diffusive molecular dynamics ju li, bill cox, tom lenosky, ning ma, yunzhi wang ohio state...

12
Diffusive Molecular Dynamics Ju Li, Bill Cox, Tom Lenosky, Ning Ma, Yunzhi Wang Ohio State University

Post on 20-Jan-2016

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Diffusive Molecular Dynamics Ju Li, Bill Cox, Tom Lenosky, Ning Ma, Yunzhi Wang Ohio State University

Diffusive Molecular Dynamics

Ju Li, Bill Cox, Tom Lenosky,Ning Ma, Yunzhi Wang

Ohio State University

Page 2: Diffusive Molecular Dynamics Ju Li, Bill Cox, Tom Lenosky, Ning Ma, Yunzhi Wang Ohio State University

2

Page 3: Diffusive Molecular Dynamics Ju Li, Bill Cox, Tom Lenosky, Ning Ma, Yunzhi Wang Ohio State University

3

Page 4: Diffusive Molecular Dynamics Ju Li, Bill Cox, Tom Lenosky, Ning Ma, Yunzhi Wang Ohio State University

4

Traditional Molecular Dynamics

• Traditional MD numerically integrates Newton’s equation of motion over 3N degrees of freedom, the atomic positions:

• It is difficult to reach diffusive time scales using traditional MD due to timestep (~ ps / 100), which needs to resolve atomic vibrations.

, 1..i i Nx

Page 5: Diffusive Molecular Dynamics Ju Li, Bill Cox, Tom Lenosky, Ning Ma, Yunzhi Wang Ohio State University

5

Diffusive MD: The Idea

Ferris wheel seen with long camera exposure time

Variational Gaussian Method

Lesar, Najafabadi and Srolovitz, Phys. Rev. Lett. 63 (1989) 624.

, , 1..i i i N x

DMD

ci: occupation probability(vacancy, solutes)

Define i for each atom,to drive diffusion

, , , 1..i i i i N x c

Page 6: Diffusive Molecular Dynamics Ju Li, Bill Cox, Tom Lenosky, Ning Ma, Yunzhi Wang Ohio State University

6

3 23 2 2 2

0 0 01

Gibbs-Bogoliubov Free Energy Bound:

1exp exp | |

2

3

2

(| |, , )

Nji

i i i j j j i j i ji i j

B

i j i j

F F U U u d d

k T

w

x x x x x x x x

x x

2

1

ln

2Thermal wavelength:

Ni T

i

TB

e

mk T

Variational Gaussian Method

{xi,i}true free energy

VG free energy

Page 7: Diffusive Molecular Dynamics Ju Li, Bill Cox, Tom Lenosky, Ning Ma, Yunzhi Wang Ohio State University

7

Comparison with Monte Carlo

Lesar, Najafabadi and Srolovitz, Phys. Rev. Lett. 63 (1989) 624.

Page 8: Diffusive Molecular Dynamics Ju Li, Bill Cox, Tom Lenosky, Ning Ma, Yunzhi Wang Ohio State University

8

Page 9: Diffusive Molecular Dynamics Ju Li, Bill Cox, Tom Lenosky, Ning Ma, Yunzhi Wang Ohio State University

9

DMD thermodynamics

2

1 1

1 3(| |, , ) ln ln 1 ln 1

2 2

N Ni

i j i j i j B i i i i ii i j i

F c c w k T c c c c ce

x x

Add occupation order parameters to sites: , , , 1..i i i i N x c

VG view DMD view

0

1

c

1

0

c

Page 10: Diffusive Molecular Dynamics Ju Li, Bill Cox, Tom Lenosky, Ning Ma, Yunzhi Wang Ohio State University

10

2

1 1

The chemical potential for each atom is easily derived:

1 3(| |, , ) ln ln

2 2 1

N Ni i

i j i j i j Bi i j ii i

A cc w k T

c e c

x x

DMD kinetics

nearest-neighbor network

1

1 , if and are nearest neighbors2

0 otherwise

Ni

ij j ij

i j

ij

ck

t

c ck i j

k

2B 0

calibrate against experimental diffusivity:

Dk

k T a Z

Page 11: Diffusive Molecular Dynamics Ju Li, Bill Cox, Tom Lenosky, Ning Ma, Yunzhi Wang Ohio State University

11

Page 12: Diffusive Molecular Dynamics Ju Li, Bill Cox, Tom Lenosky, Ning Ma, Yunzhi Wang Ohio State University

12

• DMD is atomistic realization of regular solution model, with gradient thermo, long-range elastic interaction, and short-range coordination interactions all included.

• DMD kinetics is “solving Cahn-Hilliard equation on a moving atom grid”, with atomic spatial resolution, but at diffusive timescales.

• The “quasi-continuum” version of DMD can be coupled to well-established diffusion-microelasticity equation solvers such as phase-field method.

• No need to pre-build event catalog. Could be competitive against kinetic Monte Carlo.