different construction for storey timber

339
Comparison of Different Construction Methods for MultiStorey Timber Buildings LUCAS BIENERT SUPERVISOR Katalin Vertes University of Agder, 2018 Faculty of Engineering and Science Department of Engineering Sciences

Upload: others

Post on 06-Dec-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Different Construction for Storey Timber

 

ComparisonofDifferentConstructionMethodsforMulti‐StoreyTimberBuildings

LUCASBIENERT

SUPERVISORKatalinVertes

UniversityofAgder,2018FacultyofEngineeringandScienceDepartmentofEngineeringSciences

Page 2: Different Construction for Storey Timber

Abstract

MasterThesis‐LucasBienert I

AbstractInthismasterthesis,differenttimbermaterialsandconstructionmethodsareexaminedconcern‐ingtheapplicationinmulti‐storeytimberbuildings.

Althoughwoodasaconstructionmaterialhasmanyadvantages,itistodayonlyusedverylittleforlargerconstructions,concreteandsteeldominatethebuildingindustry.Plannersandengi‐neersareoftenlackingnecessaryexpertisetoutilisetimberinamodern,effectiveway.

Inordertopromotethedevelopmentofmodern,efficientmulti‐storeytimberbuildings,thegoalofthismasterthesisistocontributetoabetterunderstandingofthewood’scharacteristicprop‐ertiesandthebehaviouroftimberinlargerengineeringstructures.

For thispurpose, firsta literatureresearchhasbeenconductedtogather technicalknowledgeaboutmoderntimbermethods.Itcanbeconcludedthat,althoughwoodasanaturalmaterialhassome unfavourable properties,with an appropriate design, those problems can be overcome.Modernengineeredwoodproducts improvethebasicmaterial’spropertiesnoticeableandareimportantespeciallyformulti‐storeytimberbuildings.

Secondly,adesignhasbeencarriedoutforthreedifferentstructuralvariantsofthesameexistingmulti‐storeytimberbuilding.Bymeansof thisdesign,generalconclusionscouldbemadecon‐cerningthesuitabilityofthosedifferentconstructionmethods.Frameconstructionsareveryef‐fectiveforprovidingstabilityfortheoverallstructure.Prefabricatedmethodslikepanelconstruc‐tionshaveeconomicadvantages,should,however,onlybeusedincombinationwithothermeth‐odsforlargertimberstructures.Masstimbermethodsareverywellsuitedformulti‐storeytimberbuildingsandwillsupposedlyplayanimportantroleinthefuture.

Themainoutcomeofthismasterthesisisthattherearenolargehindrancesfortheuseofwoodinmulti‐storeybuildingstodayandthattimberstructuresstillhavemuchunusedpotential.

Page 3: Different Construction for Storey Timber

Declaration

MasterThesis‐LucasBienert II

Declaration

1. WiththisstatementIdeclarethatthismasterthesisismyownworkandthatIhavenotusedothersourcesorreceivedotherhelpthanwhatismarkedassuch.

2. Furthermore,withthisstatementIdeclarethatthismasterthesis:

wasnotpreviouslysubmittedtoanotheracademicinstitutioninNor‐wayoranyothercountry.

doesnotrefertoexternalsourceswithoutthisbeingproperlymarked.

doesnotrefertoownearlierworkwithoutthisbeingproperlymarked.

includesabibliographywithallsources. isnocopyorduplicateofother’swork.

3. IamawarethataviolationofthestatementsabovecancausenullificationoftheexaminationandexclusionfromuniversitiesinNorway,cf.Universitets‐oghøgskoleloven§§4‐7and4‐8andForskriftomeksamen§§31.

4. Iamawarethatallsubmittedworkscanbecheckedforplagiarism. ☒

5. IamawarethattheUniversityofAgderwilltreatallcaseswithsuspicionforcheatingaccordingtotheuniversity’sguidelinesascheating.

6. Ihavestudiedtherulesandguidelinesconcerningtheuseofsourcesandref‐erencesonthelibrary’swebpages.

LucasBienert,30.11.2018

Page 4: Different Construction for Storey Timber

PublishingAgreement

MasterThesis‐LucasBienert III

PublishingAgreement

AuthorisationforElectronicPublishingoftheMasterThesis

Theauthorhasthecopyrightforthework.Thisincludesamongstotherthingstheexclusiverighttomaketheworkavailableforthepublic(Åndsverkloven.§2).

AllworksthatfulfiltherequirementswillberegisteredandpublishedinBrageAuraandonUiA’swebpageswiththeauthor’sapproval.

Worksthatareexcludedfromthepublicorsubjecttoprofessionalsecrecyorconfidentialitywillnotbepublished.

IherebygivetheUniversityofAgderthegratuitousright

tomakethismasterthesisavailableforelectronicpublishing: ☒YES ☐NO

Isthismasterthesisconfidential? ☐YES ☒NO

Ifyes:

Cantheworkbepublishedoncetheobligationfor

confidentialityhasended? ☐YES ☐NO

Isthismasterthesisexcludedfromthepublic? ☐YES ☒NO

LucasBienert,30.11.2018

Page 5: Different Construction for Storey Timber

Foreword

MasterThesis‐LucasBienert IV

ForewordDuringmystudiesofcivilengineeringattheLeibnizUniversitätHannover(LUH)inGermanyandtheUniversitetetiAgder(UiA)inNorway,therehadalwaysbeenonebuildingmaterialthatfasci‐natedmethemost,notonlybecauseofitsexcitingmechanicalproperties,butalsobecauseofitslonghistoryandtradition,itsarchitecturalvalueandlastbutnotleastbecauseofitsbeneficialenvironmentalproperties:wood.Thecoursesaboutwoodasaconstructionmaterial that Iat‐tendedwereinteresting,butIwantedtoworkmorewiththismaterial.Moreover,myexperiencesbothattheuniversityandworkingatanengineeringofficeatthesametimeshowedthatconcreteandsteelstilldominatethelargerengineeringstructurestoday.ThatwaswhyIdecidedtowritemymasterthesisaboutmulti‐storeytimberbuildings.

TheseconddecisionImadethenwastowritethemasterthesisinNorway,whichisknownforitsrichwoodenbuildingculture.IhadalreadybeenattheUiAinGrimstadduringbybachelor’sstud‐ies,thistimeIreturnedtofinishmymaster’studies.

Togetherwithmysupervisorat theUiA,KatalinVertes, Idevelopedthetaskandtheresearchquestionsforthemasterthesis.Theworkincludedanextensiveliteratureresearchtogetuptodateconcerningthemoderntimberengineering,aswellastheredesignofanexistingmulti‐storeytimberbuildingusingthreedifferentconstructionmethods.Thechoiceofthebuildingwasquitenatural–afterdoingsomeresearch,Idecidedtoworkwiththehighestwoodenbuildingoftoday,TreetinBergen,thesecondlargestcityinNorway(“Treet”istheNorwegianwordfor“thetree”).Especiallythedesignofthethreevariantsofthisbuildingwaschallenging,butithelpedmetomakesomeimportantexperiencesthatonedoesnotlearninanylecture,e.g.concerningthede‐velopmentofastructuralconcept.

Icouldnothavecompletedthisworkwithoutthehelpfromdifferentpeople.Mostofall,IwanttothankmysupervisorKatalinVertes.ShehadbeenthefirstpersontoteachmeaboutwoodwhenIhadbeenattheUiAforthefirsttimein2014and2015.Nowshewasthepersontoguidemewhileworkingatthismasterthesis.Inspiteofhavingtotravelalot,shewasalwaysreachableandassistedmewithhelpfuladviseorjustreassurancewhenIhaddoubts.

AnotherthankyouisalsomeantformyfriendsandmyfamilybothinNorwayandinGermany,fortheirsupportandforhelpingmetoclearmyheadwhenIneededit.

Finally,Ithankyou,thereader,forbeingopenmindedaboutthiswork,hopingtobeabletocon‐tributetoyourknowledgeabouttimberoratleasttogiveyouaninterestingreadingexperience.

LucasBienert

Grimstad,30.11.2018

Page 6: Different Construction for Storey Timber

TableofContents

MasterThesis‐LucasBienert V

TableofContentsAbstract...................................................................................................................................................................................I 

Declaration...........................................................................................................................................................................II 

PublishingAgreement....................................................................................................................................................III 

Foreword.............................................................................................................................................................................IV 

TableofContents..............................................................................................................................................................V 

ListofFigures..................................................................................................................................................................VII 

ListofTables......................................................................................................................................................................XI 

AbbreviationsandSymbols.......................................................................................................................................XII 

1.  Introduction...........................................................................................................................................................1 

2.  SocietyPerspective.............................................................................................................................................3 

2.1.  HistoricalBackground..................................................................................................................................3 

2.2.  EvolutionofTimberTechnologies...........................................................................................................4 

2.3.  Today’sGlobalSituation..............................................................................................................................5 

2.4.  SummaryoftheSocietyPerspective......................................................................................................5 

3.  Theory......................................................................................................................................................................7 

3.1.  RulesandStandards......................................................................................................................................7 

3.1.1.  EuropeanStandards.............................................................................................................................7 

3.1.2.  NationalRulesandStandardsinNorwayandGermany.......................................................8 

3.2.  DesignBasis......................................................................................................................................................9 

3.2.1.  Parameters...............................................................................................................................................9 

3.2.2.  LoadCalculation.................................................................................................................................11 

3.2.3.  Software.................................................................................................................................................12 

3.3.  SummaryoftheTheory.............................................................................................................................12 

4.  ResearchQuestions.........................................................................................................................................13 

5.  Case/Materials...................................................................................................................................................14 

5.1.  TimberMaterials..........................................................................................................................................14 

5.1.1.  GeneralPropertiesofSolidWood...............................................................................................14 

5.1.2.  WoodinComparisontoOtherMaterials..................................................................................18 

5.1.3.  AspectsfromLifeCycleAssessment..........................................................................................20 

5.1.4.  EngineeredWoodProducts...........................................................................................................22 

5.2.  TimberConnections...................................................................................................................................25 

5.3.  TimberStructures.......................................................................................................................................31 

5.3.1.  TimberFraming..................................................................................................................................31 

5.3.2.  MassTimber.........................................................................................................................................34 

5.4.  NewDevelopments.....................................................................................................................................36 

Page 7: Different Construction for Storey Timber

TableofContents

MasterThesis‐LucasBienert VI

5.5.  SummaryoftheCase/Materials............................................................................................................38 

6.  Method..................................................................................................................................................................39 

6.1.  Procedure........................................................................................................................................................39 

6.2.  DesignVariants.............................................................................................................................................40 

6.2.1.  StructuralConcept.............................................................................................................................40 

6.2.2.  FrameConstruction..........................................................................................................................41 

6.2.3.  PanelConstruction............................................................................................................................43 

6.2.4.  CLTConstruction................................................................................................................................45 

6.3.  PreliminaryDesign.....................................................................................................................................46 

6.4.  EurocodeDesign..........................................................................................................................................49 

6.5.  FEMAnalysis.................................................................................................................................................50 

6.5.1.  GlobalFEMAnalysis..........................................................................................................................50 

6.5.2.  FEMConnectionAnalysis...............................................................................................................56 

7.  Results...................................................................................................................................................................60 

7.1.  ResultsfromtheDesignAnalysis..........................................................................................................60 

7.2.  Comparison....................................................................................................................................................66 

8.  Discussion............................................................................................................................................................69 

9.  Conclusions.........................................................................................................................................................71 

10.  Recommendations............................................................................................................................................72 

Bibliography......................................................................................................................................................................73 

Appendix.............................................................................................................................................................................75 

A.  Attachments........................................................................................................................................................75 

B.  SelectedRFEMResults...................................................................................................................................75 

B.a)  FrameConstruction...............................................................................................................................75 

B.b)  PanelConstruction.................................................................................................................................79 

B.c)  CLTConstruction....................................................................................................................................82 

C.  SelectedANSYSresults...................................................................................................................................87 

Page 8: Different Construction for Storey Timber

ListofFigures

MasterThesis‐LucasBienert VII

ListofFiguresFigure5.1:Threeprincipalaxesofwoodwithrespecttograindirectionandgrowthrings

[16,5‐2]......................................................................................................................................................15 

Figure5.2:Stress‐strain‐diagramforsolidwood[26,203]..........................................................................16 

Figure5.3:Decreaseofthebendingstrengthoftimberdependingontheloadduration[26,135].....................................................................................................................................................17 

Figure5.4:Meanmoisturecontentinwood(glulam90×100×600) versus time in a barn in Southern Sweden (Åsa)[26,155]......................................................................................................18 

Figure5.5:Embodiedenergyandcarboncontentofdifferentbuildingmaterialsbasedon[24,415].....................................................................................................................................................21 

Figure5.6:Comparisonofthefrequencydistributionofthestrengthofglulamandsolidwood[26,19].......................................................................................................................................................23 

Figure5.7:Generalfailuremodesofatimberconnectionwitha)lowslenderness,b)mediumslendernessandc)highslenderness[17,68]............................................................................26 

Figure5.8:ComparisonofexperimentallydeterminedstiffnessesofselectedtestswithcorrespondingdesignvaluesfromEC5forspecimenswithdifferentslenderness[17,77].......................................................................................................................................................27 

Figure5.9:ComparisonofstrengthofselectedtestswithdesignvaluesfromEC5[17,77]..........27 

Figure5.10:Examplesoftraditionaltimberjoints[21,58]..........................................................................28 

Figure5.11:Examplesofnailedjoints[26,306]...............................................................................................28 

Figure5.12:Steeldowelsandbolts[1,9.44].......................................................................................................29 

Figure5.13:Examplesofjointsusingboltsordowels[26,308]................................................................29 

Figure5.14:Examplesofapplicationsforfullythreadedscrews[1,9.55].............................................30 

Figure5.15:Loadbearingbehaviourofareinforcedconnectionincomparisontoanon‐reinforcedconnection[26,324]......................................................................................................30 

Figure5.16:Traditionalframeconstruction[21,56]......................................................................................32 

Figure5.17:Panelconstruction(left)andballoonconstruction(right)[21,60‐61].........................32 

Figure5.18:Exampleofamodernframeconstruction:schoolinWil,Switzerland[21,86]..........33 

Figure5.19:Differentlogconstructionvariants[21,53]...............................................................................34 

Figure5.20:Cornerdetailofastackedplankconstruction[21,122].......................................................35 

Figure5.21:ExampleofaCLT‐construction:evangelicchurchinRegensburg,Germany[5]........36 

Figure6.1:RFEMmodeloftheframeconstruction..........................................................................................41 

Figure6.2:Sketchoftheconnectionbetweenthecolumnandthediagonal(nottoscale).............43 

Figure6.3:RFEMmodelofthesecondstoreyofthepanelconstruction................................................43 

Figure6.4:Sketchoftheconnectionbetweenthefloorandthewallinthepanelconstruction...44 

Figure6.5:RFEMmodeloftheCLT‐construction.............................................................................................45 

Figure6.6:SketchoftheconnectionbetweenwallandfloorintheCLT‐construction.....................46 

Page 9: Different Construction for Storey Timber

ListofFigures

MasterThesis‐LucasBienert VIII

Figure6.7:Simplifiedsystemoftheframes.........................................................................................................47 

Figure6.8:Convergenceanalysisoftheframeconstruction........................................................................51 

Figure6.9:Convergenceanalysisofthepanelconstruction.........................................................................51 

Figure6.10:ConvergenceanalysisoftheCLTconstruction.........................................................................52 

Figure6.11:Conceptfordividingthepanelmodelintosub‐models........................................................53 

Figure6.12:Sub‐modelinRFEMofthefirststoreyofthepanelconstructionwiththeloadsforLC1(self‐weight)....................................................................................................................................54 

Figure6.13:Deformationuin[mm]oftheCLT‐constructionforLC3(windfromthefront),viewfromtheside............................................................................................................................................55 

Figure6.14:Distributionoftheinternalnormalforcesin[kN/m]inwallx3forLC1(self‐weight).............................................................................................................................................56 

Figure6.15:Distributionoftheinternalnormalforcesin[kN/m]inwallx21forLC3(windfromthefront)....................................................................................................................................................56 

Figure6.16:GeometryoftheANSYSmodeloftheconnectionbetweendiagonalandcolumnintheframeconstruction.........................................................................................................................57 

Figure7.1:InternalnormalforcesinthefrontframeoftheframeconstructionforLC4(windfromtheside)in[kN]...........................................................................................................................60 

Figure7.2:DistributionoftheinternalnormalforcesinthestudsofthefirststoreyofthepanelconstructionforLC4(windfromtheside)..................................................................................61 

Figure7.3:Exampleoftheassumptionoftheloaddistributionintheloadbearingstudsinawallinthepanelconstructionforwindfromtherightsideaccordingtothepreliminarydesign..........................................................................................................................................................61 

Figure7.4:InternalnormalforcesinthefirststoreyoftheCLTconstructionforLC4(windfromtheside)in[kN/m]................................................................................................................................62 

Figure6.17:VonMisesstressσVMoftheconnectionin[N/mm2]...........................................................63 

Figure6.18:Shearstressτxyoftheconnectionin[N/mm2].......................................................................64 

Figure6.19:DefinitionoftheforcesandgeometricdimensionsforthecheckagainsttensionperpendiculartothegrainaccordingtoEC5[2,8.1.4]...........................................................65 

Figure6.20:Totalstrainεoftheconnectionin[‐]............................................................................................65 

FigureB.1:DeformationoftheframeconstructionforLC1(self‐weight)in[mm]............................75 

FigureB.2:DeformationoftheframeconstructionforLC3(windfromthefront)in[mm]...........76 

FigureB.3:DeformationoftheframeconstructionforLC4(windfromtheside)in[mm].............76 

FigureB.4:InternalnormalforcesinthecolumnsoftheframeconstructioninthefirststoreyforLC1(self‐weight)in[kN].....................................................................................................................77 

FigureB.5:InternalnormalforcesinthecolumnsoftheframeconstructioninthefirststoreyforLC2(snow)in[kN]................................................................................................................................77 

Page 10: Different Construction for Storey Timber

ListofFigures

MasterThesis‐LucasBienert IX

FigureB.6:InternalnormalforcesinthecolumnsoftheframeconstructioninthefirststoreyforLC3(windfromthefront)in[kN]...................................................................................................77 

FigureB.7:InternalnormalforcesinthecolumnsoftheframeconstructioninthefirststoreyforLC4(windfromtheside)in[kN].....................................................................................................78 

FigureB.8:InternalnormalforcesinthecolumnsoftheframeconstructioninthefirststoreyforLC5(lifeload)in[kN]...........................................................................................................................78 

FigureB.9:InternalnormalforcesinthefrontframeoftheframeconstructionforLC1(self‐weight)in[kN]........................................................................................................................................79 

FigureB.10:DeformationofthefirstfloorofthepanelconstructionforLC1(self‐weight)in[mm]............................................................................................................................................................79 

FigureB.11:DeformationofthefirstfloorofthepanelconstructionforLC2(snow)in[mm].....80 

FigureB.12:DeformationofthefirstfloorofthepanelconstructionforLC3(windfromthefront)in[mm]..........................................................................................................................................80 

FigureB.13:DeformationofthefirstfloorofthepanelconstructionforLC4(windfromtheside)in[mm].......................................................................................................................................................80 

FigureB.14:DeformationofthefirstfloorofthepanelconstructionforLC5(lifeload)in[mm]81 

FigureB.15:DistributionoftheinternalnormalforcesinthestudsofthefirststoreyofthepanelconstructionforLC1(self‐weight)..................................................................................................81 

FigureB.16:DistributionoftheinternalnormalforcesinthestudsofthefirststoreyofthepanelconstructionforLC3(windfromthefront)................................................................................81 

FigureB.17:DeformationoftheCLTconstructionforLC1(self‐weight)in[mm]..............................82 

FigureB.18:DeformationoftheCLTconstructionforLC3(windfromthefront)in[mm]............82 

FigureB.19:DeformationoftheCLTconstructionforLC4(windfromthefront)in[mm]............83 

FigureB.20:InternalnormalforcesintheCLTconstructionforLC1(self‐weight)in[kN/m]......83 

FigureB.21:InternalnormalforcesintheCLTconstructionforLC3(windfromthefront)in[kN/m]........................................................................................................................................................84 

FigureB.22:InternalnormalforcesinthefirststoreyoftheCLTconstructionforLC1(self‐weight)in[kN/m]..................................................................................................................................84 

FigureB.23:InternalnormalforcesinthefirststoreyoftheCLTconstructionforLC2(snow)in[kN/m]........................................................................................................................................................85 

FigureB.24:InternalnormalforcesinthefirststoreyoftheCLTconstructionforLC3(windfromthefront)in[kN/m]..............................................................................................................................85 

FigureB.25:InternalnormalforcesinthefirststoreyoftheCLTconstructionforLC5(lifeload)in[kN/m]...................................................................................................................................................85 

FigureB.26:InternalshearforcesinthefirststoreyoftheCLTconstructionforLC3(windfromthefront)in[kN/m]..............................................................................................................................86 

FigureB.27:InternalshearforcesinthefirststoreyoftheCLTconstructionforLC4(windfromtheside)in[kN/m]................................................................................................................................86 

FigureB.28:Stressinglobalxdirectionσxoftheconnectionin[N/mm2]...........................................87 

Page 11: Different Construction for Storey Timber

ListofFigures

MasterThesis‐LucasBienert X

FigureB.29:Stressinglobalydirectionσyoftheconnectionin[N/mm2]...........................................87 

FigureB.30:Firstprinciplestressσ1oftheconnectionin[N/mm2].......................................................88 

FigureB.31:Straininglobalxdirectionεxoftheconnectionin[‐]...........................................................88 

FigureB.32:Straininglobalydirectionεyoftheconnectionin[‐]...........................................................89 

Page 12: Different Construction for Storey Timber

ListofTables

MasterThesis‐LucasBienert XI

ListofTablesTable3.1:OverviewoverEuropeanstandardsforthedesignoftimberconstructions.......................7 

Table3.2:Selectedmaterialsafetyfactors[3,NA.2.4.1]...................................................................................9 

Table3.3:PartialsafetyfactorsaccordingtoECandtheNorwegiannationalannex[4,NA.A1.3.1]...........................................................................................................................................10 

Table3.4:SelectedcombinationfactorsaccordingtoECandtheNorwegiannationalannex[4,NA.A1.2.2]...........................................................................................................................................10 

Table3.5:Loadcases.....................................................................................................................................................11 

Table3.6:Loadcombinations....................................................................................................................................11 

Table5.1:Mechanicalpropertiesofsteel,concreteandwoodincomparison[1]..............................19 

Table5.2:Pricesofsomeselectedengineeredwoodproductsincomparisontosolidwood[20,51].......................................................................................................................................................24 

Table5.3:Advantagesanddisadvantagesofgluedconnections[26,334].............................................25 

Table6.1:MaterialpropertiesfortheANSYSmodel[12,table5][16,5‐3]...........................................58 

Table7.1:Evaluationmatrixforthecomparisonofthethreeconstructionvariantsframeconstruction,panelconstructionandCLTconstruction........................................................67 

Page 13: Different Construction for Storey Timber

AbbreviationsandSymbols

MasterThesis‐LucasBienert XII

AbbreviationsandSymbolsAbbreviations3D three‐dimensional

CAD computer‐aideddesign

CLT cross‐laminatedtimber

CNC computerisednumericalcontrol

CO loadcombination(followedbythecorrespondingnumber)

DIN “DeutschesInstitutfürNormung”(GermanInstituteforStandardization)

EC Eurocode

EN EuropeanStandard

EQU equilibriumlimitstate

FE finiteelement

FEM finiteelementmethod

FSC ForestStewardshipCouncil

GEO geotechnicallimitstate

GHG greenhousegases

glulam gluedlaminatedtimber

LC loadcase(followedbythecorrespondingnumber)

LCA lifecycleassessment

LVL laminatedveneerlumber

MBO “Musterbauordnung”(Germanbuildingregulation)

M‐HFHHolzR “Muster‐RichtlinieüberbrandschutztechnischeAnforderungenanhochfeu‐erhemmendeBauteile inHolzbauweise” (Germanregulation for firesafetyrequirementsontimberelements)

OSB orientedstrandboard

PEFC ProgrammefortheEndorsementofForestCertification

PSL parallelstrandlumber

SLS serviceabilitylimitstate

STR structurallimitstate

TMT thermallymodifiedtimber

ULS ultimatelimitstate

VOC volatileorganiccompounds

Page 14: Different Construction for Storey Timber

AbbreviationsandSymbols

MasterThesis‐LucasBienert XIII

LatinSymbolsa years

c compression

CO2 carbondioxide

E Young’smodulus

f strength

f compressionstrength

f tensilestrength

G permanentloads

h hours

k modificationfactorforthestrengthofwood

Q variableloads

SL stresslevel

t tension

T time,loadduration

u ultimate

y yieldpoint

GreekSymbolsγ specificweight

γ partialsafetyfactorforpermanentloads

γ materialsafetyfactor

γ partialsafetyfactorforvariableloads

ε strain

λ heatconductivity

σ stress

σ reducedpreliminarydesignstrength

ψ combinationfactor

Page 15: Different Construction for Storey Timber

Introduction

MasterThesis‐LucasBienert 1

1. IntroductionAlthoughwoodisoneoftheoldestmaterialsthathavebeenusedforbuildings,todayithasmostlybeenreplacedbyconcreteandsteel.Thismasterthesisdealswithdifferentconstructionmethodsthatcanbeusedformulti‐storeytimberbuildings1toanalysethewood’spotentialinthisfield,alsoincomparisontoconcreteandsteel.

Oneofthemainmotivationstousewoodisthatitisrenewableandenvironmentallysuperiortothoseothermaterials.Globally,theconstructionindustryisresponsiblefor40%ofthetotalde‐pletionofnaturalresources,40%oftheconsumptionofthetotalprimaryenergy,15%oftheusageoffreshwater,25%ofallwasteand40to50%ofallgreenhousegasemissions[24,39].Usingwoodinsteadofconcreteandsteelhasthereforegreatpotentialtopromoteamoresustain‐ablesociety.

Itistodaynotechnicalchallengetobuildsmalltwo‐orthree‐storeyhousesfromwood.Buttheglobalpopulation increases,andaconsiderablepart ismoving to the largecities,where livingspacegetsscarce.Therefore,themajorityofnewbuildingswillbeerectedinthecitiesandwillprobablybemulti‐storeyconstructions.Fortimbertoreallymakeachange,thechallengesregard‐ingmulti‐storeytimberbuildingsmustbeaddressed.

Thegoalofthismasterthesisistocontributetothisdevelopmentbydiscussingthepropertiesofmodernwoodproducts and structures andby analysing the suitability of timbermethods formulti‐storeybuildings.Asamethodfortheanalysis,adesignwillbeperformedofthreedifferentalternativetimberstructuresforanexistingmulti‐storeytimberbuilding.

Firstofall,thesocietyperspectiveshallbedescribedinchapter2,alsolookingatthedifferentsituationsinNorwayandGermany.Thiswillstartwithasummaryofthehistoricaldevelopmentofwoodenbuildingsandconstructionmethods.Afterthat,thesituationoftodayispresented.Inchapter3,thetheoreticalbackgroundshallbeestablished.Hereitisimportanttotakealookattherulesandstandardsthatmustbefollowedinthedesign.Basedonthat,thebasisforthefol‐lowingdesigncanbecreated.Afterdefiningthecentralresearchquestionsforthefollowingworkinchapter4,thedifferenttimberstructures,materialsandconnectionsthatareavailabletodayorarebeingdevelopedwillbeexaminedinchapter5.

Finally, the above mentioned method, the design analysis is presented in chapter 6. Today’sworld’shighesttimberbuilding,Treet2inBergen(Norway)willberedesignedtoevaluatethreedifferentconstructionmethods.Thosethreevariantswillbeamodernframeconstructionfeatur‐ingalargegrid,apanelconstructionrelyingheavilyonprefabrication,andamasstimbercon‐structionusingcross‐laminatedtimber(CLT).Apreliminarydesignisconductedforallthreecon‐structions.Thisincludesshapingthestructuralideaanddeterminingdimensionsofcross‐sectionandconnections.Thispartofthedesignwillbegiventhemostattention,becausethisiswherethemost engineeringproblemsmustbe solvedand thegeneral structure is shaped.Basedon the

1 Inthecontextofthismasterthesis,amulti‐storeybuildingisconsideredtobeabuildingwithat leastthree,butalsomorethantenstoreys.Thetermtimberbuildingreferstoabuildingwiththeload‐bearingstructuremadefromtimberorengineeredwoodproducts.Whilethewordwoodisamoregeneraltermthatdescribesthebasicmaterialextractedfromtrees,timberisanykindofwoodproductusedforbuildingpurposes.2TheconstructionofTreetwasfinishedin2015anditisbytoday(2018)with14storeysandaheightofabout51mstillthehighesttimberbuildingintheworld[10].However,thereisanothertimberbuildingunderconstructioninNorwaythatwillbeevenhigher,MjøstårnetinBrumundal.Aftertheprojectedcom‐pletionoftheprojectin2019,itwillhave18storeyswithatotalheightof81m[22].

Page 16: Different Construction for Storey Timber

Introduction

MasterThesis‐LucasBienert 2

preliminarydesign,thefinaldesignaccordingtotheEurocodestandardsisperformed,includinga finiteelement(FE)analyses.The idea is todesignthreedifferentconstructions forthesamebuildingandtocomparethemafterwardsconsideringdifferentaspectssuchastheefficiencyoftheload‐bearingstructureorenvironmentalaspects,cf.chapter7.

Afteradiscussionoftheresultsinchapter8,thefinalconclusionsofthismasterthesisarepre‐sentedinchapter9,wheretheearlierstatedresearchquestionswillbeanswered.Basedonthoseconclusions, recommendations concerning the future of multi‐storey timber buildings can begiveninchapter10.

Page 17: Different Construction for Storey Timber

SocietyPerspective

MasterThesis‐LucasBienert 3

2. SocietyPerspective2.1. HistoricalBackground

Inearlyhistory,timberwasthemostimportantbuildingmaterialforresidentialbuildings.Oneofthemainreasonsforthatisthatitwasreadilyavailableinlargequantities,althoughthisdifferedfromregiontoregion.Accordingly,somecountrieshavearichhistoryofbuildingwithtimbertoday,whileothersrelymoreonothermaterials.Moreover,woodisrelativelyeasytoshape,incontrasttoe.g.stone.

Theworld’soldeststillstandingtimberbuildingistheHōryūtempleinJapan,whichwasbuiltinthe7.century[7].TheoldesttimberbuildinginNorwayistheBorgundchurchfromthe12.cen‐tury[26,1].Theseexamplesprovethattimberbuildingsareverydurableandcanpersistforapracticallyunlimitedamountoftimeifplannedandmaintainedcorrectly.Importantelementsofagooddesignconcerningthedurabilityarethatwaterandmoisturearenothinderedfromleavingthebuildingandthatdamagedcomponentscanbereplacedeasily[26,2].

InNorway,woodhasbeenthemostimportantmaterialforallkindsoftools,includingshipsandbuildings,sincethetimeoftheVikings.ThatisbecauseofNorway’swide‐spreadforests.WoodenhousesareanimportantpartoftheNorwegianculture,onlyinafewcountriesliketheUSAandCanadaistheshareoftimberbuildinginallexistingbuildingscomparablyhigh.Today,75to80%ofallnewlybuiltresidentialbuildingsinNorwayaretimberbuildings[18,7].

ThefirstwoodenhousesinNorwaywereprobablypalisadebuildingsmadefromlogsdrivenintotheearthvertically,butthiskindofstructuredidnotprevailbecauseofthedecayofthewoodintheground.Furtherdevelopment leadtostavebuildings likethewell‐knownNorwegianstavechurches.Adifferentmethodthatwasusedfromearlyinthehistoryisthelogconstruction,whichwaswidelyuseduntilthe19.century.Overthetime,moremethodsweredeveloped,leadingtomoreefficientbuildingconstructionsthatneededlessmaterialandweremoredurable.Anexam‐pleisthetraditionalframeconstructionwhichwasintroducedaround1700notonlyinNorway,butalsoinotherEuropeancountries.Inthebeginning,thespacein‐betweentheframeswasfilledwithe.g.brickworktosealthehouseagainsttheweather.Around1900,thebuildingsgotsheath‐ingbothontheinsideandtheoutsideandthespacesintheframeworkwereleftfree,whichsavedmuchmaterial,i.e.unnecessaryweightandcosts.Inthemiddleofthe19.century,thosecavitieswerethenfilledwithinsulation,whichimprovedtheindoorclimate.Today,thedevelopmentofnewmethodsisstillongoing.Prefabricationbecomesmoreandmoreimportantandnewtechnol‐ogiesase.g.compoundmaterialsareused[18,7‐10].

Intheearlyhistory,Germanywasalsocoveredwithrichforests.IncontrasttoNorway,however,deforestationandindustrialisationdevelopedfasterandstronger,possiblereasonsforthatarethe easier topography andGermany’s central position inEurope.During the industrialisation,woodwasmoreandmorereplacedbysteelandlateralsoreinforcedconcrete,becausethewoodworkingprocessesweretooslowandthereforemoreexpensive[20,6].Thiswasmainlyduetolabour‐intensiveconnectionssuchasdovetailconnections.Furthermore,thetimberindustrywasmorefocusedontraditions,alsobecauseofitslonghistory[25,5],andcouldthereforenotcom‐petewiththemodernsteelandconcreteindustry.

Duringthistime,thewaypeopleregardedthedifferentbuildingmaterialschanged.Onlybrickhouseswereregardedassufficientlydurable,woodenhouseswereespeciallyshort‐livedandthefireriskwashigher[25,6].Manyoftheseviewsoftimbersurviveduntiltoday,althoughthetim‐bertechnologychangedfundamentally.

Page 18: Different Construction for Storey Timber

SocietyPerspective

MasterThesis‐LucasBienert 4

In thebeginningof the20.century,during the firstworldwar, the timber industrydevelopedstronglyagain.Manyconstructionswereneededforthewar,manyhousesweredestroyed,andsteelwasneededotherwise[25,6].Fastpanelconstructionswerepreferred[25,9].Afterthefirstandsecondworldwar,againmostlybrickworkandconcretestructureswereused,whichwerefasterandcheapertobuildthanwoodenstructures.

Today,about10%oftheexistingconstructionsfeaturewoodasmainbuildingmaterialinGer‐many,intheNordiccountriestheshareamountsto80to85%[24,408],whichisprobablymainlyduetothedifferenthistoricdevelopment.Thetechnologiesthatareusedtoday,however,donotdifferasmuchbetweenthecountriesbecauseofeasyexchangeoftechnicalknowledge.

2.2. EvolutionofTimberTechnologiesWhile thepreviouschapter focusedonthegeneraldevelopment inGermanyandNorway, thischapter dealswith the development of the timber technologies themselves. It is important toknowhowthetimbertechnologieschangedovertimetohaveabetterunderstandingoftoday’stechnologies.Furthermore,itcanhelptobetterunderstandthedoubtsthatexistamongstboththeclientsandthearchitects,plannersandengineers.

Theoldestwoodproductis,ofcourse,timbermadefromsolidwood,whichwasusedalmostex‐clusivelyuntilthe20.century.Nonetheless,thereweresomeearlyinventionsthatcombinedin‐dividualwoodmemberstoformbiggercomponentsthatcouldspanlargerdistances.Whenthoseearlyengineeredwoodproductsweredeveloped,theindividualmemberswereconnectedusingmechanicalfastenerssuchasnails,boltsordowels.Oneoftheearliestexamplesisanarchcom‐ponentmadefromtwotothreecurvedplanksthatstanduprightandarelinkedtogetherbycross‐members,developedbyaFrencharchitectasearlyas1561.Itallowedforlongerspans,withatthesametimelowerhorizontalshearforcesatthesupports,comparedtothetraditionalcoupleroof.In1830,anotherFrenchengineerdevelopedabeammadefromstackedhorizontalplanksholdtogetherbybolds,whichcanbeseenasthepredecessorofthemoderngluedlaminatedtim‐ber(glulam)[20,10].

Themechanicalfastenersusedfortheengineeredwoodproductswerewidelyreplacedbysyn‐theticgluesintheearlytwentiethcentury[26,7],thoseallowedasuperiorstressdistributionandbetterload‐slip‐behaviour.ThefounderofmoderngluedwoodproductssuchasglulamwasOttoHetzer(1846–1911),whoobtainedhispatentongluedtimberconstructions in1906[26,67].Someoftheearlierinventionsthatusedsyntheticglues,developedinthefirsthalfofthe20.cen‐tury,includeplywood,apanelmadefromthinlayersofveneer,andparticleboard,apanelmadefromfinewoodchipsandsawmillshavings[26,84].Later,glulambecamecommerciallyavailable.Someoftheoldestbuildingsstillinusethataremadefeaturingglulamasthemainbearingele‐mentare therailwaystations inMalmø(built in1922)andStockholm(1925),both located inSweden[26,67].Morerecentlydevelopedproductsincludeorientedstrandboardaswellasthesolidwood‐likeparallel strand lumberand laminatedstrand lumber,allmade fromstrandsofwood[26,84].Thosedevelopmentsmadeitpossibleforwoodtobeusedinlargeandcomplicatedengineeringstructures.

Overthetime,theplanningwasmoreandmoremovedfromtheconstructionsitetotheoffice.Morecomplexandefficienttechnologiesrequiredmorepre‐planning.

Inthe21.century,thedevelopmentwascharacterisedbynewtechnologieslikeCAD(computer‐aideddesign),CNC(computerisednumericalcontrol)andtheso‐calledindustry2.0.Thisallowedforthewoodproductstobemanufacturedveryefficiently,evencostumerspecificproductscouldbeproducedeconomically.Thisagainhelpedtheplannerstodesignmoreefficientbuildingswith

Page 19: Different Construction for Storey Timber

SocietyPerspective

MasterThesis‐LucasBienert 5

speciallytailoredwoodproducts.Additionally,makinguseofthemanifoldpossibilitiestoshapetimberandengineeredwoodproductsopenedupgreatnewpossibilitiesforarchitectsandengi‐neers.

Today’sresearchfocusesamongstotherthingsonimprovementsofthewood’sproperties,sincehereinstillliethebiggestproblemsandchallenges.Thisconcernse.g.thedecayofwoodanditscomparably lowstiffness.Moreabout today’s researchanddevelopmentswillbedescribed inchapter5.4.

2.3. Today’sGlobalSituationWiththedevelopmentofnewtechnologiesthatmakewoodcompetitiveagain,thedemandforwoodproductsrises.Thereis,however,agapbetweendemandand(sustainable)supplyofwood,oneofthemostimportantissuesoftodayisthereforetheuseofwoodfromsensitiveecosystems,e.g.rainforests,inanon‐sustainableway.Theworld’stotalforestareadecreasedinthetimebe‐tween1990and2000by8,3millionha/aandfrom2000to2010by5,2millionha/a,mostlosseswereobservedinthetropicalregionsinSouthAmericaandAfrica[24,314].

Anotherissueistheconflictbetweentheindustrialuseofforeststoproducewoodproductsandthevalueofforestsforrecreationandforahealthyecosystem.Forestsarenotonlyveryimportantforthehealthofthelocalecosystems,butalsofortheglobalenvironmentandclimate.

Todissolvethoseconflicts,measuresmustbetakenatdifferentpoints.Ontheproductionside,sustainablemethodsmustbeestablishedworldwide,reforestationandforestplantationareim‐portantpartsofthismeasure.Thedevelopmentofnewtechnologiesforharvestingandmanufac‐turingleadstoahigherefficiencyandthusareducedwooddemand.Finally,newproductsthatusesmallerdiameterandlowerqualitywoodcanslowdowntherisingdemandforwood[26,81‐82],someexamplesforthisapproachareaddressedinchapter5.1.4aboutengineeredwoodprod‐ucts.

Topromotesustainableforestry,certificationisneeded.Onaglobalscale,therearetwodifferentsystemsforcertificationofforests,theForestStewardshipCouncil(FSC)andtheProgrammefortheEndorsementofForestCertification(PEFC).Thelatteristoday’sbiggestcertificationsystem[27,18‐19].Additionally, thereare alsonational certification systems like theNorwegian “Le‐vendeSkog”,thiswillbetakenupagaininchapter3.1.2.

Inspiteofalltheissuesdescribedabove,woodwilldefinitelyplayanimportantroleinthefuture.Withappropriatemanagement,thoseproblemscanbeovercome,becausewoodisstillsufficientlyavailable.InEurope,thewoodgrowthexceedsthefellingeachyear,andconsequently,theforestareaincreasedby0,7millionha/aduringtheperiodfrom2000to2010[24,314].InGermany,onethirdofthecurrentannualyieldofwoodwouldsufficetousewoodforallnewlybuiltcon‐structions[23,43]andinNorway,thenewgrowthofwoodperyearismorethantwiceashighastheusage[27,25].

2.4. SummaryoftheSocietyPerspectiveThepurposeofthischapterwastogiveanintroductionintobuildingwithtimberfromasocietypointofview.Itstartedwithasummaryofthehistoricaldevelopment,whichshowedthatwoodhasbeenused forbuildingpurposes forcenturies, longer thane.g.concreteandsteel,but thetechnologieshavechangedsignificantly.Large‐scalestructureshavebecomepossible.Moreover,formerproblemsconcerningthecombustibilityandthedecayofwoodhavelargelybeenover‐come.OldwoodenbuildingsliketheNorwegianstavechurchesprovethatwoodenbuildingscanbeverydurable,providedgoodplanningandmaintenance.Still,therearewide‐spreadreserva‐

Page 20: Different Construction for Storey Timber

SocietyPerspective

MasterThesis‐LucasBienert 6

tionsagainsttimberamongstboththeclientsandtheplanners,andthetimberindustryisonlynowstartingtodevelop.

Today’sglobalsituationwasdescribed,pointingattheenvironmentalissuesconnectedtothepro‐ductionofwoodproductsconcerningunsustainableforestry.

Beforedealingindetailwiththedifferenttimbertechnologies,someofwhichhavealreadybeenmentionedinthischapter,itisnecessarytofirsttakealookatthetheoreticalbackgroundinthenextchapter.Thisincludestheinternationalandnationalrulesandstandardsthatformthebasisforanytimberdesign.OfcentralimportanceforallEuropeancountriesaretheEuropeanstand‐ardsincludingtheEurocodes(EC).Afterthat,adescriptionofselectednationalrulesandstand‐ardsinNorwayandGermanywillbegiven.

Thedesignbasis,whichisbasedonthoserules,willcompletethetheoreticalbackgroundforthesubsequentexaminationsofthetimbertechnologiesandthedesignanalysis.

Page 21: Different Construction for Storey Timber

Theory

MasterThesis‐LucasBienert 7

3. Theory3.1. RulesandStandards

3.1.1. EuropeanStandardsManydifferentstandardsplayaroleinthedesignoftimberbuildings.ThedesignisconductedaccordingtotheEurocode5(EC5),i.e.EN1995‐1‐1.Additionalstandardsregulatethedifferentmaterials, give requirements for manufacturers and define material properties. Furthermore,therearesomeproductsthatarenotornotyetstandardised,wherethecharacteristicpropertiesarespecifiedbythemanufactureroratestinglaboratorycommissionedbythemanufacturer.Ta‐ble3.1givesanoverviewovertheEuropeanstandardsthatareimportantforthedesignoftimberconstructions.

Table3.1:OverviewoverEuropeanstandardsforthedesignoftimberconstructions

product mainstandard

productstandard

propertiesstandard

designstandard

solidwood EN14081‐1 EN14081‐1 EN338 EN1995‐1‐1glulam EN14080 EN14080 EN14080laminatedve‐neerlumber

EN13986 EN14374EN14279

manufacturer

plywood EN636 EN12369‐2orientedstrandboard

EN300 EN12369‐1

particleboard EN312hardfibreboard EN622‐2mediumhardfi‐breboard

EN622‐3

mediumdensefibreboard

EN622‐5

solidwoodpan‐els3

EN13353 EN12369‐3 ‐

cross‐laminatedtimber CLT

EN16351 EN16351 manufacturer ‐

Ascanbeseenfromthistable,forsomeproductslikelaminatedveneerlumber(LVL)andcross‐laminatedtimber(CLT),nopropertiesstandardshavebeenworkedoutyet,sothatcharacteristicpropertiesmustbetakenfromtechnicalapprovalsprovidedbythemanufacturer.Moreover,theEC5doesnotmentioneithersolidwoodpanelsorCLT.ThedesignrulesoftheEC5mustthereforebeadaptedforthosematerials,thatconcernsmainlythechoiceofadequatesafetyfactors.Thiswillplayarolelateroninthismasterthesis,whenitcomestothedesigntheCLTconstructionofTreet.Itcanberevealedatthispointthat,basedonresearchresults,itisrecommendedtousethesamedesignfactorsforCLTasforglulam[19,934].

Inadditiontothosetimberspecificstandards,Eurocode0(EC0)describesthegeneraldesigncon‐cept,andinthedifferentpartsofEurocode1(EC1),allthetypesof loadsaredefined.It isnot

3Solidwoodpanelsarepanelsmadefromoneorseveralpliesofwoodplanks; theycanhavethesamecompositionasCLTpanels,butincontrasttoCLTtheplankshavenotbeensortedintostrengthclassesandthegluehasnotbeentested.

Page 22: Different Construction for Storey Timber

Theory

MasterThesis‐LucasBienert 8

withinthescopeofthismasterthesistogointodetailconcerningthosebasicstandards.Atsomepoints,though,thestandardsallowe.g.theuseofdifferentformulae.Moreover,everycountrycanspecifytheirownsetofsafetyfactorsandcombinationfactorsandcanadaptthestandardswithinspecificboundariesinthecorrespondingnationalannexes.ToavoidmisunderstandingsandtohaveasolidfoundationfortheECdesign(cf.chapter6.4),designbasisisestablishedinchapter3.2.

Togivesomeexamplesofthedifferencesthatarisefromthedifferentnationalannexes,ashortcomparisonoftheNorwegianandtheGermannationaladjustmentsshallbepresented.

Quitenaturally,therearebigdifferencesconcerningthedeterminationoftheenvironmentalloadslikewindandsnowloads.Thisismostlyduetothefactthattheenvironmentalloadshighlyde‐pendonthegeographicalsituationinthedifferentcountries.TheNorwegiannationalannexestoEC1part1‐3(snowloads)andEC1part1‐4(windloads)featuredetailedtableswithfactorsforthecalculationoftheloadsatdifferentplaces.IntheGermannationalannextoEC1part1‐4,anaccidentalloadcase4forespeciallyhighwindloadsintheflatnorthernregionsisadded.

Concerningthetimberspecificstandard,EC5,theGermannationalannexfeaturesextensivead‐ditions,e.g.asimplifiedapproachforthedesignoftimberconnectionsusingγ 1,1aspartialsafetyfactorinsteadofγ 1,3.Furthermore,onecanfindadditionsfordifferentdetailsthatarenotcoveredbythemainstandard,e.g. forstrengtheningof transverseconnectionsusing fullythreadedscrewsandfortraditionalwoodworkingjoints.

3.1.2. NationalRulesandStandardsinNorwayandGermanyBesides the described standardswhich define the technical requirements, additional nationalrulesdefinefurtherrequirements,concerninge.g.thelayoutofthebuilding,firesafetymeasuresandtheexecutionofthebuildingproject.

InGermany,thatconcernsthe“Musterbauordnung”[9](MBO,Germanbuildingregulation)to‐getherwiththetimberspecific“Muster‐RichtlinieüberbrandschutztechnischeAnforderungenanhochfeuerhemmende Bauteile in Holzbauweise” [8] (M‐HFHHolzR, German regulation for firesafety requirementson timberelements).The fire safety requirements forwoodproductsarequitestrict,makingitnecessarytomakeadeviationrequestiftimberistobeusedvisiblyinbuild‐ingswithmorethanthreestoreys5.Thisleadstohighercostsfortimberconstructions.

InNorway,itisonlyallowedtousetimberinbuildingshigherthanthreestoreysatallsince1998.InaresearchdocumentcommissionedbytheNorwegiangovernmentin2013,itisfoundthat,asalong‐termeffectofthat,thetimberindustryisstillnotfullydevelopedandthatexpertiseismiss‐ing[13,4].Thismaysoundstrangeconsideringtherichhistoryofbuildingwithtimberwhichwasdescribedpreviously.Theproblem,however,isthatwoodisalmostexclusivelyusedforsmallerresidentialbuildings,butnot for largerstructures.Thestrategyof theNorwegiangovernmentaimsatusingmorewoodforpublicbuildings,therebysupportingthetimberindustry[13].ThismeasurecoulddefinitelyalsobetransferredtoGermany,wherethesituationofthetimberindus‐tryisapproximatelythesame,ifnotworse.Butacomparablestrategyhasnotyetbeenworkedout.

4ThedesignaccordingtotheECstandards isbasedontheanalysisofdifferent loadcaseswithspecificcombinationsof thedifferent loads.Accidental loadcasesarereserved forexceptional loads like fireorearthquakes.5Actually,therequirementsarelinkedtotheheightofthegroundfloorofthehighestinhabitedstoreyabovetheground.Thelimitissetto7m,whichcorrespondsapproximatelytoabuildingwiththreestoreys.

Page 23: Different Construction for Storey Timber

Theory

MasterThesis‐LucasBienert 9

Adifferentaspect, thathasalreadybeenmentionedearlier inthedescriptionoftoday’sglobalsituation,isforestcertification.Norwayhasitsownforestcertificationsystem“LevendeSkog”,whichfulfilstherequirementsforthePEFCcertification.Itwasfoundedin1998andaimsatthepromotionofamoresustainableuseoftheforests,balancingthethreecentralaspectsindustrialandeconomicalinterests,environmentalissuesandsocialinterests(cf.chapter2.3).Inthe“Le‐vendeSkog”system,theforestindustry,labourunions,recreationorganisationsandenvironmentorganisationsworktogether.Today,allNorwegianforestsarecertifiedafterthisstandard[27,19].

3.2. DesignBasis3.2.1. Parameters

Thepreliminarydesignwasperformedusingsimplifiedloads(seenextchapter)andreducedma‐terialpropertiestoaccountforthenecessarysafetymargins,e.g.σ 5N/mm forthestrength

ofwoodparalleltothegrain(bothbending,compressionandtension).Thisallowsforarelativelyquickpreliminarydesignwithresultsthatgenerallyareonthesafeside.Thepreliminarymaterialpropertiesaresummarisedintheprefaceofthepreliminarydesigndocumentation,whichisat‐tachedtothisdocument(seeappendixA).

For theECdesign, thematerial propertieswere taken from the relevantEuropean standards,whichweresummarisedinTable3.1.SincethedesignedbuildingislocatedinNorway,theNor‐wegiannationalannexesoftheECwereused.

AccordingtotheNorwegianrules,everystructuremustbeassignedareliabilityclass.Residentialbuildingsgenerallybelonginreliabilityclass2.ThismeansthatthebuildinghastobeassignedtotheplanningcontrolclassPKK2andtheexecutioncontrolclassUKK2,whichrequireadetailedqualitycontrol[4,NA.A1.3.1(901)‐(904)].

BecauseofdifferencesbetweentherecommendationsinthemainECstandardsandtheNorwe‐giannationalannexes,Table3.2toTable3.4summarisethesafetyandcombinationfactorsthathavebeenusedinthismasterthesis,whichcorrespondtotheNorwegiannationalannexes.

Table3.2:Selectedmaterialsafetyfactors[3,NA.2.4.1]

material materialsafetyfactorγsolidwood 1,25glulam,CLT 1,15plywood 1,15connections 1,3

Page 24: Different Construction for Storey Timber

Theory

MasterThesis‐LucasBienert 10

Table3.3:PartialsafetyfactorsaccordingtoECandtheNorwegiannationalannex[4,NA.A1.3.1]

load favourable/un‐favourable

partialsafetyfactor

EQU:basicloadcombinationforpermanentandtransientloadsG :permanentloads uf γ 1,20

f γ 0,90

Q :leadingvariableload i 1 uf γ , 1,50

f γ , 0

Q :furthervariableloads uf γ , 1,50

f γ , 0

STR,GEO:basicloadcombinationforpermanentandtransientloadsG :permanentloads uf γ 1,20

  f γ 1,00

Q :leadingvariableload i 1   uf γ , 1,50

f γ , 0

Q :furthervariableloads uf γ , 1,50

f γ , 0

EQU equilibriumlimitstateSTR structurallimitstateGEO geotechnicallimitstate

Table3.4:SelectedcombinationfactorsaccordingtoECandtheNorwegiannationalannex[4,NA.A1.2.2]

load combinationfactorψ ψ ψ

liveloads A:residentialbuildings 0,7 0,5 0,3 H:roofs 0 0 0snowloads 0,7 0,5 0,2windloads 0,6 0,2 0

Itmustbenotedthat,sinceCLTisnotconsideredintheEC,assumptionshadtobemadefortheselectionofappropriatesafetyfactorsandotherparameters.Inaresearchprojectfrom2018,itisrecommendedtousethesamesafetyfactorsasforglulam(cf.Table3.2)[19,934].Accordingly,otherfactorslikethemodificationfactork toaccountforeffectsofmoistureandload‐dura‐tion,werealsotakenoverfromglulam.

Forthecalculationofthedeformations,EC5allowstwodifferentmethods,ageneralmethodandasimplifiedmethodforstructuresthatconsistofcomponentsthatallhavethesamecreepingbe‐haviour.Thethreedesignvariantsthatareanalysedinthismasterthesisfulfilthisrequirement(cf.chapter6.2.1),thereforethesimplifiedapproachisappliedfortheECdesign(see[3,2.2.3]).

AllotherparametersaredescribedinthedocumentationoftheECdesign,cf.appendixA.

Page 25: Different Construction for Storey Timber

Theory

MasterThesis‐LucasBienert 11

3.2.2. LoadCalculationForthepreliminarydesign,simplifiedloadswereusedtogetaquickideaofthegeneralmagnitudeoftheresultingforces.Theself‐weightofthefloors,forexample,wasassumedtobe2kN/m ,thelifeloadandthesnowloadontheroofwerebothsetto2kN/m ,too.Onlythewindloadswerecalculatedinmoredetail,becausetheyhaveastronginfluenceonthesystemofamulti‐storeybuildingandhighlydependonthelocationofthespecificproject.

FortheECdeign,adetailedloadcalculationwasperformedaccordingtoEC1,usingtheNorwegiannationalannexes.Thedocumentationoftheloadcalculationcanbefoundattachedtothisdocu‐ment,cf.appendixA.Differentloadcases(LC)hadtobedistinguished,thosearesummarisedinTable3.5.

Table3.5:Loadcases

LC description loadduration1 self‐weight permanent2 snow short‐term3 windfromthefront instantaneous4 windfromtheside instantaneous5 liveload categoryA medium‐term

Theindividualloadcaseswerecombinedindifferentloadcombinations(CO).Becausetheloadbearingbehaviourofwoodistimedepended(seechapter5.1.1),differentloadcaseswithdiffer‐entloaddurationshadtobeconsidered,cf.Table3.6.

Table3.6:Loadcombinations

CO self‐weight leadingvariableload

accompanyingvariableload

loadduration

1 self‐weight ‐ ‐ permanent2 self‐weight liveload ‐ medium‐term3 self‐weight snow liveload short‐term4 self‐weight liveload snow short‐term5 self‐weight windfromthefront snow,liveload instantaneous6 self‐weight windfromtheside snow,liveload instantaneous7 self‐weight liveload snow,windfrom

thefrontinstantaneous

8 self‐weight live load snow,windfromtheside

instantaneous

9 self‐weight snow windfromthefront,liveload

instantaneous

10 self‐weight snow windfromtheside,liveload

instantaneous

11 self‐weight windfromthefront ‐ instantaneous12 self‐weight windfromthe side ‐ instantaneous

CombinationsCO1toCO10aremeant for thecalculationof themaximumcompressive forces.Sinceforcompression,incontrasttotension,bucklingmustbeconsidered,thesecombinationswillbedecisiveforthedeterminationoftherequiredcross‐sections.

Page 26: Different Construction for Storey Timber

Theory

MasterThesis‐LucasBienert 12

CO11andCO12aremeantforthetensiondesign,whichise.g. importantforthedesignoftheanchorage6inthepanelandtheCLTconstruction.Thecorrespondinglowerpartialsafetyfactorfortheself‐weightwasused(γ 1,0insteadofγ 1,2).

3.2.3. SoftwareThepreliminarydesignwasmostlyperformedwithouttheuseofdesignsoftware.Stab2d,asim‐pleprogram for the analysis of two‐dimensional frameworks,wasused todetermine internalforcesanddeformations.MicrosoftEXCEL©wasusedforthestabilityanalysisofthepanelandtheCLT construction.The stability analysiswas conducted todetermine the shear forces andbendingmomentsintheindividualwallsduetotheglobalwindloads.

TheECdesignrequiredmoreaccuratecalculationmethods.TheFEMsoftwareRFEM©byDlubalSoftwareGmbHwasusedtomodelandanalysetheoverallstructureofallthreevariants.WithRFEM, both one‐dimensional members, two‐dimensional surfaces and three‐dimensional vol‐umescanbemodelled.OneofitsmajoradvantagesistheextensivelibraryofmaterialsandtheincorporationofmanystandardsincludingtheECanditsnationalannexes.RFEMcanautomati‐callycombineloadsaccordingtoloadcombinations.ThedetailsoftheFEManalysisusingRFEMareexplainedinchapter6.5.1.

Additionally,ananalysisofaselectedconnectiondetailwillbecarriedouttocomparewiththecalculationsaccordingtoEC.Thereasonsforthiswillbeexplainedinchapter5.2.Forthisanalysis,theFEMsoftwareANSYSwasused.ANSYS,incontrasttoRFEM,isaprogramthatfocusesmoreonin‐depthscientificcalculationsofdetailsinsteadofontheanalysisofwholeengineeringstruc‐tures.Italsoincludesanorthotropicmaterialmodelwhichisrequiredforwood.

3.3. SummaryoftheTheoryInthepreviouschapter,thetheoreticalbasisfortheexaminationsandthedesignanalysisthatwillfollowinthenextchaptershasbeenworkedout.Abriefoverviewoftherulesandstandardsthatdealwithtimberhasbeengiven.Somerulesarestillinfluencedbytheformerproblemsofwoodproducts like theGermanM‐HFHHolzRwhichdoes not allow visiblewoodmembers inbuildingswithmorethan3storeysduetofiresafetyreasons.InNorway,therewerecomparablerulesuntilrelativelyrecently,whichcanexplaintheweakpositionofthetimberindustrytoday.WiththenewstrategytosupportthetimberindustryinNorway,however,thesituationbeginstochange.

6Anchoragereferstotheconnectionsbetweenwallsaboveeachother,whichareresponsiblefortransfer‐ringtensileforces.Tensileforcesoccuratthebottomofthebuildingwheretheglobalbendingmomentduetothewindloadsissplitintocompressionandtensionforces.

Page 27: Different Construction for Storey Timber

ResearchQuestions

MasterThesis‐LucasBienert 13

4. ResearchQuestionsThecentralresearchquestionforthefollowingexaminationsis:

1. Whichmaterialsandconstructionmethodsarebestusedforanefficientdesignofmulti‐storeytimberbuildingsfromastructuralpointofview?

Somesecondaryquestionshavealreadybeendealtwithinthepreviouswork:

2. Howdidthetimbertechnologydevelop,andwhichnewtechnologiesaredevelopedto‐day?

3. WhatarethemaindifferencesbetweenGermanyandNorwayconcerningthewaytocon‐structtimberbuildings?

4. Howdonationalrules influencethedevelopmentofthetimberbuildingindustryespe‐ciallyinGermanyandNorway?

Theanswerstothosequestionswillbesummarisedtogetherwiththeanswerstotheotherques‐tionsintheconclusionsinchapter9.

Furtherquestionsthatwillbediscussedinthefollowinginclude:

5. Whatarethemainadvantagesanddrawbacksoftimberincomparisontosteelandcon‐crete,alsoconsideringenvironmentalaspects?

6. Whichroledoconnectionplayinthedesignoftimberbuildings?7. Howcanfiniteelementsoftwarebeusedtoeffectivelydesigntimberconstructionsand

connections?8. Howwelldotheregulationsinthestandardsreflecttherealbearingbehaviouroftimber

constructionsandconnections?

Concerningthedesignanalysis,thismasterthesisfocusesonthestructuralaspectsofthetimbermaterials,whiletheconcreteandsteelmemberswillnotbetakenintoaccount.Fireprotectionandeconomicalaspectswillonlybediscussedbrieflyinthetext.

Inordertoanswerthosequestions,thenextchapterwilldealwiththepropertiesoftimbermate‐rialsandstructuresinmoredetail.Someoftheaspectsmentionedinthepreviouschapterswillbepickedupanddiscussed,liketheenvironmentalissuesandthenewdevelopmentsoftoday.

Themainmethodtofindanswerstothosequestion,however,isthedesignofthemulti‐storeytimberbuildingTreet,whichwillbepresentedinthefollowingchapter.

Page 28: Different Construction for Storey Timber

Case/Materials

MasterThesis‐LucasBienert 14

5. Case/Materials5.1. TimberMaterials

5.1.1. GeneralPropertiesofSolidWoodAboveallelse,woodisanaturalmaterial.Thishassomegreatadvantagesbutalsoincludessomechallenges.Thischapterdealswithboth,describingimportantaspectstokeepinmindwhenplan‐ningatimberbuilding,andespeciallyoneaschallengingasamulti‐storeybuilding.Firstly,somegeneralpropertiesofwoodarepresented,followedbyanexaminationofitsmechanicalproper‐ties,whichareimportantforthelaterdesign.

Oneofthecharacteristicadvantagesofwoodisitsaestheticsurface,itdoesnotneedtobecoveredandisoftenusedforarchitecturalpurposes.Thisistrueforsolidwoodaswellasglulamandmostoftheengineeredwoodproducts.Moreover,withtoday’stechnologyitcanbeformedintoalmostanypossibleshape(agoodexampleforthatismasstimberlikeCLTwhichwillbedescribedlater).Besidesthat,woodstoresCO2,oneofthemaingreenhousegases(GHG).1m oftimbercontainsabout0,92tonnesCO2[27,26],therebyactivelycontributingtoslowingdowntheglobalwarming.Inadditiontothat,woodisarenewablematerialbecauseitalwaysregrows.

Acharacteristicdrawbackofwoodisthatitspropertiesvaryalot,dependingontheusedwoodspecies,butalsobetweensamplesofthesamespeciesbecauseofitsgeneralinhomogeneityanddefectslikeknotholes.Thismakesdesigningareliablestructuremoredifficult,largersafetyfac‐torsmustbeused.Ontheotherhand,differentspeciescanbeusedfordifferentpurposes,whichmakesdifferentstrengthclassesandeconomicadjustmentstothedesignpossible.Forstructuralelements, fastgrowingsoftwoods likespruceand firarepreferred. InNorway, theNorwegianspruceandpinearemainlyused.Hardwoodspecieslikeoakorbeechareusedforspecial,highlyloadedcomponentssuchaswooddowels[21,32].

Tocomebacktothegeneraldisadvantagesofwood,itisimportanttomentionthedecay.Thisismostofthetimeaconsequenceofmoistureinsidethewood.Measurestoenhancethewood’spropertiesconcerningdecaythereforefocusonsealingthewoodagainsttheinfiltrationwithwa‐ter.Today,manynaturalsubstancesandtechniquesareavailable,thereisnoneedforusingpoi‐sonous,environmentallydamagingchemicalwoodpreservatives.Oneoptionforthecoatingofthewoodarebiologicalsubstancesfromnaturalsources,examplesarechitosan,producedfromchitin,orpineoil[27,43].However,coatingisingeneralveryexpensive,smalldefectscandestroythepositiveeffectsandregularmaintenanceisnecessary[26,238].Acompletelydifferentpossi‐bilityisthebiological,chemicalorphysicalmodificationofthewood.Onerequirementforanysuchmethodisthatnopoisonisusedandnopoisonoussubstratesareemitted.Anexampleofchemicalwoodmodification is the furfurylation. Furfuryl alcohol is used, under heat it reactschemicallywiththewoodmolecules,thusrenderingthewoodsurfacemoreresistantagainstde‐cay.Furfurylalcoholisderivedfromfurfural,whichisproducedfrombiomasswaste,makingthefurfurylationarenewablemethod.Theprocessisstillquitecostlythough,sothatitisnotyeteco‐nomic inmostcases [24,319‐320].Anexampleofphysicalmodification is themanufactureofthermallymodifiedtimber(TMT)bymeansofaspecialheat treatment.All thosemodificationmethods,however,havethedrawbackthattheystillhaveanegativeinfluenceonthewood’sprop‐ertiesincludingtheloadbearingbehaviourandthetendencytocrack[20,26].

Anotherchallengefortimberstructuresisthecombustibilityofthewood.Buthereagain,withgoodplanning,anyproblemsconcerningthefiresafetycanberesolved.Whenexposedtofire,woodcreatesalayerofcoalonitssurface,whichprotectstheremainingpartofthecross‐section.Theratethatthethicknessofthecoallayerincreaseswithispracticallyconstantovertime,which

Page 29: Different Construction for Storey Timber

Case/Materials

MasterThesis‐LucasBienert 15

makesitpossibletodeterminetheremainingcross‐sectionafteracertainamounttimeundertheinfluenceoffirequiteaccurately.EC5part1‐2forthefiredesignoftimberstructuresisbasedonthisprinciple.FromthoseexplanationsitalsofollowsthatmassivetimberelementslikeCLThaveadvantagescomparedtolighterframeworkstructureswhenitcomestofiresafety,becauseofthesmallersurfaceinrelationtothevolume.

Allthoseaspectsareimportanttokeepinmindwhendesigningbuildingsusingwoodproducts.Butofcourse,forthestructureitself,themechanicalpropertiesaremostimportant.

Firstofall,woodisanisotropic,morepreciselyorthotropic,thatmeansthatitsmechanicalprop‐ertiesaredifferentinthreeperpendiculardirections,paralleltothegrain,radialandtangential,cf.Figure5.1.Thisisduethewood’sinternalstructure,consistingoflonggrainsthatrunparalleltoeachotheralongthetrunkofatree.Additionally,thecross‐sectionofatreetrunkisbuiltupoutofrings,eachyearanewgrowthringisaddedtotheoutside,whichalltogetherleadstothethreedifferentdirections.

Figure5.1:Threeprincipalaxesofwoodwithrespecttograindirectionandgrowthrings[16,5‐2]

Indesignpractice,however,nodifferenceismadebetweentheradialandthetangentialdirection,onlyparallelandperpendiculartothegrainaredistinguished.Figure5.2showsthestress‐strain‐diagramofsolidwoodparalleltothegrain.Thetensionstrengthf ,thecompressionstrengthf andthestrainsεatthecorrespondingpointsarepointedout.

Page 30: Different Construction for Storey Timber

Case/Materials

MasterThesis‐LucasBienert 16

Figure5.2:Stress‐strain‐diagramforsolidwood[26,203]

Thestrengthparalleltothegrainishighest,sincethisisthemaindirectionatreemustcarryloadsininthenature.Perpendiculartothegrain,woodhasalimitedbearingcapacityforcompression,but this can lead to large settlements.This is especially interesting formulti‐storeybuildings,whererathersmall settlementscanaddupoverall thestoreys toa considerabledeformationwhichcanendangerthestabilityoftheoverallstructure.Compressionperpendiculartothegrainshouldthereforegenerallybeavoidedinmulti‐storeybuildings.Thetensionstrengthperpendic‐ulartothegrainisevensmaller,about30to50timessmallerthanparalleltothegrain[26,19‐20].Asidefromthat,itisinterestingtonotethatahigherstrengthclassofwooddoesnotleadtoaconsiderablyhighertensilestrengthperpendiculartothegrain.Knotsinthewood,however,which leadtoagrading ina lesserstrengthclass,seemtohaveapositiveeffectonthetensilestrengthperpendiculartothegrain[26,112‐113].

Incompliancewiththosefindings,failureoftimberstructuresinpracticeisinmostcasesaresultoftensionperpendiculartothegrain.Thisoccurse.g.atconnectionswithmetalfasteners,atholesandnotchesandattheapexofgableroofbeams.Changesinmoisturecontentcanalsoleadtoeigenstressesandcrackswhich increasethedangerof fractureperpendiculartothegrain[26,153].Thebehaviourofwoodunderstressesperpendiculartothegrainisnotyetfullyunderstood.Empiricalmethodsarecommonlyused, likeminimumdistancesofmetal fasteners,orstressesperpendiculartothegrainareavoidedcompletely,e.g.byapplyingadditionalstrengtheninglikefullythreadedscrewsintheapexofgableroofbeams[26,19‐20].Thefailureitselfischaracterisedbyaratherbrittlebehaviour[20,15].

Anotherimportantfactorthatinfluencesthewood’spropertiesistime.Woodlosesitsstrengthandstiffnessunderlong‐termloads.Unlikemostothermaterials, thisbehaviourcannotbene‐glected,forsolidwoodthestrengthaftertenyearsofloadingcanbereducedbyupto40%[26,21].Thelong‐termbehaviourofwoodisstillapartoftheresearch.Testresultsshowalogarithmicrelationshipbetweentheloadingdurationandthestrengthforbending,cf.Figure5.3.

Page 31: Different Construction for Storey Timber

Case/Materials

MasterThesis‐LucasBienert 17

Figure5.3:Decreaseofthebendingstrengthoftimberdependingontheloadduration[26,135]

Fortheteststhattheabovediagramisbasedon,specimenswereloadedwithaconstantbendingloadatdifferentstresslevelsandthetimeuntilfailurewasmeasured.Thelongertheloaddura‐tion,thelowertheacceptablestresslevel.Forotherfailuremodesthanpurebending,onlyverylittlestudiesexist.Thesesuggest,however,thatforanykindofloadingparalleltothegrain,thebehaviourfollowsapproximatelythecurvefromabove,whileloadingperpendiculartothegrainleadstoastrongerdecreaseinstrength[26,141].IntheEC5,theinfluenceoftheloaddurationisconsideredviathemodificationfactorforthewood’sstrengthk .

Moistureinwoodhasalreadybeenmentionedinconnectionwiththedecay.Italsoshortensthetimeto failure formemberssubjectedto long‐termloads[26,141].Moreover,with increasingmoisturecontent,boththestrengthandtheYoung’smodulusoftimberdecrease.Themoisturecontentinthewoodwilladapttothehumidityofthesurroundingair.Thatmeansthatdifferentclimaticconditionsleadtodifferentmoisturecontentinthewoodandthushaveadirecteffectonthebearingbehaviour.ThiseffectisincludedintheEC5viethesamemodificationfactorasfortheloadduration,k .

Besidesthestaticmoisturecontentinthewood,thechangesofthiscontentalsohaveanimpactonsomethewood’sproperties.Astheairhumiditygenerallychangesoverthetimeofayear(de‐pendingontheregion),atimbermemberthatisnotinaprotectedindoorclimate,willgothroughmanycyclesofmoisturechanges,cf.Figure5.4.

Page 32: Different Construction for Storey Timber

Case/Materials

MasterThesis‐LucasBienert 18

Figure5.4:Meanmoisturecontentinwood(glulam90×100×600) versus time in a barn in Southern Sweden (Åsa)[26,155]

Those changes of moisture content will amongst other things lead to increased creep defor‐mations[26,141].

Avoidinghighmoisturecontentsandmoisturechanges is importanttoensurethatthewood’spropertiesdonotchangefortheworse.Furthermore,decayeffectsmustbeexcludedtoguaranteedurabilityandalonglifetimeofatimberstructure.Toachievethis,somemeasureshavealreadybeenmentionedinthebeginningofthischapter.Ageneraldesignruleistokeepwoodmembersindrysurroundingsorat least toallowwatercoming incontactwiththewoodtorunoffandevaporatewithouthindrances.Itisalsorecommendedtokeepdistancesbetweenwoodmembersandcomponentsmadefromdifferentmaterialstopreventmoisturefromgatheringinthegroovethatcandamagethewood.Averyeffectivemeasuretoprotectwoodencomponentsfromwaterisapplyingalayeronthecomponent(e.g.woodencladding)thatcaneasilybereplaced.

5.1.2. WoodinComparisontoOtherMaterialsNowthatageneralbasisiscreatedconcerningthecharacteristicpropertiesofwood,thisbasisshallbeextendedbycomparingwoodtoothermaterials,namelyreinforcedconcreteandsteel,whichareitsmostimportantcompetitors.

Oneaspectthathasalreadybeenmentionedisthewood’svariabilityandinhomogeneity,whichleads tohigheruncertaintiesconcerning itsmechanical (andother)properties.Both steel andconcretehavemuch lowerorpracticallynosuchvariabilityand inhomogeneity,althoughcon‐crete,becauseitisoftenproduceddirectlyonsite,alsohassomeuncertainties.ThisisdirectlyreflectedinthematerialsafetyfactorsthataredefinedinthedifferentEurocodesforthosethreematerials:γ 1,3forsolidwood7,γ 1,5forconcreteandγ 1,0forsteel.

7Someengineeredwoodproducts,becausetheyhavealowerinhomogeneity,havelowersafetyfactors,e.g.γ 1,2forlaminatedveneerlumber.

Page 33: Different Construction for Storey Timber

Case/Materials

MasterThesis‐LucasBienert 19

Furthermore,theorthotropyofwoodhasbeenexplained.Whilesteelispurelyisotropic,i.e.itsmechanicalpropertiesarethesameinanydirection,reinforcedconcretefeaturesadifferentkindofanisotropy.Althoughbothitsbasicmaterials,concreteandsteel,areisotropic,thefinalproducthasadistinctiveanisotropydependingonthelayoutofthereinforcement.

Anotherimportantaspectisthefailurebehaviour.Whereaswoodhasaratherbrittlefailurebe‐haviour,concreteandespeciallysteelcandeveloplargeplasticdeformationsbeforefailure.Ontheotherhand,woodhasgoodstressdistributionproperties,whichareadvantageousforcom‐binedloadslikecompressionandbending.

Togiveanideaoftheoverallperformanceandcapacityofthethreematerials,someinterestingpropertiesaresummarisedinTable5.1.

Table5.1:Mechanicalpropertiesofsteel,concreteandwoodincomparison[1]

property steelS355 concreteC30/37 glulamGL24hyieldstrengthf 355N/mm 30 N/mm 24N/mm specificweightγ 78,5kN/m 25 kN/m 3,7kN/m heatconductivityλ 50W/ m ⋅ K 2,3 W/ m ⋅ K 0,12W/ m ⋅ K Young’smodulusE 210000N/mm 33000 N/mm 11600N/mm

Asonecouldalreadyguessfromthepreviousdescriptions,steelissuperiortowoodinmostme‐chanical properties. This canbepartly compensated, however, by thewood’s low self‐weight,whichmakesmore light‐weight,efficientstructurespossible.Thesmallweightcombinedwithgoodelasticityisalsoadvantageousforloadsfromearth‐quakes.Whatstillisachallengeespe‐ciallyinstructureswithlargespans,isthewood’slowYoung’smodulus,whichleadstolargede‐formations(evenifthematerialwouldnotfail).Insuchcases,specialstructuresareneededlikearchedbeamsorlatticegirders.Vibrationsandaninferiorsoundprotectionarefurtherproblemsconnectedtothewood’slowYoung’smodulusandweight.Steelbeams,ontheotherhand,canbeusedforlargerspanswithoutspecialmeasures,despitethesteel’slargeweight.

Oneinterestingpropertybesidesthemechanicalbehaviouristheinsulationcapability.Theheatconductivityofwoodisabout20timessmallerthanthatofconcreteandmorethan400timessmallerthanthatofsteel.Moreover,woodregulatestheclimateinsideabuildingbyadaptingitsmoisturecontent.Consequently,woodcanfulfilmultiplefunctionsinabuilding,notonlyload‐bearingbutalsobuildingphysicalones(and,additionally,architecturalones,asdescribedbefore).

Concerningthedecay,steelandconcretehaveadvantages.But,asexplainedearlier,ifdesignedproperly,decaycanbeprevented,andsteelandconcreterequirespecialmeasuresaswelltoavoidcorrosion,whichcanbeseenasthe“decay”ofsteel.Inreinforcedconcrete,theconcretecoverisnormallydimensionedtoprotectthesteelbarsfromcorrosionfor50years.Steelrequiresexpen‐sivecoatingorgalvanisingwhenexposedtotheweather.

Whenitcomestologisticsandtheerectionofabuilding,thewood’slowself‐weightisagainad‐vantageous.Thisalsomakesahighdegreeofprefabricationpossible,allowingforveryeconomicstructures.Inadditiontothat,woodproductscanrelativelyeasilybeadjustedontheconstructionsite.Here,steelhassomedisadvantages,while(non‐prefabricated)concreteallowsforthehighestdegreeofadaption.

Lookingatecologicalaspects,woodrevealsitsgreatestadvantages.Becauseofthelowweight,lessenergyisneededfortransportanderection.Woodisinfinitelyavailableanddoesnotdamagetheenvironmentifsustainableforestryisapplied.Incontrasttothat,whiletherawmaterialsfor

Page 34: Different Construction for Storey Timber

Case/Materials

MasterThesis‐LucasBienert 20

steelandconcreteareabundantaswell,theirexploitationisoftenconnectedtoenvironmentaldamages.Whenmanufacturingtimber,thewastewoodcanbeusedtopowerthefactory.Noad‐ditionalenergyisneededwhenusingmodern,efficientpowerproductionwithheatrecovery.Andwhenitcomestotheproductionofthefinalbuildingproduct,timberusesingenerallessenergythanconcreteorsteel[27,26].

Recyclingattheendofthelifetimeofabuildingcaneffectivelyreducethedemandfortherawmaterialsandistodaypossibleforallthreematerials.Therecyclingofsteelismosteffective,whileconcretecanonlybecrushedandusedasaggregatefornewconcreteagain.Itis,however,alsopossibletouseby‐productsfromsteelandpowerproductionlikeslagandflyashfornewconcrete[24,412].Woodcanbereusedforengineeredwoodproductsor,asalastpossibility,burnedandusedasanenergysource.

Sinceecologicalaspectsplayamoreandmoreimportantroleinoursocietyandareoneofthecentralfactorswhenplannersdecidetousewoodforacertainproject,thoseaspectswillbead‐dressedinmoredetailinthenextchapter,focusingagainmoreonthewooditself.Asameanstoanalysetheecologicalaspects,lifecycleassessment(LCA)willbeused.

5.1.3. AspectsfromLifeCycleAssessmentBeforestartingtoanalyseaspectsfromLCA,aquickexplanationofLCAmethodsshallbegiven.“LCAisamethodologyusedtoanalysecomplexprocesseswhichfocusondealingwiththeinputandoutputflowsofmaterials,energyandpollutantstoandfromtheenvironmentfromalifecycleperspective”[24,49].Itsobjectivesare,ontheoneside,toquantifytheenvironmentalpropertiesofaproductorprocess,andontheotherside,toassesspotentialsforimprovingtheproductorprocess[24,49].WithoutknowingmuchmoreaboutLCA,itcanbeguessedthattoquantifyalltheenvironmentalinfluencesofaproductinonenumberoreveninseveralnumbersispracticallyimpossible.TheresultsofanLCAanalysisareneverexactlycorrectbecauseofthehighcomplexityoftheprocessesandbecauseitisnotpossibletopredictthefutureaccurately.ThismustbekeptinmindwheninterpretingLCAresults.Hence,LCAisespeciallysuitedtocomparedifferentalter‐nativesbymeansofrelativeresults,notsomuchtoobtainabsoluteresultsforoneproductorprocess.Lookingattherelativeresults,LCAgivescorrectresultsalmosteverytime[24,417‐418].

Astrongtoolfortheinterpretationoftheresultsisanevaluationmatrix,whichbalancesenviron‐mental,economicandsocialfactorse.g.fortheselectionofamaterialforaspecificproject[24,44].(Asimilarmatrixwillbeusedattheendofthismasterthesisinchapter7.2tocomparethethreedifferentconstructionmethodsthatwillbedesignedandanalysed,extendingthetoolbytechnicalaspects.)

ImportantaspectsinanLCAstudyforbuildingproductsare

resourceefficiency, energyefficiency, GHGemissions, pollutionpreventionand wastemanagementaftertheendofthelifetime[24,421].

Theresourceefficiencyincludestheexploitationoftherawmaterialsaswellasreuseandrecy‐cling.

Theenergyefficiencyisabigfactorwhichincludesalltherequiredenergyfromdepletingtherawmaterials,tomanufacturing,transportingandmaintainingtheproduct,alsocalledembodieden‐ergy. Influencing factors are amongst others the lifetime of a product and the amount of

Page 35: Different Construction for Storey Timber

Case/Materials

MasterThesis‐LucasBienert 21

maintenancethatisrequired.Toensurealonglifetime,measuresmustbetakentopreservethewood,ashasalreadybeenexplained.Theembodiedenergyrepresentsnormallyaround10to60%ofthetotalenergyusedduringthewholelifetimeofabuilding,whichincludestheenergyforheatingandusingthebuilding.Asbuildingsbecomemoreenergy‐efficientconcerningheatingandtheuseofelectricity,theembodiedenergyinthematerialsbecomesproportionallymoreim‐portant[24,421].

GHGemissionsisanothercentralaspectforthewholelifetimeofabuilding.Woodasaconstruc‐tionmaterialcanbecarbonneutralorevencarbonnegativewithgoodrecycling[24,418],be‐causecarbonisstoredinthewood.However,takingintoconsiderationaspectsfromafullLCA,studiesshowedthatthetotalamountofavoidedcarbonisactually2,1timeshigherthanthecar‐bonstoredinthewooditself.Thisisduetolesscarbonemissionsintheindustrialprocessescom‐paredtoothermaterialsandusageofby‐productsfromthemanufacturingofwoodproductsasbiofueltoreplacefossilfuels[24,326].Concerningtheforestry,somestudiesfoundthatintensiveforestryhaslessCO2emissionsthantraditionalforestry.Thisisbecausetheproductivityismuchhigher,thereforemoreCO2canbestored.Nonetheless,itmustbekeptinmindthatCO2isnottheonlyfactorforLCAandanintensiveforestrycanproduceconflictswithotheraspects,e.g. thebiodiversity[27,27].

Figure5.5showsthecarboncontentandtheembodiedenergyofsomeselectedbuildingmateri‐als.Itmustbenotedthatthecarbonstoredinsidethewoodisnotconsideredinthepresentedvalues.Moreover,thevaluesaregivenrelatedto1kgofthecorrespondingmaterial,butdifferentamountsareneededfordifferentmaterialsinthesamestructure.Theratioofthetotalrequiredweightofmaterialbetweenawoodenstructureandacomparableconcretestructurecanbeupto1:5[24,413].

Figure5.5:Embodiedenergyandcarboncontentofdifferentbuildingmaterialsbasedon[24,415]

Pollutionpreventionconcernsthereleaseofpollutinggasesduringboththemanufacturingpro‐cessandtheuseofaproduct[24,45‐46].

Withthewastemanagement,potentiallyincludingrecycling,thecycleclosesagain.

Buildingsareverycomplexstructuressincematerialsandmembersgenerallyfulfilseveralfunc‐tions.Becauseofthatandbecausedifferentmaterialsrequiredifferentquantitiestofulfilaspecific

Page 36: Different Construction for Storey Timber

Case/Materials

MasterThesis‐LucasBienert 22

function,thematerialscannotbedirectlycompared.Moreover,allthecomponentsinsideabuild‐inginfluenceeachotherinsomewayoranother.ThebestwaytoperformanLCAanalysisisthere‐foretocomparewholebuildingsthathavethesamefunctionality.Conclusionsfromvarioussuchstudiesshowthatwoodenconstructionshaveingenerallowerenvironmentalimpactthanequiv‐alentstructuresusingnon‐woodmaterials[24,321].

Besidesthechoiceofmaterial,structuresthatcaneasilybedisassembledareadvantageousfromanLCApointofview,becauseit improvesrecyclingcapabilities. Inwoodbuildingsthiscanbeachievedbypreferablyusingbolts insteadofadhesives.Monolithicconcretestructures,ontheotherhand,havetobedemolishedforrecycling[24,418].

Acontroversialpointconcerningmodernwoodproducts istherollofprefabrication.Prefabri‐catedproductshavealowerenvironmentalimpactduringthemanufacturing,theconstructionandattheendoftheirlife,butthetransportationhasamuchhigherimpact[24,438].Thedistancebetweenthebuildingsiteandthefactoryiscritical[24,452].Thedistancesaregenerallymuchlarger for specially manufactured products than for individual standard components. This ishighlydependentonthespecificproject.

Tosumup,anexampleofafullLCAstudyconductedin2000byBörjessonandGustavssonshallbegiven.ItcomparedthenetCO2emissionsoftwosimilarfour‐storeyapartmentbuildings,oneinSwedenfeaturingawoodframestructure,theotherinHelsinkimadefromaconcreteframestructure.Theresultsshowedthatthewoodconstructionreleased30to133kg/m²lessCO2intotheatmosphere.Lateradditionalresearchconfirmedthegeneralresultsandfoundthatconcretestructuresneed16to17%moretotalenergythanwoodenstructures.Thoseresultsare,however,onlytruefornorthernEurope,wherewoodisavailablelocally[24,414‐416].

Lookingintothefuture,woodstillhasunusedpotentials.Onepotentialistoincreaserecyclingandtousemorewastestoreplacefossilfuelsforenergyorheatproduction.E.g.inNorway,onlyabout5%ofthewoodfrombuildingsisrecycled,70%isusedforenergyproduction,9%issendtolandfills,2%iscompostedand17%isusedforunknownintentions[27,44].Toachieveim‐provements,differentindustriesliketheforestry,energy,buildingandthewasteindustrymustworktogether[27,26].Wastes,hithertolittleusedspeciesandrecycledmaterialcanwellbeusedfornewengineeredwoodproducts,whichisthetopicofthenextchapter.

5.1.4. EngineeredWoodProductsEngineeredwoodproductsare todayalreadyan importantpartof thesupportingstructure inmostbuildings.Theiradvantagesareobvious:Whereassolidwoodisonlyavailableintheformoflinearmembersandthecross‐sectionareaislimitedbythesizeofthetreetrunk,engineeredwoodproductsallowarbitrarycross‐sectionsandalsotwo‐dimensionalmemberslikeplates.Moreover,thepropertiesofthewoodcanbeimprovedpurposefully.

Engineeredwoodproductsareingeneralmadefromboards,veneers,strandsandflakesofwoodthatarejoinedtogetherwiththeuseofadhesives.Thefinalproductscanbeofvariableform,e.g.boardsortimber‐likebeams.Thefinalproductsaremuchmorehomogeneousthantheinitialsolidwood,knotsandotherdefectscanbeeliminatedoratleastevenlyarrangedoverthewholecom‐ponent[26,82‐83].

Themanufacturingofengineeredwoodproductsrisestheefficiencyofthetimberproductionbe‐causeitalsoallowstheuseofpartsfromtheinitiallogsthatcannotbeusedforsolidwoodbeams,likethebranchesandthewastefromtheproductionofsolidwood.Thisallowsforamoreefficientuseofthewood,comparedtothemanufacturingoftraditionalsolid‐woodmembers,whichhasarelativelyhighdegreeofwastebecauserectangularcross‐sectionsarecutfromaroundlog.

Page 37: Different Construction for Storey Timber

Case/Materials

MasterThesis‐LucasBienert 23

Therearemanydifferentengineeredwoodproductsavailabletoday,andmorearebeingdevel‐oped.

Oneofthemostwidelyusedengineeredwoodproductsisgluedlaminatedtimber(glulam).Glu‐lamismadeofseveralplanksthataregluedtogetherontopofeachother,formingacross‐sectionthatcanbeashighas2m[26,7].Withglulamitispossibletoovercomeoneofthesolidwood’slimitingfactors,whichisthesize.Thebiggestpossibledimensionforsolidwoodisabout300mm,thusthemaximumpossiblespanofatimberbeaminpracticeisabout5to7m[26,7].Glulamallowspracticallyarbitrarycross‐sectionsforspansofupto100m[26,8].Usingfinger joints,beamsoftheoreticallyanylengthcanbeproduced.Duetotransportationlimitations,however,themaximum length in practice is limited to 16 to 20m [26, 68]. It can beproduced in bothstraightandcurvedforms,sothate.g.wholearchescanbeproducedasonesolidwoodcompo‐nent.

Aswithotherengineeredwoodproducts,glulamhasenhancedmaterialpropertiesincomparisontosolidwood,thestrengthandstiffnessareincreased,whilethevariabilityissmaller[26,69],thisisdepictedinFigure5.6.

Figure5.6:Comparisonofthefrequencydistributionofthestrengthofglulamandsolidwood[26,19]

Sincetheheightofthecross‐sectionisnormallymuchhigherthanitsthickness,stabilityfailuremodessuchaslateraltorsionalbucklingareofhigherimportanceforglulamthanforsolidwood.

Adifferentengineeredwoodproductisparallelstrandlumber(PSL),whichwasdevelopedwiththeideatoutiliseforestwastessuchasbranches.Itismadefromlong,thinstrandsofwoodwithalengthofupto2,4mandcanbemanufacturedwithcross‐sectionsofupto280×480mm,whichliesinthesamerangeasthepossiblecross‐sectionswithsolidwood.Itisthereforemainlyusedasasubstituteforsolidwood,withthebenefitsthatitmakestheforestrymoreefficientandhasahigherbendingstrengthaswellaslessshrinkageandsplittingcomparedtosolidwood[26,88‐91].

Laminatedveneerlumber(LVL)ismadefromlayersofwoodveneerthataregluedtogether,allwith the orientation of the grain along the long axis of the member. Cross‐sections of up to90×1200mmarepossible,thelengthcanbe25m.Itcanbeusedforbeamsinsmallandbigcon‐structionsandisalsocommonlyusedforflangesofI‐joists[26,93‐95].

Page 38: Different Construction for Storey Timber

Case/Materials

MasterThesis‐LucasBienert 24

I‐joistsarebendingmemberswithamoreefficientstructuralshape,becausethematerialiscon‐centratedintheouterregionsofthecross‐section,theflanges.ThosearecommonlymadefromsolidwoodorLVL.Thewebistypicallymadefromorientedstrandboard(OSB)orplywoodpan‐els,i.e.woodenpanelswithahighshearcapacity[26,97].OnedrawbackofI‐joistsistheirvul‐nerabilitytofirebecauseofthethinweb.

Forplywood,layersofwoodveneeraregluedtogether,butunlikeforLVL,thoselayersarerotatedby90°toeachother,formingaboardthathasgoodbearingcapacityinbothdirectionsandamoreisotropicbehaviour.Orientedstrandboard (OSB) ismade fromsmall strandsofunderutilisedwoodspecies.Bothproductscanbeusedassheathingforwallsandfloors,wheretheyprovidestiffeningofthecomponentandactascoveratthesametime.OSB,however,hasthehighestemis‐sionsofvolatileorganiccompounds(VOC)ofallengineeredwoodproducts[27,35]andshouldthereforebeusedwithcareinresidentialbuildings.

Amorerecentlydevelopedengineeredwoodproductiscross‐laminatedtimber(CLT),whichisamasstimberproduct.Itconsistsoflayersofparallelboards,10to35mmthick,whicharethengluedtogetherat90°toeachothertoformbothmassiveplatesandmassivememberswithlargecross‐sections.Wherethebreadthofglulamcross‐sectionsislimitedbythebreadthoftheindi‐vidualboards,membersmadeofcross‐laminatedboardscanhavearbitrarydimensionsinbothdirections.Thecross‐laminationleadstoamorehomogenousbehaviourcomparedtosolidwood.Italsoreducestheshrinkageandswellingtoaninsignificantamount[20,52‐55].Furthermore,CLTpanelsareingeneralairtight(dependingonthespecificproduct)[21,115].Theyarethere‐foremainlyusedforfloorsandwalls,wheretheycanfulfilthefunctionofanairtightmembraneinadditiontotheloadbearingandthestiffening.CLTistodayreadilyavailableinpracticallyallpossibledimensions.

Besidesthemechanicalproperties,therearealsonoticeablepricedifferences.Althougheconomicaspectsarenotwithinthescopeofthismasterthesis,Table5.2givesanideaofthepricediffer‐ences,whichwillofcourseplayaroleintheplanningofatimberbuilding.

Table5.2:Pricesofsomeselectedengineeredwoodproductsincomparisontosolidwood[20,51]

material pricesolidwood 300–400 €/m³glulam 1000 €/m³parallelstrandlumber 1500 €/m³

Acentraldrawbackofalltheengineeredwoodproductsisthattheyusesyntheticaladhesives.Thosearetypicallyurea‐orphenol‐formaldehydewhicharemadefromnon‐renewablemineraloil.Moreover,theyemitformaldehydeduringtheirlifetime(indifferentamounts,dependingontheproduct).Newdevelopmentsaimatreducingtheuseofadhesivesorusingnaturalalternativessuchaslignin‐basedadhesives[24,317].

Inthefuture,whenenvironmentalrestrictionsmayleadtolessavailablelarge‐sizesolidwood,engineeredwoodproductswillbecomemore important[26,83].Today,solidwoodisalreadymeetingits limitswhenitcomestostructureslikemulti‐storeytimberbuildings.ProductslikeglulamandCLTopenupacompletelynewwayoftimberdesign.Itwillbeseeninchapter6.2thatnoneoftheanalysedstructuresusessolidwoodasacentralstructuralmaterialbecauselargercross‐sectionsarerequiredthanwhatispossiblewithsolidwood.Ithasalsobeenexplainedhowdeformationsduetocompressionperpendiculartothegrainormoisturechangescanbedecisive

Page 39: Different Construction for Storey Timber

Case/Materials

MasterThesis‐LucasBienert 25

formulti‐storeybuildings.Inthisregard,thedescribedengineeredwoodproductsaresuperiortosolidwood,too.

5.2. TimberConnectionsThemissing linkbeforemovingon todiscussingentire timberstructuresare theconnections.Connections are ofmajor importance for timber constructions and especially formulti‐storeybuildingsbecauseofthehighloads.Evaluationofdamagedtimberbuildingsafterextremewindshowedthatconnectionsareoneofthemajorweakpoints[28,81].

Thereare,ingeneral,twopossibilitiestoformconnections:

gluedconnectionsor connectionswithdowel‐typefasteners(nails,bolts,screws,dowels,commonlymadeof

steel)[26,303].

Whilegluedconnectionsaremainlyappliedonprefabricatedcomponents,e.g.forfingerjointsinglulamelements,dowel‐typefastenersarewellsuitedforanyon‐siteassembly.Sincetheproper‐tiesofgluedconnectionsaremostofthetimealreadyincludedinthedescriptionofthepropertiesofthecorrespondingengineeredwoodproduct,thefollowingdiscussionswillfocusmoreoncon‐nectionsusingfasteners.Nonetheless,itshallbenotedthatnewtechniquesarebeingdevelopedthatalsoallowtheeconomicmanufactureofgluedjointson‐site.Table5.3summarisesthemainadvantagesanddisadvantagesofgluedconnections.

Table5.3:Advantagesanddisadvantagesofgluedconnections[26,334]

advantages disadvantages/problems higherrigidity canbehighlyautomated makesspecialconnectionspossible,

e.g.fingerjoints thecross‐sectionisonlyminimally

damaged,ornotatall

moresensitivetounskilledmanufac‐ture

lowerinherentredundancy ingeneral,noon‐sitemanufacture

possible oftenverybrittlebehaviour emissionofVOC complexmechanicalbehaviour,stress

peaks

Focusingonconnectionswithdowel‐typefastenersfromnowon,firstsomegeneralaspectswillbeexplainedbeforelookingatthedifferenttypesofconnectionsinmoredetail.

Resultsofexperimentsshowcorrelationsbetweenseveralparametersandthecapacityorfailurebehaviouroftheconnection.

Oneimportantparameteristheslenderness,i.e.therationbetweenthesidewidthofthewoodmemberandthedoweldiameter,whichleadstodifferentfailuremodesandthusverydifferentloadbearingcapacities,seeFigure5.7.Alowslendernessgenerallymeansthattherearenoplasticdeformationsinthedowel,onlyinthewood.Amediumslendernessleadstooneplastichingeinthedowel,whileforahighslendernesssecondaryplastichingesdevelop[17,68‐69].Largerwoodthicknessesgenerallyleadtoahighermaximumload,ahigherstiffnessandlargerdeformations.

Page 40: Different Construction for Storey Timber

Case/Materials

MasterThesis‐LucasBienert 26

Figure5.7:Generalfailuremodesofatimberconnectionwitha)lowslenderness,b)mediumslendernessandc)highslenderness[17,68]

Moreover,thereisalinearcorrelationbetweenthedensityofthewoodandthemaximumloadandstiffnessoftheconnection.Aconnectionwithhighdensitywoodischaracterisedbyahighercapacity,lessdeformationsinthedirectionofthegrainandamorebrittlefailurebehaviourwithsplittingperpendiculartothegrain(aswasexplainedinchapter5.1.1,thetensilestrengthper‐pendiculartothegraindoesnotchangemuchevenforstrongwoodandthusbecomesdecisiveinanotherwisehighstrengthconnection).Thespacingbetweenthefasteners inamulti‐fastenerconnectionandtheirenddistancesalsohaveastronginfluenceonthecapacityofthewoodsincetoosmalldistancesprovoketheriskofsplitting[17,70‐74].

Johansendevelopedayieldtheorythatcanbeusedtodeterminethefailuremodeandtocalculatetheresistanceofawoodconnection,althoughitisnotsuitedtodeterminetheload‐slipbehaviour.Accordingtothistheory,therearethreemainaspectsthateffectthestrengthofaconnection:thebendingcapacityofthedowel,theembeddingcapacityofthewoodorengineeredwoodproductandthewithdrawalresistanceofthedowel.Theembeddingstrengthdependsmainlyontheden‐sityofthewood[26,316‐322]

Today’sdesignrulesforconnectionsine.g.theEC5standardaremainlybasedonempiricalin‐vestigationsandtheJohansen‐theory.ComparingthefindingsoftheexperimentswithcalculatedvaluesaccordingtoEC5revealsagoodaccordanceforthestiffnessandconservativevaluesforthestrengthformediumslendernessconnections.Forsmallslenderness,EC5overestimatesthestiffnessandthestrength,whileforhighslenderness,EC5underestimatesthestiffnessbutover‐estimatesthestrengthagain[17,76‐79],cf.Figure5.8andFigure5.9.

Page 41: Different Construction for Storey Timber

Case/Materials

MasterThesis‐LucasBienert 27

Figure5.8:Comparisonofexperimentallydeterminedstiffnessesofselectedtestswithcorre‐spondingdesignvaluesfromEC5forspecimenswithdifferentslenderness[17,77]

Figure5.9:ComparisonofstrengthofselectedtestswithdesignvaluesfromEC5[17,77]

Becauseofthosediscrepancies,theapplicabilityoftheEC5rulesforconnectionsislimitedandanoptimiseddesignisdifficult[17,67].Sinceconnectionsareacentralpartofanytimberstructure,especiallyofmulti‐storeybuildings,onesectioninchapter6willbededicatedtoanalysingase‐lectedconnectioninoneoftheinvestigatedstructuresusingFEMtogainabetterunderstandingofitsbehaviour.

Therestofthischapterwillfocusonthecharacteristicsofthedifferentconnectionmethodsusingdowel‐typefasteners.

Thefirsttypeofconnectionthatwillbediscussedaretraditionaltimberjoints,someexamplesareshowninFigure5.10.

Page 42: Different Construction for Storey Timber

Case/Materials

MasterThesis‐LucasBienert 28

Figure5.10:Examplesoftraditionaltimberjoints[21,58]

Theirmaincharacteristicisthattheydonotusemuchsteel,fastenersareonlyrequiredtosecurethe individual componentsagainstunwantedmovements.Those connections thereforehaveagoodfireresistance.Ontheotherhand,theycanhaveacomplicatedgeometry,especiallyiften‐sionforcesmustbetransferred.Withtoday’smodernCNCwood‐workingmachines,however,itispossibleagaintomanufacturesuchjointseconomically[26,304‐305].

Rightafterthetraditionaltimberjoints,nailshavebeenusedforalongwhileintimberbuildings.Todaytheyarerelativelycheap,oftennopre‐drillingisneeded,andmanydifferentconnectionsarepossible [26,306‐307],cf.Figure5.11.Onedisadvantage is that theyhavearelatively lowloadbearingcapacity,whichlimitstheirapplicabilityespeciallyinmulti‐storeytimberbuildings.

Figure5.11:Examplesofnailedjoints[26,306]

Thisiswhereboltsanddowelscomein,theycanbeusedforhigh‐strengthconnectionsinbigandcomplexstructures.Bothfastenersarenormallymadefrommetal,withmuchlargerdiametersthannails(acommonboltise.g.anM20‐boltwith20mmdiameter).Boltsarethreadedandhaveacounternutandwashers,whiledowelshaveasmoothsurfaceandarecompletelyhiddeninsidethewoodmember,cf.Figure5.12.

Page 43: Different Construction for Storey Timber

Case/Materials

MasterThesis‐LucasBienert 29

Figure5.12:Steeldowelsandbolts[1,9.44]

Thelargediametersrequiresthewoodtobepre‐drilledwhichmakessuchconnectionsmorela‐bour‐intensive[26,307].Ontheotherhand,whenprefabricationisused,theholescanalreadybeproducedinthefactory.Thechoiceofdiametereffectstheloadbearingcapacityandbehaviour,largerdiametersleadtohigheracceptableloadsbutalsoabrittlebehaviourduetosplitting(cf.explanationsconcerningtheslendernessofaconnectionabove).ExamplesoftypicalapplicationsfordowelsorboltsareillustratedinFigure5.13.

Figure5.13:Examplesofjointsusingboltsordowels[26,308]

Arathernewdevelopmentarescrewjoints,withthescrewsbeingsubjectedtotensileloads.Thisisabigdifferencetoallothermethodsdescribedsofar,whichrelyontheshearcapacityofthefasteners.Modernhand‐heldtoolstoeasilydrivescrewsintothewoodhaveledtoscrewsmoreandmorereplacingnails.Atthesametime,theycanbedisassembledmoreeasily[26,307‐308].Moreover,modernfullythreaded,self‐tappingscrewsdonotrequirepre‐drilling[26,328].Theself‐tappingscrewsmakenew,effectiveconnectionspossible,someexamplesareshowninFigure5.14.

Page 44: Different Construction for Storey Timber

Case/Materials

MasterThesis‐LucasBienert 30

Figure5.14:Examplesofapplicationsforfullythreadedscrews[1,9.55]

Adifferentpossibleapplicationoffullythreadedscrewsisthereinforcementofwoodenmembersperpendiculartothegrain.Thisensuresaductilebehaviouroftheconnectionandincreasestheloadbearingcapacity, sincea failureperpendicular to thegrain, i.e. splitting, isprevented [26,311‐313][26,317].ThepositiveeffectsofthisreinforcementarenotcoveredbytheJohansen‐theory,though,andarethereforenotconsideredintheEC5yet[17,79].

AnotherdrawbackoftheJohansen‐theoryandtheregulationsintheEC5isthatthetheoryhasbeendevelopedonlyforsinglefasteners.Thedesignofconnectionswithseveralfastenersisbasedonthepropertiesoftheconnectionwithonefastener,consideringaneffectivenumberoffasten‐ers,whichrespectsamongstotherthingsthespacingbetweenthefasteners.Formulti‐fastenerconnections,reinforcementperpendiculartothegrainisespeciallyinteresting.Withreinforce‐ment,groupeffectscanbeexcluded,sothattheload‐carryingcapacityoftheconnectioncanbeassumedtobethesumofthecapacitiesofallfasteners[26,322‐324].ProofforthevastlydifferentloadbearingbehaviourisdepictedinFigure5.15.Notonlyistheacceptableloadoftheconnectionhigher,buttheductilityisincreasedstrongly,too,whichcanbeseenfromthelargedeformationsthatoccurbeforetheconnectionfails.

Figure5.15:Loadbearingbehaviourofareinforcedconnectionincomparisontoanon‐reinforcedconnection[26,324]

Whenusing connectionswith several fasteners, it is important to allow formoisture inducedmovements.Connectionswherethewoodisrigidlyfixedatmorethanoneconnectorshouldbe

Page 45: Different Construction for Storey Timber

Case/Materials

MasterThesis‐LucasBienert 31

avoidedbecausethiscanleadtocrackswhenshrinkageoccursduetochangesinthemoisturecontent[26,160].

Withthedescriptionofthebehaviourofmulti‐fastenerconnections,thechapteraboutconnec‐tionsiscompleted.Whilethedescriptionsanddiscussionssofardealtwithwoodingeneral,orspecificproductsandindividualcomponentsandconnections,thenextstepistolookatentiretimberstructuresthatconsistofthosecomponents.Inthenextchapter,thedifferencesbetweenthedifferentstructuralmethodsandtheirvariantsaredescribed,givinganideaofwhichmethodsarebestused inwhichcases.Basedonthose findings, thedesignanalysis inchapter6willbeplannedandconducted.

5.3. TimberStructures5.3.1. TimberFraming

Ingeneral,twomainconstructionmethodsaredistinguished.Timberframingstructures,featur‐ingone‐dimensionalelementsinthemainloadbearingstructure,willbeexaminedinthischapter.Masstimberstructures,whichusemasstimbermaterialslikeCLT,willbethetopicofthefollow‐ingchapter.

Structuresthatuseatimberframingmethodaregenerallycharacterisedbyanopenloadbearingstructure,aclearforcedistributionandacleardistinctionbetweentheloadbearingfunction,thestiffeningfunctionandtheroomseparation.Theloadsareconcentratedintheindividualmem‐bers,whichthuscanbeadaptedaccordingly,concerninge.g.thecross‐section.Connectionsaremorechallengingthanformasstimberstructuresbecauseofthehighconcentratedloadsandbe‐comethereforeoftendecisiveforthedimensioningofacomponent.

Thefollowingvariantswillbediscussedinthischapter:

traditionalframeconstruction, panelconstruction, balloonconstructionand modernframeconstruction.

ThetraditionalframeconstructionspreadinEuropearoundtheyear1700(cf.chapter2.1)andistodayoftenassociatedwithmedievaltimberhouses.Theframeworkconsistsofhorizontalandverticalbeamsaswellasdiagonalsforthestabilityandstiffening,seeFigure5.16.Theframeworkisoftenvisiblefromtheoutsidewiththecavitiesfilledwithe.g.brickwork.Thismethodismainlyusedforsmallone‐ortwo‐storeybuildings,theerectionoflargerbuildingsbecomesverycostly[21,55].

Page 46: Different Construction for Storey Timber

Case/Materials

MasterThesis‐LucasBienert 32

Figure5.16:Traditionalframeconstruction[21,56]

ThepanelconstructionisanenhancementofthismethodandisillustratedinFigure5.17(left).

Figure5.17:Panelconstruction(left)andballoonconstruction(right)[21,60‐61]

ItreplacesthediagonalswithwoodenpanelsmadeofplywoodorOSBassheathing.Thisallowsinsulationtobeplaced in thesame layeras the loadbearingstructure, in‐betweenthecloselyspacedverticalmembers,thestuds.Thebigadvantageofthiskindofstructureisthebeneficialwaytheindividualelementsworktogether,becausethesheathingpreventsthestudsfrombuck‐linginthedirectionoftheirweakaxis.Thismakesveryslenderconstructionpossible,thepanelconstructionisthereforeprobablythemoststructurallyefficientsystem.

Thewallstudsareashighasonestorey,whichmakesthismethodhighlysuitableforprefabrica‐tion.Wallsandfloorsorevenentireroomsormodulescanbeprefabricated.Thisalsoleadstoasimpleerection,nospecialequipmentisrequired.Fromastructuralpointofview,prefabricatedwallpanelswithnailedsheathingarehighlyredundant.Arelativelylowgradeoftimbercanbeused[26,386].

Thepanel construction is commonlyused for smallerbuildingswithone to threestoreys.Formulti‐storeybuildings,thewallsneedhighershearresistanceandverticalloadbearingcapacitytowithstandthehighwindloadsandverticalloadsfromtheself‐weightaswellastheliveload.

Page 47: Different Construction for Storey Timber

Case/Materials

MasterThesis‐LucasBienert 33

Newdevelopments to increase the shear capacityofwalls includebrace systemsbetween thestudsoradditionalsheathing[26,404].

Theballoonconstructionissimilartothepanelconstruction,withthemaindifferencethatthewallstudsgooverthewholeheightofthebuildingoratleastoverseveralstoreys(cf.Figure5.17(right)).Verticallycontinuousmembersarealwaysadvantageous inmulti‐storeybuildingsbe‐causetheyleadtolessdeformationsduetoshrinkageandgravityloads.Ontheotherhand,pre‐fabricationisnolongerpossibleinthesamedegreeasforthepanelconstruction[26,238][21,60‐61].

Finally,themodernframeconstructionisalsobasedonthetraditionalframeconstruction,buttakesthetimberframingtothenextlevel.AnexampleofamodernframeconstructionisdepictedinFigure5.18.

Figure5.18:Exampleofamodernframeconstruction:schoolinWil,Switzerland[21,86]

In contrast to the previously describedmethods, themodern frame construction features bigspans,withtheloadbearingcomponentsbeingwidelyspreadonalarge,regulargrid.Theload‐bearingstructureconsistsofasystemofcolumns,mainandsecondarybeams.Thewallsdonotcarryanyloads,thehorizontalloadsarerathertransferredbytheverticalmembersviabendingorvialarge‐spandiagonals.Thisopensupnewarchitecturalpossibilitieslikebigwindows.Italsooffersmaximumfreedomwhenitcomestosubdividingtheinteriorintorooms,changesarepos‐siblewithoutaffectingthestructure.Besides,theenclosingenvelopeformedbythewallscanbearrangedoutsideoftheloadcarryingstructure.Thishasthreemainadvantages:Firstly,theloadcarryingstructureandenclosingenvelopearecompletelyindependent,whichallowsforeasycon‐nections.Secondly,thewallsactasprotectionoftheloadcarryingstructurefromtheweather,andthirdly,theloadcarryingstructurestaysvisiblefromtheinside.

Forthemodernframeconstruction, largercross‐sectionsarerequired,therefore,glulamisthepreferredmaterial.Animportantpartoftheconstructionaretheconnectionsbetweenthecol‐umnsandthemainbeams.Therearedifferentpossibilities,thedecisionwilldependonproject‐specificstructuralrequirementsandarchitecturalaspects.Onecanusecontinuouscolumnswithtwo‐partcontinuousbeamsattachedtothesidesofthecolumns,orwithsimplysupportedbeamsin‐betweenthecolumns,attachedtothemwiththeirfrontends.Anotherpossibilityistousetwo‐

Page 48: Different Construction for Storey Timber

Case/Materials

MasterThesis‐LucasBienert 34

partcolumnsorforkedcolumnswiththebeamsin‐between[21,86‐94].Tosumup,themodernframeconstructionishighlysuitedformulti‐storeybuildings.

5.3.2. MassTimberMasstimberconstructionsconsistoftwo‐dimensionalcomponents,i.e.wallsthatcarrytheverti‐calloadsandtheshear,andfloorswhichaccountforthehorizontalloaddistribution.Incompari‐sontoframeconstructions,masstimberconstructionshaveamorecomplexbehaviour.Thisisbecausethecomponentsperformdifferentfunctionsatonce,liketheloadbearing,thestiffeningandtheroomseparation.The loadsaremoredistributedandthereforegenerally lower.Asidefromthepurelystructuralproperties,masstimberisalsocharacterisedbyahigherweightwhichleadstoabettersoundprotection.Thefiresafety is increased,too,sincetwo‐dimensionalele‐mentsareonlyaffectedbythefireononeside,insteadofonuptoallfoursidesforone‐dimen‐sionalelements.

Thedifferentconstructionmethodsusingmasstimberthatwillbeexaminedinthischapterare

logconstructions, stackedplankconstructionsand CLT‐constructions.

Thelogconstructionhasalreadybeenmentionedinchapter2.1concerningthehistoricaldevel‐opmentinNorway.Itisoneoftheoldestmethodsandisstillinuse,althoughinmodifiedform.Anoverviewoverdifferentvariantsof the logconstructionareshowninFigure5.19,withtheoldestonesontheleftandmorerecentdevelopmentstotheright.Anyofthoselogconstructionsconsistsoflogsthatarehorizontallystackedontopofeachother.Thethirdonefromtherightshowsaprefabricatedsandwichelement.Thenexttwoarethermallyinsulatedlogwallswhichareassembledonsite.

Figure5.19:Differentlogconstructionvariants[21,53]

Thebiggestproblemwiththelogconstructionisthatlargecompressivestressesoccurperpen‐diculartothegrain.Asexplainedearlier,thisleadstohighsettling,about25mmperstorey,whichiswhylogconstructionarenotsuitedformulti‐storeybuildings[21,50‐53].

Adifferentmasstimbervariantisthestackedplankconstruction,whereplankswiththicknessesbetween20and50mmarestackedverticallynexttoeachothertoformwallsorhorizontallynexttoeachotherforfloors,cf.Figure5.20.Theplanksareconnectedwitheachotherontheflatsideswitheitheradhesivesorwithmetalfastenerssuchasnailsordowels.Woodenhardwooddowelscanalsobeused.Whiletheplanksthemselvesprovidethecompressionorbendingstrength,theconnection(eithertheglueorthefasteners)mustbedesignedfortheshear.Bothprefabrication

Page 49: Different Construction for Storey Timber

Case/Materials

MasterThesis‐LucasBienert 35

or fabricationonsitearepossible.Thethicknessof thewallor floorequalsthebreadthof theplanksandiscommonlybetween80and240mm[21,122].

Figure5.20:Cornerdetailofastackedplankconstruction[21,122]

Inasimilarfashion,glulambeamscanbeusedtoformmassivewallsandfloors.Theindividualbeamsarethenjoinedusingatongueandgrooveconnection[21,176].

Finally,today’smostimportantmassivetimbermethodistheCLTconstruction.ThepropertiesofCLTanditsadvantagescomparedtosolidwoodhavealreadybeendiscussedinchapter5.1.4.Incontrasttotheothermassivetimbermethods,theCLTelementstakeonallnecessarystructuralfunctions inonesingleelement.As floorelements theyalsoallowbiaxial loadcarrying,whichmakesmoreeffectivestructurespossible.CLTelementsareexclusivelyprefabricatedandoftenadaptedtothespecificprojectconcerningopeningsforwindowsortechnicalinstallations.Theassemblyonsiteisthereforeverysimple,onlyaminimumofconnectionsisrequired.AnexampleofaCLT‐constructionisshowninFigure5.21.

Page 50: Different Construction for Storey Timber

Case/Materials

MasterThesis‐LucasBienert 36

Figure5.21:ExampleofaCLT‐construction:evangelicchurchinRegensburg,Germany[5]

5.4. NewDevelopmentsInthepreviouschaptersaboutthetimberdesignbasics,boththebasictimbermaterialsandprod‐ucts,theconnectionstojointhoseproductsandfinallywholetimberstructureshavebeendis‐cussed.Tocompletethischapter,asmalloutlookintothefutureofthetimberdesignshallbegivenbyexaminingtoday’sresearchandnewdevelopments.

Inaccordancewiththestructureofthepreviouschapters,firstsomenewwoodenmaterialsorproductsshallbedescribed,followedbynewconnectiontechnologiesandnewlydevelopedstruc‐turalmethods.

Onenewmaterialismouldedwood,whichismadefromsolidwoodthatiscompressedbyabout30%,thencutintopoles,whichcanfinallybegluedtogetheragaintoformmanydifferentshapes.Withthistechnique,e.g.circularhollowtubecross‐sectionsbecomepossible.Thegoalistoman‐ufacturehighlyefficientshapesinthestyleofsteelcross‐sections[20,28].

Anothernewmaterialcanbemanufacturedbypressuretreatmentofsolidwoodand iscalledpressedwood.Thebasicsolidwoodisheatedto130°Candcompressedat5MPa.Thus,thecross‐sectionisreducedbyabout50%byeliminatingmostofthepores.Thetensileandcompressivestrengthsparallelwiththegrainaredoubled,thebendingstrengthincreasesbyafactorof2,5andtheshearstrengthbya factorof1,7.Someof thedisadvantagesthatarestillbeingworkedonincludeahigherriskofsplittingandlessbeneficialpropertiesconcerninggluedjoints[20,26‐28].

Connectionsaremaybethefieldoftimberdesignwheremostinnovationsaredevelopedtoday.Differentmanufacturersbringmanynewproductsontothemarket,aselectionshallbepresentedhere.Thewaysthatalreadyestablishedtimberconnectionsaredesignedandusedalsochange.

Diagonalscrewshavealreadybeenmentionedandareagoodexampleofhowalreadyestablishedconnectorsareusedinnewways.Sincetheyaresubjectedtotensioninsteadofshear,theload‐bearingismuchmoreeffective.Theycanevenbeusedtoconnecttwomembersthatdonottoucheachother,e.g.becausethereisathinlayerofinsulationbetweenthem[20,16].

Theenvironmentalproblemswithsyntheticadhesiveshavealsobeendiscussed.Theresearchfo‐cuses not only on usingmore natural substances but also on optimising the time it takes to

Page 51: Different Construction for Storey Timber

Case/Materials

MasterThesis‐LucasBienert 37

manufacturesuchaconnection.Today’sstandardgluesneedabout20minutesopentime(thetimebetweentheapplicationoftheadhesiveandthejoiningofthetwocomponents),15minutespresstime(whenthecrampingpressureisapplied),andonlyaveryshortrestingtimeafterwards.Newpolyurethaneadhesivesonlyneed5minutesopentimeand2minutespresstime,whichal‐lowsforamoreproductivemanufacturingandmakesthemanufacturingofgluedjointsonsitepossible[20,17].Anexampleofaproductthatisalreadyavailableistheon‐sitefingerjointde‐velopedbyHESS[6].

Stillunderdevelopmentaregluedconnectionsthatdonotuseartificialadhesivesatall,butrathermakeuseofthewood’sownglue,thelignin.Thismethodiscalledwoodwelding.Applyingfric‐tionalheat,thelignininsidethewoodliquifiesattemperaturesabove200°Candcanthenbeusedtogluecomponentstogether.Ithardensinjustafewseconds[20,24‐25].

Glued‐insteeltubesandsteelplatesareconnectorsthatcanbeusedfornewkindsofjoints.Thesteeltubesarearound50mmindiameterand125mmlongandaregluedintothewoodparalleltothegrain,whichallowsforanoptimalloadtransferadaptedtothewoodscharacteristicstruc‐ture.Steelplatesworkliketongueandgroovejointsandcanbeassembledonsite,securedwithbolts[20,21].

Anothernewdevelopmentthatalsoconsidersenvironmentalaspectsaredowelsmadefromhard‐wood,tryingtominimisetheuseofenvironmentallyquestionablesteel.Hardwooddowelscanbeusedassubstitutes forsteeldowels,e.g. toconnectsecondarybeamstomainbeamsor inthestackedplankconstruction,asmentionedearlier.Hardwooddowelshavealreadybeenusedsuc‐cessfully,buttheyarenotyetincludedintheEC5.Itispossibletoreachthesameload‐carryingcapacityaswithsteeldowels,althoughthefailureisgenerallymorebrittle[20,22].

Whenitcomestowholetimberstructures,newdevelopmentsincludecompositestructuresthatfeaturebothwoodandanothermaterialasmainstructuralmaterials.Timberandconcretecanbecombinedtoformtimber‐concretecompositefloors,wherethewoodismainlyresponsibleforthetensilestresseswhiletheconcretetakesonthecompressionstresses.Incomparisontofloorsthatarepurelymadefromwood,thecompositefloorshavemuchbettersoundprotectionandahigherstiffness.Thehigherweightcancontributeto improvetheeigenfrequencyof thewholebuilding.That isparticularly interesting formulti‐storeybuildings,wherewind‐inducedvibra‐tionscanleadtodangerousresonanceeffects.Accordingtothebasicequationfortheeigenfre‐

quencyofastructure,f K/M,whereKisthestiffnessandMthemassofthesystem,ahighermasscanbeuseddirectlytodecreasetheeigenfrequencyandgetitoutoftherangeoftheexcita‐tionduetowindturbulences.Inadditiontothoseadvantages,theconcretealsoprovidesaverygoodfireprotection.

Concretecanbeusedfordifferentkindsoftimberfloors,e.g.joistfloorsorstackedplankfloors,hollow‐boxfloorswherethecavitiesarepartiallyfilledwithconcretearepossible,too[21,180‐181].

Thedisadvantagesofsuchhybridsystemsmostlycomefromthedifferentpropertiesandthedif‐ferentbehaviouroftheusedmaterials,e.g.concerningtemperaturedeformations,creepingandshrinkage.Thestructuremustbedesignedinawaythatallowsforrelativemovementsbetweencomponentswithdifferentmaterialstoavoidrestraintstresses.Ingeneral,hybridsystemsarealsomoreexpensivebecausedifferenttradesarerequiredontheconstructionsite.

Page 52: Different Construction for Storey Timber

Case/Materials

MasterThesis‐LucasBienert 38

5.5. SummaryoftheCase/MaterialsThebasicpropertiesofwoodasa constructionalmaterialhavebeenexplained,mostof thosepropertiesareeitherdirectlyorindirectlylinkedtothefactthatwoodisanaturalmaterial.Incomparisontoconcreteandsteel,woodhasalowerstrength,whichcan,however,becompen‐satedbyitslowself‐weight,whichallowsforefficient,light‐weightstructures.AchallengewithtimberisitslowYoung’smodulusconcerningdeformationsandvibrations.IntermsofadesignbasedonEC5,theserviceabilitylimitstate,whichdealswiththoseaspects,oftenbecomesdeci‐sive.Thiswillbepickedupagaininthenextpart.

Furthercharacteristicsofwoodincludethatitsstrengthdependsontheloaddurationandmois‐turecontentinsidethewoodandthatitcandecay.Durabilityisthereforeimportanttoconsiderinthedesignfromanearlypointonwards.Thebiggestadvantagesoftimberbuildingsincompar‐isontothosemadefromsteelorconcreteareenvironmentalones,thishasbeendiscussedindetailconsideringaspectsfromLCA.

Modernstructuresandnewdevelopmentscarrythetimbertechnologiesfurtherandmakethemcompetitiveagain.Differentsolutionshavebeenpresented.Engineeredwoodproductslikeglu‐lam,plywoodorCLTplayacentralroleintoday’stimberconstructions.Concerningthedesignoftheoverallstructure,itcanbeconcludedthatmoderntimberframingstructures,CLTmasstimberconstructionsandpanelconstructionsarebestsuitedformulti‐storeybuildings.Ingeneral,andespeciallyforbuildingswithmanystoreys,clearloadpathsarehelpfulandallowforamoreeffi‐cientdesign.

Basedonthefindingsandconclusionsfromthischapter,thenextchapterwillbededicatedtothedesignandanalysisofthreedifferentvariantsofthetimberbuildingTreet.

Page 53: Different Construction for Storey Timber

Method

MasterThesis‐LucasBienert 39

6. Method6.1. Procedure

Whilethepurposeofthepreviousworkwastocreateanobjective,up‐to‐datesummaryoftimbertechnologies,pointingoutaspectsthatareespeciallyinterestingformulti‐storeybuildings,thefurtherworkwillbemoreexperimental.Bymeansofthedesign,newinsightsintothedescribedconstructionmethodsshallbederived.Thegoalistomakesomesmallcontributionstotakethebuildingwithtimberintothenextstage.

Beforebeginningwiththedesign,firsttheprocedurethatwasfollowedduringthedesignshallbepresented.

Thefirstdecisionthathadtobemadewaswhichkindofstructuresshouldbeanalysed.Inthesummaryofthecase/materials(cf.chapter5.5),threestructureshavealreadybeenpointedout.Consequently,thefollowingthreedesignvariantsweredefined:

a) frameconstruction8b) panelconstructionc) CLTconstruction

Anotherdecision,whichiscloselyrelatedtothefirstone,wastoonlyanalysepurevariants,i.e.structuresthatuseonlyonesinglestructuralmethod.Attheendof thedesignof thedifferentvariants,oneofthemainconclusionswillbethatalltheconstructionmethodshaveadvantagesanddisadvantagesandthatthebestsolutionwillbeacombinationoftheabovethatmakesuseofeachmethod’scharacteristicadvantages.However,howthefinalresultwilllooklikeheavilyde‐pendsonthespecificproject,buttheintentistofindconclusionsandgiverecommendationsthatareasgeneralandapplyforasmanydifferentprojectsaspossible.Besides,analysingonlythepurevariantsmakesitmucheasiertocarveouteachmethod’sowncharacteristics.

Thesubsequentdesignfollowedthreemainsteps:

1. draftdesign2. preliminarydesign3. ECdesign

Thedraftdesignstartedoncethedesignvariantsweredefined,firstdraftsweremadetogetanideaoftheoverallstructuralsystem.Someimportantdetailswerealsoalreadyplannedtocheckthegeneralfeasibilityofthegeneralsystem.Thestructuralconceptsforthethreevariantswillbelaidoutinthenextchapter6.2.

Thepurposeofthepreliminarydesignistocalculatefirstestimatesofthedimensionsofthecom‐ponentsandchoosewhichmaterialsandconnectionsshallbeused.Thedocumentationofprelim‐inarydesigncanbefoundattachedtothisdocument,cf.appendixA,andisdiscussedinchapter6.3.

TheECdesign is required toprove the feasibilityof thewholeconstructionbasedon theEC5standard.ThedocumentationoftheECdesignisalsoattached(cf.appendixA).Somecommentsonthisphaseofthedesignaredescribedinchapter6.4.

Forthismasterthesis,moreemphasisisputonthegeneraldesign,i.e.designphases1and2,andlessonthefinaldetaileddesign.Thegoalisnottodesignabuildinginalldetails,butratherto

8Inaccordancewiththetermsusedbefore,varianta)isamodernframeconstruction.Forreasonsofbetterreadability,thisvariantwillinthefollowingchapterssimplybereferredtoasframeconstruction.

Page 54: Different Construction for Storey Timber

Method

MasterThesis‐LucasBienert 40

checkiftheconstructionisfeasibleandtoanalysetheoverallcharacteristics.Forthosepurposes,averydetaileddesignisnotnecessaryandcouldevendistractfromthemoreimportantaspects.

Sinceamulti‐storeybuildingisacomplexstructure,FEMwasusedforboththedesignandthegeneralanalysisofthestructure.Moreover,asmentionedbefore,sinceconnectionsaresuchanimportantpartofany timberconstruction,aselectedconnectionshallbeexaminedalsousingFEM.TheFEMcalculationswillbedescribedinchapter6.5.

6.2. DesignVariants6.2.1. StructuralConcept

Treet,themulti‐storeytimberbuildingthatistheobjectofthisanalysis,hasalreadybeenpre‐sented in the introduction (cf. chapter 1). Here, first the original building shall be describedquicklytocreatethebasisforthedraftdesignofthethreevariants.

Treet has 14 storey and an underground car park, its ground dimensions are a/b20,65/22,34m,thehighestpointlies47,48mabovetheground(withoutthecarpark).Thebuild‐ingisexclusivelyusedforresidentialpurposes.Eachstoreyconsistsoffourtofiveapartmentsthatareconnectedbyacorridor.Abigstaircaseandaliftinthemiddleofthebuildingconnectthestoreysvertically.Asecondarystaircase isaddedat thesideof thecorridor.Thearchitecturalplansofthebuildingcanbefoundintheattachment(cf.appendixA).

Treetconsistsofrectangularmoduleswhichareplacednexttoandontopofeachother.Thosemodulesareprefabricatedandarefullyequippedincludingakitchenandabathroom.Aframe‐workmadeofglulamontheoutsideandin‐betweenthemodulesisresponsiblefortheoverallstability.Thefifthandthetenthstoreyareaso‐calledpowerstoreys,featuringadditionalglulambracingstoachieveahighstiffnesssothatthosestoreyscanactasaplatformonwhichthenextmodulesareplaced.Prefabricatedconcreteslabsontopofthepowerstoreysprovideextraweighttocontrolthewind‐inducedvibrationsbyadaptingtheeigenfrequencyofthebuilding.ThestairsaremadefromCLT[14].

Tobeabletoconcentratemoreonthegeneralstructurethanproject‐specificdetails,somesim‐plificationsofthelayoutofthebuildingwereaccepted(cf.architecturalplans):

The15.storeyisconsideredtobeafullstorey,onlytheareaofthecorridor,theliftsandthestaircasesprotrudesonestoreyhigher.

Thebalconiesareneglected. Thedoorsandwindows,alsothoseintheoutsidewalls,areconsideredtobeofthesame

heightasonestorey,thepartsofthewallsaboveandbelowthoseopeningsareneglected.ThisisespeciallyimportantfortheanalysisofthewallsforthepanelandtheCLTcon‐struction(thelengthofeachwalliscalculatedasthedistancebetweentwoopenings).

Thestaircasesandtheliftareneglectedandconsideredasfloorareawiththecorrespond‐ingliveload.

Aconstantheightforallstoreysisassumed.Itiscalculatedastheaverageheightpersto‐reyoftheoriginalbuilding.

Theroomfortheliftandstairwaysisleftopenfromtheside,sothattheliftcaneasilybeaddedattheend,afterthemainstructureisfinished.

Withthosesimplifications,thestructuralconceptsofthethreevariantswereworkedout.Generalimportantcriteriaforagooddesign,thatshouldbeconsideredfromthefirststageon,are(innospecialorder):

Page 55: Different Construction for Storey Timber

Method

MasterThesis‐LucasBienert 41

intendedusage structuralsafety architecturalvalue economicalaspects environmentalaspects firesafety thermalprotection noiseprotection possibilityofprefabrication suitabilityforextensions layingofserviceinstallations requiredmaintenance erectionmethods deconstruction

Concerningthechoiceofmaterials,thesamebasicmaterialswereusedfortheframeandpanelvariants(glulamforthemainstructuralcomponentsandplywoodforthestructuralsheathing)tomakeadirectcomparisonmorevalid.PlywoodisusedinsteadofOSBbecauseoftheratherhighVOCemissionsofOSB(cf.chapter5.1.4).Themassivetimberconstructionusesadifferentmate‐rial(CLT),sincethematerialisinthiscaseoneoftheaspectsthatshallbecompared.

6.2.2. FrameConstruction

Figure6.1:RFEMmodeloftheframeconstruction

AsdepictedinFigure6.1,theframe’sload‐bearingstructureconsistsofcolumnsthatgocontinu‐ously throughall storeys, two‐partbeams thatareattached to thecolumnsoneithersideand

Page 56: Different Construction for Storey Timber

Method

MasterThesis‐LucasBienert 42

diagonalsintheoutsidewallsin‐betweenthecolumns.Thus,largeframesarecreatedonallfoursidesofthebuildingthatcarrytheglobalbendingmomentduetothewindloads.

Inanearlierstageofthedesign,itwasfirstplannedtohavethediagonalsontheoutsideoftheload‐bearingstructure.Thiswouldhavehadahigherarchitecturalvaluebecausethediagonalswouldhavebeenvisiblefromtheoutside.However,duringthedesign,itbecameobviousthattherequiredconnectionbetweentheouterdiagonalandthecolumnwasnotpossible,mostlybecauseofthehighforcescombinedwiththeeccentricityofthediagonal.Thefirstdesignwasthereforechangedtohavethediagonalsinthesamelayerasthecolumns,whichisadvantageousfortheloadtransfer.

Thecolumnsareplacedonasixbysixgridwithanaveragedistanceofabout4,3m.Thecontinu‐ouscolumnswiththecompoundbeamsonthesidesmakeanoptimalload‐bearingbehaviourpos‐sible,becausenoholesarenecessaryforthebeams,whichwouldweakenthecross‐section.An‐otheradvantageofarrangingthebeamsonthesidesisthatthestressesperpendiculartothegrainareminimised.Asexplainedbefore,thisisofgreatimportanceformulti‐storeytimberbuildings.

Thebeamsrunparalleltothefrontofthebuilding,wherethegridlineshavesimilardistances.Continuousbeamswithequalspansarestaticallymoreeconomicthansingle‐spanbeamsorcon‐tinuousbeamswithvaryingspans.

Thefloorjoistsareplacedonthebeamsandgoperpendiculartothefront.Becauseofthevaryingdistancesinthisdirection,thejoistsaredesignedassingle‐spanbeams,whichcanbeadaptedtothecorrespondingspans.Thisalsoimprovesthenoiseprotectionbecausethefloorscanbedi‐videdbetweenapartments.

Attachedtothetopofthefloorjoists,astructuralsheathingmadeofplywoodaccountsfortheshearstiffnessofthefloorsanddistributestheliveloadsandtheself‐weightoftheflooroverthejoists.Thefloorsactashorizontalbeamsthattransferthewindloadsintotheframesonthesides.

Oneimportantfactorforthedesignwastohaveassimpleconnectionsaspossible.Formulti‐sto‐reybuildingswithaverylargenumberofconnections,costlyconnectionscanleadtoeconomicproblems.

Theconnectionofthebeamstothecolumnsisrealisedbyusingsteelbolts.Theboltsareloadedindoubleshearwhichmakesthemmoreefficient.Theholesfortheboltscanbepre‐drilledinthefactory,allowingforaquickassemblyonsite.Theconnectionofthediagonalstothecolumnswasmorecomplexdueto theexpected large forces.Theconnection isrealisedusing internalsteelplatesinsidethewoodmembersandsteeldowels,seeFigure6.2.Thebigadvantageoftheinternalsteelplatesisthatmultipleplatescanbeused,creatingtwoshearplaneseach,whichincreasesthecapacityper fastener.Toavoidconflictswithotherconnections (especially in the corners,where two diagonals from perpendicular directionsmeet at the same column), some specialmeasureshadtobetaken.Ontheonehand,thecross‐sectionofthecolumnmustbelargeenoughfortheconnectionstobenexttoeachother.Ontheotherhand,completelyhiddensteeldowelsarerequired,sothatthebeamscancontinuealongthesideoftheconnection.Atthemiddlecol‐umns,thesteelplatessimplygothroughthecolumn,directlyconnectingthetwodiagonalswitheachother.

Page 57: Different Construction for Storey Timber

Method

MasterThesis‐LucasBienert 43

Figure6.2:Sketchoftheconnectionbetweenthecolumnandthediagonal(nottoscale)

Onechallengewasthattheforcefromthediagonalactsonthecolumnunderanangletothegrain.Topreventthewoodfromsplitting,fully‐threadedscrewsaredrivenintothecolumnperpendic‐ulartothegrainasreinforcement.

6.2.3. PanelConstruction

Figure6.3:RFEMmodelofthesecondstoreyofthepanelconstruction

ThecentralconceptofthepanelconstructionisinspiredbytheoriginalstructureofTreetusingmodules.Eachstoreyconsistsof12modulesthatarepremanufactured,transportedtothecon‐structionsiteandthenconnected.Themodulesconsistofthewallsandthegroundfloor,cf.Figure6.3,andcanthusbefullyequippedincludingserviceinstallations,thebathroomandthekitchen.Theuppersideisclosedwhenthenextmodulesareplacedontop.

Page 58: Different Construction for Storey Timber

Method

MasterThesis‐LucasBienert 44

Theindividualelementsofthepanelconstructionincludethestuds,theblockingin‐betweenthestuds,thestructuralsheathingnailedtotheoutsideandinsideofthewalls,thefloorbeams,thefloorjoists,andthestructuralsheathingofthefloors,cf.Figure6.4.Thestudscarrytheverticalloads,at theouterwalls, theyarealsosubjectedtobending fromthewindpressure.The floorjoistscarry the load fromthe floorsand transfer themvia the floorbeams into thestuds.Theblockingstabilisesthewallsinthedirectionperpendiculartothestuds.Themainfunctionofthesheathingistocarrytheshearstressesinthewalls.Thefloorsactasdiaphragms,transferringhorizontalloadsasshearforcesintothewalls.Allmembersaresinglespanbeamsduetothena‐tureoftheindividualmodules.

Figure6.4:Sketchoftheconnectionbetweenthefloorandthewallinthepanelconstruction

Incontrast tothe frameconstruction,where loadsareconcentrated inthemainmembers, theforcesaremoredistributedwithinthepanelwalls.Thismakesitpossibletoachievesmallerdi‐mensions.Ontheotherhand,however,italsomakestheloadtransferlessclearandthedesignmuchmorecomplex.

Toensureloadtransferbetweenthemodules,theconnectionsbetweenadjoiningmodulesplayacrucialrole.Toachieveaclearloadtransfer,itwasdistinguishedbetweenshearstressesandnor‐malstresses.

Theshearstressesaretransferredbythestructuralsheathing.Toachievetheloadtransfer,theedgesofthemodulesareleftwithoutsheathingwhenmanufacturedinthefactory,themissingsheathingisaddedonthesite,thuseffectivelyconnectingadjoiningmodules.

Thecompressionstressesaretransferredviadirectcontactbetweentheendgrainsofthestuds,thusstressesperpendicular to thegrainareavoided.Theblocking isarranged in‐between thestudsandthefloorbeamisattachedtotheinsideofthewall,sothatthecross‐sectionofthestudsisnotweakened.

Totransfertensileforcesbetweenmodulesaboveeachother,specialhold‐downdevicesarenec‐essary,e.g.boltsthatconnectthemodulewalls.Whileforsmallerstructureswithlowerloads,itispossibletoonlyusethenailsofthesheathingtotransferallforces,forhightensileforces,astheynaturallyoccurinmulti‐storeybuildings,thisisnotrecommended.Aclearseparationbe‐tweenthetransferofshearandtensionisimportant.

Page 59: Different Construction for Storey Timber

Method

MasterThesis‐LucasBienert 45

Thefourlargerapartmentsineachstoreyconsistoftwomodules.Attheopensidesofthosemod‐ules,beamsandcolumnsareaddedtocarrytheloadsfromthefloors.Thecolumnsofthetwomodulesareconnectedaftertheyhavebeenbroughtinplacetoreachahigherbucklingresistance.

Ascanalreadybeguessedfromthosedescriptions,thepanelconstructionturnedouttobethecostliestvariantconcerningtheload‐bearingstructure.Manydifferentcomponentsandconnec‐tionswerenecessaryandmultiple iterationstepswereneededto findastructure that isbothcapableofbearingtheloadsandaseconomicaspossibleatthesametime.However,themajorpartofworkcanbedoneinthefactory,whichmakesthisstructureeconomicagainconcerningtheexecutionoftheconstruction.

6.2.4. CLTConstruction

Figure6.5:RFEMmodeloftheCLT‐construction

Inthisdesign,CLTwasusedinformofplatesforboththewallsandthefloorslabs,themodelisshowninFigure6.5.Again, toavoidstressesperpendiculartothegrain, insteadofplacingtheslabsin‐betweenthewallsofthetwostoreysaboveandbeneath,asisnormallydoneinthedesignofsmallerbuildings,theslabsareattachedtothewallslaterally.Agrooveiscutintothewallele‐mentsinwhichtheslabsareplaced,cf.Figure6.6.

Page 60: Different Construction for Storey Timber

Method

MasterThesis‐LucasBienert 46

Figure6.6:SketchoftheconnectionbetweenwallandfloorintheCLT‐construction

Similartotheloadbearingbehaviourofthepanelconstruction,theCLTwallscarrytheverticalloadsandtheshear,whilethefloorsactasdiaphragmsthattransferthehorizontalloadsintothewalls.

OneadvantageoftheCLTconstructionisitssimplicity,itonlyconsistsofCLTelementsandonekindofconnection.Thisconnectionisrequiredtotransferthetensileloadsbetweenwallsaboveeachother.

6.3. PreliminaryDesignThegoalof thepreliminarydesign is to findastructure that fulfils therequirements fromtheintendedusage,isabletobeartheactingloads,ispossibletobuildandaseconomicaspossible.Sincethedesignofacomplexstructurelikeamulti‐storeybuildingtakesseveraliterationsteps,thepreliminarydesigncanbeunderstoodasthefirststepinthisiteration(althoughtheprelimi‐narydesignitselfalreadytakesmorethanonestep,too).Aftereverystep,thestructuralelementsareadapted,thecorrespondingloadschanged,andtheloadtransferrecalculated.

Thefirststepinanyiterationalwaysusessomeassumptionsandestimates,thesameistrueforthepreliminarydesign.Someexampleshavealreadybeengiven inchapter3.2concerningthematerialpropertiesandthe loads.Anothersimplification is the formulaethatareused,e.g. toquicklycalculatethecapacityofaconnection,sincetheECformulaecanbeverycomplex(theformulaethathavebeenusedforthedesigninthismasterthesisaredescribedintheprefaceofthepreliminarydesigndocumentation,seeappendixA).Themotivationistofindafeasiblestruc‐tureasefficientlyaspossible.

Duringthepreliminarydesignphase,themostengineeringcompetenceisrequired.Concerningthetopicofthismasterthesis,themostimportantfindingsweremadeduringthisphase.Thosefindingsshallbedescribedinthefollowing.

Thepreliminarydesignoftheframeconstructionwasrelativelystraightforward,moststructuralelementscouldbedesignedindependently.Oneexceptionweretheframesintheouterwallsthatcarrytheglobalbendingmomentduetothewind.Sincetheframesarestaticallyindeterminate,thecross‐sectionsdirectlyaffecttheloaddistribution.Therefore,theforcesmustbeestimatedasafirstsub‐step.Asimplifiedsystemwasusedtodeterminethosefirstestimates,cf.Figure6.7.Thewholeframewasdividedintotwohalfframes,whichwereconsideredtoactlikeBernoulli‐beams.Thisallowedforthesimplecalculationofthereactionforcesinthecolumns,whichfunctionedasthe tension and compression chords of the beams. Based on the forces in the columns,

Page 61: Different Construction for Storey Timber

Method

MasterThesis‐LucasBienert 47

approximate forces in thediagonalscouldbedetermined.Withthoseestimated forces, there‐quiredcross‐sectionswerecalculated,whichcouldthenbeusedtomodeltheframewiththecor‐rectstiffnesses.

Figure6.7:Simplifiedsystemoftheframes

Abigpartofthepreliminarydesignoftheframeconstructionweretheconnections.Thebeamsareconnectedtothecolumnswithbolts.Theconnectionbetweenthediagonalandthecolumnsfeaturesinternalsteelplatesanddowels.Tocarrythewindsuctionloadsthatactonthefaçade,fullythreadedscrewswereused.Thesheathing,thejoistsandthebeamswereconnectedtoeachothervianails.However,althoughtherearemanydifferentconnections,allofthemcouldbede‐signedrelativelyeasilyusingthesimplifiedpreliminarydesignformulae.

ForboththepanelconstructionandtheCLT‐construction,thestabilisationofthebuildingwasanimportantandnottrivialpartofthepreliminarydesign.Thefunctionoftheframesintheframeconstructionisheretakenoverbyaninteractionofthewalls.Inthestabilityanalysis,theshareofeverywallintheglobalhorizontalshearloadandtheglobalbendingmomentiscalculated.Bothhavetheirmaximumintheloweststorey.

Inthecontextofthepreliminarydesign,someassumptionsweremadeforthestabilityanalysis:

Thebuildingisidealisedasaverticalcantileverbeam. Thefloordiaphragmsareperfectlyrigid. Thestiffnessofeachwallisproportionaltoitslength,i.e.allwallshavethesameheight,

thicknessandshearmodulus.

Basedonthoseassumptions,theshearforceisdistributedoverallwallsaccordingtotheirbend‐ingstiffnesses,cf.formula(4.1).Iftheshearforceactsatadistancetotheshearcentre(whichitdoesforwindfromtheside),anadditionaltorsionalmomentmustbeconsideredaccordingtoformula(4.2).

Page 62: Different Construction for Storey Timber

Method

MasterThesis‐LucasBienert 48

V V ⋅EI∑ EI

(4.1)

V M ⋅EI ⋅ e∑ EI ⋅ e

(4.2)

where V =shearforceofthecurrentwallk

V =globalactingshearforce

EI =stiffnessofawall

M = torsionalmoment due to eccentricity of the global actingshearforce

e =distanceofawalltotheshearcentre

Tocarrytheglobalbendingmoment,eachwallcarriesashareofthisbendingmomentdependingonitsbendingstiffness(cf.formula(4.3))andanormalforcedependingonitsextensionalstiff‐nessanddistancetothecentreofgravity(cf.formula(4.4)).

M M ⋅EIEI

(4.3)

N M ⋅EA ⋅ eEI

(4.4)

where M =bendingmomentofthecurrentwallk

M =globalactingbendingmoment

EI = total stiffness of all walls according to Steiner’s theoremwithrespecttothecentreofgravity

N =normalforceofthecurrentwallk

EA =extensionalstiffnessofawall

e =distanceofawalltothecentreofgravity

Finally,theverticalloadsduetotheself‐weightofthestructureandthelifeloadcouldbeaddedtoobtainthetotalloadsforwhichtodesignthewalls.

Concerningthepanelconstruction,duringthedesignofthewalls,somechallengeshadtobeover‐come.Ascouldbeexpected,theloadsinthewallswereveryhigh,buttheyalsovariedsignificantlybetweentheindividualwalls,whichwasduetotheirdifferentpositionsandlengths.Thosevari‐ationsmadeanefficientandeconomicdesigndifficult.Dimensioningallstudsaccordingtothehighestoccurringloadswouldhavebeenhighlyuneconomic,whileadaptingeverysinglestudtoitsindividualloadisnotpractical.Finally,asolutionin‐betweenthosetwoextremeswaschosen.Onlyaselectednumberofstudswasconsideredtobeloadbearingineverywallandthusgivenarespectivelargercross‐section(upto28/28cm),whilethenon‐loadbearingstudscouldhaveamuchsmallercross‐section(e.g.8/28cm).Thenumberandarrangementof loadbearingstudscouldbeadaptedaccordingtotheloaddistributionineachindividualwall.

Thismethodprovedtobemosteffective,becauseithelpedtoconvertthevastlydifferentloadsonthewallstomoreequalloadsonthestuds.Shortwallswithrelativelylowloadscoulde.g.only

Page 63: Different Construction for Storey Timber

Method

MasterThesis‐LucasBienert 49

havetwoloadbearingstuds,oneateachend,whileinthewallswithveryhighloads,almosteverystudwasloadbearing(thespacingofthestudsis61cm).

Becausethisstillledtoconsiderableloaddifferencesbetweenthestuds,themethodwastakenonestepfurther,introducingtwodifferentwallthicknesses.Inthefirstfloor,theouterwallsrun‐ningparalleltothebearingdirectionofthefloorshaveathicknessof20cm(withthecross‐sectionoftheloadbearingstudsbeing20/20cmandtheoneofthenon‐loadbearingstuds8/20cm)whileallotherwallshaveathicknessof28cm(heretheloadbearingstudsare28/28cmandthenon‐loadbearingstuds8/28cm).

Anotherchallenge for thepaneldesignwas theanchorage.Theproblemwere thecomparablysmallcross‐sectionsofthestuds,whichdidnotallowmuchspacefortheconnections.Finally,thisproblemwassolvedbyusinginternalsteelplatesinthestudsinquestionwhich,togetherwithsteelbolts,formatensionresistantconnectionbetweenthestuds.Thesteelplatescanbepre‐attachedtothelowerstuds,includingthebolts.Whenthenextmoduleisplacedontop,there‐mainingboltsareadded.Theboltsarelocatedabovethefloor,sothatthisworkcanbedonein‐dependentlyfromtheassemblyoftheadditionalsheathing,whichislocatedunderneaththefloor.

TheanchoragewasalsoachallengefortheCLTdesign.Forthisconstruction,longsteelplatesareused,thatareplacedingrooveswhicharecutintothelongtopedgesofthewallelements.Equallyspaceddowelsensureacontinuousloadtransferalongthewholelengthofthewalls.Usingglueinsteadofdowelswouldalsohavebeenpossible(cf.chapter5.4),butEC5doesnotyetincluderulesforthedesignofthiskindofconnection.

Theshearinthewallsduetowindloadswasnotdecisiveincomparisontothenormalforces.

6.4. EurocodeDesignInthischapter,firstsomegeneralfindingsfromtheECdesignshallbepresented,afterthat,againtheexperienceswiththethreedifferentconstructionvariantsaredescribed.

Ifthepreliminarydesignwasthefirstiterationstep,onetotwomorestepswererequiredintheECdesign.

ThesecondstepincludedadetailedloadcalculationandthebuildingoftheFEMmodelsaccordingtothedimensionsthathadbeenfoundinthepreliminarydesign.Withthehelpofthosemodels,moreaccurateinternalforcescouldbecalculated.ThenecessaryECcheckswereperformedforallrelevantstructuralcomponents.Theevaluationoftheresultsshowedthatsomecomponentsdidnotfulfiltherequirements,whileothercomponentswereonlyusedtoasmallpartoftheircapacity.

Theadaptionofthosecomponentswasthethirditerationstep.Thecross‐sectionsandconnec‐tionswerechangedsothatallchecksweresatisfied.Butbecausethe internal forcesagainareinfluencedbythesechanges, themodelshadtobechanged, the loadsrecalculated,andtheECchecksrepeated.Thistime,allcomponentsstillfulfilledtherequirementsandthedesigncouldbefinished.

Duringtheevaluationof theresultsof thechecks, itcouldbeconfirmedthattheserviceabilitylimitstate,i.e.thedeformations,becamedecisiveinsomecases.Concerningtheserviceability,itisimportanttoclearlydefinethecriterionfortheECverification.Forthefloorsinallthreecon‐structionvariants,thedeformationsaremainlyconnectedtothecomfortoftheresidents.Thereisalsoariskofdamageofothercomponentslikenon‐loadbearingwallsinsidetheapartments.IncompliancewiththeNorwegiannationalannextoEC5,thelimitvaluesforthedeformationswere

Page 64: Different Construction for Storey Timber

Method

MasterThesis‐LucasBienert 50

definedasl/300fortheinstantaneousdeformationandl/150forthefinaldeformation(includingcreepandothertime‐dependenteffects),cf.[3,NA.7.2].

Asindicatedbefore,onlythemostrelevantelementsfromeachconstructionwerecheckedintheECdesign,somedetailsareonlyconsideredinthepreliminarydesign.Anexampleistheconnec‐tionofthesheathingofthefloorstothejoistsintheframeconstruction.Becauseofthelowloads,thisconnectionisclearlynotdecisiveandhasthereforealsonoinfluenceontheremainingstruc‐ture.

Thedesignoftheframeconstructioncouldbeperformedwithoutthehelpoffiniteelementpro‐grams,merelythesimpletwo‐dimensionalframeworkanalysisprogramStab2dwasusedtosolvestaticallyindeterminedsub‐systemsliketheframesonthesides.Asidefromthat,thechecksdur‐ingthesecond iterationsteprevealedthat thepreliminarydesignhadalreadyproducedquiteaccurateresults.Bothfactsdemonstratewelltheclearload‐transferviamainlyone‐dimensionalmembers,whichmakesiteasiertointerpretthestructureandallowsforaflexibledesign.Onlyforsomecomponents(e.g.thecolumns),thedimensionscouldbedecreasedinordertoachieveahigherdegreeofefficiency.

Inthepanelconstruction,theconnectionofthefloorjoiststothefloorbeamhadtobechanged.Thefullythreadedscrews,whichwerechoseninthepreliminarydesign,werenotabletotransfertheloadsbecauseofthelargerequireddistancetotheendgrain.Instead,joisthangerswereusedthatcouldtransfertheloadswithoutproblems.Adisadvantageofthissolutionistheprice,be‐causeitcanbeexpectedthatsuchmanufacturer‐specificproductsaremoreexpensivethanstand‐ardwoodscrews.Moreover,thedimensionsofsomecomponentsthatallhadthesamedimen‐sionsbefore,werechangedtodifferentdimensionstomakethedesignmoreeconomic.E.g.thejoistswiththesmallestspanwereadaptedtohaveasmallercross‐sectionthantheotherjoists.Thesolutionwiththedifferentiationbetweenloadbearingandnon‐loadbearingstudswasveryeffectivealsowiththemoreaccuratecalculations,sothatthecross‐sectionsofthestudsdidnothavetobechanged.

FortheCLTconstruction,becauseofthemorecomplicatedloaddistribution,anFEManalysiswasinevitable.Thisanalysisshowed,however,thattheestimationoftheforcesactingonthewallsinthepreliminarydesignhadbeenfaulty(thedetailswillbediscussedinchapter6.5.1).Therefore,thedimensionsofthewallshadtobeincreased.ThiscanbeseenasanindicationforthemorecomplexbehaviourofmassivetimberconstructionsandespeciallytheCLTmaterial.

6.5. FEMAnalysis6.5.1. GlobalFEMAnalysis

FEManalyseshavealreadybeenmentionedseveraltimes,mostmodernstructurescannotbede‐signedanymorewithoutthehelpofFEM.Italsowasanimportantpartofthedesignperformedinthecontextofthismasterthesis.Therefore,oneentirechapterisdedicatedtothistopictobeabletolookatsomeimportantaspectsoftheFEManalysisinmoredetail.

Besideshelpingtoverifytheloadbearingcapabilityoftheoverallstructures,thecreationofthedifferentmodelsalsoalreadygaveanideaofhowcomplexandcostlyconcerningtherealerectionthestructuresare.

Beforesolvingthemodels,aconvergenceanalysiswasconductedforeachmodeltofindasuitablesizeforthefiniteelements.Thisisofcentralimportancesinceanelementsizethatistoolargecanleadtoconsiderabledeviationsofthesolution,whiletoosmallelementsleadtoahighcomputa‐tiontime.InFigure6.8toFigure6.10,theresultsoftheconvergenceanalysisofallthreestructures

Page 65: Different Construction for Storey Timber

Method

MasterThesis‐LucasBienert 51

arevisualised.Theselectedelementsizeforthesubsequentmainanalysisismarkedineachdia‐gram.Fortheconvergenceanalysis,asforallsubsequentcalculations,alinearfirstordertheorywasused.

Figure6.8:Convergenceanalysisoftheframeconstruction

Figure6.9:Convergenceanalysisofthepanelconstruction

Page 66: Different Construction for Storey Timber

Method

MasterThesis‐LucasBienert 52

Figure6.10:ConvergenceanalysisoftheCLTconstruction

FortheCLTconstruction,thenumberoffiniteelementshadasignificanteffect,whereasfortheframeconstruction,theinfluenceofthenumberofelementsontheresultwasneglectable.Apos‐sibleexplanationforthisisthattheframeconstruction’smainload‐bearingstructureconsistsofone‐dimensionalmembers,theinfluenceofthesheathingofthefloorsisonlysecondary.Thecal‐culationoftheinternalforcesforthisframeworkiscomparablesimpleanddoesnotdependonthenumberoffiniteelements.Indeed,thisstructurecouldalsobesolvedasathree‐dimensionalframeworkwithouttheneedforFEM.TheCLTconstructionontheotherhandconsistssolelyoftwo‐dimensionalsurfaceelements,whichcanonlybesolvedusingFEM.

Asmentionedbefore,theFEMmodelwasnotstrictlynecessaryforthedesignoftheframecon‐struction, theECcheckscouldalsobeperformedusingsimplersub‐models.But the3Dmodelallowstotakeacloserlookattheglobalbehaviourandgivesanimpressionoftheoverallstruc‐ture.AcomparisonoftheresultsfromthedesignwiththosefromtheFEM‐modelshowedthatthedesigngenerallywasonthesafeside.

WhiletheframeandtheCLTconstructionscouldbemodelledinonepiece,thepanelconstructionconsistedoftoomanystructuralelementssothatthewholemodelcouldnotbesolvedinaprac‐ticalmanner.Somesmallerchangesweremadetoavoidnodesthatlieclosetoeachother,result‐inginanunnecessaryfinemeshatthosepoints.Still,thenumberoffiniteelementsexceededthenumberthatcouldbesolvedinareasonabletime.Tobeabletosolvethemodel,ithadtobedi‐videdintosmallersub‐models.Thebestsizeforthesub‐modelswasthatofonestorey,thecon‐sistentnumberingofthemodelnodesallowedforastraight‐forwardloadtransferbetweentheindividualsub‐models.Theconvergenceanalysiscouldbeconductedforthehigheststorey(cf.Figure6.9).

Sincethemodulesconsistofthewallsandthefloor(cf.chapter6.2.3),thesamecompositionwastakenfortheindividualsub‐models.Especiallyforthehorizontalwindloads,however,theupperfloorwasneededfortheloadtransfer.Becauseofthat,theupperfloorwasaddedtoeachsub‐model(withoutaddingthecorrespondingloadsagain).TheconceptforsubdivisionofthepanelmodelisillustratedinFigure6.11.

Page 67: Different Construction for Storey Timber

Method

MasterThesis‐LucasBienert 53

Figure6.11:Conceptfordividingthepanelmodelintosub‐models

Someadditionalconsiderationwasnecessarytodeterminethecorrectconditionsatthetransi‐tionsofthesub‐models.Thebuildingasawholewasidealisedasacantileverbeam.Performingcutsthroughthisbeam,equivalenttodividingthemodelintosub‐models,willreleasebothmo‐ments,shearforcesandnormalforces.Sincethestudsareconsideredtobeconnectedtoeachotherbetweenstoreysviahinges(i.e.withouttransferringbendingmoments),eachsub‐modelissupportedatitslowerend,i.e.thelowercut,withhingedsupports.Thesupportreactions(whichareequaltotheinternalforcesinthestuds)couldthenbetransferredtothesub‐modelofthenextstoreyassingleloads.Becausetheupperfloorhadbeenaddedtothesub‐models,theuppercutwent throughthestudsthemselves(insteadof throughtheconnectionbetweenthestuds).Toassurecorrectboundaryconditions,supportswereneededattheupperendsoftheelementsofeachsub‐modelthatpreventrotationperpendiculartotheirverticalaxis,butallowingfor freedisplacementinalldirections.Asanexample,Figure6.12showsthemodelofthefirststoreywiththe loads forLC1(self‐weight) includingthesingle forces thatare transferred fromthestoreyabove.

Page 68: Different Construction for Storey Timber

Method

MasterThesis‐LucasBienert 54

Figure6.12:Sub‐modelinRFEMofthefirststoreyofthepanelconstructionwiththeloadsforLC1(self‐weight)

Withthismethod,itwasfinallypossibletocalculatereliableresults.

FortheCLTconstruction,itwaspossibleinRFEMtodefinethecompositionoftheCLTelementsusingtheadd‐onRF‐LAMINATEandthedatafromthetechnicalapprovaloftheselectedmanu‐facturer(see[11]).Theadd‐onallowedforadetaileddefinitionofthecompositionoftheCLT‐elements,itcoulde.g.alsobespecifiedthattheindividualplanksarenotgluedtogetheralongthenarrowedges.

ToavoidFEM‐relatedsingularitiesduetosurfacesthatintersecteachother,themodelhadtobeadaptedtoleavesmallgapsbetweenthewallsinordertoassurethattheoverallloadbearingbe‐haviourcorrelatedwiththerealbehaviouraswellaspossible.

ConcerningtheresultsoftheCLTmodel,ithasalreadybeenmentionedthatthoseresultsdifferedsignificantlyfromtheresultsofthepreliminarydesign.Someoftheassumptionsforthestabilityanalysishadnotbeencorrect.Firstly,thebuildingdoesnotbehavelikeabeambasedontheBer‐noulli‐theory.Sheardeformationhasalargeinfluence,whichisprobablyalsobeaneffectoftheCLT‐material.ThiscanbeseenfromthedeformationinFigure6.13,whichisnotcurvedasonewouldexpectforthewindloads(foraBernoulli‐beam,constantdistributedloadsleadtoadefor‐mationintheshapeofathirdorderpolynomialfunction).Thefloordiaphragmsarealsonotrigid,especiallybecauseeachdiaphragmconsistsofseveralCLT‐slabswhichhavehingedsupports.

Page 69: Different Construction for Storey Timber

Method

MasterThesis‐LucasBienert 55

Figure6.13:Deformationuin[mm]oftheCLT‐constructionforLC3(windfromthefront),viewfromtheside

WhenevaluatingtheresultsoftheFEManalysis,precautionshadtobetakenbecauseofunrealis‐ticstressconcentrations,whichoccurredespeciallyatthefoundationwherethesupportsatthebottomlinesofthesurfacescreatedrigidboundaryconditions.Theresultshadtobecorrectedtoexcludesuchstressconcentrations.

Ingeneral,theminimuminternalforceperwallwasselectedforthedesign(i.e.thehighestcom‐pression force).Todetect stressconcentrations, thedifferencebetween theminimumand themaximuminternalforce,themiddlein‐betweenthetwo,themedianandthestandarddeviationwerecalculatedforeachwall.Ahighstandarddeviationmeansthattheindividualvaluesononewalldeviatefromeachother,thisismainlythecaseatwallsthatcarryapartofthebendingmo‐mentfromthewindloads.Themiddlebetweenthetwoextremevaluesis,togetherwiththeme‐dian,bestsuitedtodetectthestressconcentrations.Iftherearestressconcentrationsinawall,onlyafewvalueswilldifferfromtherest,sothatthemedianisonlyslightlyaffected,whilethemiddle valuewill changeproportionally. Assuming negative values for compression, amiddlevaluethatismuchhigherthanthemedianwillmeanthattherearetensilestressconcentrations.

Asanexample,wallx3hadforLC1(self‐weight)amedianverticalinternalforceof 87,8kN/m,withtheextremevaluesbeing32,9and 121,1kN/m,whichmeansthemiddlevaluewas 44,1kN/m9.Thelargedifferencebetweenmedianandmiddlevaluesuggeststhattherearetensilestressconcentrations.AlookatthediagraminFigure6.14provesthishypothesis,thereasonforthestressconcentrationsisprobablythesupportwhichdoesnotallowanydeformationsalongthebottomline.Inthiscase,theminimumvalue( 121,1kN/m)wasselectedforthedesign.

9Theevaluationof the internal forceswasconductedatspecificgridpointsonthesurface,whichwereevenlydistributed.Sincethepositionsofthosepointswerestatic,theresultsdonotnecessarilycoverthewholerangeofinternalforcesandslightdeviationscanoccurincomparisontothediagrams.Thisisbene‐ficial,becauseitalreadyhelpstobalancestressconcentrations.

Page 70: Different Construction for Storey Timber

Method

MasterThesis‐LucasBienert 56

Figure6.14:Distributionoftheinternalnormalforcesin[kN/m]inwallx3forLC1(self‐weight)

Adifferentexample iswallx21forLC3(windfromthefront).Here, thetheminimumandthemaximumvalueare 98,1and 33,7kN/mrespectively,themedianwas 41,7kN/mandandthemiddlevalue 65,9kN/m,whichshowedthepossibilityofcompressionstressconcentrations.ThiscanagainbeprovedbylookingatFigure6.15.Consequently,forthiswallthevalueofthedesign force had to be reduced to exclude the unrealistic concentrations. A factor of 0,5waschosentointerpolatebetweentheextremevalues, leadingtothefinaldesignvalueof 33,70,5 ⋅ 98,1 33,7 65,9kN/m.

Figure6.15:Distributionoftheinternalnormalforcesin[kN/m]inwallx21forLC3(windfromthefront)

Thisprocedurewasusedforallwalls,adaptingthecorrectionfactoraccordingtohowstrongtheconcentrationswere(measuredbymeansofcomparingthemedianandmiddlevalue).

ThemainresultsoftheglobalFEManalysiswillbepresentedinchapter7.1.

6.5.2. FEMConnectionAnalysisInadditiontotheanalysisoftheoverallstructure,oneselectedconnectionwasexaminedtoim‐prove theunderstandingof the loaddistribution inconnectiondetails. Ithasalreadybeenex‐

Page 71: Different Construction for Storey Timber

Method

MasterThesis‐LucasBienert 57

plainedthatconnectionsplayanimportantroleintimberstructures,andthattherulesintheEC5areonlybasedonsingle‐fastenerconnections,usinganeffectivenumberoffastenerstoaccountforgroupeffects.Inlargemulti‐storeytimberbuildings,though,connectionsgenerallyconsistofmultiplefastenersbecauseofthecomparablyhighloads.Inordertoaddressthisaspect,thecon‐nectionbetweenthediagonalandthecolumnintheframeconstructionwasselectedtobeana‐lysedusingFEM. Itconsistsof the twowoodenmembersaswellas three internalsteelplatestogetherwithtensteeldowelsinboththecolumnandthediagonal(cf.chapter6.2.2).TheFEM‐softwareANSYSwasusedforthispurpose.

ThegeometryofthemodelisshowninFigure6.16,incomparisontotheoriginalconnection,thegeometrywassimplifiedtomakeamoreefficientFE‐solutionpossible,makinguseofthesym‐metryoftheconnection.Togetaclearviewofthedistributionoftheinternalstresses,oneofthemiddlelayersofthewoodcomponentsbetweentwosteelplateswasmodelled.

Figure6.16:GeometryoftheANSYSmodeloftheconnectionbetweendiagonalandcolumnintheframeconstruction

Thewood and steel partsweremodelled using the solid 8‐node brick element SOLID185. Tomodelthedowels,springelementsoftypeCOMBIN14wereapplied.

Sincewoodisanorthotropicmaterial,thecorrespondingorthotropicmaterialmodelhadtobeused.ThevaluesfortheelasticitymoduliweretakenfromEN14080forglulamGL24h.Thepois‐son’sratiosfordifferentwoodspeciescanbefoundintheliterature.Forthisapplication,theprop‐ertiesoftheDouglasfirwereused,whichisalsocultivatedinEurope.Thelongitudinaldirection

Page 72: Different Construction for Storey Timber

Method

MasterThesis‐LucasBienert 58

ofthegrainwasassumedtocoincidewiththex‐axis,theradialdirectionwiththey‐axisandthetransversaldirectionwiththez‐axis.AllmaterialpropertiesaresummarisedinTable6.1.

Table6.1:MaterialpropertiesfortheANSYSmodel[12,table5][16,5‐3]

woodE 11500 N/mmE 300 N/mm

E 300 N/mmG ,G ,G 650 N/mm

ν 0,292

ν 0,449 ν 0,390

ρ 420 kg/msteelE 210000 N/mmν 0,3

Toobtainthecorrectstiffnessforthesprings,theslipmodulusofthedowelswascalculatedac‐cordingtoEC5[2,7.1],seeequation(6.1).

Kρ , ⋅ d

23⋅ 2 (6.1)

where ρ =meandensityofthewoodin[kg/m ]

d =diameterofthedowelin[mm]

Thefactor2inequation(6.1)isduetothesteelplatesthatareusedintheconnection.ForM20dowels(cf.preliminarydesign,seeappendixA)theslipmodulusperfastenerandpershearplaneresultsin:

K420 , ⋅ 20

23⋅ 2 14969N/mm

SinceonespringintheANSYSmodelrepresentstheactionofonedowelinoneshearplane,thisvaluecouldbeuseddirectlyasthespringstiffnessofthoseelements.

The tensile load in the diagonal was determined in the preliminary design and amounts to530,9kN.Distributedoverthecross‐sectionofthediagonalofb/h 40/40cm,theresultantten‐silestressis:

p530900400

3,318N/mm

Becausethewoodmembersforthemodelwerecutoutofthewholestructure,boundarycondi‐tionshadtobeappliedatthecuts.Forthecolumn,whichtransfersbothnormalandshearforcesaswellasbendingmoments,arigidsupportwasmodelled.Thediagonal,ontheotherhand,trans‐fersmostlynormalforces,shearforcesandbendingmomentcanbeneglected,thereforeonlythenormalpressurepisappliedtorepresenttheactionoftheinternalnormalforce.Additionally,tosupportthemodelagainstlateralmovement,supportsinthelateraldirections, i.e. inglobalz‐directionandperpendiculartothediagonal,hadtobeapplied.Thiswasnecessarybecausethe

Page 73: Different Construction for Storey Timber

Method

MasterThesis‐LucasBienert 59

springelementsonlytransferforcesinthedirectionoftheirlocalx‐axis,whichmeansthatmove‐mentsperpendiculartothisaxisarenotconstraint.Withoutadditionalsupport,thiscausesthecalculationofthemodeltofailbecauseofrigidbodymovements.

Basedonthoseconsiderations,themodelcouldfinallybesolved.Butitisimportanttokeepthementionedassumptionsinmind,becausethemodeldoesnotrepresenttheconnectionaccuratelyenoughtoe.g.replacetheECcheckbythisFEanalysis.Theintentionisrathertogainabetterunderstandingofthedistributionoftheinternalstressesofarealisticconnectiondetail.

Theresultswillbepresentedinthenextchapter.

Page 74: Different Construction for Storey Timber

Results

MasterThesis‐LucasBienert 60

7. Results7.1. ResultsfromtheDesignAnalysis

Theresultofthedesignshowedthatitistechnicallypossibletouseallthreeanalysedstructuralmethodsfortheconstructionofmulti‐storeybuildings.Thedesigndocumentationsandthetech‐nicalplansthatshowthefinaloutcomeofthedesignareattachedtothismasterthesis,cf.appen‐dixA. There are, however, important differences between the three variants concerning bothstructural,othertechnical,architecturalandenvironmentalaspects.Adetaileddiscussionofthoseresultswillfollowinchapter8.Inthischapter,theresultsfromtheFEManalyseswillbepresentedinrelationtothedesign.

TheglobalFEManalysishelpedtoverifytheoverallstabilityandloadbearingbehaviourofthethreestructures.Asanexample,theinternalnormalforcesinthefrontframeoftheframecon‐structionareshowninFigure7.1.Thisresultprovestheclearloaddistributionofthisconstruc‐tionwhichmakesitaveryefficientmethod.Theoverallstabilityisachievedrelativelyeasilywhichallowsforaflexibleinteriordesign.

Figure7.1:InternalnormalforcesinthefrontframeoftheframeconstructionforLC4(windfromtheside)in[kN]

Page 75: Different Construction for Storey Timber

Results

MasterThesis‐LucasBienert 61

ThedistributionoftheinternalforcesforthepanelconstructionisdepictedinFigure7.2forthefirststorey.Althoughitisnotpossibletoreadindividualvalues,thefigurestillgivesagoodim‐pressionoftheloaddistribution.

Figure7.2:DistributionoftheinternalnormalforcesinthestudsofthefirststoreyofthepanelconstructionforLC4(windfromtheside)

Thefigureshowsthatforpurewindloads(withoutself‐weightorliveload),thenormalforcesaremostlyconcentratedintheendstudsofeachwall.Incontrasttothat,forthepreliminarydesign,thewindloadsweredistributedoverthestudswiththewallmodelledasabeamsupportedtheloadbearingstuds,cf.Figure7.3,whichresultedinmoreevenlydistributedloads,orratherhigherloadsinthemiddlestuds.Whilethismethodismorevalidfortheconstantverticalloadsfromtheself‐weightandtheliveload,itisapparentlynotacorrectassumptionforthewindloads.

Figure7.3:Exampleoftheassumptionoftheloaddistributionintheloadbearingstudsinawallinthepanelconstructionforwindfromtherightsideaccordingtothepreliminarydesign

Thedesignofthepanelconstructionwasnonethelesssuccessfulbecausethestudsthatwerecon‐siderednon‐loadbearingprovideadditionalloadcarryingcapacity.Thismakesthedesignmoreredundant.Nevertheless,theeffectoftheconcentratedwindloadsshouldbeconsideredforthedesignofpanelconstructionsinmulti‐storeybuildingswithhighwindloads.

Page 76: Different Construction for Storey Timber

Results

MasterThesis‐LucasBienert 62

TogiveanexampleoftheloaddistributionintheCLTconstruction,Figure7.4depictsthenormalforcesinthewallsofthefirststoreyforwindfromtheside.

Figure7.4:InternalnormalforcesinthefirststoreyoftheCLTconstructionforLC4(windfromtheside)in[kN/m]

Itcanbeseenclearlythatallthewallsparalleltothedirectionofthewindcarryapartoftheglobalbendingmoment.Theloaddistributionineachwall is linearaccordingtotheequationforthenormalstressesσ M/I ⋅ z,whereσisthenormalstresses(or,inthiscase,thedistributednormalforces),Mistheactingmoment,Ithesecondmomentofinertiaandzthecoordinatethroughthecross‐section(inthiscasealongthewall).However,unliketheassumptionsthathadbeenmadeinthepreliminarydesign,thewallsperpendiculartothewinddirectioncarrypracticallynoloads.Theloadsintheparallelwallsareaccordinglyhigher.ThisisprobablyanotherreasonwhytheECdesignhadtobereworkedratherextensivelyfortheCLTconstructioninrelationtotheprelimi‐narydesign.

FurtherresultsforallthreeconstructionvariantscanbefoundinappendixB.TheelectronicfilesoftheRFEM‐analysisarealsoattached,seeappendixA.

Anotherpartofthedesignanalysiswastheexaminationoftheconnectiondetailasdescribedinchapter6.5.2.Togetafirstimpressionofthestressdistribution,theequivalentvonMisesstressisshowninFigure7.510.

10ThedeformationinallfigureswithANSYSresultsisscaledbyafactorof100.Thesteelplatesarenotshown.

Page 77: Different Construction for Storey Timber

Results

MasterThesis‐LucasBienert 63

Figure7.5:VonMisesstressσVMoftheconnectionin[N/mm2]

Itcanbeseenthatthestressintheupperpartofthediagonalismainlyinfluencedbythetensileload,thevonMisesstressthereamountsapproximatelyto3,318N/mm .Goingdownthediago‐nal,thestressesgraduallydecreaseastheloadsaretransferredviathedowelstothesteelplatesandthenintothecolumn.However,stressconcentrationsoccurintheupperrangeoftheconnec‐tion,themaximumstressthereisaround1,5timeshigherthanthetensileload.Thisismostprob‐ablyduetothefactthatthedowelsaredistributedlaterallyalongverticallinesinsteadofperpen‐diculartothegrainofthediagonal.Thatleadstothefirstdowelintheupperrightcorneroftheconnectiontakingovermostoftheloads,whilethedowelsinthelowerregionscarrymuchlessloads.Thestressesinthewooddevelopaccordingly.

ThedistributionoftheshearstressesdepictedinFigure7.6yieldsthesamegeneralresult.Theshearstressesarealsoconcentratedaroundtheupperdowels.

Page 78: Different Construction for Storey Timber

Results

MasterThesis‐LucasBienert 64

Figure7.6:Shearstressτxyoftheconnectionin[N/mm2]

Inadditiontothat,however,shearstressesalsodevelopinthediagonalinsomedistancefromtheconnection,wherethelocaleffectsofthedowelshavenoinfluenceanymore.This isprobablyagainduetothearrangementofthedowels,sincethediagonal,asapartoftheframeintheframeconstruction,isapuretensionmember.Onepossibleexplanationistheasymmetricalloadtrans‐ferfromthewoodintothedowels.Becausehigherloadsaretransferredintheupperregionoftheconnectioncomparedtothelowerregion,theinternalforcesareunbalanced.Tosatisfytheequi‐libriumofforces,additionalshearforcesarerequired.

Shearstressesalongthegrainarepotentiallydangerousbecausetheycanleadtocracks.IntheEC,thecheckagainstcracks,i.e.thecheckfortensionperpendiculartothegrain,isbasedontheshearforceinthememberinquestion.Thecapacityagainsttensionperpendiculartothegrainiscalculatedusingformula(6.2)withthegeometricdimensionsaccordingtoFigure7.7.

F , 14 ⋅ b ⋅ w ⋅h

1 h /h (6.2)

where w =modificationfactor,w 1forallconnectionsexceptfornailplates

b,h ,h =geometricdimension,seeFigure7.7

Page 79: Different Construction for Storey Timber

Results

MasterThesis‐LucasBienert 65

Figure7.7:Definitionoftheforcesandgeometricdimensionsforthecheckagainsttensionperpen‐diculartothegrainaccordingtoEC5[2,8.1.4]

Sincethischeckisonlynecessaryforaforcethatactsatanangletothegrain,itisonlyrequiredforthecolumnandnotthediagonal(seeEurocodedesignfortheexecutionofthischeck,cf.ap‐pendixA).TheFEresultsontheotherhandsuggestthattheshearforcesarelargerinthediagonal,duetotheasymmetricarrangementofthedowels.Thisaspectis,however,notconsideredintheEC.

Lastly,Figure7.8showsthetotalstraininsidethewoodmembers.Theresultsreinforcethesug‐gestionsthathavebeenmadesofar.SincethestrainandthestressaredirectlylinkedviaHooke’slawσ E ⋅ ε,withthestressesσ,thestrainsεandtheYoung’smodulusE,theplaceswiththehigheststressesalsoshowthehigheststrains.Thesheardeformationinthediagonalcanalsobeseenrelativelyclearlywhenlookingatthedeformedshapeofthemodel.

Figure7.8:Totalstrainεoftheconnectionin[‐]

FurtherfigurescanbefoundinappendixC,whichshowthesameoverallresults.TheelectronicfiecontainingtheANSYSmodelisalsoattached,seeappendixA.

Tosumup,themostimportantinsightfromtheANSYSanalysisisthatthearrangementofthefasteners in amulti‐fastener connection has a significant influence on the distribution of thestressesandthustheloadbearingbehaviourandpotentiallyalsothecapacityoftheconnection.It

Page 80: Different Construction for Storey Timber

Results

MasterThesis‐LucasBienert 66

appearstobedisadvantageoustoarrangethefastenerswithanoffsetparalleltothegrain.Asaresultofthat,theloadtransferisunbalancedandadditionalshearstressesdevelop.Theshearstressesraisetheriskforsplitting,thestressconcentrationsaroundthefrontdowelscanalsoleadtocracks.Butitisimportanttorememberthatthisanalysiswascarriedoutwithoutconsideringthesplittingitselforrelatedeffects.

TheEurocodedoesconsiderthedistancesbetweenthefastenerstodetermineaneffectivenum‐beroffasteners,buttheoffsetalongthegrainisnotincluded.AccordingtoEC,theeffectivenum‐beroffastenersforthecolumnn 6,74islowerthanforthediagonalwithn 7,93(seeEu‐rocodedesign,cf.appendixA),whiletheaboveresultssuggestalessbeneficialstressdistributionforthediagonal. InadditiontothechecksfromtheEC,thedescribedeffectsshouldbekept inmindforthedesignofmulti‐storeytimberbuildingsandthelayoutofsuchconnectionsadjustedaccordingly.

7.2. ComparisonToelaboratethecentralresultsfromallpreviouschapters,ashortcomparisonofthethreevari‐antsshallbemadeinthischapter.Asatoolforthecomparison,anevaluationmatrixshallbeused,aswasdescribedinthecontextoftheLCAinchapter5.1.3.Forthiscomparisonhowever,amoregeneralevaluationmatrixisestablished,consideringalltheabovementionedaspects.TheresultispresentedinTable7.1.

First,allcriteriawereweightedtoaccountfortheirimportance.Inthenextstep,allthreevariantswereassignedvaluesbetween1and5foreachcriterion,were1istheworstratingand5thebestrating,thatmeansthate.g.alowdifficultyoftheconstructionwouldberatedwithahighvalue.Thescalefrom1to5isfineenoughtoclearlybringoutthedifferencesbetweenthethreecon‐structions,butnottoofine,forwhichthereisnosufficientbasis.Theresultswerecalculatedbymultiplyingthevaluewiththeweightingofthecorrespondingcriterion.

Page 81: Different Construction for Storey Timber

Results

MasterThesis‐LucasBienert 67

Table7.1:Evaluationmatrixforthecomparisonofthethreeconstructionvariantsframeconstruction,panelconstructionandCLTconstruction

criteria weighting frameconstruction panelconstruction CLTconstructionvalue result value result value result

complexityofthestructure

10% 3 30 1 10 5 50

difficultyoftheerection

20% 2 40 5 100 4 80

difficultyofthetransport

10% 5 50 1 10 3 30

deconstructionandreuse

5% 5 25 1 5 2 10

suitabilityforprefabrication

10% 2 20 5 50 3 30

firesafety

15% 2 30 3 45 5 75

noiseprotec‐tion

5% 1 5 2 10 5 25

environmentalaspectsofthematerials

15% 4 60 4 60 2 30

difficultyofad‐justmentsoftheinterior

5% 5 25 1 5 3 15

architecturalvalue

5% 4 20 1 5 5 25

sum 100 % 305 300 370

TheresultsrevealthattheCLTconstructionisbestsuitedfromthisall‐integratingpointofview.Itdidnotgetthelowestvalue1foranycriterion,theworstratingswereattainedfordeconstruc‐tionandreuse,sincetheCLTelementsareengineeredwoodproductsthatarehighlyadjustedtothespecificproject,andenvironmentalaspects,becausemostsyntheticadhesivesarerequiredforthemanufacturing.Theframeconstructionandthepanelconstructionhavealmostthesameresult,althoughthescoringat the individualcriteria isoftenopposite.For thedifficultyof thetransport,forexample,theframeconstructionscoreshighbecausethebasiccomponentsarerel‐ativelyeasilyavailableandcanbetransportedefficiently.Thepanelelements,however,prefabri‐catedwallsandfloorsorevenwholeprefabricatedmodules,aremoredifficulttotransportandthedistancebetweenthefactoryandtheconstructionsiteispresumablymuchbigger.Forthedifficultyoftheerectionontheotherhand,thepanelconstructiongetsahighvaluebecausetheprefabricatedelementsonlyhavetobeconnectedonsite,whiletheerectionoftheframeismorecostly.

Itisimportanttoremindthatthisevaluationwillnotvalidforeverycase,itisonlyintendedtogiveageneralideaofthedifferences,theadvantagesanddrawbacksofthethreestructuralmeth‐ods.Thedecisionforoneoranotherofthemethodswillinadditiontothoseresultshighlydependonproject‐specificaspects,whichcannotbeconsideredhere.Moreover,theabovevalueswereonlydeterminedqualitativelybasedonthefindingsofthismasterthesis.Foramorethorough

Page 82: Different Construction for Storey Timber

Results

MasterThesis‐LucasBienert 68

evaluation,especiallywhenappliedtoarealbuildingproject,inputfromexpertsfromdifferentfieldsshouldbeconsidered.

Page 83: Different Construction for Storey Timber

Discussion

MasterThesis‐LucasBienert 69

8. DiscussionApartfromtheaspectsofthepreviouschapter,somemoredetailedresultsconcerningtheout‐comeofthedesignandtheexperienceswiththethreevariantswillbediscussedinthischapter.

Theframeconstruction isveryeffectiveto transferthewind loadswhichcreatea largeglobalbendingmomentatthefootofbuilding.Thisisnaturallyabigchallengeforallmulti‐storeybuild‐ings.Lookingatexistingmulti‐storeytimberbuildingstoday,liketheoriginalTreetconstructionortheMjøstårnet(cf.chapter1),mostofthemfeaturesomekindofframeconstructionontheoutsideofthebuilding.

Lookingattheconnectiondetailintheframeconstruction,onecanconcludethatitwouldhavebeenmoreappropriatetoseparatetheconnectionofthetwodiagonalsthatmeetatthecornercolumn.Thisconnectionisquitecomplex,ascouldbeillustratedintheFEManalysisofthecon‐nectioninchapter6.5.2.Muchspaceisneededtosecurelytransfertheveryhighloads.Thetwo‐dimensionalconnectionmakesthistaskevenmorecomplicated.Basedonthoseexperiences,itcanberecommendedtoalwayspreferone‐dimensionalconnections,althoughagain,thecondi‐tionscanbedifferentinaspecificproject.

Ofallthreevariants,thepanelconstructionisleastsuitableformulti‐storeybuildings.Thepanelconstructionisanefficientandlightweightconstructionmethodforsmallerbuildings,whichhasmanyadvantageslikethegoodsuitabilityforprefabricationanditssmallweight.Itis,however,notefficientforbuildingswithmanystoreysbecauseoftheveryhighloadsthatoccurinmulti‐storeybuildings.Theextensivepreliminarydesignandthe issueswithcreatinganFEMmodelillustratethecomplexityoftheconstruction.Theloaddistributionisnotclear,whichmakesanoptimisationofthedesigndifficult.

Incontrasttothat,themainadvantageofthemasstimbervariantisitssimpleconstruction.Es‐peciallycomparedtothepanelconstruction,butalsotheframeconstruction,lessdifferentstruc‐turalelementsandthereforealsolessconnectionsarenecessary.Themasstimberelementscom‐binethedifferentstructuralfunctionsinaneffectiveway.

However,thepreliminarydesignhadtobereworkedcomparablystronglyfortheCLTconstruc‐tion.Thisisobviouslyduetoinadequateassumptionsforthepreliminarydesign,e.g.concerningthestrengthortheYoung’smodulus.Inthepreliminarydesign,itwasnotaccountedforthedif‐ferentmaterialparametersinthedifferentdirectionsoftheplates,althoughthoseactuallydiffersignificantly.

Onereasonforthoseproblemsisthelackofexperiencewiththismaterial.Adequateassumptions(whicharealwaysbasedonexperience)arenotavailableyetasextensivelyasfortheothercon‐structionmethods.AnotherissueforthedesignoftheCLTconstructionisthatstandardisedrulesforthedesignofCLTarestillmissing.IntheEC,CLTisnotmentionedatall.Assumptionshadtobemade,butbecauseoftheadvantagesofCLTthatwerepointedoutearlier(aboveallthesupe‐riorhomogeneity),thereispotential fore.g.highermodificationfactorsk whichwouldin‐creasetheefficiencyofthismaterial(seealso[19]).

Ontheotherhand,however,itwascomparativelyeasytoadjustthedimensionsofthemembersinquestion.Inspiteoftheconsiderablechangesthathadtobemade,theloaddistributiononlychangedrelativelylittle.Thisprovesagainthesimplicityofthestructure.Thestructuralelementsarequiteindependentofeachotherconcerningtheloadtransfer.Thesimplicityoftheconnec‐tionswasalsobeneficial,becauseconnectionsoftenrepresentfixedpointsforthedesign,formingboundaryconditionsthatlimitthefreedomofthedesignperceptibly.

Page 84: Different Construction for Storey Timber

Discussion

MasterThesis‐LucasBienert 70

Tocomebacktothereasonforthosenecessaryadjustments,thereisstillsomeworkandresearchtobedonetogainmoreexpertiseaboutthismaterial.ExtensionstothestandardsarenecessarytoincludeCLT,especiallybecauseitisusedmoreandmoreandwillverylikelyplayanimportantroleinthefutureofmulti‐storeytimberbuildings,aswasdiscussedearlier.TheFEM‐softwareRFEMalreadyincludedanadd‐ontomodelCLT‐materialsrealistically.Thiscanbeseenasasignthattheindustryhasalreadyunderstoodtheimportanceofthismaterialandisusingit,whiletheresearchandstandardisationstillhavetocatchup.CLThasalsobeenusedindifferentextendforthemulti‐storeytimberbuildingsTreetandMjøstårnet.

Itcanbeseenfromtheoutcomeofthismasterthesis,thatallthreevariantshaveadvantagesanddrawbacks.Thisisnotsurprisingandhadalreadybeenindicatedinchapter6.1.Torounduptheconclusionsofthedesignanalysis,ashortlookwillbetakenathowtocombinethedifferentvar‐iantseffectively.

Sincetheframeisverywellsuitedtotakeoverthewindloads,itmakessensetousethisstructureontheoutsideofthebuildingfortheglobalstability.Ontheinside,modulesinpanelconstructioncanbeused.Tominimisetheloadsonthepanelwalls,itispossibletoconnectthemodulestotheframestotransfertheverticalforcesthere.Thiscaneitherbedonewitheverystoreyorwithsev‐eralstoreys,creatingplatformsatequalintervals,verymuchliketheoriginalstructureofTreetwascarriedout.Thismakesitpossibletomakeuseofthepanelconstruction’sadvantages.None‐theless,higherloadswillprobablyoccurinthepanelwallscomparedtosmallerbuildings.Con‐cerningthis,thesolutionwithadistinctionbetweenloadbearingandnon‐loadbearingstudshasprovedtobeveryeffective.

ACLTconstructionisverywellsuitedformulti‐storeytimberbuildingswithoutadditionalstruc‐tures. For even bigger buildings, constructions in the style of traditionalmonolithic concretestructurescanbeimagined,withaninternalmassivecore,providingthestability.Inthisway,CLTcanalsobecombinedwithothermaterials,e.g.alightweightpanelconstructiontoformtheouterwalls.Furthermore,floorslabsmadefromCLTarewellsuitedtobeusedindifferentconstruc‐tions,oneoftheiradvantagescomparedtoe.g.joistfloorsiftheircapabilityofbearingloadsinbothdirections,whichmakesthemmuchmoreefficient.Becauseoftheirmassivestructureandhighweight,theyalsoaddagoodfireandnoiseprotection.

Page 85: Different Construction for Storey Timber

Conclusions

MasterThesis‐LucasBienert 71

9. ConclusionsInthismasterthesis,anextensivebasisformoderntimberdesignwasestablishedandcouldsuc‐cessfullybeusedtoperformadesignanalysisofthreevariantsofthemulti‐storeytimberbuildingTreet.Onevariantwasaframeconstruction,oneapanelconstructionandoneaCLTconstruction.Fromtheexperiencesduringthedesignandfromthefinaloutcome,conclusionscouldbemadeconcerning thesuitabilityof those threevariants, thusgivingaversatileanswer to thecentralresearchquestion(questionnumber1)thatwasformulatedinchapter4.Someofthemostim‐portantfindingsare:

Aframeconstructioniswellsuitedtoprovidestabilityinmulti‐storeytimberbuildings. Apanelconstructionshouldonlybeusedincombinationwithotherconstructionmeth‐

ods,butthenithassomegreatadvantages,aboveallthegoodsuitabilityforprefabrica‐tion.

CLTcanbeusedforvariouspurposesinmulti‐storeytimberbuildings,eitheronitsownorincombinationwithothermaterialsandstructuralmethods.

Aclearloadtransferisbeneficial,especiallyfortheoptimisationofthedesign. EngineeredwoodproductslikeglulamandCLTarepracticallyinevitableformulti‐storey

timberbuildings. Stressesperpendiculartothegrainshouldbeavoided.

Togiveanswerstothesecondaryquestions,herearethefurtherimportantpoints,gatheredfromallchaptersofthemasterthesis:

2. Woodistheoldestmaterialusedforbuildingpurposes.Muchexperienceexistsfortimberconstructions,buttoday’stechnologiesdifferconsiderablyfromthoseusedearlierinhis‐tory.Therearestillmanyreservationsamongstbothclientsandplannersinthebuildingindustry, which are connected to the disadvantages of the traditional technologies,althoughthenewtechnologiessolvedmostofthosedisadvantages.

3. Inspiteofthedifferenthistoricaldevelopments,inbothNorwayandGermany,asinmanyothercountries,thetimberindustrylacksexpertiseforthosenewtechnologies.

4. SupportedbyprogramsliketheNorwegianstrategytopromotetheuseofwoodinpublicbuildings,however,thetimberindustryisdeveloping.

5. Woodisanaturalmaterialwithalltheadvantagesanddrawbacksthatareconnectedtothisfact.Itsgreatestadvantagecomparedtosteelandconcreteisprobablyitsenviron‐mentalproperties.Butwoodhasstructuraladvantages,too,likethelowself‐weight.

6. Theroleconnectionsplayinthedesignoftimberbuildingsdependsontheconstructionmethod.Fortheframeandthepanelconstruction,theconnectionsplayanimportantrole,a largepartofthedesigndocumentationisdedicatedtotheconnections.TheCLTcon‐structionontheotherhandonlyrequiresaminimumofconnections.

7. ThedesignofthepanelandtheCLTconstruction,likemostmodernengineeringconstruc‐tions,requiredtheuseofFEM‐software.Specialcautionisrequiredwhenevaluatingtheresultsbecauseofmodel‐relatedeffectsthatcaninfluencetheresultsunrealistically.Theframeconstructioncouldbedesignedonlymakinguseofasimple frameworkanalysisprogram.

8. TheFEM‐analysisoftheconnectionsshowedthatthelayoutofthefastenersinmulti‐fas‐tenerconnectionshasanimportanteffectonthestressdistributionandisnotcompletelyconsideredintheEC.Generally, itcanberecommendedtoarrangethefastenersonanorthogonalgridparallelandperpendiculartothegraintoachieveanevenloadtransfer.

Page 86: Different Construction for Storey Timber

Recommendations

MasterThesis‐LucasBienert 72

10. RecommendationsAsdescribedintheintroductioninchapter1,today’shighesttimberbuilding,Treet,hasaheightof51m,whentheMjøstårnetwillbefinishedin2019,itwillhaveaheightof81m.Thinkingfur‐ther into the future, it canwellbe imagined that there soonwillbewoodenskyscraperswithheightsfarabove100m.Theaspectsdiscussedinthismasterthesiswillstillbeabletobeusedinageneralsenseforsuchbuildings,butthestructuresmustofcoursebeadapted.Toobtainthenecessarycross‐sections,CLTwilldefinitelyplayanimportantrole.Newproductslikemouldedwoodimprovethewood’spropertiesandwillmakesuchnewstructurespossible.Tomakethosenewproductsapplicable,furtherresearchisneeded.

Toeconomicallydesignnewconstructions,improvementsmustbemadetothecurrentstandards,e.g.toincludeCLTintheEC.

Apartfromthat,withthismasterthesisitcouldbedemonstratedthattherearetodaynotechnicalhindrancestoconstructmulti‐storeybuildingsusingtimber.Itisnowthetaskofthelegislativeorgantoprovidemodern,contemporaryrulesthatsupporttimberstructures,especiallyconsid‐eringthebigenvironmentaladvantagesthathavebeendiscussed.Atthesametime,theresponsi‐bleplannersinthebuildingindustryshouldbemoreawareofthetechnicalpossibilitiesthathavebeenpresented,andridthemselvesofthereservationsconnectedtoearlierweaknessesoftimber.

Allinall,thismasterthesisshowedthattimberconstructionsstillhavemuchunusedpotential,alsofortomorrow’sbuildings.

Page 87: Different Construction for Storey Timber

Bibliography

MasterThesis‐LucasBienert 73

Bibliography[1] BautabellenfürIngenieure.20.ed.,editor:AlfonsGoris.2012:WernerVerlag.[2] DINDeutschesInstitutfürNormunge.V.:DINEN1995‐1‐1:2004+AC:2006+A1:2008,

Eurocode5:BemessungundKonstruktionvonHolzbauten.Teil1‐1:Allgemeines–AllgemeineRegelnundRegelnfürdenHochbau.2010,Berlin.

[3] StandardNorge:NS‐EN1995‐1‐1:2004+A1:2008+NA:2010,Eurokode5:Prosjekteringavtrekonstruksjoner.Del1‐1:Allmennereglerogreglerforbygninger.2010,Lysaker.

[4] StandardNorge:NS‐EN1990:2002+A1:2005+NA:2016,Eurokode:Grunnlagforprosjekteringavkonstruksjoner.2016,Lysaker.

[5] StudiengemeinschaftHolzleimbaue.V.:EvangelischeKircheRegensburg.Availablefrom:https://www.brettsperrholz.org/seo.cfm?cmsfkt=viewfull&objectid=brettsperrholz_evangelische_kirche_,lastaccessdate:23.11.2018.

[6] HESSTimberGmbH:HESSLimitless.Availablefrom:http://www.hess‐timber.com/en/products/hess‐limitless/,lastaccessdate:24.11.2018.

[7] Hōryūji:ABriefHistory.Availablefrom:http://horyuji.or.jp/en/garan/,lastaccessdate:29.11.2018.

[8] Muster‐RichtlinieüberbrandschutztechnischeAnforderungenanhochfeuerhemmendeBauteileinHolzbauweise.2004.

[9] GermanMinisterialConferenceforBuilding:Musterbauordnung.2012.[10] Slikbyggesverdenshøyestetrehus.Availablefrom:

https://byggmesteren.as/2014/03/11/slik‐bygges‐verdens‐hoyeste‐trehus/,lastaccessdate:29.11.2018.

[11] SINTEFByggforsk:TekniskGodkjenningMartinsonsKL‐trä.2013,Oslo.[12] Europeancommitteeforstandardization:EN14080,Timberstructures–Gluedlaminated

timberandgluedsolidtimber–Requirements.2013.[13] Treforbyggogbyggitre:kunnskapsgrunnlagforøktbrukavtreioffentligebygg.2013,

Statsbygg:Oslo.[14] Treet:Filmerfrabyggeplassen.Availablefrom:http://treetsameie.no/filmer‐fra‐

byggeplassen/,lastaccessdate:29.11.2018.[15] Norskearkitekterslandsforbund:Verdenshøyestetrehus.Availablefrom:

https://www.arkitektur.no/treet,lastaccessdate:28.11.2018.[16] Bergman,Richardetal.:WoodHandbook,WoodasanEngineeringMaterial.2010,

Madison,Wisconsin:ForestProductsLaboratory,UnitedStatesDepartmentofAgricultureForestService.

[17] Dorn,Michael;deBorst,Karin;Eberhardsteiner,Josef:Experimentsondowel‐typetimberconnections.In:EngineeringStructures,2013.Vol.47(C):p.67‐80.

[18] Edvardsen,KnutIvaretal.:Trehus.9.ed.Vol.53.2010,Oslo:Sintefbyggforsk.[19] Fink,Gerhard;Kohler,Jochen;Brandner,Reinhard:ApplicationofEuropeandesign

principlestocrosslaminatedtimber.In:EngineeringStructures,2018.Vol.171:p.934‐943.

[20] Jeska,Simoneetal.:Emergenttimbertechnologies:materials,structures,engineering,projects.2015,Birkhauser.

[21] Kolb,Josef:Systemsintimberengineering:loadbearingstructuresandcomponentlayers.2008,Birkhäuser:Basel.

[22] Kunøe,Christopher:MonteringsstartavMjøstårnet.Availablefrom:https://byggmesteren.as/2017/09/05/monteringsstart‐av‐mjostarnet/,lastaccessdate:29.11.2018.

Page 88: Different Construction for Storey Timber

Bibliography

MasterThesis‐LucasBienert 74

[23] Möller,Eberhard:TendenzenimHolzbau.In:Bautechnik,2013.Vol.90(1):p.42‐46.[24] Pacheco‐Torgal,Fernando;Pacheco‐Torgal,F.:Eco‐efficientconstructionandbuilding

materials:lifecycleassessment(LCA),eco‐labellingandcasestudies.2014,WoodheadPub.[25] Rug,Wolfgang;Held,Heidrun:LebensdauervonHolzhäusern.1.ed.2001.[26] Thelandersson,Sven;Larsen,H.J.:Timberengineering.2003,Chichester:Wiley.[27] Wærp,Silje;Flæte,PerOtto;Svanæs,Jarle:Mikado:miljøegenskaperfortre‐ogtrebaserte

produkteroverlivsløpet:etlitteraturstudium.2008,SINTEFbyggforsk:Oslo.[28] Zarnani,P.;Quenneville,P.:Strengthoftimberconnectionsunderpotentialfailuremodes:

Animproveddesignprocedure.In:ConstructionandBuildingMaterials,2014.Vol.60:p.81‐90.

Page 89: Different Construction for Storey Timber

Appendix

MasterThesis‐LucasBienert 75

AppendixA. Attachments architecturalplansoftheoriginalbuildingTreetP01–P06(PDF)[15] loadcalculation(PDF) preliminarydesign(PDF) Eurocodedesign(PDF) technicalplans(PDF) EXCELdesignfiles(XLSX) RFEMmodels(RF5) ANSYSmodel(DB)

B. SelectedRFEMResultsB.a) FrameConstruction

FigureB.1:DeformationoftheframeconstructionforLC1(self‐weight)in[mm]

Page 90: Different Construction for Storey Timber

Appendix

MasterThesis‐LucasBienert 76

FigureB.2:DeformationoftheframeconstructionforLC3(windfromthefront)in[mm]

FigureB.3:DeformationoftheframeconstructionforLC4(windfromtheside)in[mm]

Page 91: Different Construction for Storey Timber

Appendix

MasterThesis‐LucasBienert 77

FigureB.4:InternalnormalforcesinthecolumnsoftheframeconstructioninthefirststoreyforLC1(self‐weight)in[kN]

FigureB.5:InternalnormalforcesinthecolumnsoftheframeconstructioninthefirststoreyforLC2(snow)in[kN]

FigureB.6:InternalnormalforcesinthecolumnsoftheframeconstructioninthefirststoreyforLC3(windfromthefront)in[kN]

Page 92: Different Construction for Storey Timber

Appendix

MasterThesis‐LucasBienert 78

FigureB.7:InternalnormalforcesinthecolumnsoftheframeconstructioninthefirststoreyforLC4(windfromtheside)in[kN]

FigureB.8:InternalnormalforcesinthecolumnsoftheframeconstructioninthefirststoreyforLC5(lifeload)in[kN]

Page 93: Different Construction for Storey Timber

Appendix

MasterThesis‐LucasBienert 79

FigureB.9:InternalnormalforcesinthefrontframeoftheframeconstructionforLC1(self‐weight)in[kN]

B.b) PanelConstruction

FigureB.10:DeformationofthefirstfloorofthepanelconstructionforLC1(self‐weight)in[mm]

Page 94: Different Construction for Storey Timber

Appendix

MasterThesis‐LucasBienert 80

FigureB.11:DeformationofthefirstfloorofthepanelconstructionforLC2(snow)in[mm]

FigureB.12:DeformationofthefirstfloorofthepanelconstructionforLC3(windfromthefront)in[mm]

FigureB.13:DeformationofthefirstfloorofthepanelconstructionforLC4(windfromtheside)in[mm]

Page 95: Different Construction for Storey Timber

Appendix

MasterThesis‐LucasBienert 81

FigureB.14:DeformationofthefirstfloorofthepanelconstructionforLC5(lifeload)in[mm]

FigureB.15:DistributionoftheinternalnormalforcesinthestudsofthefirststoreyofthepanelconstructionforLC1(self‐weight)

FigureB.16:DistributionoftheinternalnormalforcesinthestudsofthefirststoreyofthepanelconstructionforLC3(windfromthefront)

Page 96: Different Construction for Storey Timber

Appendix

MasterThesis‐LucasBienert 82

B.c) CLTConstruction

FigureB.17:DeformationoftheCLTconstructionforLC1(self‐weight)in[mm]

FigureB.18:DeformationoftheCLTconstructionforLC3(windfromthefront)in[mm]

Page 97: Different Construction for Storey Timber

Appendix

MasterThesis‐LucasBienert 83

FigureB.19:DeformationoftheCLTconstructionforLC4(windfromthefront)in[mm]

FigureB.20:InternalnormalforcesintheCLTconstructionforLC1(self‐weight)in[kN/m]

Page 98: Different Construction for Storey Timber

Appendix

MasterThesis‐LucasBienert 84

FigureB.21:InternalnormalforcesintheCLTconstructionforLC3(windfromthefront)in[kN/m]

FigureB.22:InternalnormalforcesinthefirststoreyoftheCLTconstructionforLC1(self‐weight)in[kN/m]

Page 99: Different Construction for Storey Timber

Appendix

MasterThesis‐LucasBienert 85

FigureB.23:InternalnormalforcesinthefirststoreyoftheCLTconstructionforLC2(snow)in[kN/m]

FigureB.24:InternalnormalforcesinthefirststoreyoftheCLTconstructionforLC3(windfromthefront)in[kN/m]

FigureB.25:InternalnormalforcesinthefirststoreyoftheCLTconstructionforLC5(lifeload)in[kN/m]

Page 100: Different Construction for Storey Timber

Appendix

MasterThesis‐LucasBienert 86

FigureB.26:InternalshearforcesinthefirststoreyoftheCLTconstructionforLC3(windfromthefront)in[kN/m]

FigureB.27:InternalshearforcesinthefirststoreyoftheCLTconstructionforLC4(windfromtheside)in[kN/m]

Page 101: Different Construction for Storey Timber

Appendix

MasterThesis‐LucasBienert 87

C. SelectedANSYSresults

FigureB.28:Stressinglobalxdirectionσxoftheconnectionin[N/mm2]

FigureB.29:Stressinglobalydirectionσyoftheconnectionin[N/mm2]

Page 102: Different Construction for Storey Timber

Appendix

MasterThesis‐LucasBienert 88

FigureB.30:Firstprinciplestressσ1oftheconnectionin[N/mm2]

FigureB.31:Straininglobalxdirectionεxoftheconnectionin[‐]

Page 103: Different Construction for Storey Timber

Appendix

MasterThesis‐LucasBienert 89

FigureB.32:Straininglobalydirectionεyoftheconnectionin[‐]

Page 104: Different Construction for Storey Timber

LoadCalculation

Page 105: Different Construction for Storey Timber

TableofContents

LoadCalculation‐LucasBienert 2

TableofContentsTableofContents...............................................................................................................................................................2 

Self‐weight............................................................................................................................................................................3 

Liveloads............................................................................................................................................................................10 

Snowloads.........................................................................................................................................................................10 

WindLoads........................................................................................................................................................................12 

Appendix.............................................................................................................................................................................18 

Page 106: Different Construction for Storey Timber

Self‐weight

LoadCalculation‐LucasBienert 3

Self‐weightTechnicaldrawingsofthewall,floorandroofconstructionscanbefoundintheappendix.

a)FrameConstruction

roof characteristicweight dimensions spacing load γ b h a g gravel,protectivelayer 0,2 kN/m2/cm 5 cm 1 kN/m2plywoodsheathing,spruce 0,05 kN/m2/cm 2 cm 0,09 kN/m2ventilation+counterbattens,C24 4,2 kN/m3 4 cm 3 cm 30 cm 0,02 kN/m2airtightinsulation,wood‐fibre 0,026 kN/m2/cm 2 cm 0,047 kN/m2heatinsulation,woodfibre 0,005 kN/m2/cm 16 cm 0,08 kN/m2horizontalcarriers,C24 4,2 kN/m3 6 cm 16 cm 30 cm 0,13 kN/m2plywoodsheathing,spruce 0,05 kN/m2/cm 2 cm 0,09 kN/m2 1,458 kN/m2roofjoists,glulamGL24h 3,7 kN/m3 14 cm 24 cm 65 cm 0,19 kN/m2

1,65 kN/m2

floor characteristicweight dimensions spacing load γ b h a g floortilesincl.mortar 0,3 kN/m2/cm 1 cm 0,30 kN/m2cementscreed 0,22 kN/m2/cm 3 cm 0,66 kN/m2footfallsoundinsulation,woodfibre 0,028 kN/m2/cm 4 cm 0,10 kN/m2plywoodsheathing,spruce 0,05 kN/m2/cm 2 cm 0,09 kN/m2 1,15 kN/m2floorjoists,glulamGL24h 3,7 kN/m3 14 cm 24 cm 65 cm 0,19 kN/m2

1,34 kN/m2

outerwall,facade characteristicweight dimensions spacing load h=3,195m γ b t a g innerplywoodsheathing,spruce 0,05 kN/m2/cm 1 cm 0,06 kN/m2heatinsulation,woodfibre 0,005 kN/m2/cm 16 cm 0,08 kN/m2verticalcarriers,C24 4,2 kN/m3 6 cm 16 cm 60 cm 0,07 kN/m2outerplywoodsheathing,spruce 0,05 kN/m2/cm 1 cm 0,06 kN/m2airtightinsulation,wood‐fibre 0,0235 kN/m2/cm 2 cm 0,04 kN/m2ventilation+battens,C24 4,2 kN/m3 4 cm 3 cm 60 cm 0,01 kN/m2cladding,wood 5 kN/m3 3 cm 0,13 kN/m2

0,44 kN/m2

b)PanelConstruction

roof1,2 characteristicweight dimensions spacing load γ b h a g gravel,protectivelayer 0,2 kN/m2/cm 5 cm 1 kN/m2plywoodsheathing,spruce 0,05 kN/m2/cm 2 cm 0,09 kN/m2ventilation+counterbattens,C24 4,2 kN/m3 4 cm 3 cm 30 cm 0,02 kN/m2airtightinsulation,wood‐fibre 0,026 kN/m2/cm 2 cm 0,0468 kN/m2heatinsulation,woodfibre 0,005 kN/m2/cm 16 cm 0,08 kN/m2horizontalcarriers,C24 4,2 kN/m3 6 cm 16 cm 30 cm 0,13 kN/m2plywoodsheathing,spruce 0,05 kN/m2/cm 2 cm 0,09 kN/m2roofjoists,glulamGL24h 3,7 kN/m3 16 cm 24 cm 60 cm 0,24 kN/m2

1,69 kN/m2

Page 107: Different Construction for Storey Timber

Self‐weight

LoadCalculation‐LucasBienert 4

roof3 characteristicweight dimensions spacing load γ b h a g gravel,protectivelayer 0,2 kN/m2/cm 5 cm 1 kN/m2plywoodsheathing,spruce 0,05 kN/m2/cm 2 cm 0,09 kN/m2ventilation+counterbattens,C24 4,2 kN/m3 4 cm 3 cm 30 cm 0,02 kN/m2airtightinsulation,wood‐fibre 0,026 kN/m2/cm 2 cm 0,0468 kN/m2heatinsulation,woodfibre 0,005 kN/m2/cm 16 cm 0,08 kN/m2horizontalcarriers,C24 4,2 kN/m3 6 cm 16 cm 30 cm 0,13 kN/m2plywoodsheathing,spruce 0,05 kN/m2/cm 2 cm 0,09 kN/m2roofjoists,glulamGL24h 3,7 kN/m3 8 cm 24 cm 60 cm 0,12 kN/m2

1,58 kN/m2

floor1,2 characteristicweight dimensions spacing load γ b h a g floortilesincl.mortar 0,3 kN/m2/cm 1 cm 0,30 kN/m2cementscreed 0,22 kN/m2/cm 3 cm 0,66 kN/m2footfallsoundinsulation,woodfibre 0,028 kN/m2/cm 4 cm 0,10 kN/m2plywoodsheathing,spruce 0,05 kN/m2/cm 2 cm 0,09 kN/m2floorjoists,glulamGL24h 3,7 kN/m3 16 cm 20 cm 60 cm 0,20 kN/m2

1,35 kN/m2

floor3 characteristicweight dimensions spacing load γ b h a g floortilesincl.mortar 0,3 kN/m2/cm 1 cm 0,30 kN/m2cementscreed 0,22 kN/m2/cm 3 cm 0,66 kN/m2footfallsoundinsulation,woodfibre 0,028 kN/m2/cm 4 cm 0,10 kN/m2plywoodsheathing,spruce 0,05 kN/m2/cm 2 cm 0,09 kN/m2floorjoists,glulamGL24h 3,7 kN/m3 8 cm 20 cm 60 cm 0,10 kN/m2

1,25 kN/m2

outermodulewall28/28studs characteristicweight dimensions spacing load h=3,195m γ b t a g innerplywoodsheathing,spruce 0,05 kN/m2/cm 2 cm 0,09 kN/m2heatinsulation,woodfibre 0,005 kN/m2/cm 16 cm 0,08 kN/m2studs,glulamGL24h 3,7 kN/m3 28 cm 28 cm 60 cm 0,48 kN/m2bottomblocking,glulamGL24h 3,7 kN/m3 16 cm 28 cm 0,05 kN/m2bottomplate,glulamGL24h 3,7 kN/m3 10 cm 24 cm 0,03 kN/m2topblocking,glulamGL24h 3,7 kN/m3 16 cm 28 cm 0,05 kN/m2outerplywoodsheathing,spruce 0,05 kN/m2/cm 2 cm 0,09 kN/m2airtightinsulation,wood‐fibre 0,0235 kN/m2/cm 2 cm 0,04 kN/m2ventilation+battens,C24 4,2 kN/m3 4 cm 3 cm 60 cm 0,01 kN/m2cladding,wood 5 kN/m3 3 cm 0,13 kN/m2

1,04 kN/m2

Page 108: Different Construction for Storey Timber

Self‐weight

LoadCalculation‐LucasBienert 5

outermodulewall24/24studs characteristicweight dimensions spacing load h=3,195m γ b t a g innerplywoodsheathing,spruce 0,05 kN/m2/cm 2 cm 0,09 kN/m2heatinsulation,woodfibre 0,005 kN/m2/cm 16 cm 0,08 kN/m2studs,glulamGL24h 3,7 kN/m3 24 cm 24 cm 60 cm 0,36 kN/m2bottomblocking,glulamGL24h 3,7 kN/m3 16 cm 24 cm 0,04 kN/m2bottomplate,glulamGL24h 3,7 kN/m3 10 cm 24 cm 0,03 kN/m2topblocking,glulamGL24h 3,7 kN/m3 16 cm 24 cm 0,04 kN/m2outerplywoodsheathing,spruce 0,05 kN/m2/cm 2 cm 0,09 kN/m2airtightinsulation,wood‐fibre 0,0235 kN/m2/cm 2 cm 0,04 kN/m2ventilation+battens,C24 4,2 kN/m3 4 cm 3 cm 60 cm 0,01 kN/m2cladding,wood 5 kN/m3 3 cm 0,13 kN/m2

0,90 kN/m2

outermodulewall20/20studs characteristicweight dimensions spacing load h=3,195m γ b t a g innerplywoodsheathing,spruce 0,05 kN/m2/cm 2 cm 0,09 kN/m2heatinsulation,woodfibre 0,005 kN/m2/cm 16 cm 0,08 kN/m2studs,glulamGL24h 3,7 kN/m3 20 cm 20 cm 60 cm 0,25 kN/m2bottomblocking,glulamGL24h 3,7 kN/m3 16 cm 20 cm 0,04 kN/m2bottomplate,glulamGL24h 3,7 kN/m3 10 cm 24 cm 0,03 kN/m2topblocking,glulamGL24h 3,7 kN/m3 16 cm 20 cm 0,04 kN/m2outerplywoodsheathing,spruce 0,05 kN/m2/cm 2 cm 0,09 kN/m2airtightinsulation,wood‐fibre 0,0235 kN/m2/cm 2 cm 0,04 kN/m2ventilation+battens,C24 4,2 kN/m3 4 cm 3 cm 60 cm 0,01 kN/m2cladding,wood 5 kN/m3 3 cm 0,13 kN/m2

0,78 kN/m2

outermodulewall16/16studs characteristicweight dimensions spacing load h=3,195m γ b t a g innerplywoodsheathing,spruce 0,05 kN/m2/cm 2 cm 0,09 kN/m2heatinsulation,woodfibre 0,005 kN/m2/cm 16 cm 0,08 kN/m2studs,glulamGL24h 3,7 kN/m3 16 cm 16 cm 60 cm 0,16 kN/m2bottomblocking,glulamGL24h 3,7 kN/m3 16 cm 16 cm 0,03 kN/m2bottomplate,glulamGL24h 3,7 kN/m3 10 cm 24 cm 0,03 kN/m2topblocking,glulamGL24h 3,7 kN/m3 16 cm 16 cm 0,03 kN/m2outerplywoodsheathing,spruce 0,05 kN/m2/cm 2 cm 0,09 kN/m2airtightinsulation,wood‐fibre 0,0235 kN/m2/cm 2 cm 0,04 kN/m2ventilation+battens,C24 4,2 kN/m3 4 cm 3 cm 60 cm 0,01 kN/m2cladding,wood 5 kN/m3 3 cm 0,13 kN/m2

0,67 kN/m2

Page 109: Different Construction for Storey Timber

Self‐weight

LoadCalculation‐LucasBienert 6

outermodulewall8/16studs characteristicweight dimensions spacing load h=3,195m γ b t a g innerplywoodsheathing,spruce 0,05 kN/m2/cm 2 cm 0,09 kN/m2heatinsulation,woodfibre 0,005 kN/m2/cm 16 cm 0,08 kN/m2studs,glulamGL24h 3,7 kN/m3 8 cm 16 cm 60 cm 0,08 kN/m2bottomblocking,glulamGL24h 3,7 kN/m3 16 cm 16 cm 0,03 kN/m2bottomplate,glulamGL24h 3,7 kN/m3 10 cm 24 cm 0,03 kN/m2topblocking,glulamGL24h 3,7 kN/m3 16 cm 16 cm 0,03 kN/m2outerplywoodsheathing,spruce 0,05 kN/m2/cm 2 cm 0,09 kN/m2airtightinsulation,wood‐fibre 0,0235 kN/m2/cm 2 cm 0,04 kN/m2ventilation+battens,C24 4,2 kN/m3 4 cm 3 cm 60 cm 0,01 kN/m2cladding,wood 5 kN/m3 3 cm 0,13 kN/m2

0,59 kN/m2

innermodulewall28/28studs characteristicweight dimensions spacing load h=3,195m γ b t a g innerplywoodsheathing,spruce 0,05 kN/m2/cm 2 cm 0,09 kN/m2soundinsulation,woodfibre 0,005 kN/m2/cm 16 cm 0,08 kN/m2studs,glulamGL24h 3,7 kN/m3 28 cm 28 cm 60 cm 0,48 kN/m2bottomblocking,glulamGL24h 3,7 kN/m3 16 cm 28 cm 0,05 kN/m2bottomplate,glulamGL24h 3,7 kN/m3 10 cm 24 cm 0,03 kN/m2topblocking,glulamGL24h 3,7 kN/m3 16 cm 28 cm 0,05 kN/m2outerplywoodsheathing,spruce 0,05 kN/m2/cm 2 cm 0,09 kN/m2

0,88 kN/m2

innermodulewall24/24studs characteristicweight dimensions spacing load h=3,195m γ b t a g innerplywoodsheathing,spruce 0,05 kN/m2/cm 2 cm 0,09 kN/m2soundinsulation,woodfibre 0,005 kN/m2/cm 16 cm 0,08 kN/m2studs,glulamGL24h 3,7 kN/m3 24 cm 24 cm 60 cm 0,36 kN/m2bottomblocking,glulamGL24h 3,7 kN/m3 16 cm 24 cm 0,04 kN/m2bottomplate,glulamGL24h 3,7 kN/m3 10 cm 24 cm 0,03 kN/m2topblocking,glulamGL24h 3,7 kN/m3 16 cm 24 cm 0,04 kN/m2outerplywoodsheathing,spruce 0,05 kN/m2/cm 2 cm 0,09 kN/m2

0,73 kN/m2

innermodulewall20/20studs characteristicweight dimensions spacing load h=3,195m γ b t a g innerplywoodsheathing,spruce 0,05 kN/m2/cm 2 cm 0,09 kN/m2soundinsulation,woodfibre 0,005 kN/m2/cm 16 cm 0,08 kN/m2studs,glulamGL24h 3,7 kN/m3 20 cm 20 cm 60 cm 0,25 kN/m2bottomblocking,glulamGL24h 3,7 kN/m3 16 cm 20 cm 0,04 kN/m2bottomplate,glulamGL24h 3,7 kN/m3 10 cm 24 cm 0,03 kN/m2topblocking,glulamGL24h 3,7 kN/m3 16 cm 20 cm 0,04 kN/m2outerplywoodsheathing,spruce 0,05 kN/m2/cm 2 cm 0,09 kN/m2

0,61 kN/m2

Page 110: Different Construction for Storey Timber

Self‐weight

LoadCalculation‐LucasBienert 7

c)CLTConstruction

roof1 characteristicweight dimensions spacing load γ b h a g gravel,protectivelayer 0,2 kN/m2/cm 5 cm 1 kN/m2plywoodsheathing,spruce 0,05 kN/m2/cm 1,8 cm 0,09 kN/m2ventilation+counterbattens,C24 4,2 kN/m3 4 cm 3 cm 30 cm 0,02 kN/m2airtightinsulation,wood‐fibre 0,026 kN/m2/cm 1,8 cm 0,0468 kN/m2heatinsulation,woodfibre 0,005 kN/m2/cm 16 cm 0,08 kN/m2horizontalcarriers,C24 4,2 kN/m3 6 cm 16 cm 30 cm 0,13 kN/m2CLT 4 kN/m3 14,5 cm 0,58 kN/m2

1,95 kN/m2

roof2,3 characteristicweight dimensions spacing load γ b h a g gravel,protectivelayer 0,2 kN/m2/cm 5 cm 1 kN/m2plywoodsheathing,spruce 0,05 kN/m2/cm 1,8 cm 0,09 kN/m2ventilation+counterbattens,C24 4,2 kN/m3 4 cm 3 cm 30 cm 0,02 kN/m2airtightinsulation,wood‐fibre 0,026 kN/m2/cm 1,8 cm 0,0468 kN/m2heatinsulation,woodfibre 0,005 kN/m2/cm 16 cm 0,08 kN/m2horizontalcarriers,C24 4,2 kN/m3 6 cm 16 cm 30 cm 0,13 kN/m2CLT 4 kN/m3 20,9 cm 0,84 kN/m2

2,20 kN/m2

roof4 characteristicweight dimensions spacing load γ b h a g gravel,protectivelayer 0,2 kN/m2/cm 5 cm 1 kN/m2plywoodsheathing,spruce 0,05 kN/m2/cm 1,8 cm 0,09 kN/m2ventilation+counterbattens,C24 4,2 kN/m3 4 cm 3 cm 30 cm 0,02 kN/m2airtightinsulation,wood‐fibre 0,026 kN/m2/cm 1,8 cm 0,0468 kN/m2heatinsulation,woodfibre 0,005 kN/m2/cm 16 cm 0,08 kN/m2horizontalcarriers,C24 4,2 kN/m3 6 cm 16 cm 30 cm 0,13 kN/m2CLT 4 kN/m3 9,5 cm 0,38 kN/m2

1,75 kN/m2

floor1 characteristicweight dimensions spacing load γ b h a g floortilesincl.mortar 0,3 kN/m2/cm 1 cm 0,30 kN/m2cementscreed 0,22 kN/m2/cm 3 cm 0,66 kN/m2footfallsoundinsulation,woodfibre 0,028 kN/m2/cm 3,6 cm 0,10 kN/m2CLT 4 kN/m3 14,5 cm 0,58 kN/m2

1,64 kN/m2

floor2,3 characteristicweight dimensions spacing load γ b h a g floortilesincl.mortar 0,3 kN/m2/cm 1 cm 0,30 kN/m2cementscreed 0,22 kN/m2/cm 3 cm 0,66 kN/m2footfallsoundinsulation,woodfibre 0,028 kN/m2/cm 3,6 cm 0,10 kN/m2CLT 4 kN/m3 20,9 cm 0,84 kN/m2

1,90 kN/m2

Page 111: Different Construction for Storey Timber

Self‐weight

LoadCalculation‐LucasBienert 8

floor4 characteristicweight dimensions spacing load γ b h a g floortilesincl.mortar 0,3 kN/m2/cm 1 cm 0,30 kN/m2cementscreed 0,22 kN/m2/cm 3 cm 0,66 kN/m2footfallsoundinsulation,woodfibre 0,028 kN/m2/cm 3,6 cm 0,10 kN/m2CLT 4 kN/m3 9,5 cm 0,38 kN/m2

1,44 kN/m2

outerwallt=170mm characteristicweight dimensions spacing load h=3,195m γ b t a g CLT 4 kN/m3 17,0 cm 0,68 kN/m2heatinsulation,woodfibre 0,005 kN/m2/cm 16 cm 0,08 kN/m2verticalcarriers,C24 4,2 kN/m3 6 cm 16 cm 60 cm 0,07 kN/m2outerplywoodsheathing,spruce 0,05 kN/m2/cm 1,2 cm 0,06 kN/m2airtightinsulation,wood‐fibre 0,0235 kN/m2/cm 1,5 cm 0,04 kN/m2ventilation+counterbattens,C24 4,2 kN/m3 4 cm 3 cm 60 cm 0,01 kN/m2cladding,wood 5 kN/m3 2,5 cm 0,13 kN/m2

1,06 kN/m2

outerwallt=145mm characteristicweight dimensions spacing load h=3,195m γ b t a g CLT 4 kN/m3 14,5 cm 0,58 kN/m2heatinsulation,woodfibre 0,005 kN/m2/cm 16 cm 0,08 kN/m2verticalcarriers,C24 4,2 kN/m3 6 cm 16 cm 60 cm 0,07 kN/m2outerplywoodsheathing,spruce 0,05 kN/m2/cm 1,2 cm 0,06 kN/m2airtightinsulation,wood‐fibre 0,0235 kN/m2/cm 1,5 cm 0,04 kN/m2ventilation+counterbattens,C24 4,2 kN/m3 4 cm 3 cm 60 cm 0,01 kN/m2cladding,wood 5 kN/m3 2,5 cm 0,13 kN/m2

0,96 kN/m2

outerwallt=120mm characteristicweight dimensions spacing load h=3,195m γ b t a g CLT 4 kN/m3 12,0 cm 0,48 kN/m2heatinsulation,woodfibre 0,005 kN/m2/cm 16 cm 0,08 kN/m2verticalcarriers,C24 4,2 kN/m3 6 cm 16 cm 60 cm 0,07 kN/m2outerplywoodsheathing,spruce 0,05 kN/m2/cm 1,2 cm 0,06 kN/m2airtightinsulation,wood‐fibre 0,0235 kN/m2/cm 1,5 cm 0,04 kN/m2ventilation+counterbattens,C24 4,2 kN/m3 4 cm 3 cm 60 cm 0,01 kN/m2cladding,wood 5 kN/m3 2,5 cm 0,13 kN/m2

0,86 kN/m2

outerwallt=95mm characteristicweight dimensions spacing load h=3,195m γ b t a g CLT 4 kN/m3 9,5 cm 0,38 kN/m2heatinsulation,woodfibre 0,005 kN/m2/cm 16 cm 0,08 kN/m2verticalcarriers,C24 4,2 kN/m3 6 cm 16 cm 60 cm 0,07 kN/m2outerplywoodsheathing,spruce 0,05 kN/m2/cm 1,2 cm 0,06 kN/m2airtightinsulation,wood‐fibre 0,0235 kN/m2/cm 1,5 cm 0,04 kN/m2ventilation+counterbattens,C24 4,2 kN/m3 4 cm 3 cm 60 cm 0,01 kN/m2cladding,wood 5 kN/m3 2,5 cm 0,13 kN/m2

0,76 kN/m2

Page 112: Different Construction for Storey Timber

Self‐weight

LoadCalculation‐LucasBienert 9

halfinnerdividingwallt=170mm characteristicweight dimensions spacing load h=3,195m γ b t a g CLT 4 kN/m3 17 cm 0,68 kN/m2soundinsulation,woodfibre 0,005 kN/m2/cm 8 cm 0,04 kN/m2

0,72 kN/m2

halfinnerdividingwallt=145mm characteristicweight dimensions spacing load h=3,195m γ b t a g CLT 4 kN/m3 14,5 cm 0,58 kN/m2soundinsulation,woodfibre 0,005 kN/m2/cm 8 cm 0,04 kN/m2

0,62 kN/m2

halfinnerdividingwallt=120mm characteristicweight dimensions spacing load h=3,195m γ b t a g CLT 4 kN/m3 12 cm 0,48 kN/m2soundinsulation,woodfibre 0,005 kN/m2/cm 8 cm 0,04 kN/m2

0,52 kN/m2

halfinnerdividingwallt=95mm characteristicweight dimensions spacing load h=3,195m γ b t a g CLT 4 kN/m3 9,5 cm 0,38 kN/m2soundinsulation,woodfibre 0,005 kN/m2/cm 8 cm 0,04 kN/m2

0,42 kN/m2

innerwallt=246mm characteristicweight dimensions spacing load h=3,195m γ b t a g CLT 4 kN/m3 24,6 cm 0,98 kN/m2

0,98 kN/m2

innerwallt=170mm characteristicweight dimensions spacing load h=3,195m γ b t a g CLT 4 kN/m3 17 cm 0,68 kN/m2

0,68 kN/m2

innerwallt=95mm characteristicweight dimensions spacing load h=3,195m γ b t a g CLT 4 kN/m3 9,5 cm 0,38 kN/m2

0,38 kN/m2

Page 113: Different Construction for Storey Timber

Liveloads

LoadCalculation‐LucasBienert 10

LiveloadsVerticalLifeLoads

category description q kN/m Q kNA residential buildings, kitchen, bathroom, living and

sleepingrooms,e.g.inhospitals,hotels

floor 2,5* 2,0H roofs,notwalkable,onlymaintenance slopeα 0° 20° 0,75 1,5* including0,5kN/m additionalloadfornon‐loadbearingwalls

reductionfactorforverticaldistributedliveloadsq inmultiplestoreys

α2 n 2 ψ

n

α2 14 2 ⋅ 0,7

140,74

n 14

loadcategory A(ψ 0,7)

SnowloadssnowloadonthegroundforBergen,Hordaland,South‐Norway

s , 2,0kN/m

H 150m

H 2m. o. h.

s 2,0kN/m

snowloadontheroof

s μ ⋅ C ⋅ C ⋅ s exposurefactorC 1,0(normalexposure)

thermalfactorC 1,0

s μ ⋅ s

Page 114: Different Construction for Storey Timber

Snowloads

LoadCalculation‐LucasBienert 11

Figure1:Roofreference

Roof1

α 0° 15°

μ 0

b 2,10m

b 9,275m

h 52,92 49,92 3,0m

μb b2 ⋅ h

2,10 9,2752 ⋅ 3,0

1,90 2 ⋅ 3,67/2 3,67

s 1,90 ⋅ 2,0 3,80kN/m

Onthesafeside,thehighersnowloadisconsideredtobeconstantalongthelengthoftheroofofthelift,until4,08mbeforetheendoftheroof,andthendecreaselinearly.

l 2 ⋅ 3,0 6,0m 4,08m

μ 0,81,90 0,8

6,06,0 4,08 1,15

s 1,15 ⋅ 2,0 2,30kN/m

Roof2

α 0°

Page 115: Different Construction for Storey Timber

WindLoads

LoadCalculation‐LucasBienert 12

μ 0,8

s 0,8 ⋅ 2,0 1,6kN/m

Roof3

α 0° 15°

μ 0

b2,10 7,295

24,70m

b 9,275m

h 52,92 49,92 3,0m

μ4,70 9,275

2 ⋅ 3,02,33 2 ⋅ 3,00/2 3,00

s 2,33 ⋅ 2,0 4,66kN/m

l 2 ⋅ 3,0 6,0m b 9,275m

Figure2:Summaryofthesnowloadsontheroof

WindLoadsreferencewindspeedforterraincategoryII(openterrainwithindividualhousesortrees)

v , 26m/s v 30m/s

basicwindspeedwithdirectionfactorc 1,0,seasonfactorc 1,0andprobabilityfactorc 1,0.

H 2m. o. h.

H 900m

H 1500m

Page 116: Different Construction for Storey Timber

WindLoads

LoadCalculation‐LucasBienert 13

c 1,030 26 2 90026 1500 900

0,77 1,0

c 1,0

v 1,0 ⋅ 26 26m/s

10minutesaveragewindspeedovertheheightzforterraincategoryIV

roughnessfactor:k 0,24

roughnesslength:z 1,0m

z 16m

z 200m

c z 0,24 ⋅ lnz

1,0 m z z z

c z c z z

terrainformfactor: 1,0

0,24 ⋅1,0

⋅ 26 /

turbulenceintensity(ratiobetweenthestandardderivationfortheinstantaneouswindspeed(1second)andthe10minutesaveragewindspeed)

turbulencefactor: 1,0

1,0

1,0 ⋅ 1,0

10minutesaveragewindspeedpressure

airdensity 1,25 /

0,5 ⋅ 1,25 / ⋅

gustwindspeedpressure

peakfactor 3,5

1 2 ⋅ 3,5 ⋅ ⋅

generalgeometry

52,92 2,0 50,92

20,65

22,34

Page 117: Different Construction for Storey Timber

WindLoads

LoadCalculation‐LucasBienert 14

2

windfromthefront/back

20,65

0

20,65 16

50,92 20,65 30,27

50,92 200

i

3 50,92 24,52 0,254 375,8 1044,02 30,27 21,28 0,293 283,0 863,41 20,65 18,17 0,330 206,3 683,0

windfromthesides

22,34

0

22,34 16

50,92 22,34 28,58

50,92 200

i

3 50,92 24,52 0,254 375,8 1044,02 28,58 20,92 0,298 273,5 844,01 22,34 19,38 0,322 234,7 763,7

Page 118: Different Construction for Storey Timber

WindLoads

LoadCalculation‐LucasBienert 15

Figure3:Summaryofthegustwindspeedpressure

windpressure

windpressureonthewalls

windfromthefront/back

22,34

20,65

22,3420,65

5 5 ⋅ 20,65 103,25

/ 50,92/20,65 2,47

Page 119: Different Construction for Storey Timber

WindLoads

LoadCalculation‐LucasBienert 16

A B D E

, ‐1,2 ‐0,8 0,8 ‐0,57

, ‐1,4 ‐1,1 1,0 ‐0,57

windfromthesides

20,65

22,34

20,65 22,34

/ 50,92/22,34 2,28

areaCisneglected

A B D E

, ‐1,2 ‐0,8 0,8 ‐0,56

c , ‐1,4 ‐1,1 1,0 ‐0,56

Page 120: Different Construction for Storey Timber

WindLoads

LoadCalculation‐LucasBienert 17

windpressureontheroof

windfromthefront/back

F G Hc , ‐1,8 ‐1,2 ‐0,7

c , ‐2,5 ‐2,0 ‐1,2

windfromthesides

F G H Ic , ‐1,8 ‐1,2 ‐0,7 /‐0,2

c , ‐2,5 ‐2,0 ‐1,2 /‐0,2

Page 121: Different Construction for Storey Timber

Appendix

LoadCalculation‐LucasBienert 18

Appendix

a)FrameConstruction

Figure4:Verticalsectionthroughthewallandtheflooroftheframeconstruction

Page 122: Different Construction for Storey Timber

Appendix

LoadCalculation‐LucasBienert 19

Figure5:Verticalsectionthroughthewallandtheroofoftheframeconstruction

Page 123: Different Construction for Storey Timber

Appendix

LoadCalculation‐LucasBienert 20

b)PanelConstruction

Figure6:Verticalsectionthroughthewallandthefloorofthepanelconstruction

Page 124: Different Construction for Storey Timber

Appendix

LoadCalculation‐LucasBienert 21

Figure7:Verticalsectionthroughthewallandtheroofofthepanelconstruction

Page 125: Different Construction for Storey Timber

Appendix

LoadCalculation‐LucasBienert 22

c)CLTConstruction

Figure8:VerticalsectionthroughthewallandtheflooroftheCLTconstruction

Page 126: Different Construction for Storey Timber

Appendix

LoadCalculation‐LucasBienert 23

Figure9:VerticalsectionthroughthewallandtheroofoftheCLTconstruction

Page 127: Different Construction for Storey Timber

PreliminaryDesign

Page 128: Different Construction for Storey Timber

TableofContents

PreliminaryDesign‐LucasBienert 2

TableofContentsTableofContents...............................................................................................................................................................2 

General...................................................................................................................................................................................4 

Remarks............................................................................................................................................................................4 

DescriptionoftheBuilding.......................................................................................................................................4 

LoadbearingConcept...................................................................................................................................................4 

Assumptions....................................................................................................................................................................6 

Materials...........................................................................................................................................................................6 

Software............................................................................................................................................................................7 

Literature..........................................................................................................................................................................7 

PreliminaryDesignFormulae..................................................................................................................................7 

Loads..................................................................................................................................................................................8 

a)FrameConstruction..................................................................................................................................................11 

3.1Joists.........................................................................................................................................................................12 

3.2Joists.........................................................................................................................................................................13 

2.2Beam.........................................................................................................................................................................14 

2.1Beam.........................................................................................................................................................................16 

2.3Beam.........................................................................................................................................................................18 

7Diaphragm.................................................................................................................................................................20 

8Frame...........................................................................................................................................................................21 

2.4Beam(Front)........................................................................................................................................................22 

2.4Beam(Side)...........................................................................................................................................................24 

1Columns......................................................................................................................................................................27 

4Diagonal......................................................................................................................................................................31 

5StructuralSheathingoftheFloors...................................................................................................................33 

6VerticalFaçadeCarriers......................................................................................................................................35 

ConnectionsOverview.............................................................................................................................................36 

ConnectionBeam2.2toColumn1.1..................................................................................................................37 

ConnectionOuterBeam2.4ontheSidetoColumn1.3..............................................................................38 

ConnectionDiagonal4toColumn1.2................................................................................................................40 

ConnectionSheathing5toJoists3......................................................................................................................42 

ConnectionJoists3toBeams2............................................................................................................................43 

b)PanelConstruction....................................................................................................................................................44 

1.1FloorJoists.............................................................................................................................................................45 

1.2FloorJoists.............................................................................................................................................................46 

Page 129: Different Construction for Storey Timber

TableofContents

PreliminaryDesign‐LucasBienert 3

1.3FloorJoists.............................................................................................................................................................47 

3Walls/Studs...............................................................................................................................................................48 

3.y8StudsinWally3.................................................................................................................................................50 

3.y1StudsinWally1.................................................................................................................................................54 

4Sheathing...................................................................................................................................................................57 

2FloorBeam................................................................................................................................................................59 

6Beam............................................................................................................................................................................60 

5Columns......................................................................................................................................................................62 

ConnectionsOverview.............................................................................................................................................63 

Anchoring......................................................................................................................................................................64 

ConnectionFloorJoists1toFloorBeam2......................................................................................................66 

ConnectionFloorBeam2toStuds3..................................................................................................................67 

c)CLTConstruction.......................................................................................................................................................69 

1FloorSlab...................................................................................................................................................................70 

2,3FloorSlab..............................................................................................................................................................71 

4FloorSlab...................................................................................................................................................................72 

5Walls............................................................................................................................................................................73 

5.y5OuterWall...........................................................................................................................................................75 

Anchoring......................................................................................................................................................................78 

Appendix.............................................................................................................................................................................79 

Attachments.................................................................................................................................................................79 

b)PanelConstruction...............................................................................................................................................80 

c)CLTConstruction...................................................................................................................................................88 

Page 130: Different Construction for Storey Timber

General

PreliminaryDesign‐LucasBienert 4

General

Remarks

This documentation summarises the results of the preliminary design. The relevant files areattachedforfurtherreference.Technicalreferenceplansarealsoattached(cf.appendix).

DescriptionoftheBuilding

ThesubjectofthisdesignisthebuildingTreet,locatedinBergen,Norway.Theexactaddressis:

Damsgårdsveien995058BergenHordaland,South‐Norway

Three different structures will be designed for this building, using three different timberconstructionmethods:

a) frameconstruction

b) panelconstruction

c) CLTconstruction

Thedimensionsofthebuildingarea/b/h 22,34/20,65/47,925m.Itconsistsofasinglelevelundergroundcarparkplus14normalstoreys,eachhavingaheightof3,195m.Theusageofthebuildingispurelyresidential.Eachstoreyconsistsof5units,4ofthemareapartmentsandoneiseitherastorageroomoranother,smallerapartment.

Eachstoreyhasacentralcorridorandallstoreysareconnectedviaalargestaircaseandaliftinthemiddleandsecondarystairwayononesideofthecorridor.

Thebuildinghasflatroofs,withtheareaofthecorridor,thestaircasesandtheliftsprotrudingonestorey higher than the apartments (which gives a height of 47,925 3,195 51,12m at thehighestpoint).Therefore,snowdriftsmustbeconsideredonthelowerroofs.

LoadbearingConcept

a)FrameConstruction

Theverticalloadsfromthefloorsarecarriedbythefloorjoists(elementreferencenumber3,cf.elementreferenceplanPa1.1)whichrunalongtheverticalaxes.Thejoistsaresingle‐spanbeamsandaresupportedbythebeams(2)whichrunperpendiculartothejoists,alongthehorizontalaxes.

Thebeamsarecompoundbeamsconsistingoftwoidenticalcross‐sectionsthatareattachedtothecolumns(1)onbothsides.TwoadditionalbeamsareattachedtotheoutsideofthecolumnsintheverticalaxesAandF.

Tostabilisethestructureagainstwind,diagonals(4)areaddedinbetweentheoutercolumns,formingtwoframesineachdirection.

Thewindpressureactsonthefaçade,inwhichverticalcarriers(6)carrythebendingmoment.Theverticalcarriersspanonestoreyandtransferthewindloadstotheouterbeams(2.4)andintothe floors.The floors act asdiaphragmswith the structural sheathing (5)providing the shearstiffnesstopasstheloadsontotheframesoneachside.

Page 131: Different Construction for Storey Timber

General

PreliminaryDesign‐LucasBienert 5

Thediaphragmsbehavelikesimplysupportedbeams.Theframesarethesupports,thebeams2.4theflanges,takingcompressionandtensionforces,andthesheathingthechord,takingtheshear.

Wind suctionon the roofwasnot considered, it canbe carriedby thebattens andhorizontalcarriersintheroofstructure,butisnotdecisiveincomparisontothesnowloadandself‐weight.

b)PanelConstruction

Thepanelconstructionfeaturestwelveprefabricatedmodulesperstoreythatconsistofwallsandthefloor(theuppersideisclosedwhenthenextmoduleisplacedontop).

Thevertical loadsarecarriedbythefloorjoists(1,cf.elementreferenceplanPb4.1).Theyaresupportedbythefloorbeams(2)whichareattachedtotheinsideofthewallsandtransfertheloadsintothewalls.Thewallsconsistofverticalstuds(3)whichcarrytheloads,thestructuralsheathing(4)whichprovidestheshearstiffnessandhorizontalblockinginbetweenthestuds.

Themodules1,2,6and7(cf.modulereferenceplanPb3)areopenononeofthefoursides.There,thefloorissupportedbyabeam(6)onfourcolumns(5).

Tocarrythehorizontalwindloads,thefloorsactasdiaphragmsandthewallsasshearwallswiththesheathingprovidingthenecessaryshearstiffness.Tocalculatetheloadsontheshearwallsfromthewind,astabilityanalysismustbeconducted.

Thenon‐loadbearingwallsinsidetheapartmentsarenotconsideredforstabilitytomakelaterchangestotheinteriorlayoutpossible.Thedoublewallswheretwomodulesmeetareconsideredastwoseparatewalls.

Forthestabilityanalysis,thebuildingisidealisedasaverticalcantileverbeamwiththemaximumverticalloads,horizontalshearandglobalbendingmomentatthesupportatthefoundation.Theshareofeverywallinshearandinbendingiscalculatedandtheverticalloadsfromtheself‐weightandthelifeloadareadded.Tocarrytheglobalbendingmoment,eachwallcarriesashareofthisbendingmomentdependingonitsstiffnessandanormalforcedependingonitsdistancetothecentreofgravity.

The studs carry the vertical forces in the walls. The studs in the outer walls also carry thehorizontalloadfromthewindandtransfertheseloadsintothediaphragms.

Onlyselectedstudsareconsideredtobeloadbearingandhaveanaccordinglylargercross‐sectioncomparedtothenon‐loadbearingstuds.Allstudsarearrangedonaregulargridwhichisfittedtothesizesoftheplywoodpanelsthatformthesheathingofthewalls.

Fortensilestresses,specialhold‐downdevicesfunctionasanchoring.Thelargesttensilestresseswill also occur at the support since the global bending moment, which causes the tension,increasesquadraticallywhiletheself‐weight,whichcancelsoutpartofthetension,onlyincreaseslinearlyovertheheight.

c)CLTConstruction

TheCLT‐constructionconsistssolelyofmasstimberpanelsmadefromCLT.Panelswithdifferentthicknessesareusedforthedifferentwalls(5,cf.elementreferenceplanPc3.1)andfloorslabs(1–4).Betweendifferentapartments,doublewallsareusedtoincreasethesoundprotection

Tocarrythehorizontalwindloads,thefloorsactasdiaphragmsandthewallsasshearwalls.Tocalculatetheloadsontheshearwallsfromthewind,astabilityanalysismustbeconducted.

Thenon‐loadbearingwallsinsidetheapartmentsarenotconsideredforstabilitytomakelaterchangestotheinteriorlayoutpossible.Thedoublewallsareconsideredastwoseparatewalls.

Page 132: Different Construction for Storey Timber

General

PreliminaryDesign‐LucasBienert 6

Toavoid large compression stressesperpendicular to thegrain, the floor slabs arenotput inbetweenthewallelements,butsetintoagroovecutintothelowerwall.

Toaccount for firesafety,onlyCLT‐panelswithat least5 layersareused. If theouter layer isdestroyedduringafire,thenextlayer,whichisorientedperpendiculartotheouterlayer,isalsorenderedineffectiveforthebearingoftheloadsandthreelayersremain,twoinloaddirectionandoneperpendiculartothat.Thus,theelementisstillabletocarryareducedamountofloads.

Assumptions

For the preliminary design, all checks are made with characteristic values and reducedpreliminarydesignstrengths.Theusedmaterialpropertiesaresummarisedintable…

material property preliminarydesignvaluesolid wood,glulam

strengthparalleltothegrain σ 5 N/mm

compressionstrengthperpendiculartothegrain σ , 1,5N/mm

Young’smodulus E 10000N/mm

plywood shearstrength σ , 1,5N/mm

out‐of‐planebendingstrength σ 8 N/mm

Young’smodulus E 4 000N/mm CLT strengthinthestrongdirection σ 5 N/mm

strengthintheweakdirection σ 4 N/mm

in‐planebendingaroundthestrongaxis σ , 4N/mm

compressionstrengthperpendiculartothegrain σ , 1,5N/mm

in‐planeshearstrength σ , 0,6N/mm

Young’smodulus E 4 000N/mm

steel strength σ 140N/mm

FortheCLT,thevaluesarederivedfromthetechnicalapproval[1].Thisdocumentalsoincludesrecommendationsconcerningthespanlengthofslabelements,whichareusedforthepreliminarydesign.

The loads in multi‐storey buildings change strongly over the height. In this design, only therequired cross‐sections in the lowest storey, where the loads are highest, are determined.Assumingtheforcesresultingfromtheverticalloadstochangelinearlyandtheforcesfromthebendingduetothewindloadstochangequadraticallyovertheheight,reducedcross‐sectionsortheupperstoreysareestimated.

Materials

Forthepreliminarydesign,noconcretestrengthclassesaredefinedyet,insteadthepreliminarydesignstrengthsareused(seetableabove).OnlyfortheCLTaspecificmaterialischosen,becausethepropertiesofthismaterialarenotdefinedinstandardsbutbythemanufacturerdirectly.

woodenmembers(beams,studs,floorjoists,…):glulam structuralsheathing:plywood CLTbyMartinsons(distributedinNorwaybySplitkonAS)

Page 133: Different Construction for Storey Timber

General

PreliminaryDesign‐LucasBienert 7

Software

Stab2d(simpleanalysisprogramfortwo‐dimensionalframeworks) MicrosoftEXCEL©

Extracts from the calculations with EXCEL can be found in the appendix. The EXCEL‐filesthemselvesarealsoattachedformoredetailedinformation.

Literature

[1] TekniskGodkjenningMartinsonsKL‐trä[2] BautabellenfürIngenieure,20thedition2012

Thetechnicalapproval[1]containstableswithrecommendedthicknessesforfloorslabsthathavebeenusedforthepreliminarydesign.

PreliminaryDesignFormulae

Thesimplifieddesignformulaeusedforthispreliminarydesignaretakenfrom[2].

element property formulafloorjoist height h l/20steelbolts,dowels capacity per fastener single

shearF 2,0 ⋅ d

capacityperfastener doubleshear

F 4,4 ⋅ d

requiredspaceperfastener req A 30 ⋅ d capacity at an angle to thegrain

F 1α360

⋅ F

capacitywithsteelplate F 1,25 ⋅ Ffullythreadedscrews capacity per screw axial

tensionF 5 ⋅ d

requiredspaceperscrew req A 60 ⋅ d nails capacitypernail shear F 3,5 ⋅ d din cm Ain cm Fin kN

Forcontinuousbeams,thereactionforcesarehigherthanforrowswithsimplysupportedbeams.Toaccountforthiscontinuityeffect,afactorof1,15isaddedincaseswhereit ispossiblethatbeamsactascontinuousbeams.

Toaccountforbuckling,generallyonly70%ofthestrengthareconsidered(factor0,7).Forthestudsinthepanelconstruction,afactorof0,8isused,becausethesheathingpreventsthestudsfrombucklingaroundintheirweakdirection.

Page 134: Different Construction for Storey Timber

General

PreliminaryDesign‐LucasBienert 8

Loads

Simplifiedloadsareusedforthepreliminarydesign.

verticalloads

liveload q 2,0 kN/mself‐weightfloors g 2,0 kN/mself‐weightwalls g 1,0 kN/msnowload s 2,0 kN/m

reductionfactorforlifeloadoverseveralstoreys

α 0,74

windloads

Page 135: Different Construction for Storey Timber

General

PreliminaryDesign‐LucasBienert 9

windfromthefront

c , A ‐1,2B ‐0,8D +0,8E ‐0,57

horizontalwindforce

q , 1,044 ⋅ 20,650,8634 0,6830

2⋅ 9,62 0,6830 ⋅ 20,65 43,1kN/m

Q , 43,1 ⋅ 22,34 962,9kN

c D E 0,8 0,57 1,37

W 1,37 ⋅ 962,9 1319kN

bendingmomentofthecantileverbeam

m , 1,044 ⋅ 20,65 ⋅ 50,9220,652

0,683 ⋅ 9,62 ⋅ 20,659,622

12⋅ 0,8643 0,683 ⋅ 9,62 ⋅ 20,65

23⋅ 9,62

0,683 ⋅ 20,65 ⋅20,652

1212kNm/m

M , 1212 ⋅ 22,34 27076kNm

c D E 0,8 0,57 1,37

M 1,37 ⋅ 27076 37094kNm

Page 136: Different Construction for Storey Timber

General

PreliminaryDesign‐LucasBienert 10

windfromthesides

c , A ‐1,2B ‐0,8D +0,8E ‐0,57

totalhorizontalwindforce

q , 1,044 ⋅ 22,340,844 0,7637

2⋅ 6,24 0,7637 ⋅ 22,34 45,4kN/m

Q , 45,4 ⋅ 20,65 937,5kN

c D E 0,8 0,56 1,36

W 1,36 ⋅ 937,5 1275kN

bendingmomentofthecantileverbeam

m , 1,044 ⋅ 22,34 ⋅ 50,9222,342

0,7637 ⋅ 6,24 ⋅ 22,346,242

12⋅ 0,844 0,7637 ⋅ 6,24 ⋅ 22,34

23⋅ 6,24

0,7637 ⋅ 22,34 ⋅22,342

1246kNm/m

M , 1246 ⋅ 20,65 25722kNm

c D E 0,8 0,56 1,36

M 1,36 ⋅ 25722 34982kNm

Page 137: Different Construction for Storey Timber

a)FrameConstruction

PreliminaryDesign‐LucasBienert 11

a)FrameConstructionElementReferenceOverview

referenceno element page

1 columns

1.1 innercolumns 27

1.2 cornercolumns 27

1.3 sidecolumns 27

1.4 sidecolumns 27

2 beams

2.1 beam 16

2.2 beam 14

2.3 beam 18

2.4 beam 22

3 joists

3.1 joists 12

3.2 joists 13

4 diagonal 31

5 structuralsheathingofthefloors 33

6 verticalfaçadecarriers 35

7 diaphragm 20

8 frame 21

connectionsoverview 36

Page 138: Different Construction for Storey Timber

a)FrameConstruction

PreliminaryDesign‐LucasBienert 12

3.1Joists

system

l9,2752

4,64m

hl20

46420

23,2cm

selectedspacing:e 65cm

loads

q 2,0kN/m

g 2,0kN/m

loadsononejoist

q 2,0 ⋅ 0,65 1,3kN/m

g 1,3kN/m

internalforces

maxM 2 ⋅ 0,125 ⋅ 1,3 ⋅ 4,64 7,0 kNm

reqW 700/0,5 1400cm

selecteddimensions

b/h 14/24e 65cm

I 16128 cm

W 1344 cm

deformation

maxδ2 ⋅ 1,3/100 ⋅ 46476,8 ⋅ 1000 ⋅ 16128

0,973cm

l/250 464/250 1,86cm

maxreactionforces

A 0,5 ⋅ 1,3 ⋅ 4,64 3,02kN

A 0,5 ⋅ 1,3 ⋅ 4,64 3,02kN

A 6,03kN

Page 139: Different Construction for Storey Timber

a)FrameConstruction

PreliminaryDesign‐LucasBienert 13

3.2Joists

system

l 2,10m

loads

q 2,0kN/m

g 2,0kN/m

loadsononejoist

q 2,0 ⋅ 0,65 1,3kN/m

g 1,3kN/m

selectedspacing:e 65cm

selecteddimensions

b/h 14/24e 65cm

I 16128cm

W 1344cm

joist3.2isnotdecisive,thesamedimensionsareselectedasforjoist3.1

maxreactionforces

A 0,5 ⋅ 1,3 ⋅ 2,1 1,37kN

A 0,5 ⋅ 1,3 ⋅ 2,1 1,37kN

A 2,73kN

Page 140: Different Construction for Storey Timber

a)FrameConstruction

PreliminaryDesign‐LucasBienert 14

2.2Beam

system

l 4,47m forsimplicity,anaveragespaniscalculated

loads

g3,020,65

4,65kN/m

q 4,65kN/m

[email protected] 0,65misthespacingofthefloorjoists,

thereactionforcesareconvertedtodistributedloads

internalforces

maxmomentinthefirstfield

maxM 0,078 0,100 ⋅ 4,65 ⋅ 4,47 16,54kNm

reqW 1654/0,5 3308cm

correspondingmomentatthesupportB

M 0,105 0,053 ⋅ 4,65 ⋅ 4,47 14,7kNm

maxmomentatthesupport

maxM 0,105 0,12 ⋅ 4,65 ⋅ 4,47 20,9kNm

reqW 2090/0,5 4181cm

selecteddimensions

b/h 16/42I 98784 cm

W 4704 cm

Page 141: Different Construction for Storey Timber

a)FrameConstruction

PreliminaryDesign‐LucasBienert 15

deformation

maxδ2 ⋅ 4,65/100 ⋅ 44776,8 ⋅ 1000 ⋅ 98784

147016 ⋅ 1000 ⋅ 98784

⋅ 447

0,489 0,186 0,30cm

l/250 447/250 1,79cm

substitutesystem:

maxreactionforces

A 0,395 ⋅ 4,65 ⋅ 4,47 8,2kN

A 0,447 ⋅ 4,65 ⋅ 4,47 9,3kN

A 17,5kN

B 1,132 ⋅ 4,65 ⋅ 4,47 23,5kN

B 1,218 ⋅ 4,65 ⋅ 4,47 25,3kN

B 48,8kN

C 0,974 ⋅ 4,65 ⋅ 4,47 20,2kN

C 1,167 ⋅ 4,65 ⋅ 4,47 24,3kN

C 44,5kN

Page 142: Different Construction for Storey Timber

a)FrameConstruction

PreliminaryDesign‐LucasBienert 16

2.1Beam

system

l 4,47m averagespan

loads

g3,020,65

4,65kN/m

q 4,65kN/m

[email protected]

dimensions

b/h 16/42I 98784cm

W 4704cm

beam2.1isnotdecisive,thesamedimensionsareselectedasforbeam2.2

Page 143: Different Construction for Storey Timber

a)FrameConstruction

PreliminaryDesign‐LucasBienert 17

maxreactionforces

A 0,395 ⋅ 4,65 ⋅ 4,47 8,2kN

A 0,447 ⋅ 4,65 ⋅ 4,47 9,3kN

A 17,5kN

B 1,132 ⋅ 4,65 ⋅ 4,47 23,5kN

B 1,218 ⋅ 4,65 ⋅ 4,47 25,3kN

B 48,8kN

C 0,974 ⋅ 4,65 ⋅ 4,47 20,2kN

C 1,167 ⋅ 4,65 ⋅ 4,47 24,3kN

C 44,5kN

Page 144: Different Construction for Storey Timber

a)FrameConstruction

PreliminaryDesign‐LucasBienert 18

2.3Beam

system

l 4,47m averagespan

loads

g1,370,65

2,1kN/m

q 2,1kN/m

[email protected]

dimensions

b/h 16/42I 98784cm

W 4704cm

beam2.3isnotdecisive,thesamedimensionsareselectedasforbeam2.2

Page 145: Different Construction for Storey Timber

a)FrameConstruction

PreliminaryDesign‐LucasBienert 19

maxreactionforces

A 0,395 ⋅ 2,1 ⋅ 4,47 3,7kN

A 0,447 ⋅ 2,1 ⋅ 4,47 4,2kN

A 7,9kN

B 1,132 ⋅ 2,1 ⋅ 4,47 10,6kN

B 1,218 ⋅ 2,1 ⋅ 4,47 11,4kN

B 22,1kN

C 0,974 ⋅ 2,1 ⋅ 4,47 9,1kN

C 1,167 ⋅ 2,1 ⋅ 4,47 11,0kN

C 20,1kN

Page 146: Different Construction for Storey Timber

a)FrameConstruction

PreliminaryDesign‐LucasBienert 20

7Diaphragm

system

windload windfromthefrontbecomesdecisive

maxw D E 1,044 ⋅ 0,8 0,571,43kN/m

w 1,15 ⋅ 1,43 ⋅ 3,195 5,25kN/m

h 3,195 mistheheightofonestorey theverticalcarriersinthefaçade(6)in

betweenthebeams2.4aresingle‐spanbeams;toaccountforcontinuityeffects,afactorof1,15isadded

internalforces

|P | |P |5,25 ⋅ 22,34

8/20,65 15,9kN

V5,25 ⋅ 22,34

258,6 kN

Page 147: Different Construction for Storey Timber

a)FrameConstruction

PreliminaryDesign‐LucasBienert 21

8Frame

system

windload windfromthefrontbecomesdecisive

maxw D E 1,044 ⋅ 0,8 0,571,43kN/m

internalforces

normalforces[kN]

Page 148: Different Construction for Storey Timber

a)FrameConstruction

PreliminaryDesign‐LucasBienert 22

2.4Beam(Front)

Thebeam2.4onthefrontofthebuildingissubjectedmultipleloads:

horizontalbendingfromthewind verticalbendingfromtheself‐weightofthefaçade compressionortensionaspartofthediaphragm

Windfromthefrontbecomesdecisive.

system

loads

self‐weightofthefaçade(vertical)

g 1kN/m

g 1,15 ⋅ 1 ⋅ 3,195 3,67kN/m

windload(windfromthefront,windareaD,horizontal)

w D 1,044 ⋅ 0,8 0,84kN/m

w 1,15 ⋅ 0,84 ⋅ 3,195 3,09kN/m

compressionfromthediaphragm

|P | 15,9kN

factor1,15toaccountforcontinuityeffects

dimensions

b/h 16/42A 672cm W 4704cm

W 1792cm

thesamedimensionsareselectedasforbeam2.2

Page 149: Different Construction for Storey Timber

a)FrameConstruction

PreliminaryDesign‐LucasBienert 23

internalforces

windload

maxM 4,41kNm

self‐weightofthefaçade

maxM 5,24kNm

σ4411792

5244704

15,9672

0,38kN/cm

0,5kN/cm

Forthewindload,thebeamisbentarounditsweakaxis(z)andfortheself‐weightofthefaçadearounditsstrongaxis(y).

maxreactionforces

windload

A 5,46kN

B 14,55kN

C 14,5kN

self‐weightofthefaçade

A 6,49kN

B 17,3kN

C 17,2kN

Page 150: Different Construction for Storey Timber

a)FrameConstruction

PreliminaryDesign‐LucasBienert 24

2.4Beam(Side)

Thebeam2.4onthesideofthebuildingissubjectedmultipleloads:

horizontalbendingfromthewind verticalbendingfromtheself‐weightofthefaçade compressionor tensionaspartof the frame(togetherwith theoutercolumnsand the

diagonals)

Windfromthefrontbecomesdecisive.

system

globalsystem(frame)

localsystem

loads

self‐weightofthefaçade(vertical)

g 1kN/m

g 1,15 ⋅ 1 ⋅ 3,195 3,67kN/m

factor1,15toaccountforcontinuityeffects

Page 151: Different Construction for Storey Timber

a)FrameConstruction

PreliminaryDesign‐LucasBienert 25

windload(windfromthefront,windareaAandB,horizontal)

w A 1,2 ⋅ 1,044 1,25kN/m

w 1,15 ⋅ 1,25 ⋅ 3,195 4,59kN/m

w B 0,8 ⋅ 1,044 0,84kN/m

w 1,15 ⋅ 0,84 ⋅ 3,195 3,09kN/m

dimensions

b/h 16/42A 672cm W 4704cm

W 1792cm

thesamedimensionsareselectedasforbeam2.2

internalforces

windload

maxM 7,94kNm

self‐weightofthefaçade

maxM 5,87kNm

normalcompressionforcefromtheframe

N 243kN

check

σ7941792

5874704

243672

0,93kNcm

0,5kN/cm

woodhasgoodstressredistributionproperties,whicharenotconsideredhere,theresultisthereforeacceptedforthepreliminarydesign

forthewindload,thebeamisbentarounditsweakaxis(z)andfortheself‐weightofthefaçadearounditsstrongaxis(y)

Page 152: Different Construction for Storey Timber

a)FrameConstruction

PreliminaryDesign‐LucasBienert 26

maxreactionforces

windload

A 8,55kN

B 21,5kN

C 9,94kN

self‐weightofthefaçade

A 6,59kN

B 20,1kN

C 11,3kN

Page 153: Different Construction for Storey Timber

a)FrameConstruction

PreliminaryDesign‐LucasBienert 27

1Columns

loads

self‐weightandliveload

reactionforcesofthebeams

windload(windfromthefront,windareaD+E)

horizontalwindforce

W 1319kN

W 1319/2 659,5kN oneframetakeshalfthetotalwindforce

bendingmomentofthecantileverbeam

M 1,37 ⋅ 27076 37094kNm

M 37094/2 18547kNm oneshearframetakeshalfthetotalmoment

internalforces

self‐weightandliveload theloadperstoreyN isaddedupfortheroofandthe14storeyswithareductionfactorα 0,74fortheliveload

Page 154: Different Construction for Storey Timber

a)FrameConstruction

PreliminaryDesign‐LucasBienert 28

column load 1.1 N , 2 ⋅ 23,5 47,0kN

N , 2 ⋅ 25,3 50,6kNN 47,0 ⋅ 15 50,6⋅ 1 14 ⋅ 0,74 1600 kN

[email protected](eachcolumncarriestheloadfromtwobeams)

1.2 N , 8,2 6,49 6,59 21,3 kNN , 9,3kNN 21,3 ⋅ 15 9,3⋅ 1 14 ⋅ 0,74 425,1 kN

[email protected] [email protected](front) [email protected](side)

1.3 N , 2 ⋅ 8,2 20,1 36,5 kNN , 2 ⋅ 9,3 18,6kNN 36,5 ⋅ 15 18,6⋅ 1 14 ⋅ 0,74 758,8 kN

[email protected] [email protected](side)

1.4 N , 8,2 3,7 11,3 23,2 kNN , 9,3 4,2 13,5kNN 23,2 ⋅ 15 13,5⋅ 1 14 ⋅ 0,74 501,4 kN

[email protected][email protected] [email protected](side)

windload

Theframesconsistoftwohalfframeswithdiagonalsthatareconnectedviathebeams2.4.

columns1.2,1.4

N18547/29,275

1000kN

column1.3

N 1000/2 500 kN

thenormalforcesinthecolumnsareestimated:themomentisdistributedoverthetwohalfframes,whereapairofforcescreatesthereactionmoment

Page 155: Different Construction for Storey Timber

a)FrameConstruction

PreliminaryDesign‐LucasBienert 29

This table sums up the results for all columns. The required cross‐sections are calculatedconsideringafactorof0,7forthecompressioncapacitytoaccountforbuckling.

column self‐weight andliveload[kN]

windload[kN] totalload[kN] A [cm

1.1 1600 0 1600 45711.2 425,1 1000 1425,1 40721.3 758,8 500 1258,8 35971.4 501,4 1000 1501,4 4290

selecteddimensions

b/h 40/120A 4800cm

inthefirststep,allcolumnshavethesamedimensions

Withthoseestimateddimensionsandtheestimateddimensionsofthediagonals(seebelow),asimpletwo‐dimensionalframeworkanalysisisconductedtoobtainmoreaccurateresultsfortheforces due to the wind. The results are shown in the following table. The dimensions of thecolumnsareadjusted.

1.step

column self‐weight andliveload[kN]

windload[kN] totalload[kN] A [cm selecteddimensions

1.1 1600 0 1600 4571 40/1201.2 425,1 636,6 1062 3034 40/801.3 758,8 232,3 991 2831 40/801.4 501,4 815,1 1317 3763 40/120

2.step

Theanalysisisrepeatedwiththenewdimensionswhichleadstothefollowingfinalresults(cf.8Frame).

column self‐weight andliveload[kN]

windload[kN] totalload[kN] A [cm selecteddimensions

1.1 1600 0 1600 4571 40/1201.2 425,1 613,7 1039 2968 40/801.3 758,8 185,5 944 2698 40/801.4 501,4 839,1 1341 3830 40/120

The cross‐section of the column can decrease over the height of the building because of thedecreasing loads. Assuming the loads due to the self‐weight and the life load (N) to decreaselinearlyandtheloadsduetothewind(M)todecreasequadratically,thefollowingcross‐sectionsarecalculated:

Page 156: Different Construction for Storey Timber

a)FrameConstruction

PreliminaryDesign‐LucasBienert 30

column1.1 column1.2 column1.3 column1.4storeyno M N b/h b/h b/h b/h‐ [%] [%] [cm/cm] [cm/cm] [cm/cm] [cm/cm]

0 100,00 100,00 40/120 40/80 40/80 40/1201 87,11 93,33 40/120 40/80 40/80 40/1202 75,11 86,67 40/120 40/80 40/80 40/1203 64,00 80,00 40/120 40/80 40/80 40/1204 53,78 73,33 40/100 40/60 40/60 40/805 44,44 66,67 40/100 40/60 40/60 40/806 36,00 60,00 40/100 40/60 40/60 40/807 28,44 53,33 40/100 40/60 40/60 40/808 21,78 46,67 40/60 40/40 40/40 40/609 16,00 40,00 40/60 40/40 40/40 40/6010 11,11 33,33 40/60 40/40 40/40 40/6011 7,11 26,67 40/60 40/40 40/40 40/6012 4,00 20,00 40/40 40/40 40/40 40/4013 1,78 13,33 40/40 40/40 40/40 40/4014 0,44 6,67 40/40 40/40 40/40 40/4015 0,00 0,00 40/40 40/40 40/40 40/40

Note that thecolumns1.2,1.3and1.4onthesidescannotbesmaller than40/60becausethebeamsareattachedtothem.

Page 157: Different Construction for Storey Timber

a)FrameConstruction

PreliminaryDesign‐LucasBienert 31

4Diagonal

Thediagonalsarepartoftheframesandthusresponsibleforthetransferofthewindloads.

system

angleofthediagonals

α arctan4 ⋅ 3,1959,275

54°

h 3,195 mistheheightofonestorey

loads

bendingmomentatthesupport

M 18547kNm

calculationofthewindloadsseeabove

simplifiedconstantwindpressure

w 2 ⋅ 18547/50,92 14,3kN/m

bendingmomentatthetopendofthediagonal

M12⋅ 14,3 ⋅

34⋅ 50,92 10428 kNm

forsimplicity,thewindpressureisconvertedintoanequivalentconstantload

internalforces

normalforceinthecolumnatthebottomendofthediagonal(seeabove)

N18547/29,275

1000kN

normalforceinthecolumnatthetopendofthediagonal

N10428/29,275

562 kN

tocalculatetheforceinthediagonal,thenormalforcesinthecolumnsatitsbottomend(atthesupport)andatitstopendareestimated

Page 158: Different Construction for Storey Timber

a)FrameConstruction

PreliminaryDesign‐LucasBienert 32

forceinthediagonal

F1000 562cos 54

745kN

A745

0,7 ⋅ 0,52129cm

factor0,7toaccountforbuckling

selecteddimensions

b/h 48/48

Thesimpletwo‐dimensionalframeworkanalysisleadstomoreaccurateresults(cf.above).

(…)

finalresults

F 512,2kN

A 1463cm

b/h 40/40

Page 159: Different Construction for Storey Timber

a)FrameConstruction

PreliminaryDesign‐LucasBienert 33

5StructuralSheathingoftheFloors

Thesheathingofthefloorshastwomainfunctions:

provide shear stiffness for the floor diaphragm (shear in the vertical sections, i.e.perpendiculartothesurfaceofthesheathing)

carrytheliveloadfromthefloor,spanningbetweenthefloorjoists

system

loads

windload(windfromthefront)

w 5,25kN/m

liveload

q 2,0kN/m

cf.diaphragm

internalforces

shear

V5,25 ⋅ 22,34

258,6kN

l 20,65 6 ⋅ 0,4 18,25m

v58,618,25

3,21kN/m

theshearforceVisdistributedoverthelengthofthefloor(columnsmustbesubtracted)

reqt3,21/1000,15

0,21cm preliminarydesignshearstrength

σ , 1,5 N/mm

Page 160: Different Construction for Storey Timber

a)FrameConstruction

PreliminaryDesign‐LucasBienert 34

bending

l 0,65m

M2 ⋅ 0,65

80,106kNm/m

thespanofthesheathingequalsthespacingofthesecondarybeams

reqW0,106 ⋅ 100

0,813,3cm /m

reqt13,3 ⋅ 6100

0,90cm

deformation

limitation:δ l/250

δ2/100 ⋅ 6576,8 ⋅ 400 ⋅ I

65/250

reqI 44,7cm /m

reqt44,7 ⋅ 12100

1,75cm

preliminarydesignbendingstrength

σ , 8

selecteddimension

t 18mm

indirectcomparison,thebendingisclearlydecisiveandtheshearalmostneglectable

Page 161: Different Construction for Storey Timber

a)FrameConstruction

PreliminaryDesign‐LucasBienert 35

6VerticalFaçadeCarriers

system

h 3,195m

carriersspacing

e 60cm

loads

q 1,044kN/m

c A 1,2

w 1,2 ⋅ 1,044 1,25kN/m

loadsononecarrier

w 0,6 ⋅ 1,25 2,0kN/m

internalforces

maxM2,0 ⋅ 3,195

82,55kNm

reqW 255/0,5 510cm

reqb510 ⋅ 616

12,0 cm

selecteddimensions

b/h 12/16e 60cm

W 512cm

theheightofthecarrierequalsthethicknessofthefaçade,whichagainequalsthebreadthoftheouterprimarybeams(cf.e.g.2.4),i.e.16cm

Page 162: Different Construction for Storey Timber

a)FrameConstruction

PreliminaryDesign‐LucasBienert 36

ConnectionsOverview

Thisisanoverviewofallconnections.Someconnectionsareshownindetailinthenextsections(markedinboldfont),theotherconnectionsfollowthesameprinciples.

connection b/hconnection loads typeoffastener

capacityperfastener *

numberoffasteners

beam/column2.2/1.1middle

120/42 2 ⋅ 48,897,6 kN

M20bolt 13,2kN 11M20

2.2/1.3side 40/42 2 ⋅ 17,535,0 kN

M20bolt 13,2kN 4M20

2.1 2.3/1.4side

80/42 17,5 7,925,4 kN

M20bolt 13,2kN 2M20

2.1 2.4/1.2front

40/42 18,5 6,4925 kN

M20bolt 13,2kN 2M20

2.1 2.4/1.4front

120/42 44,5 17,261,7 kN

M20bolt 13,2kN 5M20

2.1 2.4/1.3front

80/42 48,8 17,366,1 kN

M20bolt 13,2kN 5M20

2.4/1.2side 40/42 6,59 kN v8,55 kN h

Ø8screw 3,2kN 3up 2down

2.4/1.3side 40/42 20,1 kN v21,5 kN h

Ø8screw 3,2kN 9up 5down

2.4/1.4side 40/42 11,3 kN v9,94 kN h

Ø8screw 3,2kN 5up 3down

diagonal/column4/1.2 ‐ 530,9 kN M20dowel 17,6kN 2x10M20

3steelplates

4/1.4 ‐ 454,0 kN M20dowel 17,6kN 2x10M203steel

platessheathing/joists5/3 ‐ 0,19 kN/m Ø3nails 0,32kN 1nail/mjoists/beam3/2 ‐ 3,92 kN Ø3,4nails 0,4kN 2x5nails

steelangle

* per2shearplanesforboltsanddowels

Page 163: Different Construction for Storey Timber

a)FrameConstruction

PreliminaryDesign‐LucasBienert 37

ConnectionBeam2.2toColumn1.1

Fortheconnectionsbetweenthebeamsandthecolumns,M20boltsareused.

system

availablespace

A 120 ⋅ 42 5040cm

requiredspaceperboltM20

A 30 ⋅ d 30 ⋅ 2,0 120cm

maxn5040120

42

loads

F 2 ⋅ 48,8 97,6kN [email protected]

check

capacityperbolt(doubleshear)

F 4,4 ⋅ d 4,4 ⋅ 2,0 17,6kN

capacityat90°tothegrain

F 190360

⋅ 17,6 13,2kN

reqn97,613,2

7,4

selectedconnectors

11 M20

Page 164: Different Construction for Storey Timber

a)FrameConstruction

PreliminaryDesign‐LucasBienert 38

ConnectionOuterBeam2.4ontheSidetoColumn1.3

Fortheconnectionsoftheouterbeamsonthesidetothecolumns,fullythreadedscrewsØ8mmareused.Thescrewscarryloadsinaxialdirection.Boththeverticalloadsfromtheself‐weightofthefaçadeandthehorizontalloadsfromthewindsuctionmustbeconsidered.Thescrewsthatgoat45°upwardscarrytheverticalloads,whileanequalamountofupwardanddownwardscrewscarrythehorizontalloads.

system

availablespace

A 40 ⋅ 42 1680cm

requiredspaceperscrew

A 60 ⋅ d 60 ⋅ 0,8

38,4cm

maxn168038,4

43

principleoftheforcedistributionintheconnection

loads

self‐weightofthefaçade(vertical)

F 20,1kN

inthedirectionofthescrew

F20,1sin 45

28,4kN

[email protected]‐weightofthefaçade

windloads(horizontal)

F 21,5kN

inthedirectionofthescrew

F21,5sin 45

30,4kN

[email protected]

check

Page 165: Different Construction for Storey Timber

a)FrameConstruction

PreliminaryDesign‐LucasBienert 39

capacityperscrew

F 5 ⋅ d 5 ⋅ 0,8 3,2kN

reqn28,43,2

9

reqn30,43,2

10 5 5

selectedconnectors

9up 5 down∅8

Page 166: Different Construction for Storey Timber

a)FrameConstruction

PreliminaryDesign‐LucasBienert 40

ConnectionDiagonal4toColumn1.2

Thediagonalsareinthesamelayerasthecolumnsandareconnectedtothemdirectlyviasteelplatesinsidethewood.Asfasteners,M20steeldowelsareused.

system

requiredspaceperdowel

A 30 ⋅ d 30 ⋅ 2,0 120cm

loads

maxtensionsforceinthediagonal

F 530,9kN

check

capacityperdowel(2shearplanes)

F 4,4 ⋅ 2 17,6kN

capacityfor6shearplanes

F 3 ⋅ 17,6 52,8 kN

3steelplatesareusedinsidethewood,giving6shearplanesintotal

thewidthofthesinglewoodlayersisb 40/4 10cmandshouldnotbesmallerthanmin b 5 ⋅ d 5 ⋅ 210 cm

capacityatanangle theangleofthediagonalsisα 54°(cf.4diagonal)

Page 167: Different Construction for Storey Timber

a)FrameConstruction

PreliminaryDesign‐LucasBienert 41

F 136360

⋅ 52,8 47,5kN

25%highercapacitywithsteelplates

F 1,25 ⋅ 47,5 59,4kN

reqn530,959,4

9 → 10

seln 10

reqA 10 ⋅ 30 ⋅ 2 1200cm

withsteelplatesthecapacityisapproximately25%higher

checkofthesteelplates:

F530,93

177kN

b 35,2 3 ⋅ 2 29cm

reqt 177/29/14 0,44cm

selectedthicknessofthesteelplate

t 6mm

preliminary design strength of steelσ 14 kN/cm

Page 168: Different Construction for Storey Timber

a)FrameConstruction

PreliminaryDesign‐LucasBienert 42

ConnectionSheathing5toJoists3

Thesheathingisconnectedtothejoistswithnails.

system

loads

windload(windfromthefront)

w 5,25kN/m

cf.diaphragm7 windfromthesidesisnotdecisive

internalforces

forceinone“row”ofjoists

F 5,25 ⋅ 0,65 ⋅ 1,15 3,92kN

v3,9220,65

0,19kN/m

capacitypernailØ3,0mm

F 3,5 ⋅ 0,3 0,32kN

reqn0,190,32

1/m

spacingofthesecondarybeamse 65 cm

factor1,15toaccountforcontinuityeffects

Page 169: Different Construction for Storey Timber

a)FrameConstruction

PreliminaryDesign‐LucasBienert 43

ConnectionJoists3toBeams2

Thejoistsareconnectedtothebeamswithsteelanglesandnails.

system

loads

windload(windfromthefront)

w 5,25kN/m

cf.diaphragm7 windfromthesidesisnotdecisive

internalforces

forceinone“row”ofjoists

F 5,25 ⋅ 0,65 ⋅ 1,15 3,92kN

spacingofthesecondarybeamse65 cm

continuityfactor1,15

Thisforcemustbetransferredfromtheouterbeam2.1toeachjoist3.

capacitypernailØ3,4mm

F 3,5 ⋅ 0,34 0,4kN

reqn3,920,4

10 5 5

Thisappliestoallconnectionsofallsecondarybeams3withtheouterprimarybeam2.1.

Atallinnerconnection,withthebeams2.2and2.3,noloadtransferisnecessary,onlyareducedamountofnailsisselectedtoavoidlargedeformationdifferencesbetweenthedifferentbeams.

n 6 3 3

Page 170: Different Construction for Storey Timber

b)PanelConstruction

PreliminaryDesign‐LucasBienert 44

b)PanelConstructionElementReferenceOverview

referenceno element page

1 floorjoists

1.1 floorjoistsmodules3,4 45

1.2 floorjoistsmodules1,2,6,7 46

1.3 floorjoistsmodules5 47

2 floorbeam 59

3 walls/studs 48

4 wallsheathing 57

5 columns 62

6 beam 60

connectionsoverview 63

Page 171: Different Construction for Storey Timber

b)PanelConstruction

PreliminaryDesign‐LucasBienert 45

1.1FloorJoists

system

l 5,15m

hl20

51520

25,8cm

loads

q 2,0kN/m

g 2,0kN/m

loadsononejoist

q 2,0 ⋅ 0,6 1,2kN/m

g 1,2kN/m

selectedspacing:e 60cm

internalforces

maxM2 ⋅ 1,2 ⋅ 5,15

87,96kNm

reqW 796/0,5 1592cm

selecteddimensions

b/h 16/24e 60cm

I 18432 cm

W 1536 cm

deformation

maxδ2 ⋅ 1,2/100 ⋅ 51576,8 ⋅ 1000 ⋅ 18432

1,19cm

l/250 515/250 2,06cm

maxreactionforces

A 1,2 ⋅ 5,15/2 3,1 kN

A 1,2 ⋅ 5,15/2 3,1kN

A 6,2kN

Page 172: Different Construction for Storey Timber

b)PanelConstruction

PreliminaryDesign‐LucasBienert 46

1.2FloorJoists

system

l 4,215m

loads

q 2,0kN/m

g 2,0kN/m

loadsononebeam

q 2,0 ⋅ 0,6 1,2kN/m

g 1,2kN/m

selectedspacing:e 60cm

selecteddimensions

b/h 16/24e 60cm

I 18432cm

W 1536cm

joists1.2arenotdecisive,thesamedimensionsareselectedasforjoist1.1

maxreactionforces

A 1,2 ⋅ 4,215/2 2,5kN

A 1,2 ⋅ 4,215/2 2,5kN

A 5,0kN

Page 173: Different Construction for Storey Timber

b)PanelConstruction

PreliminaryDesign‐LucasBienert 47

1.3FloorJoists

system

l 2,1m

loads

q 2,0kN/m

g 2,0kN/m

loadsononebeam

q 2,0 ⋅ 0,6 1,2kN/m

g 1,2kN/m

selectedspacing:e 60cm

selecteddimensions

b/h 16/24e 60cm

I 18432cm

W 1536cm

joists1.3arenotdecisive,thesamedimensionsareselectedasforjoist1.1

maxreactionforces

A 1,2 ⋅ 2,1/2 1,3 kN

A 1,2 ⋅ 2,1/2 1,3kN

A 2,6kN

Page 174: Different Construction for Storey Timber

b)PanelConstruction

PreliminaryDesign‐LucasBienert 48

3Walls/Studs

ThefullstabilityanalysiswasperformedusingExcel(seeappendix).Here,onlythewallsWy1andWy8areshown.Wy8hasthehighestvertical load,whileWy1hasthehighesthorizontalwindload.

Basedontheloadsonthewalls,theloadsontheindividualstudswerecalculatedasthereactionforcesofacontinuousbeam(seesystemsketchbelow).

system

h 3,195m

loads

windloads(windfromthefront)

W 1319

M 37094kNm

windloads(windfromtheside,windareaD+E)

totalhorizontalwindforce

W 1275kN

bendingmomentofthecantileverbeam

M 34982kNm

internalforces

wallWy8forwindfromthefront

shearforce

v 20,39kN/m

normalforce(compression)

n 394,3kN/m

horizontalwindload

w 0

fordetailedcalculations,seeExcelanalysis

Page 175: Different Construction for Storey Timber

b)PanelConstruction

PreliminaryDesign‐LucasBienert 49

wallWy1forwindfromtheback

shearforce

v 6,22kN/m

normalforce(compression)

n 237,5kN/m

horizontalwindload

w 0,98kN/m

In the endof thepreliminarydesign, twodifferent thicknessesof thewallsweredetermined:20cm(withtheloadbearingstudsbeingb/h 20/20cm)and28cm(withtheloadbearingstudsbeingb/h 28/28cm).Becauseofthedecreasingloadswiththeheightofthebuilding,thecross‐sectionsofthestudscouldbeadaptedinthehigherstoreys.Assumingtheloadsduetotheself‐weightandthelifeload(N)todecreaselinearlyandtheloadsduetothewind(M)todecreasequadratically,thefollowingcross‐sectionsarecalculated:

storeyno M N b/h b/h

‐ [%] [%] [cm/cm] [cm/cm]

0 100,00 100,00 20/20 28/281 87,11 93,33 20/20 28/282 75,11 86,67 20/20 28/283 64,00 80,00 20/20 28/284 53,78 73,33 20/20 28/285 44,44 66,67 16/16 24/246 36,00 60,00 16/16 24/247 28,44 53,33 16/16 24/248 21,78 46,67 16/16 24/249 16,00 40,00 16/16 24/2410 11,11 33,33 16/8 20/2011 7,11 26,67 16/8 20/2012 4,00 20,00 16/8 20/2013 1,78 13,33 16/8 20/2014 0,44 6,67 16/8 20/2015 0,00 0,00 16/8 20/20

Page 176: Different Construction for Storey Timber

b)PanelConstruction

PreliminaryDesign‐LucasBienert 50

3.y8StudsinWally3

system

loads

self‐weightofthewall

g 1,0kN/m

over14storeys

g 1 ⋅ 14 ⋅ 3,195 44,7kN/m

floorload

p3,20,6

⋅ 153,20,6

⋅ 1 14 ⋅ 0,74

136kN/m

totalverticalload(constant)

n 44,7 136 181kN/m

[email protected] theloadperstoreyisaddedupforthe

roofandthe14storeyswithareductionfactorα 0,74fortheliveload

Page 177: Different Construction for Storey Timber

b)PanelConstruction

PreliminaryDesign‐LucasBienert 51

windloads(linear)

windfromthefront

maxn 178kN/m

minn 213kN/m

windfromtheback

maxn 213kN/m

minn 178kN/m

windfromtheleftside

maxn minn 9,2kN/m

windfromtherightside

maxn minn 9,2kN/m

cf.Excelanalysis

Page 178: Different Construction for Storey Timber

b)PanelConstruction

PreliminaryDesign‐LucasBienert 52

internalforces

windfromthefront

windfromtheback

windfromtheleftside

windfromtherightside

For each loadbearing studs (each support), the required cross‐section is calculated using thepreliminarydesignstrengthoftimberof5 N/mm witha factorof0,8toaccountforbuckling.Sincethesheathingpreventsthestudsfrombucklinginonedirectionandalsomakesbucklingintheotherdirectionmoredifficultbyeffectivelyconnectingtheindividualstuds,ahigherbucklingfactorischosen.

selecteddimensions

b/t 28/28A 784 cm

Page 179: Different Construction for Storey Timber

b)PanelConstruction

PreliminaryDesign‐LucasBienert 53

studno 1 2 3 4 5 6 7 8 9 10 11 12maxforce[kN]

116 295 111 275 281 230 311 292 150 222 232 78

reqb[cm] 10 26 10 25 25 21 28 26 13 20 21 7selectedb[cm]

28 28 28 28 28 28 28 28 28 28 28 28

Page 180: Different Construction for Storey Timber

b)PanelConstruction

PreliminaryDesign‐LucasBienert 54

3.y1StudsinWally1

system

loads

self‐weightofthewall

g 1,0kN/m

over14storeys

g 1 ⋅ 14 ⋅ 3,195 44,7kN/m

floorload

p2,50,6

⋅ 152,50,6

⋅ 1 14 ⋅ 0,74

109,8kN/m

totalverticalload(constant)

n 44,7 109,8 154,5kN/m

[email protected] theloadperstoreyisaddedupforthe

roofandthe14storeyswithareductionfactorα 0,74fortheliveload

windloads(linear)

windfromthefront

maxn 83kN/m

minn 133kN/m

windfromtheback

maxn 133kN/m

minn 83kN/m

cf.Excelanalysis

Page 181: Different Construction for Storey Timber

b)PanelConstruction

PreliminaryDesign‐LucasBienert 55

windfromtheleftside

maxn minn 40kN/m

windfromtherightside

maxn minn 40kN/m

horizontalwindpressure(windfromtheback)

c B 1,2

q 1,044kN/m

|w| 1,2 ⋅ 1,044 1,25kN/m

windpressureperstud

|w| 1,15 ⋅ 1,25 ⋅ 0,61 0,88kN/m

spacingofthestudse 0,61cm continuityfactor1,15

internalforces

windfromthefront

windfromtheback

windfromtheleftside

windformtherightside

Page 182: Different Construction for Storey Timber

b)PanelConstruction

PreliminaryDesign‐LucasBienert 56

bendingmomentfromwindpressure

M 0,88 ⋅ 3,195 /8 1,12kNm

selecteddimensions

b/t 28/28A 784cm W 3659 cm

studno 1 2 3 4 5 6maxforce[kN]

139 295 145 182 258 129

reqb[cm] 12 26 13 16 23 12selectedb[cm]

28 28 28 28 28 28

stresscheck

σ295784

1123659

0,38 0,03 0,41kN/cm

0,8 ⋅ 0,5 0,40kN/cm

thewindpressurehasalmostnoeffectcomparedtothehighnormalforces

Page 183: Different Construction for Storey Timber

b)PanelConstruction

PreliminaryDesign‐LucasBienert 57

4Sheathing

Thesheathingisconnectedtothestudsandtheblockingvianails.

WallWx15becomesdecisiveforthesheathingforwindfromtheleftside.

system

loads

v 21,4kN/m

cf.Excelanalysis

nails

selected:Ø5mm

shearcapacitypernail

F 3,5 ⋅ d 3,5 ⋅ 0,5 0,88kN

reqn 20,4/0,88 23,3/m

selectednails

Ø5mml 100 mme 8 cm in2rows

minimumdistances(α 0°)

betweennailsin1row a 12 ⋅ 0,5 6 cm 8 cm

betweentherows a 5 ⋅ 0,5 2,5cm

tothesideedges a 5 ⋅ 0,5 2,5cm

requiredbreadthofthewoodenmembers(studsandblocking)

reqb 3 ⋅ 2,5 7,5 cm

selectedblocking

b 16cmhacc.tothewidthofthewall

attheseamsofthesheathingpanels,theblockingmustbeb 2 ⋅ 7,5 15cm

Page 184: Different Construction for Storey Timber

b)PanelConstruction

PreliminaryDesign‐LucasBienert 58

selectedsheathing

reqt21,4/1000,15

1,43cm

t 18mm

preliminarydesignshearstrengthσ , 1,5 N/mm

Page 185: Different Construction for Storey Timber

b)PanelConstruction

PreliminaryDesign‐LucasBienert 59

2FloorBeam

The floor beams are only connected to the load‐bearing studs. The floor beam in axis 1–3/Abecomesdecisive.

system

loads

g2,50,6

4,2kN/m

q 4,2kN/m

thesingleforcesfromthefloorjoistsareconvertedtoaconstantcontinuousload

[email protected]

internalforces

maxmomentatsupportD

maxM 2,38kNm

reqW2380,5

476 cm

selecteddimensions

b/h 10/24I 11520cm

W 960 cm

A 240 cm

Page 186: Different Construction for Storey Timber

b)PanelConstruction

PreliminaryDesign‐LucasBienert 60

6Beam

system

l 9,275/4 2,32m

loads

g2,50,6

4,17kN/m

q2,50,6

4,17kN/m

[email protected] spacingofthefloorjoists=0,6m

internalforces

maxmomentinthefirstfield

maxM 0,08 0,101 ⋅ 4,17 ⋅ 2,32 4,06kNm

reqW4060,5

812cm

correspondingmomentatthesupport:

M 0,1 0,05 ⋅ 4,17 ⋅ 2,32 3,37kNm

maxmomentatthesupportB

maxM 0,10 0,117 ⋅ 4,17 ⋅ 2,32 4,87kNm

reqW4870,5

974 cm

Page 187: Different Construction for Storey Timber

b)PanelConstruction

PreliminaryDesign‐LucasBienert 61

selecteddimensions

b/h 10/24W 960 cm

I 11520 cm

deformation

maxδ2 ⋅ 4,17/100 ⋅ 23276,8 ⋅ 1000 ⋅ 11520

33716 ⋅ 1000 ⋅ 11520

⋅ 232

0,273 0,098 0,18cm

l/250 232/250 0,93cm

substitutesystem:

Page 188: Different Construction for Storey Timber

b)PanelConstruction

PreliminaryDesign‐LucasBienert 62

5Columns

system

loads

g2,50,6

⋅ 15 62,5kN/m

q2,50,6

⋅ 1 14 ⋅ 0,74 47,3kN/m

[email protected] spacingofthefloorjoists=0,6m theloadsareaddedupoverall15

storeys

internalforces

columnsA,D

N 0,400 ⋅ 62,5 ⋅ 2,32 0,45 ⋅ 47,3 ⋅ 2,32 107,4kN

reqA107,40,7 ⋅ 0,5

306,9cm

columnsB,C

N 1,100 ⋅ 62,5 ⋅ 2,32 1,2 ⋅ 47,3 ⋅ 2,32 291,2kN

reqA291,20,7 ⋅ 0,5

832 cm

selecteddimensions

columnsA,D

2 b/h 16/28A 2 ⋅ 448cm

columnsB,C

2 b/h 28/28A 2 ⋅ 784 cm

Page 189: Different Construction for Storey Timber

b)PanelConstruction

PreliminaryDesign‐LucasBienert 63

ConnectionsOverview

connection b/hoverlap loads typeoffastener

capacityperfastener

numberoffasteners

anchoring3/3 ‐ 134,7kN M20

dowels22,0kN * 2 7M20

steelplatefloorjoists/floorbeam1/2 16/24 6,2kN v screwsØ8 3,2kN 3Ø8floorbeam/studs2/3 24/28 26,6kN M20

dowels8,0kN ** 5M20

* doubleshear** singleshear

Page 190: Different Construction for Storey Timber

b)PanelConstruction

PreliminaryDesign‐LucasBienert 64

Anchoring

Fortension,wallWx7becomesdecisiveforwindfromtheleftside.

Thehold‐downdeviceconsistsofasteelplateinsideeachload‐bearingstudandsteeldowels.

system

globalsystem

localsystem

Page 191: Different Construction for Storey Timber

b)PanelConstruction

PreliminaryDesign‐LucasBienert 65

loads

self‐weightofthewall

g 1,0kN/m

over14storeys

g 1 ⋅ 14 ⋅ 3,195 44,7kN/m

liveload

p 0

totalverticalload(constant)

n 0,5 ⋅ 44,7 22,4kN/m tobeonthesafeside,only50%oftheself‐weightandliveloadsareconsidered

windloads(linear)

windfromtheleftside

maxn 140,1kN/m

minn 78,3kN/m

cf.Excelanalysis

internalforces

windfromtheleftside

maxF 134,7kN

steeldowels

capacityperdowelM20(doubleshearwithinnersteelplate)

F 4,4 ⋅ 2 17,6kN

25%highercapacitywithsteelplates

F 1,25 ⋅ 17,6 22,0kN

req n134,722

7

Page 192: Different Construction for Storey Timber

b)PanelConstruction

PreliminaryDesign‐LucasBienert 66

ConnectionFloorJoists1toFloorBeam2

ThisconnectionusesscrewsØ8mmthataresubjectedtotension.

system

loads

F 6,2kN [email protected]

internalforces

forceinthescrewsatanangleof45°

S6,2sin 45

8,77kN

check

capacityperscrew

F 5 ⋅ d 5 ⋅ 0,8 3,2kN

reqn8,773,2

3

requiredspace

reqA 3 ⋅ 60 ⋅ 0,8 115,2cm

availablespace

A 16 ⋅ 24 384cm

theavailablespaceequalsthecross‐sectionofthefloorjoist16/24

Page 193: Different Construction for Storey Timber

b)PanelConstruction

PreliminaryDesign‐LucasBienert 67

ConnectionFloorBeam2toStuds3

Forthisconnection,steeldowelsM20areused,thatdon’tinterferewiththehold‐downdevice(cf.anchoring).Thefloorbeaminaxis1–3/Aisdecisive.

system

loads

F 15,5kN

check

capacityperdowel(singleshear)

F 2 ⋅ d 2 ⋅ 2 8kN

at90°tothegrainforthefloorbeam

F 190360

⋅ 8 6kN

req n15,56

3

requiredspace

reqA 3 ⋅ 30 ⋅ 2 360cm

Page 194: Different Construction for Storey Timber

b)PanelConstruction

PreliminaryDesign‐LucasBienert 68

availablespace

A 24 ⋅ 20 480cm

floorbeam:14/24 stud: 20/20 (in the upper storeys, the

cross‐section28/28isreducedto20/20)

Page 195: Different Construction for Storey Timber

c)CLTConstruction

PreliminaryDesign‐LucasBienert 69

c)CLTConstructionElementReferenceOverview

referenceno element page

1 floorslab 70

2,3 floorslab 71

4 floorslab 72

5 Walls 73

anchoring 78

Remarks

Thefloorslabsaredesignedassumingtheyonlyspaninonedirection.Thisisonthesafeside,astheyactuallyspaninbothdirectionssothatamulti‐axialstateofstresscanbedevelopedandloadscanbebetterdistributed.

The load transfer from the floor slabs to the walls is calculated in a simplified manner bydeterminingalengthofinfluenceforeverywallandtransferringtheloadsfromtheslabwithintheresultingareaofinfluencetothewall.

Tocalculatetheshearforcesandbendingmomentsinthewallsfromthewindloads,astabilityanalysiswasperformedusingExcel.Onlyselectedwallsarepresentedinthisreport.

Page 196: Different Construction for Storey Timber

c)CLTConstruction

PreliminaryDesign‐LucasBienert 70

1FloorSlab

Itcouldbeseenfromthesheathingofthediaphragmintheframeconstructionthatshearfromhorizontalwindforcescanbeneglectedforthepreliminarydesign.

system

l8,5952

4,30m

themiddlesupportisthebeam6

loads

g 2,0kN/m

q 2,0kN/m

selecteddimensions

t 145mm19 44 19 44 19

maxreactionforces

A 0,375 ⋅ 2,0 ⋅ 4,30 3,2kN/m

A 0,438 ⋅ 2,0 ⋅ 4,30 3,8kN/m

A 7,0kN/m

B 1,25 ⋅ 2,0 ⋅ 4,3 10,75kN/m

B 1,25 ⋅ 2,0 ⋅ 4,3 10,75kN/m

B 21,5kN/m

pressureperpendiculartothegrain

endwallsupports

reqt6,99/1000,15

0,47cm

middlewallsupport

reqt21,5/1000,15

1,43cm

preliminarydesigncompressionstrengthperpendiculartothegrainσ , 1,5N/mm

Page 197: Different Construction for Storey Timber

c)CLTConstruction

PreliminaryDesign‐LucasBienert 71

2,3FloorSlab

system

l 5,15m

loads

g 2,0kN/m

q 2,0kN/m

selecteddimensions

t 170 mm19 31,5 19 31,5 19 31,5 19

maxreactionforces

A 2,0 ⋅ 4,30/2 4,3 kN/m

A 2,0 ⋅ 4,30/2 4,3kN/m

A 8,6kN/m

pressureperpendiculartothegrain

wallsupports

reqt8,6/1000,15

0,57cm

preliminarydesigncompressionstrengthperpendiculartothegrainσ , 1,5N/mm

Page 198: Different Construction for Storey Timber

c)CLTConstruction

PreliminaryDesign‐LucasBienert 72

4FloorSlab

system

l 2,10m

loads

g 2,0kN/m

q 2,0kN/m

selecteddimensions

t 95mm19 19 19 19 19

forfiresafetyreasons,aslabwithatleast5layersisselected

maxreactionforces

A 2,0 ⋅ 2,1/2 2,1kN/m

A 2,0 ⋅ 2,1/2 2,1kN/m

A 4,2kN/m

pressureperpendiculartothegrain

wallsupports

reqt4,2/1000,15

0,28cm

preliminarydesigncompressionstrengthperpendiculartothegrainσ , 1,5N/mm

Page 199: Different Construction for Storey Timber

c)CLTConstruction

PreliminaryDesign‐LucasBienert 73

5Walls

The full stabilityanalysiswasperformedusingExcel (seeappendix).Here,only thewally5 isshown.

system

globalloads

windloads(windfromthefront)

W 1319

M 37094kNm

windloads(windfromtheside)

W 1275kN

M 34982kNm

Intheendofthepreliminarydesign,wallswiththreedifferentthicknesseswereused:95mm,120mmand259mm.Toachieveamoreeconomicdesign,thethicknessesweredecreasedinthehigherfloors,makinguseofthedecreasingloads.Assumingtheloadsduetotheself‐weightandthelifeload(N)todecreaselinearlyandtheloadsduetothewind(M)todecreasequadratically,thefollowingthicknessesarecalculated:

Page 200: Different Construction for Storey Timber

c)CLTConstruction

PreliminaryDesign‐LucasBienert 74

storeyno M N t t t‐ [%] [%] [mm] [mm] [mm]

0 100,00 100,00 95 120 2591 87,11 93,33 95 120 2592 75,11 86,67 95 120 2593 64,00 80,00 95 120 2594 53,78 73,33 95 120 2595 44,44 66,67 95 95 1706 36,00 60,00 95 95 1707 28,44 53,33 95 95 1708 21,78 46,67 95 95 1709 16,00 40,00 95 95 17010 11,11 33,33 95 95 9511 7,11 26,67 95 95 9512 4,00 20,00 95 95 9513 1,78 13,33 95 95 9514 0,44 6,67 95 95 9515 0,00 0,00 95 95 95

Page 201: Different Construction for Storey Timber

c)CLTConstruction

PreliminaryDesign‐LucasBienert 75

5.y5OuterWall

system

loads

self‐weightofthewall

g 1,0kN/m

over15storeys

g 1 ⋅ 15 ⋅ 3,195 47,9kN/m

floorload

g 2,0kN/m

q 2,0kN/m

Page 202: Different Construction for Storey Timber

c)CLTConstruction

PreliminaryDesign‐LucasBienert 76

loadfactortoaccountfortheopenings

k20,65

5,125 1,1 2,6 1,1 5,1251,37

lengthofinfluence

l4,382

2,19m

g 1,37 ⋅ 2 ⋅ 2,19 6,01kN/m

q 1,37 ⋅ 2 ⋅ 2,19 6,01kN/m

over15storeys

g 15 ⋅ 6,01 90,15kN/m

q 15 ⋅ 0,74 ⋅ 6,01 66,71kN/m

totalverticalload(constant)

n 47,9 90,15 66,71 204,8 kN/m

fromfloorslab1 theloadperstoreyisaddedupforthe

roofandthe14storeyswithareductionfactorα 0,74fortheliveload

windload(linear)

windfromtheback

maxn 76,5kN/m

minn 133,4kN/m

v 9,2kN/m

cf.Excelanalysis

windpressure

c 0,8

q 1,044kN/m

w 0,8 ⋅ 1,044 0,835kN/m

internalforces

totalnormalforce

n 204,8 133,4 338,2kN/m

reqt338,2/1000,7 ⋅ 0,5

9,66cm factor0,7toaccountforbuckling

bendingmomentduetowind

M 0,835 ⋅ 3,195 /8 1,07kNm/m

selecteddimensions

t 95mmA 100 ⋅ 9,5 950cm /m

W 100 ⋅ 9,5 /6 1504cm /m

Page 203: Different Construction for Storey Timber

c)CLTConstruction

PreliminaryDesign‐LucasBienert 77

check

normalforce

σ338,2950

1071504

0,36 0,07

0,43kN/cm

0,8 ⋅ 0,5 0,40kN/m

thewindpressurehasalmostnoinfluencecomparedwiththehighverticalloads

0,8isusedasafactortoaccountforbucklingbecauseitisassumedthatmassiveelementsarelesspronetobuckling

shearforces

τ9,2

100 ⋅ 9,50,01kN/cm

0,06kN/cm

Page 204: Different Construction for Storey Timber

c)CLTConstruction

PreliminaryDesign‐LucasBienert 78

Anchoring

Fortensilestresses,wally7becomesdecisiveforwindfromthefront.Toconnecttwowallsontopofeachother,aninternalsteelplate isput intoagroovecut intothewallsoverthewholelengthusingsteeldowelsM20.

system

loads

n 132,4kN/m

tobeonthesafeside,only50%oftheself‐weightandliveloadsareconsidered

steeldowels

capacity per dowel M20 (double shear withsteelplate)

F 1,25 ⋅ 4,4 ⋅ 2 22kN

reqn 132,4/22 7/m

7M20/m

Page 205: Different Construction for Storey Timber

Appendix

PreliminaryDesign‐LucasBienert 79

Appendix

Attachments

stabilityanalysisforthepanelconstruction(XLSX) calculationofthepanelstuds(XLSX) stabilityanalysisfortheCLTconstruction(XLSX) technicalplansfortheframeconstructionPa1.1,Pa2(PDF) technicalplansforthepanelconstructionPb1–Pb3,Pa4.1(PDF) technicalplansfortheCLTconstructionPc1–Pc2,Pc3.1(PDF)

Page 206: Different Construction for Storey Timber

Appendix

PreliminaryDesign‐LucasBienert 80

b)PanelConstruction

SummaryoftheStabilityAnalysis

Page 207: Different Construction for Storey Timber

Appendix

PreliminaryDesign‐LucasBienert 81

Page 208: Different Construction for Storey Timber

Appendix

PreliminaryDesign‐LucasBienert 82

Page 209: Different Construction for Storey Timber

Appendix

PreliminaryDesign‐LucasBienert 83

Page 210: Different Construction for Storey Timber

Appendix

PreliminaryDesign‐LucasBienert 84

Page 211: Different Construction for Storey Timber

Appendix

PreliminaryDesign‐LucasBienert 85

LoadsandSelectedCross‐SectionsoftheStuds

Utilisingthesymmetryofthebuilding,onlyonehalfofthewallsisconsidered.

Page 212: Different Construction for Storey Timber

Appendix

PreliminaryDesign‐LucasBienert 86

Page 213: Different Construction for Storey Timber

Appendix

PreliminaryDesign‐LucasBienert 87

Page 214: Different Construction for Storey Timber

Appendix

PreliminaryDesign‐LucasBienert 88

c)CLTConstruction

SummaryoftheStabilityAnalysis

Page 215: Different Construction for Storey Timber

Appendix

PreliminaryDesign‐LucasBienert 89

Page 216: Different Construction for Storey Timber

Appendix

PreliminaryDesign‐LucasBienert 90

Page 217: Different Construction for Storey Timber

Appendix

PreliminaryDesign‐LucasBienert 91

Page 218: Different Construction for Storey Timber

EurocodeDesign

Page 219: Different Construction for Storey Timber

TableofContents

EurocodeDesign‐LucasBienert 2

TableofContentsTableofContents...............................................................................................................................................................2 

General...................................................................................................................................................................................4 

Remarks............................................................................................................................................................................4 

Materials...........................................................................................................................................................................4 

Software............................................................................................................................................................................4 

Literature..........................................................................................................................................................................4 

Loadcasesandcombinations...................................................................................................................................4 

DesignFactors................................................................................................................................................................5 

a)FrameConstruction.....................................................................................................................................................6 

3.1RoofJoists.................................................................................................................................................................7 

3.1FloorJoists................................................................................................................................................................9 

3.2Joists.........................................................................................................................................................................11 

2.2RoofBeam..............................................................................................................................................................12 

2.2FloorBeam............................................................................................................................................................17 

2.1RoofBeam..............................................................................................................................................................20 

2.1FloorBeam............................................................................................................................................................21 

2.3Beams......................................................................................................................................................................22 

7Diaphragm.................................................................................................................................................................23 

8Frame...........................................................................................................................................................................24 

2.4Beam(front).........................................................................................................................................................25 

2.4Beam(side)...........................................................................................................................................................29 

1.1Column....................................................................................................................................................................36 

1.4Column....................................................................................................................................................................38 

4Diagonal......................................................................................................................................................................40 

5StructuralSheathingoftheFloors...................................................................................................................42 

6VerticalFaçadeCarriers......................................................................................................................................45 

ConnectionBeam2.2toColumn1.1..................................................................................................................47 

ConnectionOuterBeam2.4ontheSidetoColumn1.3..............................................................................50 

ConnectionDiagonal4toColumn1.2or1.4...................................................................................................53 

b)PanelConstruction....................................................................................................................................................56 

1.1RoofJoists..............................................................................................................................................................57 

1.1FloorJoists.............................................................................................................................................................59 

1.2RoofJoists..............................................................................................................................................................61 

1.2FloorJoists.............................................................................................................................................................62 

Page 220: Different Construction for Storey Timber

TableofContents

EurocodeDesign‐LucasBienert 3

1.3RoofJoists..............................................................................................................................................................63 

1.3FloorJoists.............................................................................................................................................................64 

2RoofBeam..................................................................................................................................................................65 

2FloorBeam................................................................................................................................................................70 

3Studs............................................................................................................................................................................75 

6Beam(Roof)..............................................................................................................................................................77 

6Beam(Floor)............................................................................................................................................................82 

5Columns......................................................................................................................................................................87 

Anchoring......................................................................................................................................................................90 

ConnectionRoofJoists1toRoofBeam2.........................................................................................................92 

ConnectionFloorJoists1toFloorBeam2......................................................................................................94 

ConnectionFloorBeam2toStuds3..................................................................................................................95 

ConnectionRoofBeam2toStuds3....................................................................................................................98 

c)CLTConstruction.......................................................................................................................................................99 

1RoofSlab..................................................................................................................................................................100 

1FloorSlab................................................................................................................................................................104 

5.x9OuterWall.........................................................................................................................................................106 

AnchoringWall5.y3...............................................................................................................................................108 

Appendix..........................................................................................................................................................................110 

Attachments..............................................................................................................................................................110 

a)FrameConstruction..........................................................................................................................................110 

b)PanelConstruction............................................................................................................................................116 

c)CLTConstruction................................................................................................................................................121 

Page 221: Different Construction for Storey Timber

General

EurocodeDesign‐LucasBienert 4

General

Remarks

TheintentionoftheECdesignistoprovethefeasibilityofthestructures.Adescriptionofthebuildingandtheloadbearingconceptofthethreestructuresisincludedinthedocumentationofthepreliminarydesign.

Onlythedecisiveloadcombinationsareshowninthisdocument,acompletesummaryofallthecheckswasdoneinExcel.AnextractoftheExceldocumentcanbefoundintheappendix,thefilesthemselvesareattachedelectronically.Technicalreferenceplansarealsoattached(cf.appendix).

Materials

woodenmembers(beams,studs,floorjoists,…):glulamGL24ho propertiesaccordingtoEN14080

structuralsheathing:plywoodFinnforestSprucekonstruksjonskryssfiner(distributedunderthename“GranIII/III”byFritzøeEngrosAS)

o typeEN636‐1(plywoodforuseindryclimate)o propertiesaccordingtothetechnicalapproval[3]

masstimber:CLTKL‐träbyMartinsons(distributedbySplitkonAS)o propertiesaccordingtothetechnicalapproval[1]

Software

Stab2d(simpleanalysisprogramfortwo‐dimensionalframeworks) MicrosoftEXCEL© DlubalRFEM©

Extracts from the calculationswith EXCEL andRFEM can be found in the appendix. The filesthemselvesareattachedelectronically.

Literature

[1] TekniskGodkjenningMartinsonsKL‐trä[2] BautabellenfürIngenieure,20thedition2012[3] TekniskGodkjenningFinnforestSprucekonstruksjonskryssfiner[4] EN1990[5] EN1991‐1‐1[6] EN1995‐1‐1[7] TechnicalDataSheetSimpsonStrongtieBT4Bjelkebærere

Loadcasesandcombinations

ForconsistentnumberingbetweenthisdesignandtheRFEM‐models,alwaystwonumbersarereservedforloadcasesandcombinationsthatincludewindloads,oneforwindfromthefront(orback)andoneforwindfromtheside.IntheFEM‐analysiswithRFEM,onlywindfromthefrontandfromtheleftsidewasexamined,makinguseofthesymmetryofthebuilding.

Page 222: Different Construction for Storey Timber

General

EurocodeDesign‐LucasBienert 5

loadcase description symbol durationLC1 self‐weight G permanentLC2 snow S short‐termLC3/4 wind W instantaneousLC5 liveload Q medium‐term

loadcom‐binationno

combinationrule duration

CO1 E 1,2 ⋅ G permanentCO2 E 1,2 ⋅ G 1,5 ⋅ Q medium‐termCO3 E 1,2 ⋅ G 1,5 ⋅ S 1,5 ⋅ 0,7 ⋅ Q short‐termCO4 E 1,2 ⋅ G 1,5 ⋅ Q 1,5 ⋅ 0,7 ⋅ S short‐termCO5/6 E 1,2 ⋅ G 1,5 ⋅ W 1,5 ⋅ 0,7 ⋅ S 1,5 ⋅ 0,7 ⋅ Q instantaneousCO7/8 E 1,2 ⋅ G 1,5 ⋅ Q 1,5 ⋅ 0,7 ⋅ S 1,5 ⋅ 0,6 ⋅ W instantaneousCO9/10 E 1,2 ⋅ G 1,5 ⋅ S 1,5 ⋅ 0,6 ⋅ W 1,5 ⋅ 0,7 ⋅ Q instantaneousCO11/12 E 1,0 ⋅ G 1,5 ⋅ W instantaneous

DesignFactors

SinceCLTisnotconsideredintheEC,thesamedesignfactorsareappliedasforglulam.

materialsafetyfactors

material γglulam 1,25CLT 1,25plywood 1,2connections 1,3

modificationfactors

material loadduration climateclass1 2 3

glulam,CLT,plywood permanent 0,6 0,6 0,5medium‐term 0,8 0,8 0,65short‐term 0,9 0,9 0,7instantaneous 1,1 1,1 0,9

deformationfactors

material climateclass1 2 3

glulam,CLT 0,6 0,8 2,0plywood 0,8 ‐ ‐

Page 223: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 6

a)FrameConstructionElementReferenceOverview

referenceno element page

1 columns

1.1 innercolumns 36

1.2 cornercolumns ‐

1.3 sidecolumns ‐

1.4 sidecolumns 38

2 beams

2.1 beam 20

2.2 beam 12

2.3 beam 22

2.4 beam 25

3 joists

3.1 joists 7

3.2 joists 11

4 diagonal 40

5 structuralsheathingofthefloors 42

6 verticalfaçadecarriers 45

7 diaphragm 23

8 frame 24

connections 47

Remarks

In comparison to the preliminarydesign, the cross‐sections of the columnswere reduced.Allcolumnsarenowb/h 40/40cm,exceptforthoseatthesides.Becausethebeamsareattachedtothem,theyneedalargercross‐section:b/h 40/60cm.Becausetheconnectionstothebeamsrequirethisspace,thecross‐sectionsarenotdecreasedovertheheightofthebuilding.

Page 224: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 7

3.1RoofJoists

system

l9,2752

4,64m

cross‐section

b/h 14/24

e 65cm

A 336cm

I 16128cm

W 1344cm

material

glulamGL24h

f 24N/mm

k 0,67

f 3,5N/mm

E , 11500N/mm

k 0,6

loads

g 1,65kN/m

s 3,8kN/m

q 1044N/m

c I 0,2

g 1,65 ⋅ 0,65 1,07 kN/m

s 3,8 ⋅ 0,65 2,47 kN/m

w 0,2 ⋅ 1,044 0,21 kN/m

q H 0,75kN/m

w 0,21 ⋅ 0,65 0,14 kN/m

q 0,75 ⋅ 0,65 0,49 kN/m

Q 1,5 kN

ULSCO3

k 0,9

p 1,20 ⋅ 1,07 1,50 ⋅ 2,47 4,99kN/m

Q 1,50 ⋅ 0,70 ⋅ 1,5 1,58kN

M 0,125 ⋅ 4,99 ⋅ 4,64 0,250 ⋅ 1,58 ⋅ 4,6415,26kNm

σ15261344

1,14kN/cm

f 0,9 ⋅2,41,15

1,88 kN/cm

thesingleloadQbecomesdecisive

Page 225: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 8

η1,141,88

0,60 1,0

V 0,500 ⋅ 4,99 ⋅ 4,64 1,58 13,16 kN

nolateraltorsionalbuckling,becausethesheathingsecuresthecompressionflangeofthejoists

τ 1,5 ⋅13,16

0,67 ⋅ 3360,088kN/cm

f 0,9 ⋅0,351,15

0,27kN/cm

η0,0880,27

0,32 1,0

τ 1,5 ⋅V

k ⋅ A

(forrectangularcross‐sections)

SLSCO9/10

w ,

1,07100 ⋅ 464

76,8 ⋅ 1150 ⋅ 161280,349 cm

w , 0,804cm

w , 0,044cm

w ,1,5 ⋅ 464

48 ⋅ 1150 ⋅ 161280,168cm

wp ⋅ l

76,8 ⋅ EI

(forsinglespanbeams)

instantaneousdeformation

w0,349 0,804 0,6 ⋅ 0,044 0,7 ⋅ 0,1681,30cm

maxw464300

1,55cm

η1,301,55

0,84 1,0

characteristiccombinationacc.toEC5‐1‐12.2.3(2):

w w w , ψ , w ,

finaldeformation

w0,349 ⋅ 1 0,6 0,804 ⋅ 1 0,2 ⋅ 0,60,044 ⋅ 0,6 0 ⋅ 0,6 0,168

⋅ 0,7 0,3 ⋅ 0,6 1,63cm

maxw464150

3,09cm

η1,633,09

0,53 1,0

simplifiedapproachacc.toEC5‐1‐12.2.3(5):

w w , w , , w , ,

w , w , 1 k

w , , w , , 1 ψ , k

w , , w , , ψ , ψ , k

maxreactionforces

A 0,500 ⋅ 1,07 ⋅ 4,64 2,49kN

A 0,500 ⋅ 2,47 ⋅ 4,64 5,73kN

A 0,500 ⋅ 0,14 ⋅ 4,64 0,31kN

A 0,500 ⋅ 0,49 ⋅ 4,64 1,13kN

Page 226: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 9

3.1FloorJoists

system

l9,2752

4,64m

cross‐section

b/h 14/24

e 65cm

A 336cm

I 16128cm

W 1344cm

material

glulamGL24h

f 24N/mm

k 0,67

f 3,5N/mm

E , 11500N/mm

k 0,6

loads

g 1,34kN/m

s 0

q 0

g 1,34 ⋅ 0,65 0,87 kN/m

q A 2,5kN/m

q 2,5 ⋅ 0,65 1,63 kN/m

Q 2 kN

ULSCO2

k 0,8

p 1,20 ⋅ 0,87 1,05kN/m

q 1,5 ⋅ 1,63 2,44kN/m

M 0,125 ⋅ 1,05 2,44 ⋅ 4,64 9,37kNm

σ9371344

0,70kN/cm

f 0,8 ⋅2,41,15

1,67 kN/cm

η0,701,67

0,42 1,0

V 0,500 ⋅ 1,05 2,44 ⋅ 4,64 8,08 kN

nolateraltorsionalbuckling,becausethesheathingsecuresthecompressionflangeofthejoists

Page 227: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 10

τ 1,5 ⋅8,08

0,67 ⋅ 3360,054kN/cm

f 0,8 ⋅0,351,15

0,24kN/cm

η0,0540,24

0,22 1,0

SLSCO7/8

w ,

0,87100 ⋅ 464

76,8 ⋅ 1150 ⋅ 161280,283cm

w , 0

w , 0

w , 0,529cm

instantaneousdeformation

w 0,283 0,529 0 0 0,81cm

maxw464300

1,55cm

η0,811,55

0,53 1,0

finaldeformation

w 0,283 ⋅ 1 0,6 0,529 ⋅ 1 0,3 ⋅ 0,6 0 0 1,08cm

maxw464150

3,09cm

η1,083,09

0,35 1,0

maxreactionforces

A 0,500 ⋅ 0,87 ⋅ 4,64 2,02kN

A 0

A 0

A 0,500 ⋅ 1,63 ⋅ 4,64 3,77kN

Page 228: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 11

3.2Joists

Thejoists3.2havethesamedimensionsandloadsasthecorrespondingjoists3.1,buttheirspanisonly2,10m.Acheckisthereforenotnecessary.

Page 229: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 12

2.2RoofBeam

system

maxl 5,15m

cross‐section

b/h 16/42

A 672cm

I 98784cm

W 4704cm

material

glulamGL24h

γ 3,7kN/m

f 24N/mm

k 0,67

f 3,5N/mm

E , 11500N/mm

k 0,6

loads

g2,490,65

3,7 ⋅ 0,16 ⋅ 0,42 4,08kN/m

s5,730,65

8,82kN/m

w0,310,65

0,48kN/m

q1,130,65

1,74kN/m

[email protected] thesingleforcesfromthejoistsare

convertedintoaconstantdistributedload

reactionforces,internalforcesanddeformations

thereactionforces,internalforcesanddeformationsarecalculatedbymeansofdimensionless“1”‐loads

theactualinternalforcesarethencalculatedbymultiplyingtherealloadwiththecorrespondingresultfromthe“1”‐loads

Page 230: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 13

constantload

loadingandreactionforces

bendingmoment

shearforce

deformations

Page 231: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 14

unfavourableloads

loadingandreactionforces

bendingmoment

shearforce

loadingandreactionforces

Page 232: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 15

loadingandreactionforces

deformations

ULSCO3

k 0,9

p 1,20 ⋅ 4,08 1,50 ⋅ 8,82 18,12kN/m

q 1,5 ⋅ 0,7 ⋅ 1,74 1,83kN/m

M 1,884 ⋅ 18,12 2,457 ⋅ 1,83 38,66 kNm

σ38664704

0,82kN/cm

f 0,9 ⋅2,41,15

1,88 kN/cm

η0,821,88

0,44 1,0

V 2,572 ⋅ 18,12 2,871 ⋅ 1,83 51,86kN

τ 1,5 ⋅51,86

0,67 ⋅ 6720,17kN/cm

f 0,9 ⋅0,351,15

0,27kN/cm

η0,170,27

0,64 1,0

nolateraltorsionalbucklingbecausethejoistssecurethecompressionflangeofthebeam

SLSCO9/10

w , 4,08 ⋅ 0,0254 0,104cm

w , 8,82 ⋅ 0,0254 0,224cm

w , 0,48 ⋅ 0,0254 0,012cm

Page 233: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 16

w , 1,74 ⋅ 0,0435 0,076cm

instantaneousdeformation

w0,104 0,224 0,6 ⋅ 0,012 0,7 ⋅ 0,0760,39cm

maxw515300

1,72cm

η0,391,72

0,23 1,0

finaldeformation

w0,104 ⋅ 1 0,6 0,224 ⋅ 1 0,2 ⋅ 0,60,012 ⋅ 0,6 0 ⋅ 0,6 0,076 ⋅ 0,7 0,3

⋅ 0,6 0,49cm

maxw515150

3,43cm

η0,493,43

0,14 1,0

maxreactionforces

A 4,08 ⋅ 1,768 7,21kN

A 8,82 ⋅ 1,768 15,59kN

A 0,48 ⋅ 1,768 0,86kN

A 1,74 ⋅ 1,892 3,29kN

B 4,08 ⋅ 4,714 19,22kN

B 8,82 ⋅ 4,714 41,56kN

B 0,48 ⋅ 4,714 2,28kN

B 1,74 ⋅ 5,268 9,17kN

C 4,08 ⋅ 4,691 19,12kN

C 8,82 ⋅ 4,691 41,36kN

C 0,48 ⋅ 4,691 2,27kN

C 1,74 ⋅ 5,446 9,48kN

maxinternalforces

V , 2,612 ⋅ 4,08 10,65kN

V , 2,612 ⋅ 8,82 23,03kN

V , 2,612 ⋅ 0,48 1,27kN

V , 2,701 ⋅ 1,74 4,70kN

Page 234: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 17

2.2FloorBeam

system

maxl 5,15m

cross‐section

b/h 16/42

A 672cm

I 98784cm

W 4704cm

material

glulamGL24h

γ 3,7kN/m

f 24N/mm

k 0,67

f 3,5N/mm

E , 11500N/mm

k 0,6

loads

g2,020,65

3,7 ⋅ 0,16 ⋅ 0,42 3,36kN/m

s 0

w 0

q3,770,65

5,8kN/m

[email protected]

internalforces

cf.2.2RoofBeam

ULSCO2

k 0,8

p 1,20 ⋅ 3,36 4,03 kN/m

Page 235: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 18

q 1,5 ⋅ 5,8 8,7kN/m

M 1,884 ⋅ 4,03 2,457 ⋅ 8,7 29,0 kNm

σ29004704

0,62kN/cm

f 0,8 ⋅2,41,15

1,67 kN/cm

η0,621,67

0,37 1,0

V 2,572 ⋅ 4,03 2,871 ⋅ 8,7 35,34kN

τ 1,5 ⋅35,34

0,67 ⋅ 6720,12kN/cm

f 0,8 ⋅0,351,15

0,24kN/cm

η0,120,24

0,49 1,0

nolateraltorsionalbucklingbecausethejoistssecurethecompressionflangeofthebeam

SLSCO7/8

w , 3,36 ⋅ 0,0254 0,085cm

w , 0

w , 0

w , 5,8 ⋅ 0,0435 0,252cm

instantaneousdeformation

w 0,085 0,252 0 0 0,34cm

maxw515300

1,72cm

η0,341,72

0,20 1,0

finaldeformation

w0,085 ⋅ 1 0,6 0,252 ⋅ 1 0,3 ⋅ 0,60 0 0,434cm

maxw515150

3,43cm

η0,433,43

0,13 1,0

maxreactionforces

A 3,36 ⋅ 1,768 5,94kN

A 0

A 0

Page 236: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 19

A 5,8 ⋅ 1,892 10,97kN

B 3,36 ⋅ 4,714 15,83kN

B 0

B 0

B 5,8 ⋅ 5,268 30,55kN

C 3,36 ⋅ 4,691 15,75kN

C 0

C 0

C 5,8 ⋅ 5,446 31,59kN

Page 237: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 20

2.1RoofBeam

cf.2.2RoofBeam

Page 238: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 21

2.1FloorBeam

cf.2.2FloorBeam

Page 239: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 22

2.3Beams

Thebeams2.3havethesamedimensionsandspansasthecorrespondingbeams2.2,buttheirloadissmallerbecausetheygettheloadsfromthejoists3.2whichhaveasmallerspan.Acheckisthereforenotnecessary.

Page 240: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 23

7Diaphragm

system

windload windfromthefrontbecomesdecisive

maxw D E 1,044 ⋅ 0,8 0,571,43kN/m

w 1,15 ⋅ 1,43 ⋅ 3,195 5,25kN/m

h 3,195 mistheheightofonestorey theverticalcarriersinthefaçade(6)in

betweenthebeams2.4aresingle‐spanbeams;toaccountforcontinuityeffects,afactorof1,15isadded

internalforces

|P | |P |5,25 ⋅ 22,34

8/20,65 15,9kN

V5,25 ⋅ 22,34

258,6 kN

Page 241: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 24

8Frame

system

windload windfromthefrontbecomesdecisive

maxw D E 1,044 ⋅ 0,8 0,571,43kN/m

internalforces

normalforcesN[kN]

Page 242: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 25

2.4Beam(front)

system

maxl 5,15m

cross‐section

b/h 16/42

A 672cm

I 98784cm

W 4704cm

i42

√1212,1cm

I 14336cm

W 1792cm

i16

√124,6cm

ih

√12

I 0,140 ⋅ 42 ⋅ 16 24084cm

material

glulamGL24h

γ 3,7kN/m

f 24N/mm

f 24N/mm

k 0,67

f 3,5N/mm

E , 11500N/mm

E , 9600N/mm

G , 540N/mm

k 0,6

I 0,140 ⋅ h ⋅ b

(forrectangularcross‐sections)

Page 243: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 26

loads

g 0,5kN/m g 1,15 ⋅ 3,195 ⋅ 0,5 3,7 ⋅ 0,16 ⋅ 0,422,09 kN/m

s 0

q 1044N/m

c D 0,8

windfromthefront

w 0,8 ⋅ 1,044 0,84 kN/m

N , 15,9kN

q 0

w 1,15 ⋅ 3,195 ⋅ 0,84 3,07kN/m

reactionforces,internalforcesanddeformations

cf.2.2RoofBeamforverticalloads becauseofthesmallermomentofinertiaforhorizontalloads(I ),thedeformationsdue

tohorizontalloadsmustbecalculatedseparately

constantload

loadingandreactionforces

deformation

ULSCO5/6

k 1,1

p 1,20 ⋅ 2,09 0 2,50kN/m

w 1,50 ⋅ 3,07 4,60kN/m

N 1,50 ⋅ 15,9 23,85kN

q 0

M 1,884 ⋅ 2,50 0 4,72kNm

Page 244: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 27

σ472474

0,10kN/cm

M 1,884 ⋅ 4,60 8,68kNm

σ8681792

0,48kN/cm

σ23,85672

0,035kN/cm

f 1,1 ⋅2,41,15

2,30kN/cm

f 1,1 ⋅2,41,15

2,30kN/cm

lateraltorsionalbuckling

l 5,15m

σ ,π ⋅ √960 ⋅ 14336 ⋅ 54 ⋅ 24084

515 ⋅ 47045,49kN/cm

λ ,2,45,49

0,66 0,75

k 1,0

flexuralbuckling

λ51512,1

42,6

λ ,42,6π

⋅249600

0,677

k 0,5 ⋅ 1 0,1 ⋅ 0,677 0,3 0,677

0,748

k ,1

0,748 0,748 0,6770,938

λ5154,6

112,0

λ ,112π

⋅249600

1,78

k 0,5 ⋅ 1 0,1 ⋅ 1,78 0,3 1,782,16

k ,1

2,16 2,16 1,780,296

Page 245: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 28

η0,035

0,938 ⋅ 2,300,10

1,0 ⋅ 2,300,482,30

0,10

1,0

η0,035

0,296 ⋅ 2,300,10

1,0 ⋅ 2,300,482,30

0,27

1,0

V 2,572 ⋅ 2,50 0 6,54kN

τ 1,5 ⋅6,54

0,67 ⋅ 6720,022kN/cm

V 2,572 ⋅ 4,60 12,02kN

τ 1,5 ⋅12,02

0,67 ⋅ 6720,040kN/cm

f 1,1 ⋅0,351,15

0,33kN/cm

η0,022 0,040

0,330,14 1,0

σk , ⋅ f

σ

k ⋅ fσf

1

and

σk , ⋅ f

σ

k ⋅ fσf

1

cf.[2,9.33]

SLSCO9/10

w , , 2,09 ⋅ 0,0254 0,053cm

w , , 0

w , , 3,07 ⋅ 0,1751 0,537cm

w , , 0

instantaneousdeformation

w , 0,053 0 0 0,053cm

w . 0,537cm

w 0,053 0,537 0,54cm

maxw515300

1,72cm

η0,541,72

0,31 1,0

finaldeformation

w , 0,053 ⋅ 1 0,6 0 0 0,085cm

w , 0,537 ⋅ 1 0 0,537cm

w 0,085 0,537 0,54cm

maxw515150

3,43cm

η0,543,43

0,16 1,0

Page 246: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 29

2.4Beam(side)

system

maxl 5,15m

cross‐section

b/h 16/42

A 672cm

I 98784cm

W 4704cm

i42

√1212,1cm

I 14336cm

W 1792cm

i16

√124,6cm

I 0,140 ⋅ 42 ⋅ 16 24084cm

material

glulamGL24h

γ 3,7kN/m

f 24N/mm

f 24N/mm

k 0,67

f 3,5N/mm

E , 11500N/mm

E , 9600N/mm

G , 540N/mm

k 0,6

Page 247: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 30

loads

g 0,5kN/m g 1,15 ⋅ 3,195 ⋅ 0,5 3,7 ⋅ 0,16 ⋅ 0,422,09 kN/m

s 0

q 1044N/m

c A 1,2

c B 0,8

windfromthefront

w A 1,2 ⋅ 1,044 1,25kN/m

w B 0,8 ⋅ 1,044 0,84kN/m

N , 243,2kN

q 0

w A 1,15 ⋅ 3,195 ⋅ 1,25 4,60kN/m

w B 1,15 ⋅ 3,195 ⋅ 0,84 3,07kN/m

reactionforces,internalforcesanddeformations

verticalconstantload

loadingandreactionforces

bendingmoment

Page 248: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 31

shearforce

deformations

horizontalwindload becausethewindloadisnotconstant,itmustbecalculatedseparately

loading

bendingmoment

Page 249: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 32

shearforce

deformation

ULSCO5/6

k 1,1

p 1,20 ⋅ 2,09 0 2,50kN/m

w A 1,50 ⋅ 4,60 6,90kN/m

w B 1,50 ⋅ 3,07 4,60kN/m

N 1,50 ⋅ 243,2 364,8kN

q 0

M 2,442 ⋅ 2,50 0 6,11kNm

σ611474

0,13kN/cm

M 14,59kNm

σ14591792

0,81kN/cm

σ364,8672

0,54kN/cm

f 1,1 ⋅2,41,15

2,30kN/cm

f 1,1 ⋅2,41,15

2,30kN/cm

lateraltorsionalbuckling

l 4,64m

Page 250: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 33

σ ,π ⋅ √960 ⋅ 14336 ⋅ 54 ⋅ 24084

464 ⋅ 47046,09kN/cm

λ ,2,46,09

0,63 0,75

k 1,0

flexuralbuckling

λ46412,1

38,3

λ ,38,3π

⋅249600

0,61

k 0,5 ⋅ 1 0,1 ⋅ 0,61 0,3 0,61

0,702

k ,1

0,702 0,702 0,610,953

λ4644,6

100,9

λ ,100,9π

⋅249600

1,61

k 0,5 ⋅ 1 0,1 ⋅ 1,61 0,3 1,611,86

k ,1

1,86 1,86 1,610,358

η0,54

0,953 ⋅ 2,300,13

1,0 ⋅ 2,300,812,30

0,43

1,0

η0,54

0,358 ⋅ 2,300,13

1,0 ⋅ 2,300,812,30

1,01

1,0

V 2,727 ⋅ 2,50 0 6,82kN

τ 1,5 ⋅6,82

0,67 ⋅ 6720,024kN/cm

V 19,16kN

τ 1,5 ⋅19,16

0,67 ⋅ 6720,065kN/cm

f 1,1 ⋅0,351,15

0,33 kN/cm

Page 251: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 34

η0,024 0,065

0,330,21 1,0

SLSCO5/6

w , , 2,09 ⋅ 0,02488 0,053cm

w , , 0

w , , 1,353cm

w , , 0

instantaneousdeformation

w , 0,053 0 0 0,053cm

w . 1,353cm

w 0,053 1,353 1,35cm

maxw464300

1,55cm

η1,351,55

0,88 1,0

finaldeformation

w , 0,053 ⋅ 1 0,6 0 0 0,085cm

w , 1,353 ⋅ 1 0 0,537cm

w 0,085 1,353 1,36cm

maxw464150

3,09cm

η1,363,09

0,44 1,0

maxreactionforces

vertical

B 2,09 ⋅ 5,48 11,43kN

B 0

B 0

B 0

C 2,09 ⋅ 3,442 7,18kN

C 0

C 0

C 0

horizontal

Page 252: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 35

B 20,88kN

Page 253: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 36

1.1Column

Thecolumn1.1carriesonlytheverticalself‐weightandlifeload,butdoesnottakepartincarryingtheglobalbendingmomentfromthewindloads.ThecolumninaxisBbecomesdecisive.

system

cross‐section

b/h 40/40

A 1600cm

I I 213333cm

i i40

√1211,5cm

material

glulamGL24h

γ 3,7kN/m

f 24N/mm

loads

g 3,7 ⋅ 0,4 ⋅ 0,4 0,592kN/m self‐weightofthecolumn

N 2 ⋅ 19,22 14 ⋅ 2 ⋅ 15,83 481,6 kN

s 0

N 2 ⋅ 41,56 83,12kN

w 0

N 2 ⋅ 2,28 4,57kN

q 0

N 2 ⋅ 9,17 14 ⋅ 0,74 ⋅ 2 ⋅ 30,55 651,4 kN

[email protected] 2beamsareattachedto1column theloadsareaddedupfortheroofand

14floors

ULSCO2

k 0,8

g 1,2 ⋅ 0,592 0,71 kN/m

N1,2 ⋅ 481,6 0,71 ⋅ 16 ⋅ 3,195 1,5 ⋅ 651,41591,4kN

σ1591,41600

0,99kN/cm

f 0,8 ⋅2,41,15

1,67kN/cm

flexuralbuckling

λ319,511,5

27,8

onthesafeside,theself‐weightofthecolumnisaddedupover16storeys

Page 254: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 37

λ27,8π

⋅249600

0,44

k 0,5 ⋅ 1 0,1 ⋅ 0,44 0,3 0,440,604

k1

0,604 0,604 0,440,983

η0,99

0,983 ⋅ 1,670,61 1,0

Page 255: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 38

1.4Column

Thecolumn1.4ispartoftheframethatcarriestheglobalbendingmomentfromthewindloads.

system

cross‐section

b/h 40/40

A 1600cm

I I 213333cm

i i40

√1211,5cm

material

glulamGL24h

γ 3,7kN/m

f 24N/mm

loads

g 3,7 ⋅ 0,4 ⋅ 0,4 0,592kN/m

N 19,12 7,18 14 ⋅ 15,75 7,18

347,3kN

s 0

N 41,36kN

w 0

N 839,1kN

q 0

N 9,48 14 ⋅ 0,74 ⋅ 31,59 336,7 kN

[email protected](side) 1beam2.1and1beam2.4areattached

tothecolumn

ULSCO5/6

k 1,1

g 1,2 ⋅ 0,592 0,71kN/m

N1,2 ⋅ 347,3 0,71 ⋅ 16 ⋅ 3,195 1,5 ⋅ 839,11,5 ⋅ 0,7 ⋅ 41,36 1,5 ⋅ 0,7 ⋅ 336,72108,7kN

σ2108,71600

1,32kN/cm

f 1,1 ⋅2,41,15

2,30 kN/cm

Page 256: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 39

flexuralbuckling

λ319,511,5

27,8

λ27,8π

⋅249600

0,44

k 0,5 ⋅ 1 0,1 ⋅ 0,44 0,3 0,440,604

k1

0,604 0,604 0,440,983

η1,32

0,983 ⋅ 2,300,58 1,0

Page 257: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 40

4Diagonal

Thediagonalispartoftheframethatcarriestheglobalbendingmomentfromthewindloads.Although the tensile forces in thediagonalsareslightlyhigher, compressionbecomesdecisivebecauseoftheflexuralbuckling.

system

maxl15,792

7,90m

cross‐section

b/h 40/40

A 1600cm

I I 213333cm

i i40

√1211,5cm

material

glulamGL24h

γ 3,7kN/m

f 24N/mm eachdiagonalconsistsoftwoindividualmemberswhichspantwostoreys

loads

g 0

s 0

w 0

N 512,2kN

q 0

see8Frame

ULSCO5/6

k 1,1

N 1,5 ⋅ 512,2 768,3kN

σ768,31600

0,48kN/cm

f 1,1 ⋅2,41,15

2,30kN/cm

flexuralbuckling

λ79011,5

68,7

λ68,7π

⋅249600

1,09

Page 258: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 41

k 0,5 ⋅ 1 0,1 ⋅ 1,09 0,3 1,091,14

k1

1,14 1,14 1,090,678

η0,48

0,678 ⋅ 2,300,31 1,0

Page 259: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 42

5StructuralSheathingoftheFloors

Intheroof,theverticalloadsarecarriesbythehorizontalcarriersandthejoists,thesheathingdoesnotcarryanyloads.Thehorizontalcarriersrunperpendiculartotheroofjoists,sothattheloadsfromtheroofdonotlieonthesheathing.Onlyinthefloorsthesheathingmustcarrytheverticalloads,self‐weightandlifeload,betweenthejoists.Additionally,italsoisresponsiblefortheshearstiffnessofthediaphragm.

system

globalsystem(diaphragm)

localsystem

l 0,65m

t 18mm

A 180cm/m

I 48,6cm /m

W 54cm /m

Page 260: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 43

material

plywood

m 1200Nmm/mm

k 1,0

EI 4320kNmm /mm

k 0,8

the material properties are taken fromthetechnicalapproval[3]

loads

g 1,34kN/m

s 0

w 0

shearfromthediaphragm

l 20,65 6 ⋅ 0,4 18,25m

v58,618,25

3,21kN/m

q A 2,5kN/m

the shear force is distributed over thewholelengthofthebuilding,thecolumnsmust be subtracted because they gothroughthesheathing

ULSCO2

k 0,8

g 1,20 ⋅ 1,34 1,61kN/m

q 1,5 ⋅ 2,5 3,75kN/m

M 0,125 ⋅ 1,61 3,75 ⋅ 0,650,28kNm/m

M 0,8 ⋅1200/1000

1,150,83kNm/m

η0,280,83

0,34 1,0

Theshearloadsfromthediaphragmarenotdecisive,cf.preliminarydesign.

SLSCO7/8

w ,

1,34100 ⋅ 65

76,8 ⋅ 4320/100,072cm

w , 0

w , 0

w ,

2,5100 ⋅ 65

76,8 ⋅ 4320/100,135cm

instantaneousdeformation

w 0,072 0,135 0 0 0,21cm

Page 261: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 44

maxw65300

0,22 cm

η0,210,22

0,95 1,0

finaldeformation

w0,072 ⋅ 1 0,8 0,135 ⋅ 1 0,3 ⋅ 0,80 0 0,30cm

maxw65150

0,43cm

η0,300,43

0,68 1,0

Page 262: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 45

6VerticalFaçadeCarriers

system

h 3,195m

cross‐section

b/h 6/16

e 60cm

A 96cm

I 2048cm

W 256cm

material

glulamGL24h

f 24N/mm

k 0,67

f 3,5N/mm E , 11500N/mm k 0,6

loads

g 0

q 1044N/m

c A 1,2

w 1,2 ⋅ 1,044 1,25 kN/m w 1,25 ⋅ 0,6 0,75 kN/m

ULSCO5/6

k 1,1

w 1,50 ⋅ 0,75 1,13kN/m

M 0,125 ⋅ 1,13 ⋅ 3,195 1,44kNm

σ144256

0,56kN/cm

f 1,1 ⋅2,41,15

2,30 kN/cm

η0,562,30

0,24 1,0

V 0,500 ⋅ 1,13 ⋅ 3,195 1,80kN

τ 1,5 ⋅1,80

0,67 ⋅ 960,042kN/cm

f 1,1 ⋅0,351,15

0,33 kN/cm

nolateraltorsionalbuckling,becausethesheathingofthewallssecuresthecarriersfrombothsides

Page 263: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 46

η0,420,33

0,13 1,0

SLSCO5/6

w , 0

w , 0

w ,

0,75100 ⋅ 319,5

76,8 ⋅ 1150 ⋅ 20480,433cm

w , 0

instantaneousdeformation

w 0,433cm

maxw319,5300

1,07cm

η0,4331,07

0,41 1,0

finaldeformation

w 0,433 ⋅ 1 0 ⋅ 0,6 0,433cm

maxw319,5150

2,13cm

η0,4332,13

0,20 1,0

Page 264: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 47

ConnectionBeam2.2toColumn1.1

Theconnectionundertheroofbecomesdecisive.

system

angleoftheforcetothegrain

beam:α 90°

column:α 0°

fasteners

11M20bolts

f 240N/mm

f 400N/mm

material

glulamGL24h

ρ 385kg/m

strengthclass4.6

minimumdistances

beam

a 4 cos 90 ⋅ 2,0 8cm

a 4 ⋅ 2,0 8cm

a max 2 2 sin 90 ⋅ 2,0 8; 3 ⋅ 2,0 68cm

a 3 ⋅ 2,0 6cm

column

a 4 cos 0 ⋅ 2,0 10cm

a 4 ⋅ 2,0 8cm

a 3 ⋅ 2,0 6cm

capacityperfastenerpershearplane

Page 265: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 48

M , 0,3 ⋅ 400 ⋅ 20 , /1000 289,6 Nm

beam(member1)

f , , 0,082 ⋅ 1 0,01 ⋅ 20 ⋅ 38525,26N/mm

k 1,35 0,015 ⋅ 20 1,65

f , ,25,26

1,65 ⋅ sin 90 cos 9015,3N/mm

column(member2)

f , , 0,082 ⋅ 1 0,01 ⋅ 20 ⋅ 38525,26N/mm

β25,2615,3

1,65

F ,

1,15 ⋅2 ⋅ 1,651 1,65

⋅ 2 ⋅ 289,6 ⋅ 1000 ⋅ 15,3 ⋅ 20/100017,1kN

failuremodekbecomesdecisive the axial capacity of the fasteners is

neglected

loads

F 2 ⋅ 19,22 38,4 kN

F 2 ⋅ 41,56 83,1kN

F 2 ⋅ 2,28 4,6kN

F 2 ⋅ 9,17 18,3kN

shearforcesinthebeamattheconnection

V 2 ⋅ 10,65 21,3kN

V 2 ⋅ 23,03 46,1kN

V 2 ⋅ 1,27 2,53kN

V 2 ⋅ 4,70 9,4kN

[email protected]

ULSCO3

k 0,9

F 1,2 ⋅ 38,4 1,5 ⋅ 83,1 1,5 ⋅ 0,7 ⋅ 18,3190,0kN

F . 17,1 ⋅ 11 ⋅ 2 376,0

F , 0,9 ⋅376,01,3

260,3kN

η190,0260,3

0,73 1,0

11boltsand2shearplanes

Page 266: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 49

checkfortensionperpendiculartothegraininthebeam

V 1,2 ⋅ 21,3 1,5 ⋅ 46,1 1,5 ⋅ 0,7 ⋅ 9,4104,5kN 

F 14 ⋅ 2 ⋅ 160 ⋅ 1 ⋅330

13346

/1000

153,1kN 

F 0,9 ⋅153,11,3

106,0kN 

η104,5106,0

0,99 1,0 

Page 267: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 50

ConnectionOuterBeam2.4ontheSidetoColumn1.3

system

angleofthescrews

α 45°

principleoftheforcedistributionintheconnection

angleoftheforcetothegrain

beam:α 90°

column:α 0°

fasteners

forverticalloads

9screwsØ8mm

n 9 , 7,22

forhorizontalloads

10screwsØ8mm

n 10 , 7,94

the9screwsatthebottomthatgoupwardscarrytheverticalloads,the5upperscrewstogetherwith5ofthelowerscrewscarrythehorizontalloads

f 240N/mm

f 400N/mm

material

glulamGL24h

strengthclass4.6

Page 268: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 51

ρ 385kg/m

minimumdistances

a 7 ⋅ 0,8 5,6cm

a 5 ⋅ 0,8 4cm

a 4 ⋅ 0,8 3,2cm

capacityofthescrews

pull‐outoftheshaft

(notdecisive)

tensilecapacityofthescrews

f , f 240N/mm

forverticalloads

F , 7,22 ⋅ 240 ⋅ π ⋅82

/1000 87,2kN

forhorizontalloads

F , 7,94 ⋅ 240 ⋅ π ⋅82

/1000 95,8 kN

fullythreadedscrewsareused,thereforepull‐throughoftheheaddoesnotneedtobeconsidered

loads

vertical

F 11,43kN

horizontal

F 20,88kN

beam2.4ontheside

internalforces

vertical

V 5,94kN

horizontal

V 12,15kN

ULSCO5/6

k 1,1

vertical

F 1,2 ⋅11,43sin 45

19,4kN

F , 1,1 ⋅87,21,3

73,7kN

η19,473,7

0,26

Page 269: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 52

horizontal

F 1,5 ⋅20,88sin 45

44,3kN

F , 1,1 ⋅95,81,3

81,1kN

η44,381,1

0,55

η 0,26 0,55 0,81 1,0checkfortensionperpendiculartothegraininthebeam

vertical 

V 1,2 ⋅ 5,94 7,13kN 

F 14 ⋅ 160 ⋅ 1 ⋅340

13446

/1000 80,9kN

F 1,1 ⋅80,91,3

68,4kN 

η7,1368,4

0,10 1,0 

horizontal 

V 1,5 ⋅ 12,15 18,23kN 

F 14 ⋅ 460 ⋅ 1 ⋅80

1816

/1000 81,5kN

F 1,1 ⋅81,51,3

68,9kN 

η18,2368,9

0,26 1,0 

 η 0,10 0,26 0,37 1,0 

Page 270: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 53

ConnectionDiagonal4toColumn1.2or1.4

Theprinciplethatisshownherecanbeappliedtoallconnectionsofthediagonalwithacolumn.

system

fasteners

10M20dowels

inthediagonal

α 0°

n 5 ⋅ 2 , ⋅136

13 ⋅ 207,93

inthecolumn

α 54°

n 5 ⋅ 2 , ⋅102

13 ⋅ 206,74

f 240N/mm

f 400N/mm

material

glulamGL24h

ρ 385kg/m

strengthclass4.6

minimumdistances

diagonal

Page 271: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 54

a 3 2 ⋅ cos 0 ⋅ 2,0 10cm

a 3 ⋅ 2,0 6cm

a max 7 ⋅ 2,0 14; 8 14cm

a 3 ⋅ 2,0 6cm

column

a 3 2 ⋅ cos 54 ⋅ 2,0 9,24cm

a 3 ⋅ 2,0 6cm

amax 2 2 ⋅ sin 54 ⋅ 2,0 6,51; 3 ⋅ 2,0

6 6,51cm

capacityperfastenerpershearplane

M , 0,3 ⋅ 400 ⋅ 20 , /1000 289,6 Nm

f , , 0,082 ⋅ 1 0,01 ⋅ 20 ⋅ 38525,26N/mm

k 1,35 0,015 ⋅ 20 1,65

f , ,25,26

1,65 ⋅ sin 54 cos 5420,62N/mm

diagonal

F ,

25,26 ⋅ 100 ⋅ 20

⋅ 24 ⋅ 289,6 ⋅ 100025,26 ⋅ 20 ⋅ 100

1 /1000

24,9kN

column

F , 21,0kN

failuremodegbecomesdecisive

dowelshavenoaxialcapacity

loads

F , 530,9kN

V 20,2kN

see8Frame

ULSCO5/6

k 1,1

F 1,5 ⋅ 530,9 796,4kN

diagonal

F . 7,93 ⋅ 6 ⋅ 24,9 1185,8kN

F , 1,1 ⋅1185,81,3

1003,4kN

10boltsand6shearplanes

Page 272: Different Construction for Storey Timber

a)FrameConstruction

EurocodeDesign‐LucasBienert 55

η796,41003,4

0,79 1,0

column

F . 6,74 ⋅ 6 ⋅ 21,0 850,9kN

F , 1,1 ⋅850,91,3

720,0kN

η796,4720,0

1,11 1,0 additionalstrengtheningisrequired,e.g.byfullythreadedscrewsperpendiculartothegraintoincreasethecapacityoftheconnection

checkfortensionperpendiculartothegraininthecolumn

V 1,5 ⋅ 20,2 30,3kN 

F 14 ⋅ 400 ⋅ 1 ⋅160

11660

/1000

82,7kN 

F 1,1 ⋅82,71,3

70,0kN 

η30,370,0

0,43 1,0

Page 273: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 56

b)PanelConstructionElementReferenceOverview

referenceno element page

1 floorjoists

1.1 floorjoistsmodules3,4 57

1.2 floorjoistsmodules1,2,6,7 61

1.3 floorjoistsmodules5 63

2 floorbeam 65

3 walls/studs 75

5 columns 87

6 beam 77

connections 90

Remarks

Forthecalculationoftheinternalforcesinthestuds,theFEsoftwareRFEMwasused.

Comparedtothepreliminarydesign,thecross‐sectionsofthejoists,thebeamsandthecolumnswereadapted.Undertheroof,largercross‐sectionswererequired,whilethecross‐sectionsinthefloorscouldbedecreased.Thestudswerenotchanged.

Page 274: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 57

1.1RoofJoists

system

l 5,15m

cross‐section

b/h 16/24

e 60cm

A 384cm

I 18432cm

W 1536cm

material

glulamGL24h

f 24N/mm

k 0,67

f 3,5N/mm

E , 11500N/mm

k 0,6

loads

g 1,69kN/m

s 4,66kN/m

q 1044N/m

c I 0,2

g 1,69 ⋅ 0,6 1,01 kN/m

s 4,66 ⋅ 0,6 2,80 kN/m

w 0,2 ⋅ 1,044 0,21 kN/m

q H 0,75kN/m

w 0,21 ⋅ 0,6 0,13 kN/m

q 0,75 ⋅ 0,6 0,45 kN/m

Q 1,5 kN

ULSCO3

k 0,9

p 1,20 ⋅ 1,01 1,50 ⋅ 2,80 5,41kN/m

Q 1,50 ⋅ 0,70 ⋅ 1,5 1,58kN

M 0,125 ⋅ 5,41 ⋅ 5,15 0,250 ⋅ 1,58 ⋅ 5,1519,97kNm

σ19971536

1,30kN/cm

f 0,9 ⋅2,41,15

1,88 kN/cm

Page 275: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 58

η1,301,88

0,69 1,0

V 0,500 ⋅ 5,41 ⋅ 4,64 1,58 15,51kN

τ 1,5 ⋅15,51

0,67 ⋅ 3840,09kN/cm

f 0,9 ⋅0,351,15

0,27kN/cm

η0,090,27

0,33 1,0

nolateraltorsionalbuckling,becausethesheathingsecuresthecompressionflangeofthejoists

SLSCO9/10

w ,

1,04100 ⋅ 515

76,8 ⋅ 1150 ⋅ 184320,438cm

w , 1,208cm

w , 0,054cm

w ,1,5 ⋅ 515

48 ⋅ 1150 ⋅ 184320,201cm

instantaneousdeformation

w0,438 1,208 0,6 ⋅ 0,054 0,7 ⋅ 0,2011,82cm

maxw515300

1,72cm

η1,821,72

1,06 1,0

finaldeformation

w0,438 ⋅ 1 0,6 1,208 ⋅ 1 0,2 ⋅ 0,60,054 ⋅ 0,6 0 0,201 ⋅ 0,7 0,3 ⋅ 0,62,26cm

maxw515150

3,43cm

η2,263,43

0,66 1,0

maxreactionforces

A 0,5 ⋅ 1,01 ⋅ 5,15 2,61kN

A 0,5 ⋅ 2,80 ⋅ 5,15 7,20kN

A 0,5 ⋅ 0,13 ⋅ 5,15 0,32kN

A 0,5 ⋅ 0,45 ⋅ 5,15 1,16kN

Page 276: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 59

1.1FloorJoists

system

l 5,15m

cross‐section

b/h 16/20

e 60cm

A 320cm

I 10667cm

W 1067cm

material

glulamGL24h

f 24N/mm

k 0,67

f 3,5N/mm

E , 11500N/mm

k 0,6

loads

g 1,39kN/m

s 0

w 0

g 1,39 ⋅ 0,6 0,83 kN/m

q A 2,5kN/m

q 2,5 ⋅ 0,6 1,5 kN/m

Q 1,5 kN

ULSCO2

k 0,8

p 1,20 ⋅ 0,83 1,50 ⋅ 1,5 3,25kN/m

M 0,125 ⋅ 3,25 ⋅ 5,15 10,78kNm

σ10781067

1,01kN/cm

f 0,8 ⋅2,41,15

1,67 kN/cm

η1,011,67

0,61 1,0

V 0,500 ⋅ 3,25 ⋅ 4,64 8,37kN

τ 1,5 ⋅8,37

0,67 ⋅ 3200,06kN/cm

nolateraltorsionalbuckling,becausethesheathingsecuresthecompressionflangeofthejoists

Page 277: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 60

f 0,8 ⋅0,351,15

0,24 kN/cm

η0,060,24

0,24 1,0

SLSCO7/8

w ,

0,83100 ⋅ 515

76,8 ⋅ 1150 ⋅ 106670,623cm

w , 0

w , 0

w , 1,120cm

instantaneousdeformation

w 0,623 1,120 0 0 1,74cm

maxw515300

1,72 cm

η1,741,72

1,02 1,0

finaldeformation

w0,623 ⋅ 1 0,6 1,120 ⋅ 1 0,3 ⋅ 0,60 0 2,32cm

maxw515150

3,43cm

η2,323,43

0,68 1,0

thisisstillOK,becauseamongstothersthebeneficialeffectofthesheathingwasnotconsideredyet

maxreactionforces

A 0,5 ⋅ 0,83 ⋅ 5,15 2,15kN

A 0

A 0

A 0,5 ⋅ 1,5 ⋅ 5,15 3,86kN

Page 278: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 61

1.2RoofJoists

Theroofjoists1.2havethesameloadsanddimensionsastheroofjoists1.1butasmallerspan,theyarethereforenotdecisive,andacheckisnotnecessary.

maxreactionforces

A 0,5 ⋅ 1,01 ⋅ 4,38 2,22kN

A 0,5 ⋅ 2,80 ⋅ 4,38 6,12kN

A 0,5 ⋅ 0,13 ⋅ 4,38 0,27kN

A 0,5 ⋅ 0,45 ⋅ 4,38 0,99kN

Page 279: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 62

1.2FloorJoists

Thefloorjoists1.2havethesameloadsanddimensionsasthefloorjoists1.1butasmallerspan,theyarethereforenotdecisive,andacheckisnotnecessary.

maxreactionforces

A 0,5 ⋅ 0,83 ⋅ 4,38 1,83kN

A 0

A 0

A 0,5 ⋅ 1,5 ⋅ 4,38 3,29kN

Page 280: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 63

1.3RoofJoists

Thedimensionsfortheroofjoists1.3couldbedecreasedtob/h 8/24.

Page 281: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 64

1.3FloorJoists

Thedimensionsforthefloorjoists1.3couldbedecreasedtob/h 8/20.

Page 282: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 65

2RoofBeam

Thebeamundertheroofinaxis3–5/Cbecomesdecisive.

system

maxl 2,10m

cross‐section

b/h 12/24A 288cm I 13824cm

W 1152cm

material

glulamGL24hf 24N/mm k 0,67f 3,5N/mm E , 11500N/mm k 0,6

loads

g2,610,6

4,35kN/m

s7,200,6

12,0kN/m

w0,320,6

0,54kN/m

q1,160,6

1,93kN/m

[email protected]

Page 283: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 66

reactionforces,internalforcesanddeformations

constantload

loadingandreactionforces

bendingmoment

shearforce

deformations

Page 284: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 67

unfavourableloads

loadingandreactionforces

bendingmoment

shearforce

loadingandreactionforces

Page 285: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 68

deformations

ULSCO3

k 0,9

p 1,20 ⋅ 4,35 1,50 ⋅ 12,0 23,2kN/m

q 1,5 ⋅ 0,7 ⋅ 1,93 2,03kN/m

M 23,2 ⋅ 0,4243 2,03 ⋅ 0,436710,74kNm

σ10741152

0,93kN/cm

f 0,9 ⋅2,41,15

1,88 kN/cm

η0,931,88

0,50 1,0

V 23,2 ⋅ 1,252 2,03 ⋅ 1,258 31,6kN

τ 1,5 ⋅31,6

0,67 ⋅ 2880,25kN/cm

f 0,9 ⋅0,351,15

0,27kN/cm

η0,250,27

0,90 1,0

nolateraltorsionalbucklingbecausethejoistssecurethecompressionflangeofthebeam

SLSCO9/10

w , 4,35 ⋅ 0,0087 0,038cm

w , 12,0 ⋅ 0,0087 0,104cm

w , 0,54 ⋅ 0,0087 0,005cm

w , 1,93 ⋅ 0,0089 0,017cm

instantaneousdeformation

w0,038 0,104 0,6 ⋅ 0,005 0,7 ⋅ 0,0170,157

maxw210300

0,70cm

η0,1570,70

0,22 1,0

Page 286: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 69

finaldeformation

w0,038 ⋅ 1 0,6 0,104 ⋅ 1 0,2 ⋅ 0,60,005 ⋅ 0,6 0 0,017 ⋅ 0,7 0,3 ⋅ 0,60,195cm

maxw210150

1,40cm

η0,1951,40

0,14 1,0

Page 287: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 70

2FloorBeam

Thebeaminaxis3–5/Cbecomesdecisive.

system

maxl 2,10m

cross‐section

b/h 8/24A 192cm I 9216cm

W 768cm

material

glulamGL24hf 24N/mm k 0,67f 3,5N/mm E , 11500N/mm k 0,6

loads

g2,150,6

4,35kN/m

s 0

w 0

q3,860,6

6,44kN/m

[email protected]

reactionforces,internalforcesanddeformations

constantload

loadingandreactionforces

Page 288: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 71

bendingmoment

shearforce

deformations

unfavourableloads

loadingandreactionforces

Page 289: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 72

bendingmoment

shearforce

loadingandreactionforces

deformations

ULSCO2

k 0,8

g 1,20 ⋅ 3,58 4,30kN/m

q 1,5 ⋅ 6,44 9,66kN/m

M 4,30 ⋅ 0,4243 9,66 ⋅ 0,4367 6,04 kNm

Page 290: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 73

σ604768

0,79kN/cm

f 0,8 ⋅2,41,15

1,67 kN/cm

η0,791,67

0,47 1,0

V 4,30 ⋅ 1,252 9,66 ⋅ 1,258 17,53kN

τ 1,5 ⋅17,53

0,67 ⋅ 1920,20kN/cm

f 0,8 ⋅0,351,15

0,24kN/cm

η0,200,24

0,84 1,0

nolateraltorsionalbucklingbecausethejoistssecurethecompressionflangeofthebeam

SLSCO7/8

w , 3,58 ⋅ 0,01935 0,069cm

w , 0

w , 0

w , 6,44 ⋅ 0,01987 0,128cm

instantaneousdeformation

w 0,069 0,128 0 0 0,20cm

maxw210300

0,70cm

η0,200,70

0,28 1,0

finaldeformation

w0,069 ⋅ 1 0,6 0,128 ⋅ 1 0,3 ⋅ 0,60 0 0,26cm

maxw210150

1,40cm

η0,261,40

0,19 1,0

Thefloorbeaminaxis1–3/Abecomesdecisivefortheconnectiontothestuds(cf.ConnectionFloorBeam2toStuds3).

maxreactionforces

A 3,04 ⋅ 1,817 5,53kN

A 0

Page 291: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 74

A 0

A 5,475 ⋅ 1,88 10,29kN

maxinternalforces

V , 0,9393 ⋅ 3,04 2,86kN

V , 0

V , 0

V . 0,9785 ⋅ 5,475 5,36kN

Page 292: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 75

3Studs

Becausethecross‐sectionofthestudsdecreasesinthehigherstoreys,checksmustbeperformedateverytransition,i.e.inthe11.,the6.andthe1.floor.Still,the1.floorbecomesdecisive.TheinternalforcesweredeterminedusingtheFEMsoftwareRFEM.

system

decisivestud

generalglobalsystem(wall)

cross‐section

b/h 20/20

Page 293: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 76

A 400cm

I I 13333cm

i i16

√125,77cm

material

glulamGL24h

f 24N/mm

ULSCO6

k 1,1

N 460,8kN

σ460,8400

1,27kN/cm

f 1,1 ⋅2,41,15

2,30kN/cm

flexuralbuckling

λ319,55,77

55,3

λ55,3π

⋅249600

0,88

k 0,5 ⋅ 1 0,1 ⋅ 0,88 0,3 0,880,92

k1

0,92 0,92 0,880,853

η1,27

0,853 ⋅ 2,300,67 1,0

Page 294: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 77

6Beam(Roof)

system

maxl 2,32m

cross‐section

b/h 12/24

A 288cm

I 13824cm

W 1152cm

material

glulamGL24h

f 24N/mm

k 0,67

f 3,5N/mm

E , 11500N/mm

k 0,6

loads

g2,220,6

3,70kN/m

s6,120,6

10,21kN/m

w0,270,6

0,46kN/m

q0,990,6

1,64kN/m

[email protected]

reactionforces,internalforcesanddeformations

Page 295: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 78

constantload

loadingandreactionforces

bendingmoment

shearforce

deformations

Page 296: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 79

unfavourableloads

loadingandreactionforces

bendingmoment

shearforce

loadingandreactionforces

Page 297: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 80

deformations

ULSCO3

k 0,9

p 1,20 ⋅ 3,70 1,50 ⋅ 10,21 19,75kN/m

q 1,5 ⋅ 0,7 ⋅ 1,64 1,72kN/m

M 19,75 ⋅ 0,5382 1,72 ⋅ 0,629711,72kNm

σ11721152

1,02kN/cm

f 0,9 ⋅2,41,15

1,88 kN/cm

η1,021,88

0,54 1,0

V 19,75 ⋅ 1,392 1,72 ⋅ 1,431 29,96kN

τ 1,5 ⋅29,96

0,67 ⋅ 2880,23kN/cm

f 0,9 ⋅0,351,15

0,27kN/cm

η0,230,27

0,85 1,0

nolateraltorsionalbucklingbecausethejoistssecurethecompressionflangeofthebeam

SLSCO9/10

w , 3,70 ⋅ 0,01254 0,046cm

w , 0,128cm

w , 0,006cm

w , 1,64 ⋅ 0,01801 0,030cm

instantaneousdeformation

w 0,046 0,128 0,6 ⋅ 0,006 0,7 ⋅ 0,300,199cm

maxw232300

0,77 cm

Page 298: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 81

η0,1990,77

0,26 1,0

finaldeformation

w0,046 ⋅ 1 0,6 0,128 ⋅ 1 0,2 ⋅ 0,60,006 ⋅ 0,6 0 0,030 ⋅ 0,7 0,3 ⋅ 0,60,247cm

maxw232150

1,55cm

η0,2471,55

0,16 1,0

maxreactionforces

A 3,70 ⋅ 0,928 3,43kN

A 9,47kN

A 0,42kN

A 1,64 ⋅ 1,044 1,71kN

B 3,70 ⋅ 2,552 9,45kN

B 26,04kN

B 1,17kN

B 1,64 ⋅ 2,784 4,57kN

Page 299: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 82

6Beam(Floor)

system

maxl 2,32m

cross‐section

b/h 8/24

A 192cm

I 9216cm

W 768cm

material

glulamGL24h

f 24N/mm

k 0,67

f 3,5N/mm

E , 11500N/mm

k 0,6

loads

g1,830,6

3,04kN/m

s 0

w 0

q3,290,6

5,48kN/m

[email protected]

Page 300: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 83

reactionforces,internalforcesanddeformations

constantload

loadingandreactionforces

bendingmoment

shearforce

deformations

Page 301: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 84

unfavourableloads

loadingandreactionforces

bendingmoment

shearforce

loadingandreactionforces

Page 302: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 85

deformations

ULSCO2

k 0,8

g 1,20 ⋅ 3,04 3,65kN/m

q 1,5 ⋅ 5,48 8,21kN/m

M 3,65 ⋅ 0,5382 8,21 ⋅ 0,6297 7,14kNm

σ714768

0,93kN/cm

f 0,8 ⋅2,41,15

1,67 kN/cm

η0,931,67

0,56 1,0

V 3,65 ⋅ 1,392 8,21 ⋅ 1,431 16,84kN

τ 1,5 ⋅16,84

0,67 ⋅ 1920,20kN/cm

f 0,8 ⋅0,351,15

0,24kN/cm

η0,200,24

0,81 1,0

nolateraltorsionalbucklingbecausethejoistssecurethecompressionflangeofthebeam

Page 303: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 86

SLSCO7/8

w , 3,04 ⋅ 0,0188 0,057cm

w , 0

w , 0

w , 5,48 ⋅ 0,02701 0,148cm

instantaneousdeformation

w 0,057 0,148 0 0 0,205cm

maxw232300

0,77cm

η0,2050,77

0,26 1,0

finaldeformation

w0,057 ⋅ 1 0,6 0,148 ⋅ 1 0,3 ⋅ 0,60 0 0,266cm

maxw232150

1,55cm

η0,2661,55

0,17 1,0

maxreactionforces

A 3,04 ⋅ 0,928 2,82kN

A 0

A 0

A 5,48 ⋅ 1,044 5,72kN

B 3,04 ⋅ 2,552 7,77kN

B 0

B 0

B 5,48 ⋅ 2,784 15,24kN

Page 304: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 87

5Columns

system

cross‐sectionscolumnA,D

b/h 16/20

A 320cm

I I 10667cm

i i16

√124,62cm

columnB,C

b/h 20/20

A 400cm

I I 13333cm

i i20

√125,77cm

materialglulamGL24hγ 3,7kN/m f 24N/mm

globalsystem(beam6)

localsystem

loads

columnA,D

g 3,7 ⋅ 0,16 ⋅ 0,2 0,037kN/m self‐weightofthecolumn

N 3,43 14 ⋅ 2,82 43,0kN

s 0

N 9,47kN

w 0

N 0,42kN

q 0

N 1,71 14 ⋅ 0,74 ⋅ 5,72 60,9kN

columnB,C

reactionforceA@6 theloadisaddedupfortheroofand14

storeys

g 3,7 ⋅ 0,2 ⋅ 0,2 0,046kN/m self‐weightofthecolumn

N 9,45 14 ⋅ 7,77 118,2kN

s 0

N 26,04kN

w 0

reactionforceB@6 theloadisaddedupfortheroofand14

storeys

Page 305: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 88

N 1,17kN

q 0

N 4,57 14 ⋅ 0,74 ⋅ 15,24 162,5 kN

ULSCO2

k 0,8

columnA,D

g 1,2 ⋅ 0,037 0,044kN/m

N1,2 ⋅ 43,0 0,044 ⋅ 16 ⋅ 3,195 1,5

⋅ 60,9 145,2kN

σ145,2320

0,45kN/cm

f 0,8 ⋅2,41,15

1,67kN/cm

flexuralbuckling

λ319,54,62

69,2

λ69,2π

⋅249600

1,10

k 0,5 ⋅ 1 0,1 ⋅ 1,10 0,3 1,101,15

k1

1,15 1,15 1,100,683

η0,45

0,683 ⋅ 1,670,40 1,0

columnB,C

g 1,2 ⋅ 0,046 0,055kN/m

N1,2 ⋅ 118,2 0,055 ⋅ 16 ⋅ 3,195 1,5

⋅ 162,5 388,4kN

σ388,4400

0,97kN/cm

f 0,8 ⋅2,41,15

1,67kN/cm

flexuralbuckling

λ319,55,77

55,3

Page 306: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 89

λ55,3π

⋅249600

0,88

k 0,5 ⋅ 1 0,1 ⋅ 0,88 0,3 0,880,92

k1

0,92 0,92 0,880,853

η0,97

0,853 ⋅ 1,670,68 1,0

Page 307: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 90

Anchoring

Thehold‐downdeviceconsistsoftwointernalsteelplatesanddowelsinsidethecorrespondingstuds.Atstudswithsmallertensileforces,theconnectioncanbeadapted,e.g.byusingonlyoneinternalsteelplateand/orlessdowels.

system

angleoftheforcetothegrain

α 0°

fasteners

8M20dowels

n 2 ⋅ 4 , ⋅200

13 ⋅ 206,52

strengthclass4.6

f 240N/mm

f 400N/mm

material

glulamGL24h

ρ 385kg/m

minimumdistances

a 3 2 ⋅ cos 0 ⋅ 2,0 10cm

a 3 ⋅ 2,0 6cm

a max 7 ⋅ 2,0 14; 8 14cm

a 3 ⋅ 2,0 6cm

capacityperfastenerpershearplane

M , 0,3 ⋅ 400 ⋅ 20 , /1000 289,6 Nm

f , , 0,082 ⋅ 1 0,01 ⋅ 20 ⋅ 38525,26N/mm

F ,

25,26 ⋅ 67 ⋅ 20

⋅ 24 ⋅ 289,6 ⋅ 100025,26 ⋅ 20 ⋅ 67

1 /1000

19,8kN

failuremodegbecomesdecisive

dowelshavenoaxialcapacity

Page 308: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 91

ULSCO11/12

k 1,1

F 448,6kN cf.RFEManalysis

F . 19,8 ⋅ 6,52 ⋅ 4 516,2kN

F , 1,1 ⋅516,21,3

436,8kN

η448,6436,8

1,03 1,0

6,52boltsand4shearplanes

Page 309: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 92

ConnectionRoofJoists1toRoofBeam2

Thisconnectionhadtobechangedincomparisontothepreliminarydesign.Insteadofdiagonalfullythreadedscrews,joisthangersareused.

system

angleoftheforcetothegrain

α 90°

fasteners

JoistHangerSimpsonStrongtieBT4‐120orsimilar

material

glulamGL24h

ρ 385kg/m

capacity

F , 23,9kN

cf.technicaldatasheet[7]

loads

F 2,61kN

F 7,20kN

F 0,32kN

F 1,16kN

[email protected] theshearforcesinthejoistareequalto

thesupportforces

ULSCO3

Page 310: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 93

k 0,9

F 1,2 ⋅ 2,61 1,5 ⋅ 7,20 1,5 ⋅ 0,7 ⋅ 1,1615,1kN

F . 23,9kN

F , 0,9 ⋅23,91,3

16,5kN

η15,116,5

0,92 1,0

11boltsand2shearplanes

checkfortensionperpendiculartothegraininthebeam

V F 15,1kN 

F 14 ⋅ 160 ⋅ 1 ⋅165

116,524

/1000

51,5kN 

F 0,9 ⋅51,51,3

35,6kN 

η15,135,6

0,43 1,0 

Page 311: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 94

ConnectionFloorJoists1toFloorBeam2

Forthisconnection,thesamesystemisused,buttheloadsarelowerfromthefloorthanfromtheroof,sothatthisconnectionisnotdecisive.

Page 312: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 95

ConnectionFloorBeam2toStuds3

Thefloorbeaminaxis1–3/AbecomesdecisiveatsupportC.

system

angleoftheforcetothegrain

floorbeam

α 90°

stud

α 0°

fasteners

4M20dowels

n 2 ⋅ 2 , ⋅100

13 ⋅ 202,94

f 240N/mm

f 400N/mm

material

glulamGL24h

ρ 385kg/m

strengthclass4.6

minimumdistances

floorbeam

a 3 2 ⋅ cos 90 ⋅ 2,0 6cm

Page 313: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 96

a 3 ⋅ 2,0 6cm

amax 2 2 ⋅ sin 90 ⋅ 2,0 8; 3 ⋅ 2,0 68cm

a 3 ⋅ 2,0 6cm

stud

a 3 2 ⋅ cos 0 ⋅ 2,0 10cm

a 3 ⋅ 2,0 6cm

a 3 ⋅ 2,0 6cm

capacityperfastenerpershearplane

M , 0,3 ⋅ 400 ⋅ 20 , /1000 289,6 Nm

floorbeam(member1)

f , , 0,082 ⋅ 1 0,01 ⋅ 20 ⋅ 38525,26N/mm

k 1,35 0,015 ⋅ 20 1,65

f , ,25,26

1,65 ⋅ sin 90 cos 9015,3N/mm

stud(member2)

f , , 0,082 ⋅ 1 0,01 ⋅ 20 ⋅ 38525,26N/mm

β25,2615,3

1,65

failuremodedbecomesdecisive

dowelshavenoaxialcapacity

F ,

1,05 ⋅15,3 ⋅ 80 ⋅ 202 1,65

⋅ 2 ⋅ 1,65 ⋅ 1 1,654 ⋅ 1,65 ⋅ 2 1,65 ⋅ 289,64 ⋅ 1000

15,3 ⋅ 20 ⋅ 801,65

13,1kN

loads

F 5,53kN

F 10,29kN

shearforcesinthebeamattheconnection

V 2,86kN

V 5,36kN

reactionforceC@2

ULSCO2

Page 314: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 97

k 0,8

F 1,2 ⋅ 5,53 1,5 ⋅ 10,29 22,08kN

F . 2,93 ⋅ 1 ⋅ 13,09 38,5kN

F , 0,8 ⋅38,51,3

23,7kN

η22,0823,7

0,93 1,0

2,94boltsand1shearplane

tensionperpendiculartothegrain

V 1,2 ⋅ 2,86 1,5 ⋅ 5,36 11,5kN

F 14 ⋅ 80 ⋅ 1 ⋅180

11824

/1000 30,1kN 

F 0,8 ⋅30,11,3

18,5kN 

η11,518,5

0,62 1,0

Page 315: Different Construction for Storey Timber

b)PanelConstruction

EurocodeDesign‐LucasBienert 98

ConnectionRoofBeam2toStuds3

This connection follows the same principle as the connection of the floor beam to the studs.Becauseofthehigherloadsfromtheroofthanfromthefloors,6dowelsarerequiredinsteadof4.Therefore,thestudsinthehigheststoreymustbe28/28(likethestudsinstorey1to5)toallowforenoughspaceforthe6dowels.

Page 316: Different Construction for Storey Timber

c)CLTConstruction

EurocodeDesign‐LucasBienert 99

c)CLTConstructionElementReferenceOverview

referenceno element page

1 floorslab 100

2,3 floorslab ‐

4 floorslab ‐

5 Walls 106

Anchoring 108

Remarks

Becauseofgoodlateraldistributionoftheloadsintheslabs,thesingleconcentratedforceQwillnotbecomedecisive.

Forthecalculationoftheinternalforcesofthewalls,theFEsoftwareRFEMwasused.

BecauseofmissingrulesforCLTintheEC,thesamedesignfactorsasforglulamareapplied.

Comparedtothepreliminarydesign,thethicknessesofthewallshadtobeincreased.Nowwallswiththethicknesses145mm,170mmand246mmareused.Thereductionofthethicknessovertheheightofthebuildingwasadapted.

storeyno M N t t t‐ % % mm mm mm 0 100,00 100,00 145 170 2461 87,11 93,33 145 170 2462 75,11 86,67 145 170 2463 64,00 80,00 145 170 2464 53,78 73,33 145 170 246

5 44,44 66,67 120 120 1706 36,00 60,00 120 120 1707 28,44 53,33 120 120 1708 21,78 46,67 120 120 1709 16,00 40,00 120 120 170

10 11,11 33,33 95 95 9511 7,11 26,67 95 95 9512 4,00 20,00 95 95 9513 1,78 13,33 95 95 9514 0,44 6,67 95 95 9515 0,00 0,00 95 95 95

Page 317: Different Construction for Storey Timber

c)CLTConstruction

EurocodeDesign‐LucasBienert 100

1RoofSlab

system

maxl 4,38m

cross‐section

t 145mm

A 1450cm /m

I 25405cm /m

W 3504cm /m

material

CLTKL‐trä145

f 10,1N/mm

k 0,67

f 0,7N/mm

E , 5290N/mm

k 0,6

seetechnicalapproval[1]

loads

g 1,97kN/m

s 4,41kN/m

q 1044N/m

c I 0,2

w 0,2 ⋅ 1,044 0,21 kN/m

q H 0,75kN/m

reactionforces,internalforcesanddeformations

constantload

loadingandreactionforces

Page 318: Different Construction for Storey Timber

c)CLTConstruction

EurocodeDesign‐LucasBienert 101

bendingmoment

shearforce

deformations

unfavourableloads

loadingandreactionforces

Page 319: Different Construction for Storey Timber

c)CLTConstruction

EurocodeDesign‐LucasBienert 102

bendingmoment

shearforce

deformations

ULSCO3

k 0,9

p 1,20 ⋅ 1,97 1,50 ⋅ 4,41 8,97kN/m

q 1,50 ⋅ 0,7 ⋅ 0,75 0,79kN/m

M 8,97 ⋅ 2,311 0,79 ⋅ 2,31122,55kNm/m

σ22553504

0,64kN/cm

f 0,9 ⋅1,011,15

0,79 kN/cm

η0,640,79

0,81 1,0

V 8,97 ⋅ 2,718 0,79 ⋅ 2,718 26,52kN

τ 1,5 ⋅26,52

0,67 ⋅ 14500,041kN/cm

Page 320: Different Construction for Storey Timber

c)CLTConstruction

EurocodeDesign‐LucasBienert 103

f 0,9 ⋅0,071,15

0,055 kN/cm

η0,0410,055

0,75 1,0

SLSCO9/10

w , 1,97 ⋅ 0,1546 0,305cm

w , 0,681cm

w , 0,032cm

w , 0,75 ⋅ 0,2483 0,186cm

instantaneousdeformation

w0,305 0,681 0,6 ⋅ 0,032 0,7 ⋅ 0,1861,14cm

maxw438300

1,46cm

η1,141,46

0,78 1,0

finaldeformation

w0,305 ⋅ 1 0,6 0,681 ⋅ 1 0,2 ⋅ 0,60,032 ⋅ 0,6 0 0,186 ⋅ 0,7 0,3 ⋅ 0,61,43cm

maxw438150

2,92cm

η1,432,92

0,49 1,0

Page 321: Different Construction for Storey Timber

c)CLTConstruction

EurocodeDesign‐LucasBienert 104

1FloorSlab

system

maxl 4,38m

cross‐section

t 145mm

A 1450cm /m

I 25405cm /m

W 3504cm /m

material

CLTKL‐trä145

f 10,1N/mm

k 0,67

f 0,7N/mm

E , 5290N/mm

k 0,6

seetechnicalapproval[1]

loads

g 1,64kN/m

s 0

w 0

q A 2,5kN/m

reactionforces,internalforcesanddeformations

cf.1.1RoofSlab

ULSCO2

k 0,8

g 1,20 ⋅ 1,64 2,0kN/m

q 1,50 ⋅ 2,5 3,75kN/m

M 2,0 ⋅ 2,311 3,75 ⋅ 2,311 13,21kNm/m

σ13213504

0,38kN/cm

f 0,8 ⋅1,011,15

0,70 kN/cm

η0,380,70

0,54 1,0

V 2,0 ⋅ 2,718 3,75 ⋅ 2,718 15,54 kN

Page 322: Different Construction for Storey Timber

c)CLTConstruction

EurocodeDesign‐LucasBienert 105

τ 1,5 ⋅15,54

0,67 ⋅ 14500,024kN/cm

f 0,8 ⋅0,071,15

0,049kN/cm

η0,0240,049

0,50 1,0

SLSCO7/8

w , 1,64 ⋅ 0,1546 0,253cm

w , 0

w , 0

w , 2,5 ⋅ 0,2483 0,621cm

instantaneousdeformation

w 0,253 0 0 0,7 ⋅ 0,621 0,69cm

maxw438300

1,46cm

η0,691,46

0,47 1,0

finaldeformation

w0,253 ⋅ 1 0,6 0 0 0,621

⋅ 0,7 0,3 ⋅ 0,6 0,95cm

maxw438150

2,92cm

η0,952,92

0,33 1,0

Page 323: Different Construction for Storey Timber

c)CLTConstruction

EurocodeDesign‐LucasBienert 106

5.x9OuterWall

system

cross‐section

t 145mm

A 1450cm /m

I 25405cm /m

W 3504cm /m

i14,5

√124,19cm

material

CLTKL‐trä145

f 8,3N/mm

f 10,1N/mm

k 0,67

E , 5290N/mm

E , 2300N/mm

k 0,6

seetechnicalapproval[1]

internalforces

n 68,6kN/m

n 4,9kN/m

Page 324: Different Construction for Storey Timber

c)CLTConstruction

EurocodeDesign‐LucasBienert 107

n 222,1kN/m

n 50,7kN/m

windfromthesidebecomesdecisive

ULSCO6

k 1,1

n1,2 ⋅ 68,6 1,5 ⋅ 222,1 1,5 ⋅ 0,7 ⋅ 4,91,5 ⋅ 0,7 ⋅ 50,7 473,7kN/m

σ473,7

100 ⋅ 14,50,33kN/cm

f 1,1 ⋅0,831,15

0,79 kN/cm

flexuralbuckling

λ319,54,19

76,3

λ76,3π

⋅8,32300

1,46

k 0,5 ⋅ 1 0,1 ⋅ 1,46 0,3 1,461,62

k1

1,62 1,62 1,460,429

η0,33

0,429 ⋅ 0,790,96 1,0

Page 325: Different Construction for Storey Timber

c)CLTConstruction

EurocodeDesign‐LucasBienert 108

AnchoringWall5.y3

system

angleoftheforcetothegrain

α 90°

fasteners

7M20dowels/m

f 240N/mm

f 400N/mm

material

CLTKL‐trä170

ρ 385kg/m

strengthclass4.6

minimumdistances

a 4 ⋅ 2,0 8cm

a max 7 ⋅ 2,0 14 ; 8 14cm

capacityperfastenerpershearplane

M , 0,3 ⋅ 400 ⋅ 20 , /1000 289,6 Nm

f , , 0,082 ⋅ 1 0,01 ⋅ 20 ⋅ 38525,26N/mm

k 1,35 0,015 ⋅ 20 1,65

f , ,25,26

1,65 ⋅ sin 90 cos 9015,3N/mm

Page 326: Different Construction for Storey Timber

c)CLTConstruction

EurocodeDesign‐LucasBienert 109

F ,

15,3 ⋅ 170/2 ⋅ 20

⋅ 24 ⋅ 289,6 ⋅ 1000

15,3 ⋅ 20 ⋅ 170/21 /1000

15,3kN

failuremodegbecomesdecisive

theaxialcapacityofthefastenersisneglected

ULSCO11/12

k 1,1

F 138,4kN/m cf.RFEManalysis

F . 15,3 ⋅ 7 ⋅ 2 214,4kN/m

F , 1,1 ⋅214,41,3

181,5kN

η138,4181,5

0,76 1,0

7boltsand2shearplanesperm

checkfortensionperpendiculartothegraininthebeam

V 0,61 ⋅ 138,4 ⋅ 0,143 12,1kN 

F 14 ⋅ 95 ⋅ 1 ⋅150

1150319,5

/1000

16,7kN 

F 1,1 ⋅16,71,3

14,1kN 

η12,114,1

0,85 1,0

theshearforceisestimatedassumingthewalltobeabeamsupportedbythedowelswiththeuniformloadF

Page 327: Different Construction for Storey Timber

Appendix

EurocodeDesign‐LucasBienert 110

Appendix

Attachments

Eurocodedesign(XLSX) RFEMresultsforthepanelconstruction(XLSX) RFEMresultsfortheCLTconstruction(XLSX) RFEMmodelsfortheframe,panelandCLTconstruction(RF5) technicalplansfortheframeconstructionPa1.2,Pa2(PDF) technicalplansforthepanelconstructionPb1–Pb3,Pa4.2(PDF) technicalplansfortheCLTconstructionPc1–Pc2,Pc3.2(PDF)

a)FrameConstruction

Elements

Page 328: Different Construction for Storey Timber

Appendix

EurocodeDesign‐LucasBienert 111

Page 329: Different Construction for Storey Timber

Appendix

EurocodeDesign‐LucasBienert 112

Connections

Page 330: Different Construction for Storey Timber

Appendix

EurocodeDesign‐LucasBienert 113

Page 331: Different Construction for Storey Timber

Appendix

EurocodeDesign‐LucasBienert 114

Page 332: Different Construction for Storey Timber

Appendix

EurocodeDesign‐LucasBienert 115

Page 333: Different Construction for Storey Timber

Appendix

EurocodeDesign‐LucasBienert 116

b)PanelConstruction

Elements

Page 334: Different Construction for Storey Timber

Appendix

EurocodeDesign‐LucasBienert 117

Page 335: Different Construction for Storey Timber

Appendix

EurocodeDesign‐LucasBienert 118

Connections

Page 336: Different Construction for Storey Timber

Appendix

EurocodeDesign‐LucasBienert 119

Page 337: Different Construction for Storey Timber

Appendix

EurocodeDesign‐LucasBienert 120

Page 338: Different Construction for Storey Timber

Appendix

EurocodeDesign‐LucasBienert 121

c)CLTConstruction

Elements

Page 339: Different Construction for Storey Timber

Appendix

EurocodeDesign‐LucasBienert 122

Connections