digital communications - chapter 11 multichannel and...

48
Digital Communications Chapter 11 Multichannel and Multicarrier Systems Po-Ning Chen, Professor Institute of Communications Engineering National Chiao-Tung University, Taiwan Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 1 / 48

Upload: duonghanh

Post on 18-Apr-2018

249 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

Digital CommunicationsChapter 11 Multichannel and Multicarrier Systems

Po-Ning Chen, Professor

Institute of Communications EngineeringNational Chiao-Tung University, Taiwan

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 1 / 48

Page 2: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

Motivation

In Chapter 9: Communications Through Band-LimitedChannels, we have seen that

When channel is band-limited to [−W ,W ], without extracare, the received signal at matched-filter output is

yk =∞∑

n=−∞Inxk−n + zk

where

Ik is the information symbol,

xk is the overall discrete impulse response,

zk is the additive noise

This gives an intersymbol interference (ISI) channel.

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 2 / 48

Page 3: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

Motivation

yk = ∑∞n=−∞ Inxk−n + zk

With Nyquist pulse, it is possible to create an ISI-free channel

xk−n = δk−n and yk = Ik + zk .

However, due to

mis-synchronization

imperfect channel estimation, etc

ISI is sometimes inevitable.

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 3 / 48

Page 4: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

Motivation

yk = ∑∞n=−∞ Inxk−n + zk

There is another simple solution to the ISI problem. The mainidea is the following:

Given the discrete channel impulse response xk , we see

yk = Ik ⋆ xk + zk

By Fourier duality, taking discrete Fourier transform(DFT) at both sides gives

Yk = IkXk + Zk

This transforms “convolution” to “multiplication.”

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 4 / 48

Page 5: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

So, if we set, for example, {Ik} ∈ {−1,1}∗ and transmitits IDFT {Ik}. Then, the ISI problem can be solvedstraightforwardly.

Note that Yk is only a function of Ik and does notdepend on . . . ,Ik−2,Ik−1,Ik+1,Ik+2, . . ..

This idea has been employed in many modern techniquessuch as Orthogonal Frequency Division Multiplexing(OFDM).

-IN , . . . ,I1IDFT -IN , . . . , I1 Discrete

channelxk

-yN , . . . , y1DFT -YN , . . . ,Y1

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 5 / 48

Page 6: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

11.2 Multicarrier communications:11.2-3 Orthogonal frequency division multiplexing (OFDM)

11.2-4 Modulation and demodulation in an OFDM system

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 6 / 48

Page 7: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

Let T be the symbol duration; then we know the set ofwaveforms

{κe ı2π kTt ∶ t ∈ [0,T ], k = 0,1, . . . ,Q − 1}

is a set of orthonormal functions, where

κ =√

1

T.

⟨κe ı2π kTt , κe ı2π

jTt⟩ = ∫

T

0κ2e ı2π

kTte− ı2π

jTtdt

= 1

T ∫T

0e ı2π

(k−j)T

tdt

= δk−j

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 7 / 48

Page 8: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

Let

Xk,n = Ik,n + ıQk,n

be the QAM symbol at the kth subcarrier and at the nthsymbol period; then the multicarrier waveform is given by

s`(t) = κ∞∑

n=−∞(Q−1∑k=0

Xk,neı2π k

Tt)g(t − nT )

where g(t) is the pulse shaping function.

Hence,

s(t) = Re{s`(t)e ı2πfc t}

At the first glance, it seems to be a single-carrier fc system;but, it is actually a multi-carrier system with single-carrierimplementation.

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 8 / 48

Page 9: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

s(t) = Re{s`(t)e ı2πfc t}

= Re{κ∞∑

n=−∞(Q−1∑k=0

Xk,neı2π k

Tt)g(t − nT )e ı2πfc t}

=Q−1∑k=0

Re{(∞∑

n=−∞κXk,ng(t − nT )) e ı2πfk t}

where fk = fc + kT is the kth carrier.

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 9 / 48

Page 10: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

11.2-6 Spectral characteristics ofmulticarrier signals

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 10 / 48

Page 11: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

Clearly, s`(t) is a random process.

For simplicity, we may assume Ik,n and Qk,n are i.i.d., zero mean,and variance 1

2σ2.

With κ = 1/√T , the autocorrelation function of s`(t) is

Rs`(t + τ, t) = 1

TE [(

∞∑

n=−∞

Q−1∑k=0

Xk,ng(t + τ − nT )e ı2πkT(t+τ))

⎛⎝

∞∑

m=−∞

Q−1∑j=0

X ∗j ,mg

∗(t −mT )e− ı2πjTt⎞⎠

⎤⎥⎥⎥⎥⎦

= 1

Tσ2

Q−1∑k=0

e ı2πkTτ

∞∑

n=−∞g(t + τ − nT )g∗(t − nT )

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 11 / 48

Page 12: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

It is clear that

Rs`(t + τ, t) = Rs`(t + τ +mT , t +mT )

for any integer m; hence s`(t) is a cyclostationary randomprocess with period T .

The average autocorrelation function is thus given by

Rs`(τ) = 1

T ∫T

0Rs`(t + τ, t)dt

= σ2

T 2

Q−1∑k=0

e ı2πkTτ

∞∑

n=−∞∫

T

0g(t + τ − nT )g∗(t − nT )dt

= σ2

T 2

Q−1∑k=0

e ı2πkTτ

∞∑

n=−∞∫

−(n−1)T

−nTg(u + τ)g∗(u)du

= σ2

T 2

Q−1∑k=0

e ı2πkTτ ∫

−∞g(t + τ)g∗(t)dt

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 12 / 48

Page 13: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

Power spectral density

The time-average power spectral density of s`(t) is

Ss`(f ) = ∫∞

−∞Rs`(τ)e− ı2πf τ dτ

= σ2

T 2

Q−1∑k=0∫

−∞g∗(t) (∫

−∞g(t + τ)e− ı2π(f −

kT)τ dτ) dt

= σ2

T 2

Q−1∑k=0∫

−∞g∗(t) (∫

−∞g(u)e− ı2π(f −

kT)u du) e ı2π(f −

kT)tdt

= σ2

T 2

Q−1∑k=0

G (f − k

T)(∫

−∞g(t)e− ı2π(f −

kT)t dt)

= σ2

T 2

Q−1∑k=0

∣G (f − k

T)∣

2

.

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 13 / 48

Page 14: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

Theorem 1

The time-average power spectral density of s`(t) is

Ss`(f ) = σ2

T 2

Q−1∑k=0

∣G (f − k

T)∣

2

where Q is the number of subcarriers.

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 14 / 48

Page 15: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

Example

Let g(t) be the rectangular pulse shape of height 1 andduration T ; then

G(f ) = e− ı πfTT sinc (fT ) .

Hence

Ss`(f ) = σ2Q−1∑k=0

∣sinc((f − k

T)T)∣

2

.

In particular,

Ss` (m

T) = σ2

Q−1∑k=0

∣sinc (m − k)∣2 = { σ2, if 0 ≤ m < Q0, otherwise.

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 15 / 48

Page 16: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

Example: T = 1 and Q = 5

Figure: ∣G (f − kT)∣2 for k = 0,1,2,3,4

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 16 / 48

Page 17: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

Example: T = 1 and Q = 5

Figure: Ss`(f )

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 17 / 48

Page 18: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

Ss`(f ) = σ2Q−1∑k=0

∣sinc((f − k

T)T)∣

2

The PSD Ss`(f ) decays very slow at high frequencies atrate approximately

Ss`(f ) ≈1

f 2.

Out of band power leakage is severe and the resultingspectrum would not meet the FCC requirement.

Can add a bandpass filter afterwards to remove theout-of-band signals, for example, using the root raisedcosine filters.

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 18 / 48

Page 19: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

11.2-5 An FFT algorithmimplementation of an OFDM

system

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 19 / 48

Page 20: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

For simplicity, we again assume g(t) is the rectangular pulseshape of height 1 and duration T such that for 0 ≤ t < T ,

s`(t) = κQ−1∑k=0

Xk,neı2π k

Tt

and zero, otherwise.

Then, we will introduce an efficient way to generate thefollowing waveform:

s`(t) = κQ−1∑k=0

Xkeı2π k

Tt , t ∈ [0,T )

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 20 / 48

Page 21: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

Generating s`(t) using iFFT + DAC

Consider an N-point iFFT with N ≥ Q. (Usually, N is equalto the power of two.)

Set Xk = { Xk , if 0 ≤ k < Q0, if Q ≤ k < N

The iFFT of Xk is given by

xm = 1

N

N−1∑k=0

Xkeı2πmk

N = 1

N

Q−1∑k=0

Xkeı2πmk

N

Feeding Nxm to a digital-analog-converter (DAC) at rate NT

gives

s`(t) = (κN)N−1∑m=0

xm gDAC (t − m

NT)

where gDAC(t) is the rectangular pulse of height 1 andduration T

N .

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 21 / 48

Page 22: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

-XN−1, . . . , X0

(0, . . . , 0,XQ−1, . . . ,X0)iFFT -xN−1, . . . , x0 Discrete

channel-yN , . . . , y1

FFT -YN , . . . ,Y1

Note that for n = 0,1, . . . ,N − 1,

s` (n

NT) = κN

N−1∑m=0

xm gDAC ( n

NT − m

NT)

= κNxn = κQ−1∑k=0

Xkeı2π kn

N

= s` (n

NT)

We see

s`(t) = s`(t) for t = nT /N and n = 0,1,2, . . . ,N − 1.

The technique we had used is called Zero Padding in DSP.Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 22 / 48

Page 23: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

Example: Q = 16 and T = 1

Xk = Ik + ıQk for 0 ≤ k < Q = 16

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 23 / 48

Page 24: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

Example: Q = 16 and T = 1

Figure: s`(t) = I (t) + ıQ(t) = κ∑Q−1k=0 Xke

ı2π kTt , t ∈ [0,T )

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 24 / 48

Page 25: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

Example: Q = 16 and T = 1 and N = 16

s`(t) s`(t)

s`(t) = s`(t) at t = 0,1

16,

2

16, . . . ,

15

16(sec)

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 25 / 48

Page 26: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

Example: Q = 16 and T = 1 and N = 128

s`(t) s`(t)

s`(t) = s`(t) at t = 0,1

128,

2

128, . . . ,

127

128(sec)

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 26 / 48

Page 27: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

Example: Q = 16 and T = 1 and N = 256

s`(t) s`(t)

s`(t) = s`(t) at t = 1

256,

2

256, . . . ,

255

256(sec)

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 27 / 48

Page 28: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

Example: Q = 16 and T = 1

s`(t) = κQ−1∑k=0

Xkeı2π k

Ttg(t), t ∈ [0,T )

S`(f ) = F {s`(t)} = I (f ) + ıQ(f ) = κ∑Q−1k=0 XkG (f − k

T)

Out-of-band leakage due to rectangular pulse shape g(t)Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 28 / 48

Page 29: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

Example: Q = 16 and T = 1

S` (f =k

T) = Xk = Ik+ ıQk for k = 0,1, . . . ,Q = 15 and κ = 1

T

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 29 / 48

Page 30: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

Transmission of multicarrier signal

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 30 / 48

Page 31: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

s`(t) = (κN)∞∑

n=−∞(N−1∑m=0

xm,n gDAC (t − m

NT))g(t − nT )

= κ∞∑

n=−∞(N−1∑m=0

(Q−1∑k=0

Xk,neı2πmk

N ) gDAC (t − m

NT))g(t − nT )

= κ∞∑

n=−∞(Q−1∑k=0

Xk,n (N−1∑m=0

e ı2πmkN gDAC (t − m

NT)))g(t − nT )

= κ∞∑

n=−∞(Q−1∑k=0

Xk,neı2π k

T⌊t(N/T)⌋

(N/T) )g(t − nT )

s`(t) = κ∞∑

n=−∞(Q−1∑k=0

Xk,neı2π k

Tt)g(t − nT )

The difference between ideal s`(t) and physically realizables`(t) is that the latter uses a “digitized” time scale.

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 31 / 48

Page 32: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

Denote a = ⌊t(N/T)⌋t(N/T) , which is approximately 1 when N large.

Then the transmitted signal is given by

s(t) = Re{s`(t)e ı2πfc t}

= κ∞∑

n=−∞Re{(

Q−1∑k=0

Xk,neı2π k

T⌊t(N/T)⌋

(N/T) ) e ı2πfc t}g(t − nT )

= κ∞∑

n=−∞

Q−1∑k=0

{Ik,n cos [2π (fc + ak

T) t]

−Qk,n sin [2π (fc + ak

T) t]}g(t − nT )

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 32 / 48

Page 33: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

Transmission of multicarrier signal

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 33 / 48

Page 34: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

OFDM = Multicarrier + Cyclic prefix

Why adding cyclic prefix?To combat the channel effect due to c`(t).

We can virtually think that

s`(t) =⎧⎪⎪⎨⎪⎪⎩

κ∑Q−1k=0 Xke

ı2π kTt , t ∈ [0,T )

0, otherwise

or more physically

s`(t) =⎧⎪⎪⎨⎪⎪⎩

κ∑Q−1k=0 Xke

ı2π kTat , t ∈ [0,T )

0, otherwise

Virtually extend s`(t) to make it periodic

s`(t) =∞∑

n=−∞s`(t − nT ) = κ

Q−1∑k=0

Xkeı2π k

Tt for t ∈ R

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 34 / 48

Page 35: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

We will transmit s`(t) (of duration P +T ) instead of s`(t) (ofduration T ) for OFDM, where P is the length of c`(t).

In other words, we essentially assume that

c`(t) = 0 for t < 0 and t ≥ P .

The extra periodic part P is called cyclic prefix in OFDM.

Usually, T should be made much larger than P in order toreduce the loss in transmission time and to save extratransmission power. For example, T = 3.2µs and P = 0.8µs forIEEE 802.11.

The necessity of adding CP will be clear in the analysis of Rx.

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 35 / 48

Page 36: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

Receiver for multicarrier signal

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 36 / 48

Page 37: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

Receiver for multicarrier signal

Oversampling

While there are only Q tones transmitted, oversampling isrequired to avoid aliasing caused by out-of-band signals fromother users.

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 37 / 48

Page 38: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

Assuming the channel has a lowpass equivalent impulseresponse c`(t), the received noise-free received signal is

r`(t) = s`(t) ⋆ c`(t) = ∫P

0c`(τ)s`(t − τ)dτ,

where s`(t) periodic with period T .

Since all we need is r`(t) for t ∈ [0,T ), it is clear from theabove formula that we only need s`(t) for t ∈ [−P ,T ).

By this CP technique, the received signal simplifies to:

r`(t) = s`(t) ⋆ c`(t)

= κ(Q−1∑k=0

Xkeı2π k

Tt) ⋆ c`(t)

= κQ−1∑k=0

Xk ∫∞

−∞c`(τ)e ı2π

kT(t−τ) dτ

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 38 / 48

Page 39: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

r`(t) = κQ−1∑k=0

Xkeı2π k

Tt ∫

−∞c`(τ)e− ı2π

kTτ dτ

= κQ−1∑k=0

Xkeı2π k

TtC` (

k

T) .

Note r`(t) is actually periodic with period T .

Sample r`(t) at rate NT , where N is not necessarily equal to N .

rm = r` (m

NT) = κ

Q−1∑k=0

C` (k

T)Xke

ı2π kmN

∗ The extra receptions for m = −1,−2, . . . ,−PT N due to CP are unused.

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 39 / 48

Page 40: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

When using the physical s`(t) instead of ideal s`(t),

rm = r` (m

NT) = κ

Q−1∑k=0

C` (k

T)Xke

ı2π kT( ⌊m(N/N)⌋

m(N/N))mNT

= κQ−1∑k=0

C` (k

T)Xke

ı2πk⌊m(N/N)⌋

N for 0 ≤ m ≤ N − 1

So, if N = N or N is a multiple of N (i.e., the samplingrate at Tx is higher), then rm = rm.However, if N is a multiple of N , say, N = uN , then

rm = κQ−1∑k=0

C` (k

T)Xke

ı2πk⌊m/u⌋

N = ru⌊m/u⌋.

In other words, we only have N different samples at Rxsince Tx only transmits N samples.

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 40 / 48

Page 41: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

FFT/iFFT duality

The FFT/iFFT duality we adopt here is:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

FFT Xk =N−1∑m=0

xme− ı2πmk

N

iFFT xm = 1

N

N−1∑k=0

Xkeı2πmk

N

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 41 / 48

Page 42: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

Channel equalization

Given the received signal vector r = [r0,⋯, rN−1], the receiverapplies FFT to r (Implicitly, N is a multiple of N with N > Q.)

Rn =N−1∑m=0

rme− ı2πmn

N

=N−1∑m=0

(κQ−1∑k=0

C` (k

T)Xke

ı2π kmN ) e− ı2π

mnN

= κQ−1∑k=0

C` (k

T)Xk

N−1∑m=0

e− ı2πm(n−k)

N

= κQ−1∑k=0

C` (k

T)Xk ⋅ Nδn−k

=⎧⎪⎪⎨⎪⎪⎩

κNC` ( nT)Xn, 0 ≤ n < Q

0, Q ≤ n < N

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 42 / 48

Page 43: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

When oversampling occurs

When N = uN,

Rn =N−1∑m=0

rme− ı2πmn

N

=N−1∑m=0

(κQ−1∑k=0

C` (k

T)Xke

ı2π kmN

⌊m/u⌋m/u ) e− ı2π

mnN (m = ui + j)

= κQ−1∑k=0

C` (k

T)Xk

⎛⎝u−1∑j=0

e− ı2πnj

N

N−1∑i=0

e− ı2πi(n−k)

N⎞⎠

=⎧⎪⎪⎨⎪⎪⎩

κ (∑u−1j=0 e− ı2π

njuN )NC` (nmodN

T)XnmodN , 0 ≤ nmodN < Q

0, Q ≤ nmodN < N

=⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

κe− ıπ

(u−1)nuN sin(πn

N)

sin( πnuN

) NC` (nmodNT

)XnmodN , 0 ≤ nmodN < Q

0, Q ≤ nmodN < N

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 43 / 48

Page 44: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

Example. N = 16 and N = 64

∣ sin(πnN

)sin( πn

uN) ∣

n

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 44 / 48

Page 45: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

Channel equalization

With noise present, we have

Rk = κNC` (k

T)Xk + Zk

Only one-tap equalization (i.e., κNC` ( kT)) is needed.

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 45 / 48

Page 46: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

Disadvantages of OFDM

While OFDM allows for simple equalization, it also introducesother problems such as:

High peak-to-average power ratio (PAPR) at s`(t)

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 46 / 48

Page 47: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

What you learn from Chapter 11

DFT transforms convolution (ISI at time domain) tomultiplication (no-ISI at freq domain).

OFDM: Single carrier implementation of a multi-carriersystem with the help of DFT.

s(t) = Re{s`(t)e ı 2πfc t}

= Re

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

κ∞∑

n=−∞(Q−1∑k=0

Xk,neı 2π k

T t)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶DFT

g(t − nT )e ı 2πfc t

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

=Q−1∑k=0

Re{(∞∑

n=−∞κXk,ng(t − nT )) e ı 2πfk t}

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 47 / 48

Page 48: Digital Communications - Chapter 11 Multichannel and ...shannon.cm.nctu.edu.tw/digitalcom/Chap11.pdf · Chapter 11 Multichannel and Multicarrier Systems ... it is actually a multi-carrier

Time-averaged autocorrelation function and PSD ofOFDM

OFDM realization: Ideal s(t) versus DAC versions s(t).

Q carriers, N-point DFT at TX, N-point DFT at RXwith min(N, N) > Q.When N and N are powers of 2, FFT implementationscan be used.

CP helps removing ISI at RX such that r`(t) only affectsby c`(t) but not the previous OFDM symbol.

r`(t) = s`(t) ⋆ c`(t)

= κ(Q−1∑k=0

Xkeı 2π k

T t) ⋆ c`(t)

= κQ−1∑k=0

Xk ∫∞

−∞c`(τ)e ı 2π

kT (t−τ) dτ

The analysis of Rn based on CP technique:Undersampling and oversampling.

Digital Communications: Chapter 11 Ver 2015.06.23 Po-Ning Chen 48 / 48