different energetic descriptions for electromechanical systems

10
Diffcrcn: cncrgctic dc.criptioiis f o r clcctroinccliankd 8y8tcnW 1-JAUTIERJ. P. Different energetic descriptions f o r electromechanical systems A . Bouscayroll, R. Schoenfeld, G . Dauphin-Tanguy G.-H. Geitner2 Guillaud A . Pennamen', J . P. Hautier1 'L2EP Lille, USTL, 59655, Villeneuve d'Acsq cedex France E-Mail: Alain.Bouscayrol(duniv-lillel.fr, URL: http://www.univ-lillel.fr/l2ep/ Institute of Electrical Power Engeering, T U Dresden, Germany E-Mail: [email protected], URL: http:/fwww.eti.et.tu-dresden.de/ae/ae e.htm 3LAGIS Lille, Ecole Centrale de Lilie, 59651 Villeneuve d'Ascq Cedex E-Mail: Genevieve.Dauphin-Tanguy(ec-lille.fr, URL: htp:/Iwww-lagis.univ-lillel f r / Keywords Modelling, Multi-machine system, traction application, Education tool, System engineering Abstract In this paper t h e fraction system o f a n automatic subway i s describedusing several graphical tools: transfer functions, bond-graph, causal ordering graph, power flow diagram a nd energetic macroscopic representation. Th e ai m o f t he paper is t o highlight t h e interest o f each tool for t h e analysis a d h e control o f such a system. I. Introduction A l o t o f modellings a r e available f o r describing electromechanical systems, from t h e physical relationships t o state space t h e classical transfer function schemes o r generalised impedance theory [1]. More recently, ne w graphical tools have been used to suggest other views of these systems. T h e bond graph methodology proposed b y [ 2 ] and developed b y [ 3 ] i s used f o r modelling dynamic systems i n many different physical areas, a n d more particularly electromechanical ones as i n [4]. T h e Causal Ordering Graph h a s been developed 1 0 years ag o t o built control o f electrical systems using inversion rules [5]. Power flow diagram has been more recently developed fo r control purpose of electromechanical systems [6]. Energetic macroscopic representation h a s been developed i n 2000 t o analyse and control systems with several electrical machines [7-8]. T h e ai m o f this paper i s t o highlight the advantages of each o f these modelling tools. Th e same fraction system i s thus modelled using these graphical descriptions. I I . T h e studied traction system T h e fraction system o f a n automatic subway [ 9 ] i s taken a s example (Fig. 1 ) . T h e supply rail delivers a D C voltage t o an embedded filter. T h e D C voltage i s then distributed t o 3 choppers. T w o of them supply t he field windings of two DC machines. T h e armature windings of both machines a r e connected in series an d a r e supplied b y t he last chopper. Each machine i s associated with a bogie. T h e c ar of t h e subway i s moved b y t w o bogies. 1 12 K 2005 - I2'rc.xkn P .1 Diffc,-rm. enefyctLe dc9criptioms f o r systenis HVI2NTI J . P . D E l 2005 - L)i--;c11i ISBN :90-75815-08-5 1>q1

Upload: alexandre-ruer

Post on 10-Apr-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Different Energetic Descriptions for Electromechanical Systems

8/8/2019 Different Energetic Descriptions for Electromechanical Systems

http://slidepdf.com/reader/full/different-energetic-descriptions-for-electromechanical-systems 1/10

D i f f c r c n : c n c r g c t i c d c . c r i p t i o i i s f o r c l c c t r o i n c c l i a n k d 8 y 8 t c n W 1 - J A U T I E R J . P .

D i f f e r e n t e n e r g e t i c d e s c r i p t i o n s f o r e l e c t r o m e c h a n i c a l s y s t e m s

A . B o u s c a y r o l l , R . S c h o e n f e l d , G . D a u p h i n - T a n g u y G . - H . G e i t n e r 2

X . G u i l l a u d A . P e n n a m e n ' , J . P . H a u t i e r 1

' L 2 E P L i l l e , U S T L , 5 9 6 5 5 , V i l l e n e u v e d ' A c s q c e d e x F r a n c eE - M a i l : A l a i n . B o u s c a y r o l ( d u n i v - l i l l e l . f r ,

URL: h t t p : / / w w w . u n i v - l i l l e l . f r / l 2 e p /

Institute o f E l e c t r i c a l P o w e r E n g e e r i n g , TU D r e s d e n , G e r m a n yE - M a i l : g e i t n e r @ e t i . e t . t u - d r e s d e n . d e ,

URL: h t t p : / f w w w . e t i . e t . t u - d r e s d e n . d e / a e / a e e . h t m

3LAGIS L i l l e , E c o l e C e n t r a l e d e L i l i e , 5 9 6 5 1 V i l l e n e u v e d ' A s c q C e d e xE - M a i l : G e n e v i e v e . D a u p h i n - T a n g u y ( e c - l i l l e . f r ,

U R L : h t p : / I w w w - l a g i s . u n i v - l i l l e l f r /

Keywords

M o d e l l i n g , M u l t i - m a c h i n e s y s t e m , t r a c t i o n a p p l i c a t i o n , E d u c a t i o n t o o l , S y s t e m e n g i n e e r i n g

A b s t r a c t

I n t h i s paper t h e f r a c t i o n s y s t e m o f an a u t o m a t i c s u b w a y i s d e s c r i b e d u s i n g s e v e r a l g r a p h i c a l t o o l s :t r a n s f e r f u n c t i o n s , b o n d - g r a p h , c a u s a l o r d e r i n g g r a p h , p o w e r f l o w d i a g r a m a n d e n e r g e t i c macroscopic

r e p r e s e n t a t i o n . Th e aim of the paper i s t o h i g h l i g h t t h e i n t e r e s t of e a c h t o o l f o r t h e a n a l y s i s ad h e

c o n t r o l of s u c h a s y s t e m .

I. I n t r o d u c t i o n

A l o t o f m o d e l l i n g s a r e a v a i l a b l e f o r d e s c r i b i n g e l e c t r o m e c h a n i c a l s y s t e m s , f r o m t h e p h y s i c a lr e l a t i o n s h i p s t o s t a t e space m o d e l s , t h e c l a s s i c a l t r a n s f e r f u n c t i o n s c h e m e s or g e n e r a l i s e d i m p e d a n c et h e o r y [ 1 ] . More r e c e n t l y , new g r a p h i c a l t o o l s h a v e b e e n u s e d t o s u g g e s t o t h e r v i e w s o f t h e s e s y s t e m s .T h e b o n d g r a p h m e t h o d o l o g y p r o p o s e d b y [ 2 ] a n d d e v e l o p e d b y [ 3 ] i s u s e d f o r m o d e l l i n g d y n a m i cs y s t e m s i n many d i f f e r e n t p h y s i c a l a r e a s , a n d m o r e p a r t i c u l a r l y e l e c t r o m e c h a n i c a l ones as in [ 4 ] . T h eC a u s a l O r d e r i n g G r a p h h a s b e e n d e v e l o p e d 1 0 years ago t o b u i l t c o n t r o l o f e l e c t r i c a l s y s t e m s u s i n gi n v e r s i o n r u l e s [ 5 ] . P o w e r f l o w d i a g r a m has b e e n m o r e r e c e n t l y d e v e l o p e d f o r c o n t r o l purpose o fe l e c t r o m e c h a n i c a l s y s t e m s [ 6 ] . E n e r g e t i c m a c r o s c o p i c r e p r e s e n t a t i o n h a s b e e n d e v e l o p e d i n 2 0 0 0 t oa n a l y s e and c o n t r o l s y s t e m s w i t h s e v e r a l e l e c t r i c a l m a c h i n e s [ 7 - 8 ] . T h e a i m o f t h i s paper i s t o

h i g h l i g h t t h e a d v a n t a g e s o f e a c h o f t h e s e m o d e l l i n g t o o l s . T h e s a m e f r a c t i o n s y s t e m i s t h u s m o d e l l e du s i n g t h e s e g r a p h i c a l d e s c r i p t i o n s .

I I . The s t u d i e d t r a c t i o n s y s t e m

T h e f r a c t i o n s y s t e m o f ana u t o m a t i c s u b w a y [ 9 ] i s t a k e n a s e x a m p l e ( F i g . 1 ) . T h e s u p p l y r a i l d e l i v e r s a

DC v o l t a g e t o an e m b e d d e d f i l t e r . T h e DC v o l t a g e i s t h e n d i s t r i b u t e d t o 3 c h o p p e r s . Tw o o f t h e ms u p p l y t h e f i e l d w i n d i n g s o f t w o DC machines. T h e armature w i n d i n g s o f b o t h m a c h i n e s a r e

c o n n e c t e d in s e r i e s a n d a r e s u p p l i e d b y t h e l a s t c h o p p e r . E a c h m a c h i n e i s a s s o c i a t e d w i t h a b o g i e . T h ecar o f the s u b w a y i s moved b y t wo b o g i e s .

1

1 2 K 2 0 0 5 - I 2 ' r c . x k nP . 1

D i f f c , - r m . e n e f y c t L e d c 9 c r i p t i o m s f o r s y s t e n i s H V I 2 N T I J . P .

D E l 2 0 0 5 - L ) i - - ; c 1 1 i I S B N : 9 0 - 7 5 8 1 5 - 0 8 - 5 1 > q 1

Page 2: Different Energetic Descriptions for Electromechanical Systems

8/8/2019 Different Energetic Descriptions for Electromechanical Systems

http://slidepdf.com/reader/full/different-energetic-descriptions-for-electromechanical-systems 2/10

D f f f c r c n : c n c r g c t i c d c . c r i p t i o i i s f o r c l c c t r o i n c c l i a n k d 8 y 8 t c n W 1-JAUTIERJ. P .

T n a c h j < , i\ 3

VDC

7 J 2 e yTillr t < ( L o

t c b - 3

F i g . 1 : P o w e r - s t r a c t w v e o f t he s a b w a y t r a c t i o n s y s t e m

T h e s u p p l y rail d e l i v e r s a c o n s t a n t DC v o l t a g e V . c T h e f i l t e r i s c o m p o s e d o f an i n d u c t o r L J w i t h an

i n t e r n a l r e s i s t a n c e R 1 ; nd a c a p a c i t o r C j . T h e c a p a c i t o r v o l t a g e u f 1 p a n d t h e i n d u c t o r c u r r e n t i j F , > e , . a r e

s t a t e v a r i a b l e s , w h i c h d e p e n d on t h e DC v o l t a g e and t he c h o p p e r c u r r e n t i 0 1 ' P :

[ f dlI Cf d . f t e l U = ' f ' l t e r ' c h o p (1)

L f i t e t c + R r i r i e r = V D C -

T h e f i l t e r v o l t a g e i s d i s t r i b u t e d t o a l l c h o p p e r s t h r o u g h a p a r a l l e l c o n n e c t i o n . A l l s u p p l y v o l t a g e s ar e

t h u s i d e n t i c a l a n d t h e c u r r e n t , i s t h e sum o f c u r r e n t s p r o d u c e d b y t h e t h r e e c h o p p e r s :

J I c l = U 2 = 1 1 3 = u f l / ( r 2~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ( 2 )

t c h o p = i h o p + t c h o p 2 + ' c h o p 3

T h e c h o p p e r no. i can b e m o d e l l e d using a s w i t c h i n g v e c t o r S ± c ; r o p w 0 - f s h q p f l a S C b p ( 0 2 f T a m d a

m o d u l a t i o n f u m c t i o n m 0 h p h 0 ) , w h i c h l i n k s v o l t a g e s a n d c u r r e n t s . T h i s m o d u l a t i o n f u n c t i o n i s a

c o m b i n a t i o n o f s w i t c h i n g f u n c t i o n s w h i c h i n d i c a t e t h e s t a t e o f power s w i t c h e s K j o . i W J A ( s c b o i ' j c W / = I

f o r K c b , p f f q j and O f o r Khop (Ifik c l o s e d ) [ 5 ] :

I ( h o O = m c h r P t t f i l t e r w i t h m = 2 - S c h o p 3 ) 2 and i e { 1 J , 2 , 3 (3)

' c h o p 0 f ) m c h o p ( i ) l l o a d

T h e DC m a c h i n e n o . k h a s t w o w i n d i n g s . T h e a r m a t u r e w i n d i n g l e a d s t o t h e a r m a t u r e c u r r e n t f a r m ( k )

f r o m t h e c h o p p e r v o l t a g e a n d t h e a r m a t u r e e . m . f e w + ( A ) :

Larm(k) t a r r n m ( k ) +R t r - / n ( k ) I a r m ( k ) =t f c h o p ( i ) - C a r n ( k ) With k {I,2}

w i t h L . , 7 ) a n d R t . m p the i n d u c t a n c e a n d r e s i s t a n c e o f t h e a r m a t u r e w i n d i n g m a c h i n e no. k c .T h e f i e l d w i n d i n g l e a d s t o t h e f i e l d c u r r e n t ' i ) ( k ) i n t h e s a m e way, b u t t h e f i e l d e . m f e y k / d r 7 , h a s a z e r o -

v a l u e i f t h e m a c h i n e i s w e l l d e s i g n e d :

dt(5r f e l d ( k ) l dt f i c l e d ( k ) 9 Rf i l d f e l d ( k ) i i r ) ( 5 ) w f ) e Q cdf

w i t h L g 0 , 1 , ( k a n d R j f i u ( L ) the i n d u c t a n c e a n d r e s i s t a n c e o f the f i e l d w i n d i n g .B o t h machines have t h e i r a r m a t u r e w i n d i n g s c o n n e c t e d i n s e r i e s :

I t a r n n l arm2=

i a r m (C e a n n -e ( rm] +e a n t i 2 ( 6)

2

1 2 K 2 0 0 5 - I 2 ' r c . x k nP . 2

D i f f c , - r m . e n e f y c t L e d c 9 c r i p t i o m s f o r s y s t e n i s H V I 2 N T I J . P .

D E l 2 0 0 5 - L ) i - - ; c 1 1 i I S B N : 9 0 - 7 5 8 1 5 - 0 8 - 5 i , . 2

Page 3: Different Energetic Descriptions for Electromechanical Systems

8/8/2019 Different Energetic Descriptions for Electromechanical Systems

http://slidepdf.com/reader/full/different-energetic-descriptions-for-electromechanical-systems 3/10

D i f f c r c n : c n c r g c t i c d c . c r i p t i o i i s f o r c l c c t r o i n c c l i a n k d 8y8tcms1-JAUTIERJ.P.

T h e m o d e l l i n g o f b o t h w i n d i n g s c o n n e c t e d i n s e r i e s i s n o t o b v i o u s ( s e e I I I a n d V ) . F o r some o f t h ep r e s e n t e d t o o l s , a c o n c a t e n a t i o n r u l e f r o m EMR can b e u s e d t o s o l v e t h i s m o d e l l i n g p r o b l e m . A ne q u i v a l e n t a r m a t u r e w i n d i n g i s t h u s d e f i n e d w i t h & r n - R . l m + R a , . n 2 L a r n - L a 1 R n + L a r r n z [ 9 ] :

Latrmiarm + R a r m l a r m= i c h F o p ? -C a r n ( 7 )

T h e e l e c t r o m e c h a n i c a l c o n v e r s i o n no. k g i v e s t he m a c h i n e t o r q u e T . c . m A ) f r o m f i e l d ada r m a t u r e

c u r r e n t s , and armature e.m.f. from the bogie rotation s p e e d

T n i a c h J wachjwld(k)arin(k) E w i t h k m a c j thetorquecoefficient ( 8 )e a n ( k ) = k C m c h i f i c t t ( k ) Q o b g ( - )

In t h i s s t u d y a s i m p l e m e c h a n i c a l t r a n s m i s s i o n i s c o n s i d e r e d . I t l e a d s t o the s u b w a y v e l o c i t y 1bf r o m

t h e b o g i e s p e e d a n d t h e b o g i e f r a c t i o n f o r c e F b 0 ' , a k , f r o m t he m a c h i n e t o r q u e :

Q b o g ( k ) i n b o g v s , d ) w i t h mbogt h e b o g i e r a t i o , ( 9 )F b o g ( A ) = b o g T m a c h ( k )

B o t h f r a c t i o n f o r c e s a r e c o u p l e d t h r o u g h t h e c h a s s i s t o give t h e t o t a l t r a c t i o n f o r c e F ] % :

{FroiE&grl E&:(10)t

=

FlocrI+FMocr2

T h e f u n d a m e n t a l d y n a m i c s r e l a t i o n s h i p y i e l d s t h e s u b w a y v e l o c i t y as s t a t e v a r i a b l e f r o m t h e t r a c t i o nand r e s i s t i v e f o r c e s :

M v (11)

w i t h M t h e m a s s o f t he s u b w a y . T h e s u b w a y e n v i r o n m e n t p r o d u c e s a r e s i s t i v e f o r c e t o t h e m o t i o n F , - 0 9

w h i c h d e p e n d s o n t h e v e l o c i t y s q u a r e a n d o f t h e s l o p e ct .

F 2 (12), , s = a + v ± s u b + Mgsin a

A c l a s s i c a l d e s c r i p t i o n w i t h t r a n s f e r f u n c t i o n s i s g i v e n ( F i g . 2 ) w i t h t h e a s s u m p t i o n s o f c o n t i n u o u s a n dl i n e a r r e l a t i o n s h i p s f o r e a c h c o m p o n e n t . Of course t h e s e a s s u m p t i o n s a r e n o t v a l i d a t e d f o r po w e r

c o n v e r t e r s , m a g n e t i c s a t u r a t i o n and t h e c o n t a c t l a w b e t w e e n t h e w h e e l a n d t he r a i l .

O~~~~~~~~~~~~r<S

Fig. 2 : T r a n r s f r r f i m e t i o n ? d e e s c r i p t i o n of/lie subway traction s y X s t e m

3

1 2 K 2 0 0 5 - I 2 ' r o x k nP . 3

D i f f c , - r m . e n e f y c t L e d c 9 c r i p t i o m s f o r s y s t e n i s H V I 2 N T I J . P .

D E l 2 0 0 5 - L ) i - - ; c 1 1 i I S B N : 9 0 - 7 5 8 1 5 - 0 8 - 5 , i , . 3

Page 4: Different Energetic Descriptions for Electromechanical Systems

8/8/2019 Different Energetic Descriptions for Electromechanical Systems

http://slidepdf.com/reader/full/different-energetic-descriptions-for-electromechanical-systems 4/10

D f f f c r c n : c n c r g c t i c d c . c r i p t i o i i s f o r d c t r o r n e d i a n i e d 8 ) 8 t c n w 1 - J A U T I E R J . P .

I I I . D e s c r i p t i o n u s i n g B o n d - G r a p h

T h e b o n d g r a p h ( B G ) m o d e l l i n g t o o l [ 3 ] , b a s e d o n energy a n d i n f o r m a t i o n f l o w , uses a u n i f o n nn o t a t i o n f o r a l l t y p e s o f p h y s i c a l s y s t e m . P o w e r e x c h a n g e s a r e r e p r e s e n t e d w i t h h a l f arrows ( " b o n d s " )b r i n g i n g a p a i r o f c o n j u g a t e d v a r i a b l e s c a l l e d e f f o r t a n d f l o w w h o s e p r o d u c t i s t h e i n s t a n t a n e o u sp o w e r e x c h a n g e d b e t w e e n e l e m e n t s or s u b s y s t e m s . T h r e e " p a s s i v e " e l e m e n t s r e p r e s e n t energy

d i s s i p a t i o n ( R ) a n d energy s t o r a g e ( I , C ) p h e n o m e n a , t w o " a c t i v e " e l e m e n t s ( S e , S f ) m o d e l p o w e rs u p p l y , and f o u r p o w e r c o n s e r v a t i v e " j u n c t i o n " e l e m e n t s ( 0 , 1 , T F , G Y ) c o n s t i t u t e t h e s t r u c t u r e o f t h em o d e l . C a u s a l i t y i n f o r n a t i o n i s s h o w n up o n e a c h h a l f arro w b y means o f t h e c a u s a l s t o k e d r a w np e r p e n d i c u l a r l y t o t h e b o n d . F i g . 3 s h o w s t h e BG m o d e l o f t h e s u b w a y t r a c t i o n s y s t e m .

i n J h q j MT l A I G Y i TF

R : 1 c - /2$ R: R R:R m1

L ( n c - ° S 1 : t 4 L / l s r vS c AITF I h o 2 1 Al

z / @ { r ' i { r > e r > s(9 t( v 1 ) *

tI ' 7 ~ . C 7'W(ho R: R i w 2& 4 I : L o 2 O

f " k q w -*MTF I l C G Y TE

& w k J I 1-q z

F E / c z o dX

I load

I : t4 1 W

F i g . 3: B o n d - G r a p h d e s c r i p t i o n o f t h e subiway traction s y s t e m

T h e M T F - e l e m e n t s ar e a s s o c i a t e d w i t h the m o d u l a t e d f u n c t i o n mc.r<, o f t h e c h o p p e r s , t h e M GY -e l e m e n t s r e p r e s e n t t h e e l e c t r o m e c h a n i c a l conversion a n d t h e T F - e l e m e n t s t h e c o u p l i n g b e t w e e nr o t a t i o n a l and t a s l a t i o n a l m e c h a n i c a l d o m a i n s .

When a s s i g n i n g t h e c a u s a l i t y , i t appeas t h a t a d e r i v a t i v e c a u s a l i t y has t o b e a s s i g n e d t o o ne o f t h e t w oa r m a t u r e w i n d i n g i n d u c t a n c e s c o n n e c t e d i n s e r i e s ( h e r e o n I L L a r 2 a s r e p r e s e n t e d b y a d a s h e d l i n ec a u s a l s t r o k e ) s h o w i n g up t h e d e p e n d e n c y b e t w e e n t h e c o r r e s p o n d i n g s t a t e v a r i a b l e s . T h econsequence w i l l b e t h e d e r i v a t i o n o f a s t a t e space m o d e l u n d e r ani m p l i c i t f r o m w h i c h n e e d s t h e use

o f a s p e c i f i c s o l v e r f o r s i m u l a t i o n . To a v o i d t h i s p r o b l e m , t h e c o n c a t e n a t i o n o f t h e t w o a r m a t u r e

w i n d i n g s can b e d o n e asp r o p o s e d i n s e c t i o n I a n d s h o w n F i g . 4 .

1c h o p 2_

Z aF !

I : L a

I

earra r r 2

, m r n i + L a r u

F i g . 4 : C o n c a t e n a t i o n o f t h e c a n n a u r e w i n d i n g s

I t i s o ne o f t h e a d v a n t a g e s o f t h e BG m o d e l t o p o i n t o u t g r a p h i c a l l y t h e c a u s a l i t y p r o b l e m s , w h i c h w i l lappear i n t h e m a t h e m a t i c a l e q u a t i o n d e r i v a t i o n or s i m u l a t i o n p h a s e .S t r u c t u r a l a n a l y s i s ( c o n t r o l l a b i l i t y , o b s e r v a b i l i t y , i n v e r t i b i l i t y . . . ) , s i m p l i f i c a t i o n i n m o d e l l i n g , c o n t r o l

l a w d e s i g n i n g a n d d i a g n o s i s p r o c e d u r e s can b e d i r e c t l y p e r f o r m e d o n t h e BG [ 1 0 ] b y m ean s o f

g r a p h i c a lc a u s a l

m a n i p u l a t i o n sa n d

s y m b o l i cc a l c u l u s .

4

1 2 K 2 0 0 5 - I 2 ' r c . x k nP . 4

D i f f c , - r m . e n c f y c & d c 9 c r i p 6 o a s f o r s y s t e m s H V I 2 N T I J . P .

7 - - l

D E l 2 0 0 5 - L ) i - - ; c 1 1 i I S B N : 9 0 - 7 5 8 1 5 - 0 8 - 5 i , . 4

Page 5: Different Energetic Descriptions for Electromechanical Systems

8/8/2019 Different Energetic Descriptions for Electromechanical Systems

http://slidepdf.com/reader/full/different-energetic-descriptions-for-electromechanical-systems 5/10

D i f f c r c n : c n c r g c t i c d c e c r i p t i o i i s f o r d c t r o r n e d i a n i e d 8 ) 8 t c n w 1-JAUTIERJ. P.

I V . D e s c r i p t i o n u s i n g C a u s a l O r d e r i n g Graph

T h e C a u s a l O r d e r i n g G r a p h ( C O G ) [ 5 - 1 1 ] i s a g r a p h i c a l t o o l b a s e d o n t h e i n t e g r a l c a u s a l i t y as t h eo n l y a l l o w a b l e p h y s i c a l c a u s a l i t y [ 1 2 - 1 3 ] . Tw o k i n d s o f r e l a t i o n s h i p s ar e d e f i n e d . A c a u s a l p r o c e s s o r

i s a s s o c i a t e d w i t h e a c h ene rgy s t o r a g e o b j e c t a n d r e p r e s e n t e d b y an e l l i p t i c d r a w i n g w i t h ano r i e n t a t e darrow: t h e o u t p u t ( e f f e c t ) i s an i n t e g r a l consequence o f t h e i n p u t ( c a u s e ) . A b i - d i r e c t i o n a l a r r o w i sa s s o c i a t e d w i t h a d i s s i p a t i v e o b j e c t a n d a l l s o r t o f i n s t a n t a n e o u s r e l a t i o n s h i p s . I n p u t s a n d o u t p u t s o fprocessors ar e k i n e t i c ( f l o w i n BG) o r p o t e n t i a l ( e f f o r t i n BG) v a r i a b l e s . T h e COG o f t h e s t u d i e ds y s t e m i s p r e s e n t e d i n F i g . 5 . S u c h a g r a p h h i g h l i g h t s c a u s a l i t y c h a i n s b e t w e e n v a r i a b l e s o f c o n n e c t e de l e m e n t s : t h e a d j u s t m e n t c h a i n from t h e c h o p p e r o r d e r s S C r o p ( i ) t o t he t r a i n v e l o c i t y v t . As COG o f ane l e m e n t i s o n l y f o c u s e d o n i t s i n p u t s a n d o u t p u t , i t s e n a b l e s a more s y n t h e t i c d e s c r i p t i o n t h a n c l a s s i c a lt r a n s f e r f u n c t i o n ( s e e F i g . 2 ) . M o r e o v e r G O C a l l o w s u n i f o r m r e p r e s e n t a t i o n o f d i f f e r e n t s u b s y s t e m s( e l e c t r i c a l , m e c h a n i c a l , l i n e a r , n o n - l i n e a r , c o n t i n u o u s , d i s c r e t e . . . ) .

* l i e

icbop2Fv

*~~ ~ ~ ~~m8 L ,4 E

mchop reA

\ . 14 ) (13) .

Uc 9 o p . S _ re f li e/ d 2 ref

F i g . 5 : CO G d e s c r i p t i o n o f t h e s u b w a y t r a c t i o n s y s t e m

T h e c o n t r o l o f a s y s t e m i s c o n s i d e r e d a s an i n v e r s i o n o f i t s a d j u s t m e n t f u n c t i o n o f t h e p o w e r , b e c a u s ei t h a s t o p r o v i d e t h e i n p u t s o f t h e s y s t e m & b o h p ( from i t s r e f e r e n c e o u t p u t v < , , , , . & T h i s c o n t r o lm e t h o d o l o g y i s e x t e n d e d t o e a c h processor. T h e d i r e c t i n v e r s i o n o f an i n t e g r a l c a u s a l p r o c e s s o r

m u s t n ' t b e o b t a i n e d b y means o f a d e r i v a t i v e o p e r a t i o n ( i n t h e CO G m e t h o d o l o g y ) b u t t h r o u g h a

c o n t r o l l e r f r o m t h e e r o r b e t w e e n t h e o u t p u t o n i t s r e f e r e n c e ( o f t e n P I c o n t r o l l e r or c o n t r o l l e r w i t h a

s p e c i f i c f i m c t i o n ) . F o r e x a m p l e t h e v o l t a g e r e f e r e n c e 1cspibr& i s o b t a i n e d f r o m i j i r t h r o u g h a

c u r r e n t c o n t r o l l e r t o i n v e r t ( 5 ) :

( c h o p ( i )CLICi( ref- '/eld(i)mes] with CfXrnerXreI

controllerofX(13)

O n t h e o t h e r h a n d , b i d i r e c f i o n a l r e l a t i o n s h i p s can b e d i r e c t l y i n v e r t e d . F o r e x a m p l e m n h p q k _ r e j r e f e r e n c ei s o b t a i n e d f r o m t h e v o l t a g e r e f e r e n c e Ucrepand t h e f i l t e r v o l t a g e b y a d i r e c t i n v e r s i o n o f ( 3 ) :

- n . l l r e t . f-_ 1 t c h o p _ 2 r e f (14)

U f i l 1 e r _ u m e s

T h e COG i n v e r s i o n o f t h ese b o t h r e l a t i o n s h i p s ar e p r e s e n t e d i n t h e l o w e r p a r t o f F i g . 5 . T h e s e r u l e scan b e a p p l i e d a l l a l o n g t h e a d j u s t m e n t c h a i n t o d e f i n e t h e c h o p p e r s orders & , p a f r o m t h e s u b w a yv e l o c i t y r e f e r e n c e v , , T h i s s p e c i f i c d e s c r i p t i o n l e a d s t o a u t o m a t i c d e d u c t i o n o f t h e s y s t e m c o n t r o land d e f i n e s c a s c a d e d c o n t r o l l o o p s . S u c h as a g l o b a l c o n t r o l i s a l s o p r o v i d e d b y t h e EMR t o o l ( s e c t i o nV ) , t h e g l o b a l c o n t r o l COG o f t h e subway t r a c t i o n s y s t e m i s n o t p r e s e n t e d i n t h i s s e c t i o n .

5

E l K 2 0 0 5 - I 2 ' r c e d c n ISBNI t s

D i f f c , - r m . e n c f y c & d c 9 c r i p 6 o a s f o r s y s t e m s H V I 2 N T I J . P .

D E l 2 0 0 5 - L ) i - - ; c 1 1 i I S B N : 9 0 - 7 5 8 1 5 - 0 8 - 5 I " f

Page 6: Different Energetic Descriptions for Electromechanical Systems

8/8/2019 Different Energetic Descriptions for Electromechanical Systems

http://slidepdf.com/reader/full/different-energetic-descriptions-for-electromechanical-systems 6/10

D i f f c r c n : c n c r g c t i c d c . c r i p t i o i i s f o r e l e c t r o m e c h a n i c a l a y a t c m n HAUTIERJ. P.

V . D e s c r i p t i o n u s i n g Power F l o w D i a g r a m

T h e P o w e r F l o w D i a g r a m ( P H D ) [ 6 ] w a s d e v e l o p e d t o s t u d y t h e f l o w o f p o w e r a n d t h e energy

e f f i c i e n c y [ 1 4 ] i n e l e c t r o m e c h a n i c a l s y s t e m s . U n l i k e P o w e r - O r i e n t e d G r a p h s ( P O G ) [ 1 5 ] w h i c hr e p r e s e n t r e m o d e l e d t r a n s f e r f u n c t i o n d e s c r i p t i o n s w i t h ana s s i g n m e n t o f t h e a p p l i e d b l o c k s t o o ne o f

t h e groups " e l a b o r a t i o n " o r " c o n n e c t i o n " PFD d e f i n e s i t s own s y m b o l i s m i n c l u d i n g s o u r c e / d r a i n ,s t o r a g e / l o s s a n d c o n v e r t e r / t r a n s f o r m e r e l e m e n t s o f power. c o m p a r i s o n w i t h t r a n s f e r f u n c t i o n

d e s c r i p t i o n s PFD d o e s n o t d e s t r o y t h e p h y s i c a l s t r u c t u r e a n d d o e s n o t sunimanse consumer and

s t o r a g e e f f e c t s b y d e f i n i t i o n o f t i m e c o n s t a n t s . PFD o f f e r s t h e a d v a n t a g e o f a d e t a i l e d g r a p h i c a ld e s c r i p t i o n o f t h e energy d i s t r i b u t i o n a s s o c i a t e d w i t h c l a s s i c a l v i s i b l e r e p r e s e n t a t i o n o f t h e sum o fp o w e r s i g n a l s a s w e l l a s us e o f b l o c k s y m b o l s . C o n t r o l i n p u t s f o r s o m e e l e m e n t s l i k e energyt r a n s f o r m e r or converter e n a b l e t h e c o n s i d e r a t i o n o f n o n - l i n e a r i t i e s . T h e r e b y u n d e r l i e s a s an e s s e n t i a lf u n d a m e n t a l i d e a t h e f o r m u l a t i o n o f s t o r a g e e l e m e n t e q u a t i o n s u s i n g i n t e g r a l o p e r a t i o n s a s known

f r o m BG a n d COG. I n c o m p a r i s on t o BG f i e l d s or v e c t o r s a r e n o t d e f i n e d . S u b s y s t e m s a r e p o s s i b l e in

p r i n c i p l e . T h e P o w e r F l o w D i a g r a m d e s c r i p t i o n o f t h e s t u d i e d t r a c t i o n s y s t e m i s g i v e n in F i g . 6 . T h i sp r e s e n t a t i o n p o i n t s o u t energy s t o r a g e s a n d consumers.

L , l t t . a l t ~ ~ ~ ~7a

; rt 1 T , z F s i

~ ~ 2 o & ?

F i g . 6 : Power Flo-w d e s c r i p t i o n o f t h e subiway traction system

T h e t n s m i s s i o n o f similar v a l u e s ( e . g . c a p a c i t o r v o l t a g e ) r e s p e c t i v e l y t h e c o m p u t a t i o n o f d i f f e r e n tv a l u e s ( e . g . c h o p p e r c u r r e n t s ) i s c l e a r l y e x p r e s s e d . E n e r g y d o m a i n s a r e m a r k e d b y d i f f e r e n t g e o m e t r i ct r a n s f o r m e r s y m b o l s ( e l e c t r i c : r e c t a n g u l a r , m e c h a n i c : t r i a n g u l a r ) . F i g . 7 d e m o n s t r a t e s t h i s b y a d e t a i lv a r i a t i o n o f t h e s u g g e s t e d e x a m p l e . Tw o m o t o r s i n s e r i e s o p e r a t i o n c an b e c o m p a r e d w i t h t wo m o t o r sin p a r a l l e l o p e r a t i o n . B e c a u s e o f t h e n o n - l i n e a r i t y o f t h e w h e e l - r a i l - f o r c e t r a n s m i s s i o n i t i s i m p o r t a n t

t o s t u d y t h e s t a b i l i t y o f t h e t o t a l e l e c t r o m e c h a n i c a l s y s t e m . F u r t h e r m o r e t h i s n o n - l i n e a r i t y causes t h en e c e s s i t y o f a p o s s i b i l i t y t o c o n t r o l t h e t w o m o t o r s b y i n d e p e n d e n t c h o p p e r s .

I t sy2 6( S S a r m

F i g . 7 : S i m i p l i f i e d PFDfor a d e t a i l v a r i a t i o n

(c ompa rison o f p a r a l / e / and seria/ c o n n z e c t i o n r o f t h e m o t o r s -w i l h o u t f e l d s t i p p l y and l o s s e s )

6

h U E 2 0 0 5 - I 2 ' r c . x k n ISBN 90-75815-08-5P . 6

D i f f c , - r m . e n e f y c & d c 9 c r i p 6 o a s f o r c l o = m c c h , , u i i c d s y s t e n i s H V I 2 N T I J . P .

D E l 2 0 0 5 - L ) i - - ; c 1 1 i I S B N : 9 0 - 7 5 8 t 5 - 0 8 - 5 , i , . 6

Page 7: Different Energetic Descriptions for Electromechanical Systems

8/8/2019 Different Energetic Descriptions for Electromechanical Systems

http://slidepdf.com/reader/full/different-energetic-descriptions-for-electromechanical-systems 7/10

D f f f c r c n : c n c r g c t i c d c . c r i p t i o i i s f o r d c t r o r n e d i a n i e d 8 ) 8 t c n w 1 - J A U T I E R J . P.

V I . D e s c r i p t i o n u s i n g E n e r g e t i c M a c r o s c o p i c R e p r e s e n t a t i o n

T h e E n e r g e t i c M a c r o s c o p i c R e p r e s e n t a t i o n ( E M R ) i s a g r a p h i c a l t o o l b a s e d o n t h e a c t i o n - r e a c t i o np r i n c i p l e [ 7 - 8 ] . S p e c i f i c p i c t o g r a m s ar e a s s o c i a t e d t o e a c h power component d e p e n d i n g on t h e i r powerf i n c t i o n : energy a c c u m u l a t i o n ( r e c t a n g l e w i t h o b l i q u e b a r ) , c o n v e r s i o n w i t h o ut energy a c c u m u l a t i o n

( s q u a r e f o r e l e c t r i c a l c o n v e r s i o n , c i r c l e f o r e l e c t r o m e c h a n i c a l c o n v e r s i o n , t r i a n g l e f o r m e c h a n i c a lc o n v e r s i o n ) , i n t e r l e a v e d f o r m s f o r energy d i s t r i b u t i o n . T h e EMR o f t h e s t u d i e d s y s t e m i s given m the

upper p a r t o f F i g . 8 ( w i t h m o d e l l i n g r e l a t i o n s h i p n u m b e r s i n b r a c k e t s ) . N o t i c e t h a t t h e c o n c a t e n a t i o nr u l e ( 7 ) as b e e n u s e d t o s o l v e t h e s e n r e s c o n n e c t i o n p r o b l e m [ 9 ] . T h i s d e s c r i p t i o n p o i n t s o u t t h ec o u p l i n g d e v i c e s , w h i c h d i s t r i b u t e energy. I t h a s b e e n s h o w n t h a t t h e s e c o m p o n e n t s ar e k e y o f energy

management i n s u c h s y s t e m s [ 1 6 ] .

c l h o p p e r s ( 3 ) s e r i e s c o i u e c t i o n ( 6 ) b o g i e s (9 )

p v a 1 e l c o n n e c 4 i o n ~ w i n d i n g s (§Q> < i n a c U n z e s ( % 8 ) chassis ( 1 0 , 11

c f i l t e r - ( 1 ) - > U c h c ~ o P f e n v i A L /

r a i l / >F,bPogI

i p

VDC ~F tor

ES MS

i c h opc h o p 2

1 i ' [ A ~ ~ U l f t ? tk%p3 IC&I

EMCS

mI-.

r ~ ~~~____________

- ~ ~ ~ ~ ~ ~ ~ ~ ~ k R 2 1 e 7Tdo,0 ; R2T{712_ef

U c h / o p 2 Z r t c r r r f f 2 t re st _

i a r n l kR I

co n l / r o l l e r - c n J . . . f 4 t o g ? _ ef

U&rnpi _rf t / h / d / _ S

Fig. 8 : EMRd e s c r z i p i o n o f hesubway tract io n s y s t emn d d e d u c e d M a f v i m u contro! struc u r e e

A Maximum C o n t r o l S t r u c t u r e ( M C S ) c an b e d e d u c e d f r o m EMR using i n v e r s i o n r u l e s f r o m COG.C o n t r o l l e r s a r e t h u s r e q u i r e d t o i n v e r t a c c u m u l a t i o n e l e m e n t s . M o r e o v e r , i n v e r s i o n s o f c o u p l i n gd e v i c e s r e q u i r e c r i t e r i o n c o e f f i c i e n t s . F o r e x a m p l e , t h e b o g i e s f o r c e r e f e r e n c e s F E o y g i r e f a n d F b o g z r e f a r e

d e d u c e d f r o m t h e t o t a l f o r c e r e f e r e n c e Ftorg b y ani n v e r s i o n o f ( 9 ) u s i n g a r e p a r t i t i o n c o e f f i c i e n t k R I :

F t f = k R . t o t t f [k ( 1 5 )

(I-kRI ) F ( o ( _ r c

S u c h a c o n t r o l s t r u c t u r e l e a d s t o a maximum o f c o n t r o l o p e r a t i o n s a n d m e a s u r e m e n t s . T h e M CS o f t h es t u d i e d s y s t e m ( l o w e r p a r t o f F i g . 8 ) owns 4 c o n t r o l l e r s , 8 m e a s u r e m e n t s and 4 c r i t e r i o n c o e f f i c i e n t s .I n a s e c o n d s t e p s i m p l i f i c a t i o n s a n d e s t i m a t i o n s o f n o n - m e a s ur e d v a r i a b l e s can b e m a d e . T h e a c t u a lc o n t r o l o f t h i s s y s t e m can b e f o u n d w i t h t h i s m e t h o d o l o g y [ 9 ] a n d o t h e r o r i g i n a l c o n t r o l s a r e d e d u c e d

w i t h o t he r s i m p l i f i c a t i o n s a n d s p e c i f i c c r i t e r i o n c o e f f i c i e n t s i n o r d e r to i m p r o v e p e r f o r m a n c e s [ 1 7 ] .

7

1 2 K 2 0 0 5 - I 2 ' r c . x k nP H

D i f f c , - r m . e n c f y c & d c 9 c r i p 6 o a s f o r s y s t e m s H V I 2 N T I J . P .

D E l 2 0 0 5 - L ) i - - ; c 1 1 i I S B N : 9 0 - 7 5 8 1 5 - 0 8 - 5 P . 7 X

Page 8: Different Energetic Descriptions for Electromechanical Systems

8/8/2019 Different Energetic Descriptions for Electromechanical Systems

http://slidepdf.com/reader/full/different-energetic-descriptions-for-electromechanical-systems 8/10

D f f f c r c n : c n c r g c t i c d c . c r i p t i o i i s f o r d c t r o r n e d i a n i e d 8 ) 8 t c n w 1 - J A U T I E R J . P .

V I . D i s c u s s i o n

V I .1 Common p r o p e r t i e s o f the p r e s e n t e d tools

E v e n t h o u g h t h e i r own g r a p h i c r u l e s a n d v o c a b u l a r y , t h e s e d e s c r i p t i o n s h a v e a l o t o f common p o i n t sb e c a u s e t h e y h a v e b e e n d e v e l o p e d i n a c y b e r n e t i c a p p r o a c h , w h i c h c o n s i d e r s a w h o l e s y s t e m b e i n gc o m p o s e d o f i n t e r d e p e n d e n t s u b s y s t e m s . O n the c o n t r a r y o f t h e c l a s s i c a l r e d u c t i o n i s m m e t h o d o l o g y ,t h e s y s t e m s t u d y m u s t n o t b e d e c o m p o s e d i n s e p a r a t e d s t u d i e s o f e a c h c o m p o n e n t . T h e s e r i e s

c o n n e c t i o n o f a r m a t u r e s w i n d i n g s ( 6 ) i s a g o o d i l l u s t r a t i o n : i n d e p e n d e n t s t u d i e s o f two m a c h i n e s u s i n gi n t e g r a l c a u s a l i t y can n o t b e m a d e a s u n d e r l i n e d b y BG a n a l y s i s o r EMR c o n c a t e n a t i o n n u l e .

A l l t h e s e d e s c r i p t i o n s a r e b a s e d o n e n e r g e t i c c o n s i d e r a t i o n s ( T a b l e 1 ) . In BG t h e p o w e r f l o w s ar e

e x p l i c i t l y h i g h l i g h t e d b y b o n d s . Two k i n d s o f v a r i a b l e s ar e f o u n d : f l o w ( B G , P F D ) or k i n e t i c ( C O G ,EMR) v a r i a b l e s a n d e f f o r t ( B G , PFD) or p o t e n t i a l ( C O G , EMR) v a r i a b l e s . T h e power e x c h a n g e d b yc o n n e c t e d e l e m e n t s i s t h e p r o d u c t o f a f l o w / k i n e t i c v a r i a b l e b y ane f f o r t / p o t e n t i a l v a r i a b l e .

K e y e l e m e n t s a r e energy s t o r a g e e l e m e n t s , w h i c h g e n e r a l l y i n d u c e s t a t e v a r i a b l e s . I n BG a n d P F D ,

k i n e t i cor

p o t e n t i a l s t o r a g ea r e

d i f f e r e n t i a t e d ( e .g .

e l e m e n t Ior

C i n B G ) . I n CO G a n d E M R , t h e r e i sno d i f f e r e n c e b e t w e e n energy s t o r g e , b u t t h e s e e l e m e n t s a r e a t t h e o r i g i n o f the w h o l e o f t h ec a u s a l i t i e s o f t h e s y s t e m . M o r e o v e r i n COG a n d EMR, t h e y i n d u c e c o n t r o l l e r s u s i n g i n v e r s i o n r u l e s .

A l l t h e s e r e p r e s e n t a t i o n s e n a b l e a u n i f o r m d e s c r i p t i o n o f s y s t e m c o m p o s e d o f m u l t i d i s c i p l i n a r ys u b s y s t e m s a s p r e s e n t e d b y t h e s u b w a y t r a c t i o n a p p l i c a t i o n . BG i s w e l l known f o r d e s c r i p t i o n o fc o m p l e x a n d n o n - u n i f o r m s y s t e m s . T h e o t h e r t o o l s h a v e b e e n d e v e l o p e d m o r e r e c e n t l y a n d a r e

f o c u s e d o n e l e c t r i c a l e n g i n e e r i n g s y s t e m s , b u t e x t e n s i o n s t o o t h e r s d o m a i n s can b e e a s i l y m a d e .

V I . 2 . S p e c i f i c i t i e s o f e a c h g r a p h i c a l t o o t

T h e s p e c i f i c i t i e s o f e a c h t o o l a r e d i s c u s s e d in t h i s p a r a g r a p h a c c o r d i n g t o t h e t r a c t i o n s u b s y s t e m

e x a m p l e . B u t o t h e r p r o p e r t i e s can b e f o u n d in o t h e r s t u d i e s .

Bond G r a p h I n c o m p a r i s o n w i t h o t h e r t o o l s , BG d e s c r i b e s t h e s y s t e m w i t h t h e e x a c t n u m b e r o fs u b s y s t e m s . F o r e x a m p l e , b o t h a r m a t u r e w i n d i n g s a r e r e p r e s e n t e d using t h e d e r i v a t i v e c a u s a l i t y . T h ec o n n e c t i o n p r o b l e m o f s u b s y s t e m s i s t h u s h i g h l i g h t e d a n d can b e s o l v e d b y d i f f e r e n t wa y s i n a s e c o n ds t e p . W i t h t h e o t h e r t o o l s the c o n c a t e n a t i o n r u l e h a s b e e n u s e d i n t h e f i r s t s t e p a n d a f i c t i v e e q u i v a l e n tw i n d i n g i s i m p l i c i t l y d e f i n e d . T h e BG m o d e l r e p r e s e n t s t h e p h y s i c a l s t r u c t u r e o f t h e a c t u a l p r o c e s s .

Power F l o w D i a g r a m PFG organises s i g n a l f l o w s b e t w e e n c o n n e c t e d s u b s y s t e m s w i t h i m p l i c i tpo w e r f l o w . I n comparison w i t h COG a n d EMR ( o t h e r s i g n a l f l o w d e s c r i p t i o n s ) , i t p o i n t s o u t

d i s s i p a t i v e e l e m e n t s , w h i c h a r e energy consumers. A n e f f i c i e n c y s t u d y i s t h u s i m m e d i a t e u s i n g P H D .M o r e o v e r , r e l a t i o n s h i p s b e t w e e n s i g n a l v a r i a b l e s ar e more e x p l i c i t b e c a u s e t h e s i g n s o f t h e i r a d d i t i o na r e p u t o n t h e d i a g r a m . T h i s p r o p e r t y can b e u s e f u l i n reverse o p e r a t i o n .

C a u s a l O r d e r i n g G r a p h B e c a u s e CO G uses o n l y t w o k i n d s o f p r o c e s s o r s a n d i n t e g r a l c a u s a l i t y , a

s y s t e m a t i c c o n t r o l can b e d e d u c e d f r o m t h e m o d e l l i n g g r a p h . CO G i s t h u s a d e d i c a t e d g r a p h i c a l t o o lf o r c o n t r o l purpose. I t i n d i c a t e s w h e r e m e a s u r e m e n t s h a v e t o b e made a n d c o n t r o l l e r s t o b e l o c a t e d .C a s c a d e d l o o p c o n t r o l s a r e f o u n d b y u s i n g i n v e r s i o n r u l e s . A s CO G i s f o c u s e d o n i n p u t s , o u t p u t s a n di n t e r n a l c a u s a l i t y o f p r o c e s s o r s , o t h e r p r o p e r t i e s a s d i s s i p a t i v e c o m p o n e n t s a r e n o t p o i n t e d o u t .

E n e r g e d e M a c r o s c o p i c R e p r e s e a d t i o n EMR f o c u s e s t h e m o d e l l i n g o n c o u p l i n g d e v i c e s , w h i c hd i s t r i b u t e e n e r g y . A s s o c i a t i o n r u l e s h a v e b e e n d e f i n e d f o r e l e m e n t c o n n e c t i o n ; t h e s e r u l e s can l e a d t og l o b a l f i c t i v e e q u i v a l e n t e l e m e n t . By an e x t e n s i o n o f COG i n v e r s i o n r u l e s , EMR h i g h l i g h t s t h e

n e c e s s i t y f o r i n t r o d u c i n g ene rgy d i s t r i b u t i o n c r i t e r i ain

c o n t r o lstuctures.

Because i t l e a d st o

m a c r o s c o p i c d e s c r i p t i o n o f t h e w h o l e s y s t e m , o t h e r p r o p e r t i e s o f t h e s y s t e m a r e n o t p o i n t e d o u t .

8

1 2 K 2 0 0 5 - I 2 ' r c . x k nI t S

D i f f c , - r m . e n c f y c & d c 9 c r i p 6 o a s f o r s y s t e m s H V I 2 N T I J . P .

D E l 2 0 0 5 - L ) i - - ; c 1 1 i I S B N : 9 0 - 7 5 8 1 5 0 8 - 5 n > s

Page 9: Different Energetic Descriptions for Electromechanical Systems

8/8/2019 Different Energetic Descriptions for Electromechanical Systems

http://slidepdf.com/reader/full/different-energetic-descriptions-for-electromechanical-systems 9/10

D f f f c r c n : c n c r g c t i c d c . c r i p t i o i i s f o r c l c c t r o i n c c l i a n k d 8 y 8 t c n W 1 - J A U T I E R J . P .

T a b l e G r a p h i c a l d i / j e r e n c e f o r en e rg y c o n n e c t i o n

BG COG PFD I EMR

I > 1 = - 2 -= n r 1 U 2 = 1 U

P a r a l l e l c o n n e c t i o n e x a m p l e o f ( 2 ),= 0 t c h o p = i c h o p I +

i c h o p 2+ i c h o o p s

U f i l t e r t t l l c 2 h p l t P 1 c 1 c o p

c l ' c h o P I O W r t c h o p 2 tcbop ± 1 , o I c h o p 3i e h o p 3 U - 3 ~ ~ ~ ~ 1 L W J 3 c h p

L 5 c h o p 3 t c h o p 3

S e r i e s c o n n e c t i o n t l e x a m p l e o f ( 6 ) { = 1 a 7 2 a r m

rrrn I l k 1 1 0 1e _

e a r e 0 7 ? 1 ±

l i 1 a l f a n r o w i f o r p o w i e r f l o w a r r o w f o r s i g n a l u 1 flw ( i . e . e f f o r t / p o t e l i t i a l o r f l u x / k - i l e t i c v F a r i a b l e s )s t r o k e f o r v a r i a b l e , c a t i s a l i t y e x p l i c i t v a r i a b l e c a u s a l i t y

e x p l i c i t p o w e r f l o w i m n p l i c i t p o w e r f l o w ( p r o d u c t o f e f f o r t p o t e n t i a l v a d a b l e w i t h f l u x / 1 - h e t i c v a r i a b l e }

e x p l i c i t v & d i a b l e r e l a t i o n s ( l ) i m n p l i o i t v a r i a b l e r e l a t i o n s e x p l i c i t v m a i a b l e r e l a t i o n s | i m n p l i o i t v a r i a b l e r e l a t i o n s

i m n p l i c i t e n e r g y d i s t r i b u t i o n ( 2 ) e x p l i c i t e n e r g y d i s t r i b u L t i o n

s a m e v a r i a b l e s e v e r a l t i m i e s ( 3 2 s a m e v a r i a b l e a p p e a r s o n c e ( e x p l i c i t s i g n a l d i s t r i b u t i o l ) s a m e v a r i a b l e s e v e r a l t i m e s

e x p l i c i t c o n n e c t i o n d i f f e r e n c e | n o d i f f e r e n c e b e t w e e n c o n u n o n f l o N v / k i n e t i c o r e f f o r t / p o t e n t i a l c o n t n e c t i o n

( 1 ) BO a n d PFD e x p l i c i t l y i n d i c a t e t h e r e l a t i o n s h i p s b e t w e e n v a r i a b l e s o f c o n n e c t e d e l e m e l t s .( 2 ) F o r BG j u n c t i o n can i n c t i c a t e energy d i s t r i b u t i o n o r j u s t s e v e r a l c o m p o n e n t s c o n n e c t e d t o t h e s a m n e p o i n t( 3 ) F o r BO a n d EMR t h e s a m e v a r i a b l e c an appears s e v e r a l t i m e s a t d i f f e r - e n t l o c a t i o n s .

V I . 3 co-operat ion o f t h e p r e s e n t e d t o o l s

A n o t h e r way t o c o n s i d e r t h e s e g r a p h i c a l t o o l s c o u l d b e t o us e them i n c o - o p e r a t i o n . F o r e x a m p l e , BGo f t h e t r a c t i o n s y s t e m c o u l d b e f i r s t l y u s e d t o p o i n t o u t c o n n e c t i o n p r o b l e m s a n d t o a n a l y z e c o n t r o lp r o p e r t i e s ( c o n t r o l l a b i l i t y , o b s e r v a l i b i t y . . . ) . In a s e c o n d s t e p , PFD c o u l d b e u s e d t o a c h i e v e an e n e r g y

e f f i c i e n c y s t u d y o f t h e w h o l e s y s t e m . In t h i r d s t e p , EMR can l e a d t o a g l o b a l c o n t r o l s t r u c t u r e w i t h

energy c r i t e r i a . F i n a l l y , CO G c o u l d b e u s e d t o d e f i n e s p e c i f i c c o n t r o l o f l o c a l p a r t as t h e w h e e l c o n t a c t

l a w . O f course e a c h t o o l can a c h i e v e s e v e r a l o f t h e s u g g e s t e d s t e p s . In f u n c t i o n o f the d e d i c a t e da p p l i c a t i o n t wo or t h r e e t o o l s c o u l d b e u s e d .

A s i t can b e seen in T a b l e 1 , i t s e e m s easy t o d e s c r i b e t h e s a m e s y s t e m w i t h o ne or t h e o t h e r g r a p h i c a lr e p r e s e n t a t i o n . I t would b e i n t e r e s t i n g t o a n a l y s e s u b - s y s t e m s w i t h d i f f e r e n t t o o l s , i n a c c o r d a n c e w i t h

t h e aims o f t h i s m o d e l l i n g : c o n t r o l , a n a l y s i s and u n d e r s t a n d i n g o f p o w e r f l o w s , s t r u c t u r e d e t a i l s ,c o m p l e x i t y . A g l o b a l s t u d y u s i n g s e v e r a l t o o l s c o u l d b e t h u s p o s s i b l e .

9

1 2 K 2 0 0 5 - I 2 ' r c . x k nP . 9

D i f f c , - r m . e n e f y c t L e d c 9 c r i p t i o m s f o r s y s t e n i s H V I 2 N T I J . P .

D E l 2 0 0 5 - L ) i - - ; c 1 1 i I S B N : 9 0 - 7 5 8 1 5 - 0 8 - 5 1 ' . 9

Page 10: Different Energetic Descriptions for Electromechanical Systems

8/8/2019 Different Energetic Descriptions for Electromechanical Systems

http://slidepdf.com/reader/full/different-energetic-descriptions-for-electromechanical-systems 10/10

D f f f c r c n : c n c r g c t i c d c . c r i p t i o n s f o r e l e c t r o m e c h a n i c a l 8 y 8 t c m s 1 - J A U T I E R J . P .

C o n c l u s i o nThe same t r a c t i o n s y s t e m i s m o d e l l e d u s i n g d i f f e r e n t d e s c r i p t i o n t o o l s . T h e y ar e a l l b a s e d o n energetic

c o n s i d e r a t i o n s in a s y s t e m i c p h i l o s o p h y . T h e y j u s t s u g g e s t d i f f e r e n t g r a p h i c a l d e s c r i p t i o n s o f the s a m e

m o d e l l i n g r e l a t i o n s h i p s , i n o r d e r t o g r a p h i c a l l y p o i n t o u t o ne or s e v e r a l c h a r a c t e r i s t i c s o f t h e s y s t e m .F o r t h e s e r e a s o n s , t h e y g i v e a n o t h e r g l o b a l v i e w o f s y s t e m i n c o m p a r i s o n w i t h c l a s s i c a l t o o l s as

t r a n s f e r f u t n c t i o n s or s t a t e space m o d e l s . I t s e e m s i m p o r t a n t t o s e t o n e s e l f t h e a i m s o f t h e c h o s e nm o d e l l i n g a n d o ne p r o m i s i n g t r a c k i s m a y b e t h e " m u l t i - t o o l s d e s c r i p t i o n " .

R e f e r e n c e s

[ 1 ] S . E . G a y , J . Y . R o u t e x , M. E h s a n i , " S t ud y o f H y b r i d E l e c t r i c V e h i c l e D r i v e T r a i n D y n a m i c s U s i n gG y m t o r - B a s e d E q u i v a l e n t C i r c u i t M o d e l i n g " , 2 0 0 2 S AE W o r l d C o n g r e s s , D e t r o i t ( M I ) M a r c h 4 - 7 , 2 0 0 2 ,S AE # 2 0 0 2 - 0 1 - 1 0 8 3 .

[ 2 ] H . P a y n t e r , Analysis a n d d e s i g n o f e n - g i n e e r - i n - g s y s t e m s , M IT P r e s s , 1 9 6 1 .

[ 3 ] D . K a n o p p , R i R o s e n b e r g , S y s t e m n d y n a m i c s : a u n i f i e d a p p r o a c h . , J . W i l e y & s o n s , 1 9 7 5

[ 4 ] G . G a n d a n e g a r a , B . S a r e n i . X . R o b o a m , G . D a u p l h i n - T a n g u y . " B o n d g r a p h multi-time s c a l e a n a l y s i s o f a

r a i l w a y t m e t i o n s y s t e m " , E P E , 200I, G r a z , A u g u s t 2 0 0 1 .

[ 5 ] X . G i t l a u d , P . D e g o b e r t , J . P . H a u i e r , " M o d e l i n g , c onto l a n d c a u s a l i t y : the C a u s a l O r d e r i n g G r a p h ' ,1 6 t h JVACS W o r l d C o n g r e s s , CD-ROM, L a u s a n n e ( S w i t z e r l a n d ) , A u g s t 2 0 0 0 .

[ 6 ] R i S e l l 6 l h f e l d , G . f l . G e i t n e r , " P o w e r f l o w a n d i n f o r m a t i o n f l o w i n m o t i o n c o n t r o l s y s t e m s " , E P E I - P E M C ,R i g a , S e p t e m b e r 2 0 0 4 .

[ 7 ] A . B o u s c a y r o l , B . D a v a t , B . d e F o r m e l , B . F r a n g o i s , J . P . H a u t i e r , F . M e i b o d y - T a b a r , M . P i e t r z a k - D a v i d ,M s M u l t i m a c h i i e M u l t i c o n v e d e r S y s t e m n : a p p l i c a t i o n f o r e l e c t r o m e c h a n i c a l d r i v e s " , E u r o p e a n P h z y s i c sJ o u r n a l - A p p / i e d P h y s i c s , v o l 10 n o . 2 . p p . 1 3 1 - 1 4 7 , May 2 0 0 0 .

[ 8 ] A . B o u s c a y r o l , P h . D e l a r u e , " W e i g h t e d c o n t r o l o f d r i v e s w i t h s e r i e s c o n n e c t e d DC m a c h i n e s ' , I E E E -I E M D C ' O 3 , M a d i s o n ( U S A ) , J u n e 2 0 0 3 , v o l . 1 , pp. 1 5 9 - 1 6 5 .

[ 9 ] J . C . M e r c i e c a , J . N . V e r h i l l e , A . B o u s c a y r o l , " E n e r g e t i c M a c r o s c o p i c R e p r e s e n i t a t i o n o f a s u b w a y t r a c t i o ns y s t e m f o r a s i m u l a t i o n m o d e l ' , IEEE - I S I E ' 0 4 , A j a c c i o , May 2 0 0 4 , p p . 1 5 1 9 - 1 5 2 4 .

[ 1 0 ] G . D a u p h i n - T a n g u y , A , R a h m a n i , C . S u e u r "Bond g a p h a i d e d d e s i g i o f c o n t r o l l e d s y s t e a n s " , J o u r n a lS i m i u / t a t i o n P r a c t i c e a n d T h e o r y , E l s e v i e r P u b , L . D e k k e r E d , v o l . 7 , no. 5 - 6 , 1 9 9 9 .

[ I t ] J e a n - P a u l H a u t i e r , P i e r r e - J e a n B a r r e , " T h e C a u s a l O r d e r i l n g G r a p h , A t o o l f o r s y s t e m m o d e l l i n g and

c o n t r o l l a w s y n t h e s i s ' , S t d i i e s i n i n f o r n w t i c s a n 7 d c o n t r o l , December 2 0 0 4 , v o l . 1 3 , n o . 4 p p . 2 6 5 - 2 8 3 .

[ 1 2 ] I . I w a s a k i , H . A . S i m o n , " C a u s a l i t y a n d m o d e l a b s t r a c t i o n ' " A r t i f i e i a l I n t e l / i g e n c e , E l s e v i e r , v o l . 6 7 , p p .

1 4 3 - 1 9 4 , 1 9 9 4 .

[ 1 3 ] Z . R u b i n , S . M u n u n s , J . M o s k o w v a , " T h e d e v e l o p m e n t o f v e h i c u l a r p o w e r t r a i n s y s t e m m n o d e l i n gm e t l h o d o l o g i e s : p h i l o s o p h y a n d i i n p l e m e n t a t i o n " , S j s t e m A u t o m o t i v e E n g i n e e r i n g , paper 9 7 1 0 8 9 . 1 9 9 7 .

[ 1 4 ] " G u i d e L i l n e VDIIVDE 3 5 4 7 A s s e s s m e n t o f q u a l i t y o f m i o t i o n s y s t e m s a n d c o n t r o l l e d sequences o fm i o t i o n , ' ' I D p u b / l s h e r s , 2 0 0 3 .

[ 1 5 ] R i Z a n a s i , " P o w e r - O r i e n i t e d G r a p h s f o r M o d e l i n g E l e c t r i c a l M a c h i n e s " , MELECOM'96. B a i ( I t a l y ) , M ay1 9 9 6 , pp. 1 2 1 1 - 1 2 1 4 .

[ 1 6 ] A . B o u s c a y r o l , B , D a v a t , B . d e F o m e l , B . F r x n y o i s , J . P . H a u t i e r , F . M e i b o d y - T a b a r , E . M o n m a s s o n , M ,P i e t l z a k - D a v i d , f l . R a z i k , E . S e m a i l , M . F . B e i k h o r i s , ' C o n t r o l S t r u c t u r e s f o r M u l t i - n a c h i n e M u L t i -

converter S y s t e a n s w N i t h u p s t r e a m c o u p l i n g " , M a t h c n w r i c s a n d C o n i p u t e r s i n S i n m u l a t i o n , v o l . 6 3 , n o . 3 - 5 ,p p . 2 6 1 - 2 7 0 . Nov ember 2 0 0 3 . (conmon paper of GE 44 S t N a z a i r e , GREEN N a l c y , L 2E P L i t l e , LEEIT o u l o u s e a n d L E S i R - S A T I E C a c h a n , a c c o r d i n g t o t h e MMS p r o j e c t o f t h e G D R - M E 2 M S ) .

[ 1 7 ] J , N . V e r h i l l e , A . B o u s c a y r o t , P . J . B a - e , J . C . M e r c i e c a , J . P . H a u t i e r , E . S e m a i l , " T o r q u e t r a c k i n g

s t m t e g y f o r a n t i - s l i p c o n t r o l i n r a i l w a y t r a c t i o n s y s t e m s with coimon s u p p l i e s ' , J E E E - J A S ' 0 4 , S e a t t l e

( U S A ) , O c t o b e r 2 0 0 4 , v o l . 4 . p p . 2 7 3 8 - 2 7 4 5 .

10

D i f f c , - r m . e n c f y c & d c 9 c r i p . O a s f o r s y s t m B H V I 2 N T I J . P .