the most important results in the area of geometric theory of functions of a complex variable is the celebrated distortion’s theorem established by Koebe and Bieberbach [1, 2] at the beginning of the twentieth century. Koebe and Bieberbach showed that the range of any function in the class S of all conformal functions on D, the open unit disk of the complex plane C, normalized such that (0) = 0 = (0) βˆ’ 1 contain the Euclidean disk with center at the origin and radius 1/4. is last result is today known as Koebe 1/4 eorem and, in particular, shows that Bloch’s constant (see [3]) is greater than or equal to 1/4. Koebe and Bieberbach found sharp lower and upper bounds for the growth and the distortion of conformal maps in the class S; more precisely, they showed that for any ∈ S and ∈ D the following estimations hold. (1) Growth theorem: || (1 + ||) 2 ≀ () ≀ || (1 βˆ’ ||) 2 (1) (2) Distortion theorem: 1 βˆ’ || (1 + ||) 3 ≀ () ≀ 1 + || (1 βˆ’ ||) 3 (2) with equality if and only if is a rotation of the Koebe function defined by () = (1 βˆ’ ) 2 , ( ∈ D), (3) which also belongs to the class S. In particular, the distortion theorem implies that the class S is contained in the closed ball with center at the origin and radius 8 of -Bloch space B for all β‰₯3 (see Section 3 for the definition of B ). For more properties of conformal maps and distortion theorem, we recommend the excellent books [4, 5]. Although the distortion theorem gives sharp bounds for the modulus of the derivative of functions in the class S, it cannot be applied to the bigger class of locally schlicht functions defined on D satisfying the normalized Bloch conditions (0) = 0 = (0) βˆ’ 1 (recall that a holomorphic function is locally schlicht on D if () ΜΈ =0 for all ∈ D). Many authors have obtained distortion type theorems or lower bounds for the modulus or real part of the derivative of locally schlicht functions in Bloch-type spaces. e pioneer work about this subject appears in 1992 and is due to Liu and Minda [6]. ey established distortion theorems for locally schlicht functions in the classical Bloch space B satisfying the conditions (0) = 0, (0) = 1, and β€–β€– B =1 (see Section 3 for the definition of Bloch space). Liu and Minda Hindawi Journal of Function Spaces Volume 2017, Article ID 8694516, 10 pages https://doi.org/10.1155/2017/8694516

Upload: others

Post on 05-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Research ArticleDistortion Type Theorems for Functions inthe Logarithmic Bloch Space

    Armando J. GarcΓ­a-OrtΓ­z,1 Milton del Castillo Lesmes Acosta,2

    and Julio C. Ramos-FernΓ‘ndez3

    1 Área de Matemática, Universidad Nacional Experimental de Guayana, Pto. Ordaz, Boĺıvar, Venezuela2Proyecto Curricular de Matemáticas, Facultad de Ciencias y Educación, Universidad Distrital Francisco José de Caldas,Carrera 3 No. 26 A-40, Bogotá, Colombia3Departamento de Matemática, Universidad de Oriente, 6101 Cumaná, Sucre, Venezuela

    Correspondence should be addressed to Julio C. Ramos-Fernández; [email protected]

    Received 23 January 2017; Revised 22 March 2017; Accepted 2 April 2017; Published 16 April 2017

    Academic Editor: John R. Akeroyd

    Copyright © 2017 Armando J. Garćıa-Ort́ız et al.This is an open access article distributed under theCreativeCommonsAttributionLicense, which permits unrestricted use, distribution, and reproduction in anymedium, provided the originalwork is properly cited.

    We establish distortion type theorems for locally schlicht functions and for functions having branch points satisfying a normalizedBloch condition in the closed unit ball of the logarithmic Bloch spaceBlog. As a consequence of our results we have estimations ofthe schlicht radius for functions in these classes.

    1. Introduction

    One of the most important results in the area of geometrictheory of functions of a complex variable is the celebrateddistortion’s theorem established by Koebe and Bieberbach[1, 2] at the beginning of the twentieth century. Koebe andBieberbach showed that the range of any function 𝑓 in theclass S of all conformal functions on D, the open unit diskof the complex plane C, normalized such that 𝑓(0) = 0 =𝑓(0) βˆ’ 1 contain the Euclidean disk with center at the originand radius 1/4. This last result is today known as Koebe 1/4Theorem and, in particular, shows that Bloch’s constant (see[3]) is greater than or equal to 1/4. Koebe and Bieberbachfound sharp lower and upper bounds for the growth and thedistortion of conformal maps in the class S; more precisely,they showed that for any 𝑓 ∈ S and 𝑧 ∈ D the followingestimations hold.

    (1) Growth theorem:|𝑧|

    (1 + |𝑧|)2 ≀ 𝑓 (𝑧) ≀|𝑧|

    (1 βˆ’ |𝑧|)2 (1)(2) Distortion theorem:

    1 βˆ’ |𝑧|(1 + |𝑧|)3 ≀

    𝑓 (𝑧) ≀ 1 + |𝑧|(1 βˆ’ |𝑧|)3 (2)

    with equality if and only if 𝑓 is a rotation of the Koebefunction defined by

    𝐾 (𝑧) = 𝑧(1 βˆ’ 𝑧)2 , (𝑧 ∈ D) , (3)which also belongs to the classS. In particular, the distortiontheorem implies that the class S is contained in the closedball with center at the origin and radius 8 of 𝑝-Bloch spaceB𝑝 for all 𝑝 β‰₯ 3 (see Section 3 for the definition ofB𝑝). Formore properties of conformal maps and distortion theorem,we recommend the excellent books [4, 5].

    Although the distortion theorem gives sharp bounds forthe modulus of the derivative of functions in the class S,it cannot be applied to the bigger class of locally schlichtfunctions defined on D satisfying the normalized Blochconditions 𝑓(0) = 0 = 𝑓(0) βˆ’ 1 (recall that a holomorphicfunction 𝑓 is locally schlicht on D if 𝑓(𝑧) ΜΈ= 0 for all 𝑧 ∈D). Many authors have obtained distortion type theorems orlower bounds for the modulus or real part of the derivative oflocally schlicht functions in Bloch-type spaces. The pioneerwork about this subject appears in 1992 and is due to Liu andMinda [6]. They established distortion theorems for locallyschlicht functions 𝑓 in the classical Bloch spaceB satisfyingthe conditions 𝑓(0) = 0, 𝑓(0) = 1, and ‖𝑓‖B = 1 (seeSection 3 for the definition of Bloch space). Liu and Minda

    HindawiJournal of Function SpacesVolume 2017, Article ID 8694516, 10 pageshttps://doi.org/10.1155/2017/8694516

    https://doi.org/10.1155/2017/8694516

  • 2 Journal of Function Spaces

    give sharp lower bounds for |𝑓(𝑧)| and for Re𝑓(𝑧) and asconsequence of their results they obtain a lower bound forBloch’s constant.Determination of the (locally schlicht) Blochconstant is still an open problem. By Landau’s reduction, itis enough to consider those functions with Bloch seminormnot greater than 1. Hence, it is important to consider certainsubclasses of functions in Bloch spaces having seminorm notgreater than 1.

    The results of Liu and Minda in [6] have been extendedto other classes of locally schlicht functions or to functionshaving branch points in the Bloch space by Yanagihara [7],Bonk et al. [8, 9], and Graham andMinda [10].The extensionof the above results to 𝑝-Bloch spaces was obtained by Teradaand Yanagihara [11] and by Zheng and Wang [12]. It is anopen problem to obtain distortion type theorems for locallyschlicht functions in other spaces of analytic functions.

    In this article we extend the results of Liu and Minda[6] to the logarithmic Bloch space Blog which we define inSection 3; we obtain lower bounds for the modulus and thereal part of the derivative of locally schlicht functions and forfunctions having branch points in the closed unit ball ofBlogsatisfying a normalized Bloch condition𝑓(0) = 0 = 𝑓(0)βˆ’1.Our resultswill be showed in Sections 4 and 5, as consequenceof our results, in Section 6, we obtain lower bounds for theschlicht radius of functions in these classes.

    2. Some Preliminaries: Julia’s Lemma

    In this section we gather some notations, definitions, andresults that we will need through this note. We denote by Dthe open unit disk in the complex plane C, with center atthe origin and radius 1; πœ•D denotes the boundary of D. Thespace of all complex and holomorphic functions on D, as isusual, is denoted by𝐻(D). A function 𝑓 ∈ 𝐻(D) is said to benormalized if 𝑓(0) = 0 and 𝑓(0) = 1 and 𝑓 is locally schlichtor locally univalent if 𝑓(𝑧) ΜΈ= 0 for all 𝑧 ∈ D. A point 𝑧0 is abranch point for 𝑓 if 𝑓(𝑧0) = 0. For π‘Ÿ > 0, we define

    Ξ” (1, π‘Ÿ) = {𝑧 ∈ D : |1 βˆ’ 𝑧|21 βˆ’ |𝑧|2 < π‘Ÿ} . (4)Ξ”(1, π‘Ÿ) is known as a horodisk D; that is, it is an Euclideandisk contained inDwhich is tangent to πœ•D at 1. Furthermore,Ξ”(1, π‘Ÿ) has center at 1/(1+π‘Ÿ) and radius π‘Ÿ/(1+π‘Ÿ). The closureof Ξ”(1, π‘Ÿ) relative toD is denoted by Ξ”(1, π‘Ÿ). Observe that 1 βˆ‰Ξ”(1, π‘Ÿ) but (1 βˆ’ π‘Ÿ)/(1 + π‘Ÿ) ∈ Ξ”(1, π‘Ÿ). With these notations, wecan enunciate the well known Julia’s Lemma; the reader canconsult the excellent book of Ahlfors [13] for its proof.

    Lemma 1 (Julia’s Lemma). Suppose that 𝑀 is a complex andholomorphic function onDβˆͺ{1} such that𝑀mapsD intoH+ ={𝑧 ∈ C : Re(𝑧) > 0}, the right half-plane, and 𝑀(1) = 0. Then,for any π‘Ÿ > 0, the function𝑀maps the horodisk Ξ”(1, π‘Ÿ) into theEuclidean disk {𝑧 ∈ C : |𝑧 βˆ’ π‘‘π‘Ÿ| < π‘‘π‘Ÿ}, where 𝑑 = βˆ’π‘€(1) > 0.Furthermore, a boundary point of the first disk is mapped onthe boundary of the second disk if and only if 𝑀 is a conformalfunction mapping D onto H+ and satisfying 𝑀(1) = 0.

    In 1992, Liu andMinda [6] established distortion theoremfor functions in the Bloch space; they showed the followingresults which are consequences of Julia’s Lemma. We includethe proof of the first one to illustrate the application of Julia’sLemma.

    Lemma2 ([6, corollary in Section 1]). Let𝑀 be a holomorphicfunction onDβˆͺ{1}. Suppose that𝑀mapsD into the right half-plane H+ and that 𝑀(1) = 0. Then 𝑑 = βˆ’π‘€(1) > 0 and

    Re𝑀 (π‘₯) ≀ 2𝑑1 βˆ’ π‘₯1 + π‘₯ , (5)for all π‘₯ ∈ (βˆ’1, 1), with equality for some π‘₯ ∈ (βˆ’1, 1) if andonly if

    𝑀 (𝑧) = 2𝑑1 βˆ’ 𝑧1 + 𝑧 , (6)for all 𝑧 ∈ D.Proof. Indeed, let us fix π‘₯ ∈ (βˆ’1, 1); then π‘Ÿ = (1βˆ’π‘₯)/(1+π‘₯) >0 and by Julia’s Lemma, 𝑀 maps Ξ”(1, π‘Ÿ) into the Euclideandisk 𝐷(π‘‘π‘Ÿ, π‘‘π‘Ÿ). In particular, since π‘₯ ∈ Ξ”(1, π‘Ÿ), then 𝑀(π‘₯) ∈𝐷(π‘‘π‘Ÿ, π‘‘π‘Ÿ); this fact implies that Re𝑀(π‘₯) ≀ 2π‘‘π‘Ÿ. Furthermore,π‘₯ ∈ πœ•Ξ”(1, π‘Ÿ); hence if Re𝑀(π‘₯) = 2π‘‘π‘Ÿ, then we conclude that𝑀(π‘₯) = 2π‘‘π‘Ÿ ∈ πœ•π·(π‘‘π‘Ÿ, π‘‘π‘Ÿ) and, by Julia’s Lemma, this last factoccurs if 𝑀 is the conformal map from D onto H+ such that𝑀(1) = 0; that is,𝑀(𝑧) = 2𝑑((1βˆ’π‘§)/(1+𝑧)) for all 𝑧 ∈ D. Thisshows the lemma.

    Lemma 3 ([6, corollary to Theorem 3]). Let 𝑓 be a holomor-phic function onDβˆͺ{1}. Suppose that𝑓(D) βŠ‚ D,𝑓(1) = 1 andthat all the zeros of 𝑓 have multiplicity at least 𝑛. If 𝑓(1) = 𝑛,then

    (1) |𝑓(π‘₯)| β‰₯ π‘₯𝑛 for all π‘₯ ∈ [0, 1), with equality for someπ‘₯ ∈ [0, 1) if and only if 𝑓(𝑧) = 𝑧𝑛 for all 𝑧 ∈ D;(2) Re(𝑓(π‘₯)) β‰₯ π‘₯𝑛 for all (𝑛 βˆ’ 1)/(𝑛 + 1) ≀ π‘₯ < 1, with

    equality for some π‘₯ ∈ [(𝑛 βˆ’ 1)/(𝑛 + 1), 1) if and only if𝑓(𝑧) = 𝑧𝑛 for all 𝑧 ∈ D.We finish this section by establishing the following ele-

    mentary property of the complex exponential. We thank thereviewer for providing us the following simple demonstrationof this fact.

    Lemma 4. Let π‘₯ ∈ [0, 1) be fixed and 𝐷π‘₯ the Euclidean diskwith center at (1 βˆ’ π‘₯)/(1 + π‘₯) and radius (1 βˆ’ π‘₯)/(1 + π‘₯); then

    min {Re (exp (βˆ’π‘§)) : 𝑧 ∈ 𝐷π‘₯} = exp (βˆ’21 βˆ’ π‘₯1 + π‘₯) . (7)Proof. Let π‘Ÿ = (1 βˆ’ π‘₯)/(1 + π‘₯) for simplicity and let 𝑓(𝑧) =π‘’π‘Ÿ(π‘§βˆ’1). Since 1 + 𝑧𝑓(𝑧)/𝑓(𝑧) = 1 βˆ’ π‘Ÿπ‘§ has positive real parton |𝑧| < 1, the function𝑓 is convex. In particular, Re(𝑓(𝑧)) >𝑓(βˆ’1) = π‘’βˆ’2π‘Ÿ, which proves the assertion.3. Logarithmic Bloch Space

    In this section we gather the definition and some of theproperties of the logarithmic Bloch space Blog. Let us recall

  • Journal of Function Spaces 3

    that a function weight πœ‡ on D is a bounded, positive, andcontinuous function defined on D. Given a weight πœ‡ on D,πœ‡-Bloch space, denoted by Bπœ‡, consists of all holomorphicfunctions 𝑓 on D such that

    π‘“πœ‡ fl supπ‘§βˆˆD

    πœ‡ (𝑧) 𝑓 (𝑧) < ∞. (8)It is known that if the weight πœ‡ is radial, that is, πœ‡(𝑧) = πœ‡(|𝑧|)for all 𝑧 ∈ D, then Bπœ‡ is a Banach space with the norm‖𝑓‖Bπœ‡ = |𝑓(0)| + β€–π‘“β€–πœ‡. When πœ‡(𝑧) = 1βˆ’ |𝑧|2, with 𝑧 ∈ D,Bπœ‡becomes the Bloch space which is denoted byB, while whenπœ‡(𝑧) = (1 βˆ’ |𝑧|2)𝑝, with 𝑧 ∈ D and 𝑝 > 0 fixed, we obtain𝑝-Bloch space which is denoted byB𝑝.

    Clearly, the function πœ‡log, defined byπœ‡log (𝑧) = [log( 𝑒1 βˆ’ |𝑧|2)]

    βˆ’1 , (9)defines a weight on D. Hence, the space Blog = Bπœ‡log is aBanach space with the norm

    𝑓Blog = 𝑓 (0) + 𝑓logfl 𝑓 (0) + sup

    π‘§βˆˆD

    𝑓 (𝑧)log (𝑒/ (1 βˆ’ |𝑧|2)) .

    (10)

    We callBlog as the logarithmic Bloch space. In the next resultwe are going to show that Blog is a subspace of B𝑝 for all𝑝 β‰₯ 1.Proposition 5. The spaceBlog is contained inB𝑝, for all 𝑝 β‰₯1. Furthermore, 𝑓B𝑝 ≀ 𝑓Blog , (11)for all function 𝑓 ∈ Blog.Proof. It is enough to show that for 𝑝 β‰₯ 1 fixed

    (1 βˆ’ |𝑧|2)𝑝 log( 𝑒1 βˆ’ |𝑧|2) ≀ 1, (12)for all 𝑧 ∈ D. But, this last inequality is true since the function

    β„Ž (𝑑) = 𝑑𝑝 log(𝑒𝑑 ) βˆ’ 1, (13)with 𝑑 ∈ (0, 1], is increasing and β„Ž(1) = 0.

    Also, we have the following very useful identity (seeLemma 3.3 in [12]).

    Lemma 6. If 𝑓 ∈ Blog, 𝑓(0) = 0, 𝑓(0) = 1, and ‖𝑓‖log ≀ 1,then 𝑓(0) = 0.Proof. Suppose that 𝑓 ∈ Blog, 𝑓(0) = 0, 𝑓(0) = 1, and‖𝑓‖log ≀ 1. Then, for each 𝑧 ∈ D, we have

    𝑓 (𝑧) ≀ log( 𝑒1 βˆ’ |𝑧|2) . (14)

    Taylor’s theorem implies that

    1 + 𝑓 (0) 𝑧 + π‘œ (|𝑧|)2 ≀ log2 ( 𝑒1 βˆ’ |𝑧|2)= (1 + |𝑧|2 + π‘œ (|𝑧|))2 ,

    (15)

    as 𝑧 β†’ 0. But since1 + 𝑓 (0) 𝑧 + π‘œ (|𝑧|)2

    = 1 + 2Re (𝑓 (0) 𝑧) + π‘œ (|𝑧|) , (16)as 𝑧 β†’ 0, and

    (1 + |𝑧|2 + π‘œ (|𝑧|))2 = 1 + π‘œ (|𝑧|) , (17)as 𝑧 β†’ 0, we obtain from (15) that

    2Re (𝑓 (0) 𝑧) ≀ π‘œ (|𝑧|) , (18)as 𝑧 β†’ 0. Now, if we consider 𝑧 = π‘Ÿπ‘“(0)/|𝑓(0)| with π‘Ÿ > 0small in (18), we conclude |𝑓(0)| = 0 and we are done.

    The following functions play a very important role in ourwork; theywill be used to get lower bounds for locally schlichtfunctions and for functions having branch points in certainclasses in the logarithmic Bloch space. From now, we uselog(𝑀) to denote the principal logarithmic of the complexnumber 𝑀 ΜΈ= 0. Observe that the principal logarithmic isa holomorphic function on 𝐷(1, 1), the Euclidean disk withcenter at 1 and radius 1:

    (1) For each 𝑛 ∈ N, we set𝐹𝑛 (𝑧) = βˆ«π‘§

    0(1 βˆ’ 𝑠/π‘Žπ‘›1 βˆ’ π‘Žπ‘›π‘  )

    𝑛 (1 βˆ’ 2 log (1 βˆ’ π‘Žπ‘›π‘ )) 𝑑𝑠, (19)where π‘Žπ‘› = βˆšπ‘›/(𝑛 + 2) and 𝑧 ∈ D. Clearly, 𝐹𝑛 ∈ 𝐻(D) for all𝑛 ∈ N, 𝐹𝑛(0) = 0, and 𝐹𝑛(0) = 1.

    (2) For 𝑧 ∈ D, we define𝐹 (𝑧) = βˆ«π‘§

    0exp (βˆ’ 2𝑠1 βˆ’ 𝑠) (1 βˆ’ 2 log (1 βˆ’ 𝑠)) 𝑑𝑠. (20)

    We can see that 𝐹 ∈ 𝐻(D), 𝐹(0) = 0, and 𝐹(0) = 1.Also we have that the function 𝐹 satisfies the following

    properties.

    Proposition 7. The function 𝐹 belongs toBlog. Furthermore,supπ‘§βˆˆDπœ‡log(𝑧)|𝐹(|𝑧|)| = 1 but ‖𝐹‖log > 1.Proof. We see that ‖𝐹‖log > 1. Indeed, we have

    ‖𝐹‖log β‰₯𝐹 (𝑖/2)1 βˆ’ log (1 βˆ’ |𝑖/2|2)

    = exp (2/5)1 βˆ’ log (3/4)√(1 βˆ’ log(54))2 + 4 arctan2 (12)

    β‰ˆ 1.4014837 > 1.

    (21)

  • 4 Journal of Function Spaces

    Now, we are going to show that 𝐹 ∈ Blog. Since thefunction exp(βˆ’2𝑧/(1 βˆ’ 𝑧)) is holomorphic on D, then themodulus maximum principle tells us that its maximum valueis attained in the boundary πœ•D. But if |𝑧| = 1 then |1 βˆ’ 𝑧|2 =2(1 βˆ’ Re(𝑧)) and hence

    supπ‘§βˆˆD

    exp(βˆ’ 2𝑧1 βˆ’ 𝑧) = sup|𝑧|=1 exp(2 βˆ’

    2 (1 βˆ’ Re (𝑧))|1 βˆ’ 𝑧|2 )

    = 𝑒.(22)

    On the other hand, for each 𝑧 ∈ D, we have |arg(1βˆ’π‘§)| < πœ‹/2and

    supπ‘§βˆˆD

    arg (1 βˆ’ 𝑧)1 βˆ’ log (1 βˆ’ |𝑧|2) β‰€πœ‹2 . (23)

    Furthermore, using elementary calculus, we can see that thereal function𝐻(𝑑) = 𝑒2 βˆ’ (1 βˆ’ 𝑑)(1 + 𝑑)3 is nonnegative for all𝑑 ∈ [0, 1] (its minimum value is𝐻(1/2) = 𝑒2 βˆ’ 27/16 β‰ˆ 5.70).Hence for any 𝑑 ∈ [0, 1) we obtain

    1 βˆ’ 2 log (1 βˆ’ 𝑑) βˆ’ 3 (1 βˆ’ log (1 βˆ’ 𝑑2))= log((1 βˆ’ 𝑑) (1 + 𝑑)3𝑒2 ) ≀ 0.

    (24)

    This last implies that

    1 βˆ’ 2 log (1 βˆ’ 𝑑)1 βˆ’ log (1 βˆ’ 𝑑2) ≀ 3, (25)for all 𝑑 ∈ [0, 1). We conclude that for any 𝑧 ∈ D such that|1 βˆ’ 𝑧|2 ≀ 𝑒

    log (𝑒/ |1 βˆ’ 𝑧|2)1 βˆ’ log (1 βˆ’ |𝑧|2) =1 βˆ’ 2 log (|1 βˆ’ 𝑧|)1 βˆ’ log (1 βˆ’ |𝑧|2)

    ≀ 1 βˆ’ 2 log (1 βˆ’ |𝑧|)1 βˆ’ log (1 βˆ’ |𝑧|2) ≀ 3,(26)

    while for 𝑧 ∈ D such that |1 βˆ’ 𝑧|2 > 𝑒 we havelog (𝑒/ |1 βˆ’ 𝑧|2)1 βˆ’ log (1 βˆ’ |𝑧|2) =

    log (|1 βˆ’ 𝑧|2 /𝑒)1 βˆ’ log (1 βˆ’ |𝑧|2) ≀ log (4) βˆ’ 1. (27)

    These last inequalities, (22) and (23), imply that

    ‖𝐹‖log ≀ 𝑒 (3 + log (4) βˆ’ 1 + 2 (πœ‹2 ))= 𝑒 (2 + log (4) + πœ‹)

    (28)

    which shows that 𝐹 ∈ Blog.Now, we are going to show that supπ‘§βˆˆDπœ‡log(𝑧)|𝐹(|𝑧|)| = 1.

    Observe that πœ‡log(0)|𝐹(0)| = 1. Also the real function𝐻(𝑑) =exp(βˆ’2𝑑/(1βˆ’π‘‘))(1βˆ’2log(1βˆ’π‘‘))βˆ’1+ log(1βˆ’π‘‘2)with 𝑑 ∈ [0, 1)

    satisfies 𝐻(0) = 0, 𝐻(𝑑) β†’ βˆ’βˆž as 𝑑 β†’ 1βˆ’ and it is strictlydecreasing since

    𝐻 (𝑑)= βˆ’ 2𝑑1 βˆ’ 𝑑2

    βˆ’ 21 βˆ’ 𝑑 ( 21 βˆ’ 𝑑 log( 𝑒(1 βˆ’ 𝑑)2) βˆ’ 1) exp (βˆ’2𝑑1 βˆ’ 𝑑)

    < 0,

    (29)

    for all 𝑑 ∈ [0, 1). Hence we conclude that 𝐻(𝑑) ≀ 0 for all𝑑 ∈ [0, 1) which shows the affirmation.For the sequence {𝐹𝑛}, we have the following properties.

    Proposition 8. Functions 𝐹𝑛 with 𝑛 ∈ N belong to Blog andsatisfy

    limπ‘›β†’βˆž

    𝐹𝑛 (𝑧) = 𝐹 (𝑧) , (30)for each 𝑧 ∈ D. Furthermore, for each 𝑛 ∈ N ‖𝐹𝑛‖log > 1, infact, supπ‘§βˆˆDπœ‡log(𝑧)|𝐹𝑛(|𝑧|)| > 1.Proof. Clearly, for any 𝑛 ∈ N, the function 𝐹𝑛 belongsto Blog since 𝐹𝑛 ∈ 𝐻(D). We are going to show thatsupπ‘§βˆˆDπœ‡log(𝑧)|𝐹𝑛(|𝑧|)| > 1. It is enough to show that thereexists a 𝑑0 ∈ (π‘Žπ‘›, 1) such that𝐻(𝑑0) > 0, where

    𝐻(𝑑) = (𝑑/π‘Žπ‘› βˆ’ 11 βˆ’ π‘Žπ‘›π‘‘ )𝑛

    log( 𝑒(1 βˆ’ π‘Žπ‘›π‘‘)2)βˆ’ log( 𝑒1 βˆ’ 𝑑2 ) ,

    (31)

    with 𝑑 ∈ (π‘Žπ‘›, 1). Observe that, for 𝑑𝑛 = π‘Ÿπ‘Žπ‘› with π‘Ÿ = 2/(1 +π‘Ž2𝑛) > 1, we have 𝑑𝑛 ∈ (π‘Žπ‘›, 1), π‘Ÿ βˆ’ 1 = 1 βˆ’ π‘Ÿπ‘Ž2𝑛 , and 1 βˆ’ π‘Ÿ2π‘Ž2𝑛 =(1 βˆ’ π‘Ÿπ‘Ž2𝑛)2 which implies that𝐻(𝑑𝑛) = 0. Also,𝐻 (𝑑)

    = 𝑛 (𝑑/π‘Žπ‘› βˆ’ 11 βˆ’ π‘Žπ‘›π‘‘ )π‘›βˆ’1 1/π‘Žπ‘› βˆ’ π‘Žπ‘›(1 βˆ’ π‘Žπ‘›π‘‘)2 log(

    𝑒(1 βˆ’ π‘Žπ‘›π‘‘)2)

    + (𝑑/π‘Žπ‘› βˆ’ 11 βˆ’ π‘Žπ‘›π‘‘ )𝑛 2π‘Žπ‘›1 βˆ’ π‘Žπ‘›π‘‘ βˆ’

    2𝑑1 βˆ’ 𝑑2 ;(32)

    hence

    𝐻 (𝑑𝑛) = 𝑛 1/π‘Žπ‘› βˆ’ π‘Žπ‘›(1 βˆ’ π‘Ÿπ‘Ž2𝑛)2 log(𝑒

    (1 βˆ’ π‘Ÿπ‘Ž2𝑛)2) +2π‘Žπ‘›1 βˆ’ π‘Ÿπ‘Ž2𝑛

    βˆ’ 2π‘Ÿπ‘Žπ‘›1 βˆ’ π‘Ÿ2π‘Ž2𝑛 =𝑛

    (1 βˆ’ π‘Ÿπ‘Ž2𝑛)2 (1π‘Žπ‘› βˆ’ π‘Žπ‘›)

    β‹… (log( 𝑒(1 βˆ’ π‘Ÿπ‘Ž2𝑛)2) βˆ’1𝑛

    2π‘Ž2𝑛1 βˆ’ π‘Ž2𝑛)

  • Journal of Function Spaces 5

    = 𝑛(1 βˆ’ π‘Ÿπ‘Ž2𝑛)2 (1π‘Žπ‘› βˆ’ π‘Žπ‘›)

    β‹… (log( 𝑒(1 βˆ’ π‘Ÿπ‘Ž2𝑛)2) βˆ’ 1) ,(33)

    since π‘Ÿ βˆ’ 1 = 1 βˆ’ π‘Ÿπ‘Ž2𝑛 , 1 βˆ’ π‘Ÿ2π‘Ž2𝑛 = (1 βˆ’ π‘Ÿπ‘Ž2𝑛)2, and π‘Ÿ(π‘Ž2𝑛 + 1) = 2and we have used that π‘Žπ‘› = βˆšπ‘›/(𝑛 + 2) in the last equality.Thus, we conclude that 𝐻(𝑑𝑛) > 0 and since 𝐻(𝑑𝑛) = 0, thenthere exists 𝑑0 ∈ (𝑑𝑛, 1) such that 𝐻(𝑑0) > 0. This shows theaffirmation. The other properties of 𝐹𝑛’s are clear.4. A Distortion Theorem for Locally SchlichtFunctions inBlog

    In this section we establish a distortion theorem for locallyschlicht functions in the closed unit ball of Blog satisfyingnormalized Bloch conditions. We denote by 𝛽(∞)log the class ofall holomorphic functions 𝑓 ∈ Blog such that 𝑓 is locallyschlicht, 𝑓(0) = 0, 𝑓(0) = 1, and ‖𝑓‖log ≀ 1. With thesenotations, we have the following result.

    Theorem 9. If 𝑓 ∈ 𝛽(∞)log then we have the following:(1) |𝑓(𝑧)| β‰₯ 𝐹(|𝑧|) = exp(βˆ’2|𝑧|/(1 βˆ’ |𝑧|))(1 βˆ’ 2 log(1 βˆ’|𝑧|)) for all 𝑧 ∈ D. There is not a function 𝑓0 ∈ 𝛽(∞)log

    such that |𝑓0(𝑧0)| = 𝐹(|𝑧0|) for some 𝑧0 ∈ D \ {0}.(2) Re𝑓(𝑧) β‰₯ 𝐹(|𝑧|) = exp(βˆ’2|𝑧|/(1 βˆ’ |𝑧|))(1 βˆ’ 2log(1 βˆ’|𝑧|)) for all |𝑧| ≀ 1/2. There is not a function 𝑓0 ∈ 𝛽(∞)log

    such thatRe𝑓0(𝑧0) = 𝐹(|𝑧0|) for some 𝑧0 ∈ 𝐷(0, 1/2)\{0}.Proof. (1) Suppose that 𝑓 ∈ 𝛽(∞)log . Let us fix |𝜁| = 1 and we setthe function

    𝑔 (𝑒) = (1 βˆ’ 2 log(1 + 𝑒2 ))βˆ’1 𝑓 (1 βˆ’ 𝑒2 𝜁) , (34)

    with 𝑒 ∈ D, where log(𝑀) denotes the principal logarithmicof 𝑀 ∈ 𝐷(1, 1). Clearly 𝑔 is holomorphic on D \ {βˆ’1} and𝑔(1) = 1 because 𝑓(0) = 1. Since 𝑓 is locally schlicht on D,we have that 𝑔(𝑧) ΜΈ= 0 for all 𝑧 ∈ D. Furthermore,

    𝑔 (𝑒)= 21 + 𝑒 (1 βˆ’ 2 log(1 + 𝑒2 ))

    βˆ’2 𝑓 (1 βˆ’ 𝑒2 𝜁)+ (1 βˆ’ 2 log(1 + 𝑒2 ))

    βˆ’1 𝑓 (1 βˆ’ 𝑒2 𝜁)(βˆ’πœ2) .(35)

    In particular, 𝑔(1) = 1 since 𝑓(0) = 1 and 𝑓(0) = 0 (byLemma 6). Also, for any 𝑒 ∈ D, we have

    𝑔 (𝑒) = 1 βˆ’ 2 log(1 + 𝑒2 )βˆ’1 𝑓 (1 βˆ’ 𝑒2 𝜁)

    ≀ 1Re (1 βˆ’ 2 log ((1 + 𝑒) /2))β‹… log( 𝑒1 βˆ’ |(1 βˆ’ 𝑒) /2|2) =

    1log (𝑒/ |(1 + 𝑒) /2|2)

    β‹… log (𝑒/1 βˆ’ |(1 βˆ’ 𝑒) /2|2) < 1

    (36)

    and 𝑔mapsD intoD \ {0}. Hence, there exists a holomorphicfunction 𝑀mapping the unit disk D into the right half-planeH+ = {𝑧 : Re(𝑧) > 0} and such that 𝑔(𝑒) = exp{βˆ’π‘€(𝑒)}for all 𝑒 ∈ D. Observe that 𝑀(1) = 0 since 𝑔(1) = 1 and𝑑 = βˆ’π‘€(1) = 1. Invoking Lemma 2, it follows that

    Re (𝑀 (π‘₯)) ≀ 21 βˆ’ π‘₯1 + π‘₯ , (37)for all π‘₯ ∈ (βˆ’1, 1). Hence𝑔 (π‘₯) = exp {βˆ’π‘€ (π‘₯)} = exp (βˆ’Re {𝑀 (π‘₯)})

    β‰₯ exp(βˆ’21 βˆ’ π‘₯1 + π‘₯) ,(38)

    for all π‘₯ ∈ (βˆ’1, 1). That is,(1 βˆ’ 2 log(1 + π‘₯2 ))

    βˆ’1 𝑓 (1 βˆ’ π‘₯2 𝜁)

    β‰₯ exp(βˆ’21 βˆ’ π‘₯1 + π‘₯) ,(39)

    for all π‘₯ ∈ (βˆ’1, 1).Making the change π‘Ÿ = (1βˆ’π‘₯)/2, we obtain that π‘Ÿ ∈ (0, 1)

    and 𝑓 (π‘Ÿπœ) β‰₯ exp(βˆ’2 π‘Ÿ1 βˆ’ π‘Ÿ) (1 βˆ’ 2 log (1 βˆ’ π‘Ÿ)) . (40)Therefore, if we consider π‘Ÿ = |𝑧| with 𝑧 ∈ D ΜΈ= 0 and we take𝜁 = 𝑧/|𝑧|, we conclude that

    𝑓 (𝑧) β‰₯ exp(βˆ’2 |𝑧|1 βˆ’ |𝑧|) (1 βˆ’ 2 log (1 βˆ’ |𝑧|))= 𝐹 (|𝑧|) .

    (41)

    This shows inequality (1).Now, if there exists𝑓0 ∈ 𝛽(∞)log such that |𝑓0(𝑧0)| = 𝐹(|𝑧0|)

    for some 𝑧0 ∈ D\{0}, then arguing as in the proof of inequality(1), for 𝜁0 = 𝑧0/|𝑧0|, the function,

    𝑔0 (𝑧) = (1 βˆ’ 2 log(1 + 𝑧2 ))βˆ’1 𝑓0 (1 βˆ’ 𝑧2 𝜁0) , (42)

    maps D into D \ {0}. Hence, there exists a holomorphicfunction 𝑀 mapping D into H+ such that 𝑀(1) = 0, βˆ’π‘€(1) =1 > 0, and

    𝑔0 (𝑧) = exp (βˆ’π‘€ (𝑧)) , (43)

  • 6 Journal of Function Spaces

    for all 𝑧 ∈ D. In particular, for π‘₯ = 1βˆ’2|𝑧0| ∈ (βˆ’1, 1), we haveexp (βˆ’Re𝑀 (π‘₯)) = 𝑔0 (π‘₯) =

    𝑓0 (((1 βˆ’ π‘₯) /2) 𝜁0)1 βˆ’ 2 log ((1 + π‘₯) /2)=

    𝑓0 (𝑧0)1 βˆ’ 2 log (1 βˆ’ 𝑧0)= 𝐹 (𝑧0)1 βˆ’ 2 log (1 βˆ’ 𝑧0)= exp(βˆ’ 2 𝑧01 βˆ’ 𝑧0)= exp(βˆ’21 βˆ’ π‘₯1 + π‘₯) .

    (44)

    Thus,

    Re𝑀 (π‘₯) = 21 βˆ’ π‘₯1 + π‘₯ , (45)for some π‘₯ ∈ (βˆ’1, 1) and, by Lemma 2, we conclude that

    𝑀 (𝑧) = 21 βˆ’ 𝑧1 + 𝑧 (46)for all 𝑧 ∈ D. Therefore,

    𝑓0 (1 βˆ’ 𝑧2 𝜁0) = (1 βˆ’ 2 log(1 + 𝑧2 ))𝑔0 (𝑧)= (1 βˆ’ 2 log(1 + 𝑧2 )) exp(βˆ’21 βˆ’ 𝑧1 + 𝑧) ,

    (47)

    for all 𝑧 ∈ D. Hence, changing (1βˆ’π‘§)/2 by 𝑧, which belongs to𝐷(1/2, 1/2), and using the identity principle for holomorphicfunctions, we obtain that

    𝑓0 (π‘§πœ0) = 𝐹 (𝑧) , (48)for all 𝑧 ∈ D. This last relation implies that ‖𝐹‖log ≀ 1 whichis a contradiction to Proposition 7. This complete the proofof item (1).

    (2) Arguing as in the proof of part (1), for |𝜁| = 1 fixed, weset the function

    𝑔 (𝑒) = (1 βˆ’ 2 log(1 + 𝑒2 ))βˆ’1 𝑓 (1 βˆ’ 𝑒2 𝜁) , (49)

    with 𝑒 ∈ D. We have shown that there exists a holomorphicfunction 𝑀 such that 𝑔(𝑒) = exp{βˆ’π‘€(𝑒)} for all 𝑒 ∈ D.Furthermore, 𝑀 satisfies the hypothesis of Julia’s Lemma(Lemma 1); that is, 𝑀 is a holomorphic function in D βˆͺ {1},whichmapsD intoH+,𝑀(1) = 0, and βˆ’π‘€(1) = 𝑑 = 1. Hence,for π‘Ÿ = (1 βˆ’ π‘₯)/(1 + π‘₯) with π‘₯ ∈ [0, 1) fixed, 𝑀 maps thehorodisk Ξ”(1, π‘Ÿ) into the open Euclidean disk with center at(1 βˆ’ π‘₯)/(1 + π‘₯) and radius (1 βˆ’ π‘₯)/(1 + π‘₯). In particular, sinceπ‘₯ ∈ Ξ”(1, π‘Ÿ), we have that𝑀(π‘₯) ∈ 𝐷π‘₯ = 𝐷((1 βˆ’ π‘₯)/(1 + π‘₯), (1 βˆ’π‘₯)/(1 + π‘₯)). Thus, Lemma 4 allows us to write

    Re (𝑔 (π‘₯)) = Re (exp (βˆ’π‘€ (π‘₯)))β‰₯ min {Re (exp (βˆ’π‘§)) : 𝑧 ∈ 𝐷π‘₯}= exp(βˆ’21 βˆ’ π‘₯1 + π‘₯) ,

    (50)

    for all π‘₯ ∈ [0, 1). This last inequality is equivalent to writingRe((1 βˆ’ 2 log(1 + π‘₯2 ))

    βˆ’1 𝑓 (1 βˆ’ π‘₯2 𝜁))β‰₯ exp (βˆ’21 βˆ’ π‘₯1 + π‘₯) ,

    (51)

    for all π‘₯ ∈ [0, 1) and from here we haveRe(𝑓 (1 βˆ’ π‘₯2 𝜁))

    β‰₯ exp(βˆ’21 βˆ’ π‘₯1 + π‘₯)(1 βˆ’ 2 log(1 + π‘₯2 )) .(52)

    Making the change π‘Ÿ = (1 βˆ’ π‘₯)/2, we obtain π‘Ÿ ∈ (0, 1/2] sinceπ‘₯ ∈ [0, 1) and alsoRe (𝑓 (π‘Ÿπœ)) β‰₯ exp (βˆ’2 π‘Ÿ1 βˆ’ π‘Ÿ) (1 βˆ’ 2 log (1 βˆ’ π‘Ÿ)) . (53)

    We conclude, as before, that

    Re (𝑓 (𝑧)) β‰₯ exp(βˆ’2 |𝑧|1 βˆ’ |𝑧|) (1 βˆ’ 2 log (1 βˆ’ |𝑧|)) , (54)for all |𝑧| ≀ 1/2. This shows the inequality in the second partof the theorem.

    Now, if there exists a function 𝑓0 ∈ 𝛽(∞)log such thatRe𝑓(𝑧0) = 𝐹(|𝑧0|) for some 𝑧0 ∈ 𝐷(0, 1/2), then we candefine 𝜁0 = 𝑧0/|𝑧0| and the function

    𝑔0 (𝑧) = (1 βˆ’ 2 log(1 + 𝑧2 ))βˆ’1 𝑓0 (1 βˆ’ 𝑧2 𝜁0) , (55)

    which maps D into D \ {0}. Hence, as before, there exists aholomorphic function𝑀mappingD intoH+ such that𝑀(1) =0, βˆ’π‘€(1) = 1 > 0, and 𝑔0(𝑧) = exp(βˆ’π‘€(𝑧)) for all 𝑧 ∈ D. Inparticular, for π‘₯ = 1 βˆ’ 2|𝑧0| ∈ [0, 1), we haveRe exp (βˆ’π‘€ (π‘₯)) = Re𝑔0 (π‘₯) = Re𝑓0 (((1 βˆ’ π‘₯) /2) 𝜁0)1 βˆ’ 2 log ((1 + π‘₯) /2)

    = Re𝑓0 (𝑧0)1 βˆ’ 2 log (1 βˆ’ 𝑧0)= 𝐹 (𝑧0)1 βˆ’ 2 log (1 βˆ’ 𝑧0)= exp(βˆ’ 2 𝑧01 βˆ’ 𝑧0)= exp (βˆ’21 βˆ’ π‘₯1 + π‘₯) ;

    (56)

    that is,𝑀(π‘₯) is the value in𝐷π‘₯ where Re exp(βˆ’π‘€(π‘₯)) attain itsminimum value, but by the proof of Lemma 4, we know thatthis happens if Im𝑀(π‘₯) = 0 andRe𝑀(π‘₯) = βˆ’2((1βˆ’π‘₯)/(1+π‘₯)).Now, by Lemma 2, we conclude that𝑀(𝑧) = 2((1βˆ’π‘§)/(1+𝑧))for all 𝑧 ∈ D. As before, this last fact implies that 𝑓0(π‘§πœ0) =𝐹(𝑧) for all 𝑧 ∈ D and therefore ‖𝐹‖log ≀ 1 which is acontradiction to Proposition 7. This completes the proof ofitem (2).

  • Journal of Function Spaces 7

    5. Distortion Theorems for Complex FunctionsinBlog Having Branch Points

    In this section we establish a distortion theorem for functionsin the closed unit ball of Blog having branch points andsatisfying a normalized Bloch conditions. More precisely, foreach 𝑛 ∈ N, we denote by 𝛽(𝑛)log the class of all holomorphicfunctions 𝑓 ∈ Blog such that 𝑓(0) = 0, 𝑓(0) = 1, ‖𝑓‖log ≀ 1and if 𝑓(𝑏) = 0 for some 𝑏 ∈ D then 𝑓(π‘˜)(𝑏) = 0 for allπ‘˜ = 1, 2, . . . , 𝑛. Clearly we have

    𝛽(∞)log =βˆžβ‹‚π‘›=1

    𝛽(𝑛)log. (57)With these notations, we have the following result.

    Theorem 10. For 𝑛 ∈ N fixed, we set π‘Žπ‘› = βˆšπ‘›/(𝑛 + 2). Thenfor every 𝑓 ∈ 𝛽(𝑛)log we have the following:

    (1) |𝑓(𝑧)| β‰₯ 𝐹𝑛(|𝑧|) = ((π‘Žπ‘›βˆ’|𝑧|)/(π‘Žπ‘›βˆ’π‘Ž2𝑛|𝑧|))𝑛(1βˆ’2 log(1βˆ’π‘Žπ‘›|𝑧|)), for all |𝑧| ≀ π‘Žπ‘›.There is not a function𝑓0 ∈ 𝛽(𝑛)logsuch that |𝑓0(𝑧0)| = 𝐹𝑛(|𝑧0|) for some 𝑧0 ∈ 𝐷(0, π‘Žπ‘›) \{0}.

    (2) Re𝑓(𝑧) β‰₯ 𝐹𝑛(|𝑧|) = ((π‘Žπ‘› βˆ’ |𝑧|)/(π‘Žπ‘› βˆ’ π‘Ž2𝑛|𝑧|))𝑛(1 βˆ’2 log(1 βˆ’ π‘Žπ‘›|𝑧|)), for all |𝑧| ≀ βˆšπ‘›(𝑛 + 2)/(2𝑛 + 1).Furthermore, there is not a function 𝑓0 ∈ 𝛽(𝑛)log suchthat Re𝑓0(𝑧0) = 𝐹𝑛(|𝑧0|) for some 𝑧0 ∈ 𝐷(0,βˆšπ‘›(𝑛 + 2)/(2𝑛 + 1)) \ {0}.

    Proof. (1) Let us fix |𝜁| = 1, 𝑛 ∈ N and π‘Žπ‘› = βˆšπ‘›/(𝑛 + 2) < 1.We set the function

    𝑔 (𝑒) = (1 βˆ’ 2 log (1 βˆ’ π‘Ž2𝑛) + 2 log (1 βˆ’ π‘Ž2𝑛𝑒))βˆ’1

    β‹… 𝑓 (π‘Žπ‘› βˆ’ π‘Žπ‘›π‘’1 βˆ’ π‘Ž2𝑛𝑒 𝜁) ,(58)

    with 𝑒 ∈ D, where log(𝑀) denotes the principal logarithmicof the complex number 𝑀 ∈ 𝐷(1, 1). Clearly the function 𝑔is holomorphic on D βˆͺ {1} and 𝑔(1) = 1 because 𝑓(0) = 1.Also, we have

    𝑔 (𝑒) = βˆ’ (1 βˆ’ 2 log (1 βˆ’ π‘Ž2𝑛) + 2 log (1 βˆ’ π‘Ž2𝑛𝑒))βˆ’2

    β‹… ( βˆ’2π‘Ž2𝑛1 βˆ’ π‘Ž2𝑛𝑒)𝑓 (π‘Žπ‘› βˆ’ π‘Žπ‘›π‘’1 βˆ’ π‘Ž2𝑛𝑒 𝜁)

    + (1 βˆ’ 2 log (1 βˆ’ π‘Ž2𝑛) + 2 log (1 βˆ’ π‘Ž2𝑛𝑒))βˆ’1

    β‹… 𝑓 (π‘Žπ‘› βˆ’ π‘Žπ‘›π‘’1 βˆ’ π‘Ž2𝑛𝑒 𝜁)[π‘Žπ‘› (π‘Ž2𝑛 βˆ’ 1)(1 βˆ’ π‘Ž2𝑛𝑒)2 ] 𝜁.

    (59)

    And hence 𝑔(1) = 2π‘Ž2𝑛/(1 βˆ’ π‘Ž2𝑛) = 𝑛 since 𝑓(0) = 1 and𝑓(0) = 0 (by Lemma 6). Furthermore, since 𝑓 ∈ 𝛽(𝑛)log and𝑔(𝑒0) = 0 if and only if 𝑓(((π‘Žπ‘› βˆ’ π‘Žπ‘›π‘’0)/(1 βˆ’ π‘Ž2𝑛𝑒0))𝜁) = 0, we

    conclude that all the zeros of the function 𝑔 have multiplicityat less 𝑛.

    On the other hand, since ‖𝑓‖log ≀ 1 we have𝑔 (𝑒) ≀ 1 βˆ’ 2 log (1 βˆ’ π‘Ž2𝑛) + 2 log (1 βˆ’ π‘Ž2𝑛𝑒)βˆ’1

    β‹… log( 𝑒1 βˆ’ (π‘Žπ‘› βˆ’ π‘Žπ‘›π‘’) / (1 βˆ’ π‘Ž2𝑛𝑒)2)≀ 1Re (1 βˆ’ 2 log (1 βˆ’ π‘Ž2𝑛) + 2 log (1 βˆ’ π‘Ž2𝑛𝑒))β‹… log( 𝑒1 βˆ’ (π‘Žπ‘› βˆ’ π‘Žπ‘›π‘’) / (1 βˆ’ π‘Ž2𝑛𝑒)2)

    = [log( 𝑒(1 βˆ’ π‘Ž2𝑛) / (1 βˆ’ π‘Ž2𝑛𝑒)2)]βˆ’1

    β‹… log( 𝑒1 βˆ’ (π‘Žπ‘› βˆ’ π‘Žπ‘›π‘’) / (1 βˆ’ π‘Ž2𝑛𝑒)2) < 1,

    (60)

    for all 𝑒 ∈ D, since1 βˆ’ π‘Ž2𝑛1 βˆ’ π‘Ž2𝑛𝑒

    2 < 1 βˆ’

    π‘Žπ‘› βˆ’ π‘Žπ‘›π‘’1 βˆ’ π‘Ž2𝑛𝑒2 , (61)

    for all 𝑒 ∈ D. Hence, we have shown that 𝑔(D) βŠ‚ D. InvokingLemma 3, we conclude that |𝑔(π‘₯)| β‰₯ π‘₯𝑛 for all π‘₯ ∈ [0, 1).Therefore, for each π‘₯ ∈ [0, 1), the following estimation holds:

    1 βˆ’ 2 log (1 βˆ’ π‘Ž2𝑛) + 2 log (1 βˆ’ π‘Ž2𝑛π‘₯)βˆ’1

    β‹… 𝑓 (π‘Žπ‘› βˆ’ π‘Žπ‘›π‘₯1 βˆ’ π‘Ž2𝑛π‘₯ 𝜁)

    β‰₯ π‘₯𝑛. (62)

    That is,

    𝑓 (π‘Žπ‘› βˆ’ π‘Žπ‘›π‘₯1 βˆ’ π‘Ž2𝑛π‘₯ 𝜁)

    β‰₯ π‘₯𝑛 (1 βˆ’ 2 log (1 βˆ’ π‘Ž2𝑛) + 2 log (1 βˆ’ π‘Ž2𝑛π‘₯)) ,

    (63)

    for all π‘₯ ∈ [0, 1) since π‘Žπ‘› ∈ (0, 1).Next, we make the change π‘Ÿ = (π‘Žπ‘› βˆ’ π‘Žπ‘›π‘₯)/(1 βˆ’ π‘Ž2𝑛π‘₯). Thenπ‘Ÿ ∈ (0, π‘Žπ‘›] since π‘₯ ∈ [0, 1), π‘₯ = (1/π‘Žπ‘›)((π‘Žπ‘› βˆ’ π‘Ÿ)/(1 βˆ’ π‘Žπ‘›π‘Ÿ)) and

    we can write

    𝑓 (π‘Ÿπœ) β‰₯ ( 1π‘Žπ‘›π‘Žπ‘› βˆ’ π‘Ÿ1 βˆ’ π‘Žπ‘›π‘Ÿ)

    𝑛

    β‹… (1 βˆ’ 2 log (1 βˆ’ π‘Ž2𝑛) + 2 log(1 βˆ’ π‘Ž2𝑛 1π‘Žπ‘›π‘Žπ‘› βˆ’ π‘Ÿ1 βˆ’ π‘Žπ‘›π‘Ÿ))

    = ( 1π‘Žπ‘›π‘Žπ‘› βˆ’ π‘Ÿ1 βˆ’ π‘Žπ‘›π‘Ÿ)

    𝑛 (1 βˆ’ 2 log (1 βˆ’ π‘Žπ‘›π‘Ÿ)) .(64)

  • 8 Journal of Function Spaces

    Finally, if we set 𝜁 = 𝑧/|𝑧| and π‘Ÿ = |𝑧|, we conclude that𝑓 (𝑧) β‰₯ ( 1π‘Žπ‘›

    π‘Žπ‘› βˆ’ |𝑧|1 βˆ’ π‘Žπ‘› |𝑧|)𝑛 (1 βˆ’ 2 log (1 βˆ’ π‘Žπ‘› |𝑧|))

    = (1 βˆ’ |𝑧| /π‘Žπ‘›1 βˆ’ π‘Žπ‘› |𝑧| )𝑛 (1 βˆ’ 2 log (1 βˆ’ π‘Žπ‘› |𝑧|))

    = 𝐹𝑛 (|𝑧|) ,(65)

    for all |𝑧| ∈ (0, π‘Žπ‘›]. This shows the inequality in part (1).The proof of the second part is similar to part (1) of

    Theorem 9. If there exists a function 𝑓0 ∈ 𝛽(𝑛)log such that|𝑓0(𝑧0)| = 𝐹𝑛(|𝑧0|) for some 𝑧0 ∈ 𝐷(0, π‘Žπ‘›) \ {0}, then we set𝜁 = 𝑧0/|𝑧0| and the function𝑔0 (𝑒) = (1 βˆ’ 2 log (1 βˆ’ π‘Ž2𝑛) + 2 log (1 βˆ’ π‘Ž2𝑛𝑒))βˆ’1

    β‹… 𝑓0 (π‘Žπ‘› βˆ’ π‘Žπ‘›π‘’1 βˆ’ π‘Ž2𝑛𝑒 𝜁)(66)

    with𝑒 ∈ D.Wehave showed that𝑔0 satisfies all the hypothesisof Lemma 3. Furthermore, choosing π‘₯ ∈ [0, 1) such that

    π‘Žπ‘› βˆ’ π‘Žπ‘›π‘₯1 βˆ’ π‘Ž2𝑛π‘₯ =𝑧0 (67)

    we obtain𝑔0 (π‘Žπ‘› βˆ’ 𝑧0π‘Žπ‘› βˆ’ π‘Ž2𝑛 𝑧0)

    =𝑔0 (π‘₯)

    = (1 βˆ’ 2 log (1 βˆ’ π‘Ž2𝑛) + 2 log( 1 βˆ’ π‘Ž2𝑛1 βˆ’ π‘Žπ‘› 𝑧0))

    βˆ’1

    β‹… 𝑓0 (𝑧0) = 𝐹𝑛 (𝑧0)1 βˆ’ 2 log (1 βˆ’ π‘Žπ‘› 𝑧0)

    = ( π‘Žπ‘› βˆ’ 𝑧0π‘Žπ‘› βˆ’ π‘Ž2𝑛 𝑧0)𝑛 .

    (68)

    By Lemma 3, we conclude that 𝑔0(𝑧) = 𝑧𝑛 for all 𝑧 ∈ D.Hence,

    𝑓0 (π‘Žπ‘› βˆ’ π‘Žπ‘›π‘§1 βˆ’ π‘Ž2𝑛𝑧 𝜁)= (1 βˆ’ 2 log (1 βˆ’ π‘Ž2𝑛) + 2 log (1 βˆ’ π‘Ž2𝑛𝑧)) 𝑧𝑛,

    (69)

    for all 𝑧 ∈ D. Changing (π‘Žπ‘› βˆ’ π‘Žπ‘›π‘§)/(1 βˆ’ π‘Ž2𝑛𝑧) by 𝑧, we obtainthat

    𝑓0 (π‘§πœ) = (1 βˆ’ 2 log (1 βˆ’ π‘Žπ‘›π‘§)) ( π‘Žπ‘› βˆ’ π‘§π‘Žπ‘› βˆ’ π‘Ž2𝑛𝑧)𝑛

    = 𝐹𝑛 (𝑧) ,(70)

    for all 𝑧 ∈ 𝐷(0, π‘Žπ‘›) and consequently for all 𝑧 ∈ D. Thislast equality implies that ‖𝐹𝑛‖log = ‖𝑓0β€–log ≀ 1 which is acontradiction to Proposition 8.

    (2) As before, for 𝑛 ∈ N, we set π‘Žπ‘› = βˆšπ‘›/(𝑛 + 2), we fix|𝜁| = 1, and we define the function𝑔 (𝑒) = (1 βˆ’ 2 log (1 βˆ’ π‘Ž2𝑛) + 2 log (1 βˆ’ π‘Ž2𝑛𝑒))βˆ’1

    β‹… 𝑓 (π‘Žπ‘› βˆ’ π‘Žπ‘›π‘’1 βˆ’ π‘Ž2𝑛𝑒 𝜁) ,(71)

    with 𝑒 ∈ D. In the first part we have shown that this functionsatisfies the hypothesis of Lemma 3. Hence Re𝑔(π‘₯) β‰₯ π‘₯𝑛 forall (𝑛 βˆ’ 1)/(𝑛 + 1) ≀ π‘₯ < 1. Therefore

    Re((1 βˆ’ 2 log (1 βˆ’ π‘Ž2𝑛) + 2 log (1 βˆ’ π‘Ž2𝑛π‘₯))βˆ’1

    β‹… 𝑓 (π‘Žπ‘› βˆ’ π‘Žπ‘›π‘₯1 βˆ’ π‘Ž2𝑛π‘₯ 𝜁)) β‰₯ π‘₯𝑛,

    (72)

    and thus we have

    (1 βˆ’ 2 log (1 βˆ’ π‘Ž2𝑛) + 2 log (1 βˆ’ π‘Ž2𝑛π‘₯))βˆ’1

    β‹… Re(𝑓 (π‘Žπ‘› βˆ’ π‘Žπ‘›π‘₯1 βˆ’ π‘Ž2𝑛π‘₯ 𝜁)) β‰₯ π‘₯𝑛, (73)

    which is the same as

    Re(𝑓 (π‘Žπ‘› βˆ’ π‘Žπ‘›π‘₯1 βˆ’ π‘Ž2𝑛π‘₯ 𝜁))

    β‰₯ π‘₯𝑛 log( 𝑒(1 βˆ’ π‘Ž2𝑛) / (1 βˆ’ π‘Ž2𝑛π‘₯)2) .(74)

    As before, we make the change π‘Ÿ = (π‘Žπ‘› βˆ’ π‘Žπ‘›π‘₯)/(1 βˆ’ π‘Ž2𝑛π‘₯); then0 < π‘Ÿ ≀ βˆšπ‘›(𝑛 + 2)/(2𝑛 + 1), π‘₯ = (1/π‘Žπ‘›)((π‘Žπ‘› βˆ’ π‘Ÿ)/(1 βˆ’ π‘Žπ‘›π‘Ÿ)),and

    Re𝑓 (π‘Ÿπœ) β‰₯ ( 1π‘Žπ‘›π‘Žπ‘› βˆ’ π‘Ÿ1 βˆ’ π‘Žπ‘›π‘Ÿ)

    𝑛

    β‹… log( 𝑒[(1 βˆ’ π‘Ž2𝑛) / (1 βˆ’ π‘Ž2𝑛 (1/π‘Žπ‘›) ((π‘Žπ‘› βˆ’ π‘Ÿ) / (1 βˆ’ π‘Žπ‘›π‘Ÿ)))]2)

    = ( 1π‘Žπ‘›π‘Žπ‘› βˆ’ π‘Ÿ1 βˆ’ π‘Žπ‘›π‘Ÿ)

    𝑛 (1 βˆ’ 2 log (1 βˆ’ π‘Žπ‘›π‘Ÿ)) .(75)

    Setting 𝜁 = 𝑧/|𝑧| and π‘Ÿ = |𝑧|, we conclude thatRe𝑓 (𝑧) β‰₯ ( 1π‘Žπ‘›

    π‘Žπ‘› βˆ’ |𝑧|1 βˆ’ π‘Žπ‘› |𝑧|)𝑛 (1 βˆ’ 2 log (1 βˆ’ π‘Žπ‘› |𝑧|)) , (76)

    for all |𝑧| ≀ βˆšπ‘›(𝑛 + 2)/(2𝑛 + 1). This shows the inequality inpart (2).

    If there exists a function 𝑓0 ∈ 𝛽(𝑛)log such that Re𝑓0(𝑧0) =𝐹𝑛(|𝑧0|) for some 𝑧0 ∈ 𝐷(0,βˆšπ‘›(𝑛 + 2)/(2𝑛 + 1)) \ {0}, then weset 𝜁 = 𝑧0/|𝑧0| and the function

    𝑔0 (𝑒) = (1 βˆ’ 2 log (1 βˆ’ π‘Ž2𝑛) + 2 log (1 βˆ’ π‘Ž2𝑛𝑒))βˆ’1

    β‹… 𝑓0 (π‘Žπ‘› βˆ’ π‘Žπ‘›π‘’1 βˆ’ π‘Ž2𝑛𝑒 𝜁) ,(77)

  • Journal of Function Spaces 9

    with𝑒 ∈ D.Wehave showed that𝑔0 satisfies all the hypothesisof Lemma 3. Furthermore, choosing π‘₯ ∈ [0, 1) such that

    π‘Žπ‘› βˆ’ π‘Žπ‘›π‘₯1 βˆ’ π‘Ž2𝑛π‘₯ =𝑧0 , (78)

    we obtain

    π‘₯ = 1π‘Žπ‘›π‘Žπ‘› βˆ’ 𝑧01 βˆ’ π‘Žπ‘› 𝑧0 , (79)

    and since 0 < |𝑧0| ≀ π‘Žπ‘›((𝑛 + 2)/(2𝑛 + 1)) we can see that(𝑛 βˆ’ 1)/(𝑛 + 1) ≀ π‘₯ < 1. Furthermore,Re𝑔0 ( π‘Žπ‘› βˆ’

    𝑧0π‘Žπ‘› βˆ’ π‘Ž2𝑛 𝑧0) = Re𝑔0 (π‘₯)

    = (1 βˆ’ 2 log (1 βˆ’ π‘Ž2𝑛) + 2 log( 1 βˆ’ π‘Ž2𝑛1 βˆ’ π‘Žπ‘› 𝑧0))

    βˆ’1

    β‹… Re𝑓0 (𝑧0) = 𝐹𝑛 (𝑧0)1 βˆ’ 2 log (1 βˆ’ π‘Žπ‘› 𝑧0)

    = ( π‘Žπ‘› βˆ’ 𝑧0π‘Žπ‘› βˆ’ π‘Ž2𝑛 𝑧0)𝑛 .

    (80)

    By Lemma 3, we conclude that 𝑔0(𝑧) = 𝑧𝑛 for all 𝑧 ∈ D.Hence, as before, this last fact implies that ‖𝐹𝑛‖log = ‖𝑓0β€–log ≀1 which is a contradiction to Proposition 8.6. Some Estimations for the Schlicht Radius

    In this section we present some consequences of the resultsobtained in Sections 4 and 5. We recall that if 𝑓 is aholomorphic function on D and 𝑧0 ∈ D, π‘Ÿπ‘ (𝑧0, 𝑓) denotethe radius of the largest schlicht disk on the Riemann surface𝑓(D) centered at 𝑓(𝑧0) (a schlicht disk on 𝑓(D) centered at𝑓(𝑧0) means that 𝑓 maps an open subset of D containing 𝑧0conformally onto this disk). With this notation, we have thefollowing results.

    Corollary 11. If 𝑓 ∈ 𝛽(∞)log , thenπ‘Ÿπ‘  (0, 𝑓) β‰₯ ∫1

    0𝐹 (|𝑧|) 𝑑 |𝑧|

    = ∫10exp(βˆ’ 2𝑑1 βˆ’ 𝑑) (1 βˆ’ 2 log (1 βˆ’ 𝑑)) 𝑑𝑑.

    (81)

    Proof. From the definition of π‘Ÿπ‘ (0, 𝑓), it follows the fact thatthere exists a simply connected domain 𝐸 βŠ‚ D containing thezero such that 𝑓 maps 𝐸 conformally onto an Euclidean diskwith center at 𝑓(0) and radius π‘Ÿπ‘ (0, 𝑓). This Euclidean diskmust meet the boundary of 𝑓(D) because, in other cases, theboundary of the set 𝐸 is a Jordan curve in the interior of Dand we can find an open set π‘Š βŠ‚ D where 𝑓 is univalent;hence 𝑓(π‘Š) contain an Euclidean disk with center at 𝑓(0)and radius greater than π‘Ÿπ‘ (0, 𝑓), which contradict with thedefinition of π‘Ÿπ‘ (0, 𝑓). We conclude then that there is a radial

    segment Ξ“ jointing 𝑓(0) to the boundary of 𝑓(D). Let 𝛾 beinverse image of Ξ“ under 𝑓; then 𝛾 joint the point 0 to theboundary of D. Thus, fromTheorem 9, it follows that

    π‘Ÿπ‘  (0, 𝑓) = βˆ«Ξ“|𝑑𝑀| = ∫

    𝛾

    𝑓 (𝑧) |𝑑𝑧|β‰₯ ∫10𝐹 (𝛾 (𝑑)) 𝛾 (𝑑) 𝑑𝑑

    = ∫10𝐹 (𝛾 (𝑑))

    𝛾 (𝑑) 𝛾 (𝑑)𝛾 (𝑑) 𝑑𝑑β‰₯ ∫10𝐹 (𝛾 (𝑑)) 𝛾 (𝑑) β‹… 𝛾

    (𝑑)𝛾 (𝑑) 𝑑𝑑 = ∫1

    0𝐹 (𝜏) π‘‘πœ

    = ∫10exp (βˆ’ 2𝜏1 βˆ’ 𝜏) (1 βˆ’ 2 log (1 βˆ’ 𝜏)) π‘‘πœ β‰ˆ 0.4104136111,

    (82)

    where we have used Cauchy-Schwarz’s inequality in thefourth line, 𝛾(𝑑) β‹… 𝛾(𝑑) is the scalar product of 𝛾(𝑑) and 𝛾(𝑑),and we have made the change 𝜏 = |𝛾(𝑑)| = βˆšπ›Ύ(𝑑) β‹… 𝛾(𝑑), where𝜏 β†’ 1βˆ’ as 𝑑 β†’ 1βˆ’. This shows the result.

    While for functions in the class𝛽(𝑛)log wehave the following.Corollary 12. Suppose that 𝑛 ∈ N is fixed. If 𝑓 ∈ 𝛽(𝑛)log, then

    π‘Ÿπ‘  (0, 𝑓) β‰₯ βˆ«βˆšπ‘›/(𝑛+2)0

    𝐹𝑛 (𝑑) 𝑑𝑑= βˆ«βˆšπ‘›/(𝑛+2)0

    (1 βˆ’ 𝑑/π‘Žπ‘›1 βˆ’ π‘Žπ‘›π‘‘ )𝑛 (1 βˆ’ 2 log (1 βˆ’ π‘Žπ‘›π‘‘)) 𝑑𝑑.

    (83)

    Proof. Indeed, arguing as in the proof of Corollary 11, fromTheorem 10, it follows that

    π‘Ÿπ‘  (0, 𝑓) = βˆ«Ξ“|𝑑𝑀| = ∫

    𝛾

    𝑓 (𝑧) |𝑑𝑧|

    β‰₯ βˆ«βˆšπ‘›/(𝑛+2)0

    𝐹𝑛 (𝜏) π‘‘πœ= βˆ«βˆšπ‘›/(𝑛+2)0

    ( π‘Žπ‘› βˆ’ πœπ‘Žπ‘› βˆ’ π‘Ž2π‘›πœ)𝑛 (1 βˆ’ 2 log (1 βˆ’ π‘Žπ‘›πœ)) 𝑑𝑑,

    (84)

    where we have used that 𝜏 = |𝛾(𝑑)| β†’ π‘Žπ‘› as 𝑑 β†’ 1βˆ’. Thisshows the result.

    Conflicts of Interest

    The authors declare that they have no conflicts of interestregarding the publication of this paper.

    References

    [1] P. Koebe, β€œÜber die Uniformisierung reeller analytischer Kur-ven,” in Göttinger Nachrichten, pp. 177–190, 1907.

    [2] L. Bieberbach, Über die Koeffizienten Derjenigen Polenzreihen,Welche Eine Schlichte Abbildung des Einheitskreises Vermitteln,S.-B. Preuss. Akad. Wiss, 1916.

  • 10 Journal of Function Spaces

    [3] A. Bloch, β€œLes théoreΜ€mes de M. Valiron Sur les fonctionsEntieΜ€res et La Théorie de l’ uniformitation,” Annales de laFacultédes Sciences de Toulouse, vol. 17, pp. 1–22, 1925.

    [4] P. L. Duren, Univalent Functions, vol. 259 of FundamentalPrinciples of Mathematical Sciences, Springer, New York, NY,USA, 1983.

    [5] C. Pommerenke, Boundary Behaviour of Conformal Maps,vol. 299 of Fundamental Principles of Mathematical Sciences,Springer, Berlin, Germany, 1992.

    [6] X. Y. Liu and D. Minda, β€œDistortion theorems for Blochfunctions,” Transactions of the American Mathematical Society,vol. 333, no. 1, pp. 325–338, 1992.

    [7] H. Yanagihara, β€œSharp distortion estimate for locally schlichtBloch functions,” The Bulletin of the London MathematicalSociety, vol. 26, no. 6, pp. 539–542, 1994.

    [8] M. Bonk, D. Minda, and H. Yanagihara, β€œDistortion theo-rems for locally univalent Bloch functions,” Journal d’AnalyseMathématique, vol. 69, pp. 73–95, 1996.

    [9] M. Bonk, D. Minda, and H. Yanagihara, β€œDistortion theoremsfor Bloch functions,” Pacific Journal of Mathematics, vol. 179, no.2, pp. 241–262, 1997.

    [10] I. Graham and D. Minda, β€œA Schwarz lemma for multivaluedfunctions and distortion theorems for Bloch functions withbranch points,” Transactions of the American MathematicalSociety, vol. 351, no. 12, pp. 4741–4752, 1999.

    [11] T. Terada and H. Yanagihara, β€œSharp distortion estimate for p-Bloch functions,” Hiroshima Mathematical Journal, vol. 40, pp.17–36, 2010.

    [12] X. Zheng and J.Wang, β€œDistortion theorems and schlicht radiusfor 𝑝-Bloch functions,” Journal of Mathematical Research withApplications, vol. 33, no. 1, pp. 45–53, 2013.

    [13] L. V. Ahlfors, Conformal Invariants: Topics in Geometric Func-tion Theory, McGraw-Hill, New York, NY, USA, 1973.

  • Submit your manuscripts athttps://www.hindawi.com

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical Problems in Engineering

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Differential EquationsInternational Journal of

    Volume 2014

    Applied MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical PhysicsAdvances in

    Complex AnalysisJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    OptimizationJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Operations ResearchAdvances in

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Function Spaces

    Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of Mathematics and Mathematical Sciences

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 201

    The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Algebra

    Discrete Dynamics in Nature and Society

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Decision SciencesAdvances in

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Stochastic AnalysisInternational Journal of