different types of lasers and laser delivery system

50
DIFFERENT TYPES OF LASERS AND DELIVERY SYSTEM PRESENTER - DR. KRATI GUPTA MODERATOR - DR. HEMLATA DEKA

Upload: dr-krati-gupta

Post on 23-Jan-2018

73 views

Category:

Education


3 download

TRANSCRIPT

Page 1: Different types of lasers and laser delivery system

DIFFERENT TYPES OF LASERS AND DELIVERY

SYSTEMPRESENTER - DR. KRATI GUPTAMODERATOR - DR. HEMLATA DEKA

Page 2: Different types of lasers and laser delivery system

WHAT IS LASER?

• LASER is an acronym for:

L : Light

A : Amplification (by)

S : Stimulated

E : Emission (of)

R : Radiation

• Term coined by Gordon Gould.

• Lase means to absorb energy in one form andto emit a new form of light energy which ismore useful.

Page 3: Different types of lasers and laser delivery system

HISTORY OF LASER

• 1917 -Sir Albert Einstein laid the foundations for the laser.

• 1958 - C.H. Townes, A.L. Schawlow: Theoretical basis for lasers.

• 1960 - Theodore Maiman : Built first laser using a ruby crystal.

• 1963 - C. Zweng: First medical laser trial (retinal coagulation).

• 1965 - W.Z. Yarn: First clinical laser surgery.

• 1970- The excimer laser was invented in by Nikolai Basov.

• 1971 -Neodymium yttrium aluminum garnet (Nd-YAG) and Krypton laser developed.

Page 4: Different types of lasers and laser delivery system

PROPERTIES OF LASER

• Monochromatic (emit only one wave length)

• Coherence (all in same phase-improve focusing )

• Polarized (in one plane-easy to pass through media)

• Collimated (in one direction & non spreading )

• High energy (Intensity measured by Watt J/s)

Page 5: Different types of lasers and laser delivery system

HOW IS LASER PRODUCED?

• Light is emitted in the form of tiny package called ‘quanta’/photon.

Each photon has a characteristic frequency and its energy is

proportional to its frequency.

• Three basic ways for photons and atoms to interact:

Absorption

Spontaneous Emission

Stimulated Emission

Page 6: Different types of lasers and laser delivery system

HOW LASER WORK ???Contd. …

Page 7: Different types of lasers and laser delivery system

E1

E2

ABSORPTION

Page 8: Different types of lasers and laser delivery system

SPONTANEOUS EMISSION

Page 9: Different types of lasers and laser delivery system

STIMULATED EMISSION

Page 10: Different types of lasers and laser delivery system

BACKGROUND PHYSICS OF LASER PRODUCTION

Page 11: Different types of lasers and laser delivery system
Page 12: Different types of lasers and laser delivery system

THREE TYPES OF OCULAR PIGMENT

• Haemoglobin:

Hemoglobin in blood vessels absorbs blue, green and yellow light, but does not absorb red light.

• Xanthophyll

Xanthophyll pigment of the retina absorbs blue light, but passes green, yellow and red light.

• Melanin:

Excellent absorption by green, yellow, red and infra- red wavelengths.

Page 13: Different types of lasers and laser delivery system

ABSORPTION SPECTRUM OF KEY PIGMENTS FOUND IN OCULAR TISSUES.

Page 14: Different types of lasers and laser delivery system
Page 15: Different types of lasers and laser delivery system

DIFFERENT TYPES OF LASER

Solid State Gas Metal vapour Dye Excimer Diode

Ruby Ion Copper Rhodamine Argon Fluoride Gallium-Aluminium

Arsenide

Nd YAG Argon Gold Krypton Fluoride

Erbium YAG Krypton Krypton Chloride

Helium

CO2

Page 16: Different types of lasers and laser delivery system

DIFFERENT TYPES OF LASERS

Page 17: Different types of lasers and laser delivery system

LIGHT TISSUE INTERACTIONS

1. PHOTOCOAGULATION

• In photocoagulation temperature of treated tissue is increased from 37°C to at least 50°C.

• This results in denaturation of tissue protein and coagulation at the absorbenttissue site.

• This results from conversion of light energy to heat energy.

• Temperature rise in tissue is proportional to the amount of light absorbed by the tissue.

Page 18: Different types of lasers and laser delivery system

LIGHT TISSUE INTERACTIONS

1. PHOTOCOAGULATION

• Absorption of the light frequencies is high in :i. Pigmented trabecular meshworkii. Iris iii. Ciliary body and iv. Retinal pigment epithelium (owing to melanin)v. Blood vessels (owing to hemoglobin).

• Lasers commonly used in the type of photocoagulation are:i. Argonii. Krypton,iii. Diodeiv. Nd:YAG lasers

Page 19: Different types of lasers and laser delivery system

LASERS COMMONLY USED IN PHOTOCOAGULATION

CW GREEN ARGON LASER (514.5 nm)

• It is absorbed selectively at :

• It coagulates from choriocapillaries to inner nuclear layer of the retina.

• It is suitable for photocoagulation of retinal pigment epithelium, choroids and blood vessels.

i. Retinal pigment epithelium ii. Hemoglobin pigments iii. Choriocapillaries

iv. Layer of rods and cones v. Outer and inner nuclear layersvi. Melanin granules

Page 20: Different types of lasers and laser delivery system

LASERS COMMONLY USED IN PHOTOCOAGULATION

FREQ-DOUBLED ND: YAG LASER (532 NM)

• It produces a pea-green beam.

• It is often termed as “green Nd: YAG laser” or “KTP laser”.

• It is more highly absorbed by hemoglobin (Hb) and the melanin present in retinal pigment epithelium (RPE) and trabecular meshwork than the argon laser beam.

• It coagulates from choriocapillaries to outer nuclear layer of the retina.

Page 21: Different types of lasers and laser delivery system

LASERS COMMONLY USED IN PHOTOCOAGULATION

FREQ-DOUBLED ND: YAG LASER (532 NM)

• It is small and portable like diode laser.

• It is a solid state and diode pumped CW laser.

• It causes photocoagulation with least energy transmission and shows considerable safety in macular treatment.

• Hence, it is fast gaining major market share of posterior segment photocoagulator.

Page 22: Different types of lasers and laser delivery system

LASERS COMMONLY USED IN PHOTOCOAGULATION

KRYPTON RED LASER(647 nm)

• The melanin granules also readily absorb it.

• It is not absorbed by the hemoglobin (Hb) and xanthophylls pigments present in the macular area.

• Hence, it is particularly suitable for macular photocoagulation and coagulation of subretinal neovascular membrane.

• It coagulates deeper into the retinal pigment epithelium (RPE) and choroids.

Page 23: Different types of lasers and laser delivery system

LASERS COMMONLY USED IN PHOTOCOAGULATION

KRYPTON RED LASER(647 nm)

• It has insignificant photocoagulation effect on the vascular system of the retina.

• It is less absorbed and more highly transmitted through retinal pigment epithelium.

• So, it is able to produce more extensive and deep coagulation of choriocapillaries and choroids.

Page 24: Different types of lasers and laser delivery system

LASERS COMMONLY USED IN PHOTOCOAGULATION

DIODE LASER (810 nm)

• It is the most important semiconductor laser [GaAlAs (720-890 nm) GaAs (810 nm)]

• Direct photocoagulation of microaneurysm is difficult because it is poorly absorbed by hemoglobin.

• It is as effective as argon, freq-doubled Nd: YAG laser in reducing macular edema.

Page 25: Different types of lasers and laser delivery system

LASERS COMMONLY USED IN PHOTOCOAGULATION

DIODE LASER (810 nm)

• It offers increased patient comfort due to absence of bright flash of light.

• Due to deeper penetration in to the choroids, it may be painful if the intensity of retinal coagulation is not properly titrated /reduced.

• It is a low cost, portable, small, high powered and versatile laser.

Page 26: Different types of lasers and laser delivery system

LASERS COMMONLY USED IN PHOTOCOAGULATION

DIODE LASER (810 nm)

• Lasers with blue wavelength light should not be used for photocoagulation in following situations;

1. In the macular area – Xanthophyll pigments absorb blue light maximally and green light poorly.

Hence, in macular photocoagulation blue light (blue-green argon laser) will cause unwanted inner retinal damage

2. In older patients – The ageing lens absorbs blue light much more than other light wavelengths.

The shorterwavelength blue lights are also more scattered by aged crystalline lenses.

Page 27: Different types of lasers and laser delivery system

INFLUENCE OF OPACITIES IN THE OCULAR MEDIAUPON LASER PARAMETER (POWER)

• Any opacity in the ocular media such as :

• Reduces energy level of the laser beam striking the retinal surface by reflection, scattering or absorption of the laser beam.

• Hence, the optimum power level should be arrived at by gradually increasing the power to cause optimum coagulation burn for that procedure.

i. corneal edema, ii. corneal haziness,iii. flare and cells in the anterior

chamber

iv. lental opacity andv. vitreous opacity

Page 28: Different types of lasers and laser delivery system
Page 29: Different types of lasers and laser delivery system
Page 30: Different types of lasers and laser delivery system

FOCUSING OF LASER BEAM

Page 31: Different types of lasers and laser delivery system

LASER TISSUE INTERACTION

2. Photoablation

• tissue is removed by light as when intramolecular bonds of biological tissues are broken, disintegrating target tissues and the disintegrated molecules are volatilized.

• In photoablation, temperature rise does not take place.

• At the site of impact, the tissue simply disappears without any charring and temperature rise.

• Surface of the target tissue can be precisely removed, layer-by-layer, in photoablation.

• Photoablation with 193 nm argon fluoride (ArF) ,excimer laser.

Page 32: Different types of lasers and laser delivery system

LASER TISSUE INTERACTION

3. Photodisruption

• The temperature of treated localized microscopic area of tissue is increased from 37°C to 15000°C.

• On optical breakdown at the desired site, electrons are stripped from the atoms of target tissue resulting in development of plasma (collection of ions and electrons)

• This leads to hydrodynamic and acoustic shock wave, which mechanically tears the tissue microscopically.

• Photodisrupter lasers are Q-switched and pulsed Nd YAG laser , frequency-doubled Nd: YAG is commonly used to create a posterior capsulotomy or a peripheral iridotomy.

Page 33: Different types of lasers and laser delivery system

LASER TISSUE INTERACTION

4. Photovaporization

• If laser irradiation higher than those required for photocoagulation is applied to target tissue, rapidly expanding water vapor can cause tissue disruption (photovaporization).

• This results from a microexplosion when the temperature of water rises above the boiling point.

• In these situations, photovaporization is usually accompanied by photocoagulation, providing hemostasis.

• The CO2 laser (10600 nm wavelength irradiation) effectively vaporizes tissues. • Example of clinical use of these lasers are Holmium: YAG or Erbium : YAG laser

sclerostomy.

Page 34: Different types of lasers and laser delivery system

LASER TISSUE INTERACTION

5. Photoradiation

• Hematoporphyrin derivative is selectively taken up and retained by metabolically active tumor tissue.

• In photoradiation, this photosensitized tissue is exposed to 630 nm red lights from a dye laser, producing cytotoxic singlet oxygen and tissue destruction.

• Similarly, Verteporfin preferentially accumulates in choroidal neovascular membrane (CNV).

• In photodynamic therapy the choroidal neovascular membrane is subjected to laser emission from diode (689 nm) with resultant occlusion and thrombosis of the neovascular tissue.

Page 35: Different types of lasers and laser delivery system

LIGHT TISSUE INTERACTIONS

VISIBLE WAVELENGTH : PHOTOCOAGULATION

INFRARED :PHOTODISRUPTION

PHOTOCOAGULATION

ULTRAVIOLET YIELDS :PHOTOABLATION

Page 36: Different types of lasers and laser delivery system

MODES OF OPERATION

Continuous Wave (CW) Laser: It delivers the energy in a continuous stream ofphotons.

Eg: Argon, Krypton lasers, Diode lasers and dye lasers.

Pulsed Lasers: Produce energy pulses of a few micro to milliseconds, takingthe form of alternating ‘on’ and ‘off’ periods.

Eg: Nd YAG, Excimer Laser.

Page 37: Different types of lasers and laser delivery system

MODES OF OPERATION

Q Switched Lasers: Deliver energy pulses of extremely short duration(nanosecond).

Mode-locked Lasers: Emits a train of short duration pulses (picoseconds tofemtoseconds) .

Pulsed pumping: Another method of achieving pulsed laser operation is topump the laser material with a source that is itself pulsed, either throughelectronic charging in the case of flashlamps, or another laser which isalready pulsed.

Page 38: Different types of lasers and laser delivery system

LASER PARAMETERS

• Power = Number of “photons”emitted each second and is expressed in watts (W).

• Exposure time = The duration in second (sec.) the “photons” are emitted in each burn from the laser.

• Spot size = The diameter of the focused laser beam and is expressed in micron (µm). Spot size is usually fixed for treatment of a particular lesion.

Page 39: Different types of lasers and laser delivery system

LASER PARAMETERS

• However, the energy (Power × Exposure time) parameters must be decreased or increased, with the decrease or increase in the spot size parameter.

• The spot size when focused on the retina depends on;

1) Laser Spot Magnification Factor (LSMF) of the laser lens,

2) Spot size selected in the Slit-lamp

3) Refraction of the eye under treatment.

• Energy = Number of”photons”emitted during an exposure of any duration and is expressed in joules (J).

Energy (Joules) = Power (Watt) × Exposure time (Second)

Page 40: Different types of lasers and laser delivery system

LASER DELIVERY

• Laser can be delivered through 3 types of approach :

1. SLIT LAMP BIOMICROSCOPE

2. LASER INDIRECT OPHTALMOSCOPE

3. INTRAOPERATIVE LASER ENDOSCOPE

Page 41: Different types of lasers and laser delivery system

SLIT LAMP BIOMICROSCOPE

• The most common and popular delivery system.

• Laser parameters viz.; power, exposure time and spot size can be changed.

• Binocular and stereoscopic view.

• Fixed distance.

• Standardization of spot size is more accurate.

• Aiming accuracy is good.

Page 42: Different types of lasers and laser delivery system

LASER INDIRECT OPHTHALMOSCOPE

• Argon green and diode lasers are delivered through a fiberoptic cable.

• Ideal for photocoagulation of peripheral retinal breaks and degenerations.Ideal for PRP/scatter photocoagulation of extreme retinal periphery in eyes with rubeosis iridis, PDR, post-CRVO, retinopathy of prematurity etc.

• Ideal for photocoagulation in children under general anesthesia.

• Ideal for photocoagulation in eyes with small pupil, intraocular gas and lental opacities.

Page 43: Different types of lasers and laser delivery system

LASER INDIRECT OPHTHALMOSCOPE

• Unsuitable for focal and or grid laser of macula.

• Spot size is altered by the dioptric strength of the hand held condensing lens and moving a lever on the headset.

• Spot size is also altered by the refractive status of the eye.

• The spot size in a hypermetropic eye is smaller than in an emmetropic eye whereas, the spot size in a myopic eye is larger than in an emmetropic eye.

• In LIO,Retinal spot size = Power of condensing aspheric

lens × Image plane spot size/60

Page 44: Different types of lasers and laser delivery system

LASER INDIRECT OPHTHALMOSCOPE

ADVANTAGES DISADVANTAGES

Wider field(ability to reach periphery).

Difficulty in focusing.

Better visualization and laser application in hazy medium.

Difficulty to standardize spot size

Ability to treat in supine position.(ROP/EUA)

Expensive.

Learning curve

Patient uncoperation

Page 45: Different types of lasers and laser delivery system

INTRAOPERATIVE LASER ENDOSCOPE

• Argon green and diode lasers are delivered through Laser Endoscope during vitrectomy.

• Ideal for photocoagulation of retinal surface neovascularization (NVE), peripheral retinal breaks etc.

• Ideal for photocoagulation of giant retinal tear.

Page 46: Different types of lasers and laser delivery system

LASER LENSES

Page 47: Different types of lasers and laser delivery system

LASER LENSES

Page 48: Different types of lasers and laser delivery system

INDICATIONS FOR LASERS IN POSTERIOR SEGMENT DISORDERS

• Diabetic Retinopathy

• Retinal Vascular Diseases

• Choroidal Neovascularization (CNV)

• Clinical Significant Macular Edema (CSME)

• Central Serous Retinopathy (CSR)

• Retinal Break/Detachment

• Tumour

Page 49: Different types of lasers and laser delivery system

INDICATIONS FOR LASERS IN POSTERIOR SEGMENT DISORDERS

• ARMD

• Retinal Vein Occlusion

• Eale’s Disease

• Coats Disease

• Peripheral Retinal Lesion

• Retinopathy of prematurity.

Page 50: Different types of lasers and laser delivery system

THANK YOU