direct kernel methods. data mining is the process of automatically extracting valid, novel,...

30
Direct Kernel Methods Intro To data M ining M ark J.Em brechts ([email protected]) www.drugm ining.com Department of Decision Sciences and E ngineering Systems Rensselaer Polytechnic Institute, Troy, New York, 12180

Post on 20-Dec-2015

217 views

Category:

Documents


0 download

TRANSCRIPT

Direct Kernel Methods

Intro To data Mining

Mark J. Embrechts ([email protected])

www.drugmining.com

Department of Decision Sciences and Engineering Systems Rensselaer Polytechnic Institute, Troy, New York, 12180

Data mining is the process of automatically extracting valid, novel, potentially useful and ultimately comprehensible information from very large databases

Direct Kernel Methods

database

data prospectingand surveying

selecteddata

select transformeddata

preprocess& transform make model

Interpretation&rule formulation

The Data Mining Process

How is Data Mining Different?

• Emphasis on large data sets - Not all data fit in memory (necessarily) - Outlier detection, rare events, errors, missing data, minority classes - Scaling of computation time with data size is an issue - Large data sets: i.e., large number of records and/or large number of attributes fusion of databases

• Emphasis on finding interesting, novel non-obvious information - It is not necessarily known what exactly one is looking for - Models can be highly nonlinear - Information nuggets can be valuable

• Different methods - Statistics - Association rules & Pattern recognition - AI - Computational intelligence (neural nets, genetic algorithms, fuzzy logic) - Support vector machines and kernel-based methods - Visualization (SOM, pharmaplots)

• Emphasis on explaining and feedback

• Interdisciplinary nature of data mining

Direct Kernel Methods

Data Mining Challenges

• Large data sets - Data sets can be rich in the number of data - Data sets can be rich in the number of attributes• Data preprocessing and feature definition - Data representation - Attribute/Feature selection - Transforms and scaling• Scientific data mining - Classification, multiple classes, regression - Continuous and binary attributes - Large datasets - Nonlinear Problems• Erroneous data, outliers, novelty, and rare events - Erroneous data - Outliers - Rare events - Novelty detection• Smart visualization techniques• Feature Selection & Rule formulation

Direct Kernel Methods

UNDERSTANDING

WISDOM

DATA

INFORMATION

KNOWLEDGE

Direct Kernel Methods

A Brief History in Data Mining:Pascal Bayes Fisher Werbos Vapnik

• The meaning of “Data Mining” changed over time: - Pre 1993: “Data mining is art of torturing the data into a confession” - Post 1993: “Data mining is the art of charming the data into confession”

• From the supermarket scanner to the human genome - Pre 1998: Database marketing and marketing driven applications - Post 1998: The emergence of scientific data mining

• From AI expert systems data-driven expert systems: - Pre 1990: The experts speak (AI Systems) - Post 1995: Attempts to let the data to speak for themselves - 2000+: The data speak …

• A brief history of statistics and statistical learning theory: - From the calculus of chance to the calculus of probabilities (Pascal Bayes) - From probabilities to statistics (Bayes Fisher) - From statistics to machine learning (Fisher & Tuckey Werbos Vapnik)

• From theory to application

• Data Preparation - Missing data - Data cleansing - Visualization - Data transformation• Clustering/Classification• Statistics• Factor analysis/Feature selection• Associations• Regression models• Data driven expert systems• Meta-Visualization/Interpretation

Database Marketing

Finance

Health InsuranceMedicine

Bioinformatics

Manufacturing

WWW Agents

Text Retrieval

Data Mining Applications and Operations

“Homeland”

“Security”

BioDefense

Direct Kernel Methods

Direct Kernel Methods for Data Mining: Outline

• Classical (linear) regression analysis and the learning paradox

• Resolving the learning paradox by - Resolving the rank deficiency (e.g., PCA) - Regularization (e.g., Ridge Regression)

• Linear and nonlinear kernels

• Direct kernel methods for nonlinear regression - Direct Kernel Principal Component Analysis DK-PCA - (Direct) Kernel Ridge Regression Least Squares SVM (LS-SVM) - Direct Kernel Partial Least Squares Partial Least-Squares SVM - Direct Kernel Self-Organizing Maps DK-SOM

• Feature selection, memory requirements, hyperparameter selection

• Examples: - Nonlinear toy examples (DK-PCA Haykin’s Spiral, LS-SVM for Cherkassky data) - K-PLS for Time series data - K-PLS for QSAR drug design - LS-SVM Nerve agent classification with electronic nose - K-PLS with feature selection on microarray gene expression data (leukemia) - Direct Kernel SOM and DK-PLS for Magnetocardiogram data - Direct Kernel SOM for substance identification from spectrograms

Direct Kernel Methods

Outline

• Classical (linear) regression analysis and the learning paradox

• Resolving the learning paradox by - Resolving the rank deficiency (e.g., PCA) - Regularization (e.g., Ridge Regression)

• Linear and nonlinear kernels

• Direct kernel methods for nonlinear regression - Direct Kernel Principal Component Analysis DK-PCA - (Direct) Kernel Ridge Regression Least Squares SVMs (LS-SVM) - Direct Kernel Partial Least Squares Partial Least-Squares SVMs - Direct Kernel Self-Organizing Maps DK-SOM

• Feature selection, memory requirements, hyperparameter selection

• Examples: - Nonlinear toy examples (DK-PCA Haykin’s Spiral, LS-SVM for Cherkassky data) - K-PLS for Time series data - K-PLS for QSAR drug design - LS-SVM Nerve agent classification with electronic nose - K-PLS with feature selection on microarray gene expression data (leukemia) - Direct Kernel SOM and DK-PLS for Magnetocardiogram data

Direct Kernel Methods

Review: What is in a Kernel?

• A kernel can be considered as a (nonlinear) data transformation - Many different choices for the kernel are possible - The Radial Basis Function (RBF) or Gaussian kernel is an effective nonlinear kernel

• The RBF or Gaussian kernel is a symmetric matrix - Entries reflect nonlinear similarities amongst data descriptions

- As defined by:

22

2lj xx

ij ek

nnnn

inijii

n

n

nn

kkk

kkkk

kkk

kkk

K

...

...

...

21

21

22221

11211

Docking Ligands is a Nonlinear Problem

Direct Kernel Methods

• Surface properties are encoded on 0.002 e/au3 surface Breneman, C.M. and Rhem, M. [1997] J. Comp. Chem., Vol. 18 (2), p. 182-197

• Histograms or wavelet encoded of surface properties give Breneman’s TAE property descriptors

• 10x16 wavelet descriptore

Electron Density-Derived TAE-Wavelet Descriptors

PIP (Local Ionization Potential)

Histograms

Wavelet Coefficients

Direct Kernel Methods

• Binding affinities to human serum albumin (HSA): log K’hsa• Gonzalo Colmenarejo, GalaxoSmithKline J. Med. Chem. 2001, 44, 4370-4378

• 95 molecules, 250-1500+ descriptors• 84 training, 10 testing (1 left out)• 551 Wavelet + PEST + MOE descriptors• Widely different compounds• Acknowledgements: Sean Ekins (Concurrent) N. Sukumar (Rensselaer)

Direct Kernel Methods

Validation Model: 100x leave 10% out validations

Direct Kernel Methods

PLS, K-PLS, SVM, ANN

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 100 200 300 400 500 600

1 -

Q2

# Features

1 - Q2 versus # Features on Validation Set

Thu Mar 13 15:59:57 2003

'evolve.txt' using 1:2

Feature Selection (data strip mining)

Direct Kernel Methods

511 features

32 features

K-PLS Pharmaplots

Direct Kernel Methods

Microarray Gene Expression Data for Detecting Leukemia

• 38 data for training• 36 data for testing• Challenge: select ~10 out of 6000 genes used sensitivity analysis for feature selection

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

39

40

4142

4344

45

464748

49505152

53

54

55

56

5758

59

60

6162

63

64

65

66

67

68

69

70

71

72

SCATTERPLOT DATA ( results.ttt )

Observed Response

Pred

icte

d R

espo

nse

q2 = 0.405 Q2 = 0.447RMSE = 0.658

(with Kristin Bennett)

Direct Kernel Methods

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30 35

Targ

et

an

d P

redic

ted V

alu

es

Sorted Sequence Number

Errorplot for Test Data

Wed Apr 16 17:01:38 2003

targetpredicted

Direct Kernel Methods

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Tru

e P

osi

tives

False Positives

ROC Curve

Wed Apr 16 17:02:35 2003

Direct Kernel Methods

with Wunmi Osadik and Walker Land (Binghamton University)Acknowledgement: NSF

Direct Kernel Methods

Magnetocardiography at CardioMag Imaging inc.

Direct Kernel Methods

Left: Filtered and averaged temporal MCG traces for one cardiac cycle in 36 channels (the 6x6 grid).Right Upper: Spatial map of the cardiac magnetic field, generated at an instant within the ST interval. Right Lower: T3-T4 sub-cycle in one MCG signal trace

Direct Kernel Methods

Magneto-cardiogram Data

0 20 40-5

0

5

0 20 40-2

0

2

0 20 40-2

0

2

0 20 40-2

0

2

0 20 40-2

0

2

0 20 40-2

0

2

0 20 40-2

0

2

0 20 40-2

0

2

0 20 40-2

0

2

0 20 40-2

0

2

0 20 40-2

0

2

0 20 40-2

0

2

0 20 40-5

0

5

0 20 40-2

0

2

0 20 40-2

0

2

0 20 40-5

0

5

0 20 40-2

0

2

0 20 40-2

0

2

0 20 40-5

0

5

0 20 40-2

0

2

0 20 40-2

0

2

0 20 40-2

0

2

0 20 40-2

0

2

0 20 40-2

0

2

0 20 40-5

0

5

0 20 40-5

0

5

0 20 40-2

0

2

0 20 40-2

0

2

0 20 40-2

0

2

0 20 40-2

0

2

0 20 40-2

0

2

0 20 40-2

0

2

0 20 40-2

0

2

0 20 40-2

0

2

0 20 40-2

0

2

0 20 40-2

0

2

DATA FOR PATIENT 97

with Karsten Sternickel (Cardiomag Inc.) and Boleslaw Szymanski (Rensselaer)Acknowledgemnent: NSF SBIR phase I project

Direct Kernel Methods

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20 25

Target

an

d P

redic

ted V

alu

es

Sorted Sequence Number

Errorplot for Test Data

Thu May 08 21:04:45 2003

targetpredicted

SVMLib

Linear PCA

Direct Kernel PLS

SVMLib

7 (TN) 0 (FN)3 (FN) 15 (TP)

Direct Kernel Methods

PharmaPlot

Wed Mar 19 15:23:32 2003

'negative''positive'

-0.08-0.06-0.04-0.02 0 0.02 0.04First PLS Component -0.06-0.04

-0.02 0

0.02 0.04

0.06 0.08

Second PLS Component

-0.08-0.06-0.04-0.02

0 0.02 0.04 0.06 0.08 0.1

Third PLS Component

Direct Kernel PLS with 3 Latent Variables

Direct Kernel Methods

Direct Kernel7 (TN) 0 (FN)4 (FN) 14 (TP)

with Robert Bress and Thanakorn Naenna

GATCAATGAGGTGGACACCAGAGGCGGGGACTTGTAAATAACACTGGGCTGTAGGAGTGA

TGGGGTTCACCTCTAATTCTAAGATGGCTAGATAATGCATCTTTCAGGGTTGTGCTTCTA

TCTAGAAGGTAGAGCTGTGGTCGTTCAATAAAAGTCCTCAAGAGGTTGGTTAATACGCAT

GTTTAATAGTACAGTATGGTGACTATAGTCAACAATAATTTATTGTACATTTTTAAATAG

CTAGAAGAAAAGCATTGGGAAGTTTCCAACATGAAGAAAAGATAAATGGTCAAGGGAATG

GATATCCTAATTACCCTGATTTGATCATTATGCATTATATACATGAATCAAAATATCACA

CATACCTTCAAACTATGTACAAATATTATATACCAATAAAAAATCATCATCATCATCTCC

ATCATCACCACCCTCCTCCTCATCACCACCAGCATCACCACCATCATCACCACCACCATC

ATCACCACCACCACTGCCATCATCATCACCACCACTGTGCCATCATCATCACCACCACTG

TCATTATCACCACCACCATCATCACCAACACCACTGCCATCGTCATCACCACCACTGTCA

TTATCACCACCACCATCACCAACATCACCACCACCATTATCACCACCATCAACACCACCA

CCCCCATCATCATCATCACTACTACCATCATTACCAGCACCACCACCACTATCACCACCA

CCACCACAATCACCATCACCACTATCATCAACATCATCACTACCACCATCACCAACACCA

CCATCATTATCACCACCACCACCATCACCAACATCACCACCATCATCATCACCACCATCA

CCAAGACCATCATCATCACCATCACCACCAACATCACCACCATCACCAACACCACCATCA

CCACCACCACCACCATCATCACCACCACCACCATCATCATCACCACCACCGCCATCATCA

TCGCCACCACCATGACCACCACCATCACAACCATCACCACCATCACAACCACCATCATCA

CTATCGCTATCACCACCATCACCATTACCACCACCATTACTACAACCATGACCATCACCA

CCATCACCACCACCATCACAACGATCACCATCACAGCCACCATCATCACCACCACCACCA

CCACCATCACCATCAAACCATCGGCATTATTATTTTTTTAGAATTTTGTTGGGATTCAGT

ATCTGCCAAGATACCCATTCTTAAAACATGAAAAAGCAGCTGACCCTCCTGTGGCCCCCT

TTTTGGGCAGTCATTGCAGGACCTCATCCCCAAGCAGCAGCTCTGGTGGCATACAGGCAA

CCCACCACCAAGGTAGAGGGTAATTGAGCAGAAAAGCCACTTCCTCCAGCAGTTCCCTGT

GATCAATGAGGTGGACACCAGAGGCGGGGACTTGTAAATAACACTGGGCTGTAGGAGTGA

TGGGGTTCACCTCTAATTCTAAGATGGCTAGATAATGCATCTTTCAGGGTTGTGCTTCTA

TCTAGAAGGTAGAGCTGTGGTCGTTCAATAAAAGTCCTCAAGAGGTTGGTTAATACGCAT

GTTTAATAGTACAGTATGGTGACTATAGTCAACAATAATTTATTGTACATTTTTAAATAG

CTAGAAGAAAAGCATTGGGAAGTTTCCAACATGAAGAAAAGATAAATGGTCAAGGGAATG

GATATCCTAATTACCCTGATTTGATCATTATGCATTATATACATGAATCAAAATATCACA

CATACCTTCAAACTATGTACAAATATTATATACCAATAAAAAATCATCATCATCATCTCC

ATCATCACCACCCTCCTCCTCATCACCACCAGCATCACCACCATCATCACCACCACCATC

ATCACCACCACCACTGCCATCATCATCACCACCACTGTGCCATCATCATCACCACCACTG

TCATTATCACCACCACCATCATCACCAACACCACTGCCATCGTCATCACCACCACTGTCA

TTATCACCACCACCATCACCAACATCACCACCACCATTATCACCACCATCAACACCACCA

CCCCCATCATCATCATCACTACTACCATCATTACCAGCACCACCACCACTATCACCACCA

CCACCACAATCACCATCACCACTATCATCAACATCATCACTACCACCATCACCAACACCA

CCATCATTATCACCACCACCACCATCACCAACATCACCACCATCATCATCACCACCATCA

CCAAGACCATCATCATCACCATCACCACCAACATCACCACCATCACCAACACCACCATCA

CCACCACCACCACCATCATCACCACCACCACCATCATCATCACCACCACCGCCATCATCA

TCGCCACCACCATGACCACCACCATCACAACCATCACCACCATCACAACCACCATCATCA

CTATCGCTATCACCACCATCACCATTACCACCACCATTACTACAACCATGACCATCACCA

CCATCACCACCACCATCACAACGATCACCATCACAGCCACCATCATCACCACCACCACCA

CCACCATCACCATCAAACCATCGGCATTATTATTTTTTTAGAATTTTGTTGGGATTCAGT

ATCTGCCAAGATACCCATTCTTAAAACATGAAAAAGCAGCTGACCCTCCTGTGGCCCCCT

TTTTGGGCAGTCATTGCAGGACCTCATCCCCAAGCAGCAGCTCTGGTGGCATACAGGCAA

CCCACCACCAAGGTAGAGGGTAATTGAGCAGAAAAGCCACTTCCTCCAGCAGTTCCCTGT

WORK IN PROGRESS

Direct Kernel Methods

Santa Fe Time Series Prediction Competition

• 1994 Santa Fe Institute Competition: 1000 data chaotic laser data, predict next 100 data• Competition is described in Time Series Prediction: Forecasting the Future and Understanding the Past, A. S. Weigend & N. A. Gershenfeld, eds., Addison-Wesley, 1994• Method: - K-PLS with = 3 and 24 latent variables - Used records with 40 past data for training for next point - Predictions bootstrap on each other for 100 real test data

REM TIME SERIES EVOLUTION FOR SANTA FE LASER DATAREM GENERATE DATA (1200)

tms num_eg.txt 305copy laser.txt a.txt > embrex.log

REM CONVERT TO LEGITIMATE TIME SERIEStms a.txt 1 < no.dbdcopy a.txt.txt a_ori.dat >> embrex.logREM MAKE DIFFERENTIAL TIME SERIES for LEARNING (1 40)tms a_ori.dat 12copy a_ori.dat.txt a.dat >> embrex.log

REM MAKE GENERIC LABELSanalyze a.dat 116copy sel_lbls.txt label.txt >> embrex.log

REM SPLIT IN TRAINING AND TEST SET (960)tms a.dat 20copy cmatrix.txt a.pat >> embrex.logcopy dmatrix.txt a.tes >> embrex.log

REM MAHALANOBIS SCALE TRAINING AND TEST DATAanalyze a.pat 3314159analyze a.tes 314159 < no.dbdcopy a.pat.txt b.pat >> embrex.logcopy a.tes.txt b.tes >> embrex.log

REM K-PLS (24 3)analyze num_eg.dbd 105analyze b.pat 5936

REM EVOLVE PREDICTIONS (3 1 100 b.tes)tms b.pat 31

REM DESCALE EVOLUTION PREDICTIONanalyze resultss.xxx 4copy results.ttt results.xxx >> embrex.loganalyze evolve.txt 4

REM JAVA PLOTanalyze results.ttt 3313pause

• Entry “would have won” the competition

Direct Kernel Methods

www.drugmining.com

Kristin Bennett and Mark Embrechts