diamond sensors laboratory 3d micro-structuring of diamond for radiation detector applications...

40
Diamond Sensors Laboratory 3D micro-structuring of diamond for radiation detector applications B.Caylar , M.Pomorski, P.Bergonzo Diamond Sensors Laboratory CEA-LIST, Gif-Sur-Yvette, France José Alvarez Laboratoire de génie électrique de Paris (LGEP), Gif-sur-Yvette, France Alexander Oh University of Manchester, School of Physics and Astronomy, Manchester, United Kingdom Thorsten Wengler CERN, Geneva, Switzerland

Upload: eloise-addison

Post on 14-Dec-2015

217 views

Category:

Documents


1 download

TRANSCRIPT

Diamond Sensors Laboratory

3D micro-structuring of diamond for radiation detector applications

B.Caylar, M.Pomorski, P.BergonzoDiamond Sensors Laboratory CEA-LIST, Gif-Sur-Yvette, France

José AlvarezLaboratoire de génie électrique de Paris (LGEP), Gif-sur-Yvette, France

Alexander OhUniversity of Manchester, School of Physics and Astronomy, Manchester, United Kingdom

Thorsten WenglerCERN, Geneva, Switzerland

Diamond Sensors Laboratory

Advantages1: Higher electric field for a given applied bias voltage Shorter drift path thus drift time Lower probability of trapping

2

Context – Why using 3D electrodes?

[1] J.Morse, C.J. Kenney, E.M. Westbrook et al. / Nuclear Instruments and Methods in Physics Research Section A, 524 (2004) 236.

2DElectrodes

3DElectrodes

Ionizing particle

Diamond Sensors Laboratory

3

Context – Why using 3D electrodes?

Planar 3D

0 2 4 6 80.0

3.0x10-6

6.0x10-6

9.0x10-6

1.2x10-5

1.5x10-5

Perfect cristal

= 250ns

= 2ns

Cur

rent

(A

)

Time (ns)0 2 4 6 8

0.0

3.0x10-6

6.0x10-6

9.0x10-6

1.2x10-5

1.5x10-5

Perfect Cristal

= 250ns

= 2ns

Cur

rent

(A

)Time (ns)

Analytically calculated currents generated by a MIP

Diamond Sensors Laboratory

4

NIEL induces bulk defects

When flux increases :

Defects number increases Carrier lifetime reduction CCE decreases

[2] Michal Pomorski – PhD debate, Frankfurt University 07/08/2008

0 5 10 15 20 250

1

Nor

mal

ized

cou

nts

Collected charge [ke]

before irradiation after 1.2 x 1014 20MeV n.cm-2

after 1.97 x 1014 20MeV n.cm-2

Signal decrease

Context – Why using 3D electrodes?

Diamond Sensors Laboratory

5

3D geometry is faster : 8ns vs 208ps. 3D geometry makes the detector more radiation hard

0 2 4 6 80.0

0.5

1.0

1.5

2.0

2.5

3.0

99.99%

Col

lect

ed c

harg

e (f

C)

Time (ns)

Perfect cristal

= 250ns

= 2ns

95%

0 2 4 6 80.0

0.5

1.0

1.5

2.0

2.5

3.0

Perfect cristal

= 250ns

= 2ns

Col

lect

ed c

harg

e (f

C)

Time (ns)

47%

99.6%

Context – Why using 3D electrodes?

Planar 3D

Diamond Sensors Laboratory

• Burried electrodes Laser setup & Fabrication Structural characterization Electrical characterization

• pc-CVD Detector (e6 detector grade) Electrical characterization Characterization under alpha particles

• sc-CVD Detector (e6 electronic grade) Optical characterization Electrical characterization Transient current measurements

• Conclusion

6

Outline

Diamond Sensors Laboratory

BURRIED ELECTRODESLASER SETUP & FRABRICATION

7

Diamond Sensors Laboratory

8

Burried electrodes – Laser setup

Tunable parameters Scan velocity 1-1000 µm/s Laser power 0-160µJ/pulse Repetition rate 1-30 Hz

Sample holder

Nitrogen laser λ = 337nm

τ = 3ns

XYZMotorized stage

Webcam

20x Lens

Diamond Sensors Laboratory

9

Burried electrodes – Fabrication

997000 997500 998000 998500 9990000.00020

0.00021

0.00022

0.00023

0.00024

0.00025

0.00026

Am

plitu

de (

V)

Time (ms)

XYZMotorized stage

Photoluminescence during laser processing

Translation

Graphitization

Diamond Sensors Laboratory

10

BURRIED ELECTRODESSTRUCTURAL CHARACTERIZATION

Diamond Sensors Laboratory

11

Clean surface (Where graphitization starts)

Cracked Surface (Where graphitization ends)

Tilted sample

150 µm

Optical grade sc-CVD sample

Structural characterization – Optical microscopy

10µm diameter

20-100 µm diameter

700µm depth

Diamond Sensors Laboratory

12

Structural characterization – 2D Raman mapping

2D Raman depth mapping obtained by integrating diamond peak

No micro-channel Micro-channel with cracks

1000 CCD cts

0 CCD cts

1000 CCD cts

0 CCD cts10µm 10µm

Depth

Diamond Sensors Laboratory

13

Structural characterization – SEM imaging

Channel’s clean side after laser processing

Channel’s clean side after H2 plasma

H2

Plasma

Diamond Sensors Laboratory

14

BURRIED ELECTRODESELECTRICAL CHARACTERIZATION

Diamond Sensors Laboratory

15

Electrical characterization – I(V) measurements

Graphite’s channel resitivity

[3] T.Ohana, T.Nakamura, A.Goto et al. / Diamond and Related Materials, 12 (2003) 2011

ρ(average) = 5.7x10-1 Ω.cm

R(500µm) ~ 2kΩ

-2 0 2 4 6 8 10-1

0

1

2

3

4

5

6

Voltage (V)

Cur

rent

(m

A)

Match with nanocrystalline graphite given in literature3

A

Diamond Sensors Laboratory

16

PC-CVD DETECTORELECTRICAL CHARACTERIZATION

E6 detector grade10 x 10 x 0.7 mm3

Sample courtesy Alexander Oh

Diamond Sensors Laboratory

0 200 400 6001E-14

1E-13

1E-12

1E-11

Cu

rre

nt (

A)

Voltage (V)

17

Electrical characterization – Device leakage current

0 200 400 6001E-14

1E-13

1E-12

1E-11

Planar 3D

Cur

rent

(A

)

Voltage (V)

A

Comparison between planar and 3D geometry

Planar 3D

Diamond Sensors Laboratory

18

PC-CVD DETECTORCHARACTERIZATION UNDER ALPHA

PARTICLES

Diamond Sensors Laboratory

19

α

Al front contact

Al backcontact

Am-241 Source5.486MeV

R

Vbias = ±500V

Characterization under alpha particles – Experimental setup

FCSA

Fast Charge Sensitive Amplifier M.Ciobanu, GSI, Germany

Signal

Scope

Collimator

Diamond Sensors Laboratory

0 200 400 600 800 10000

20

40

60

80

100

Single hit Trend

Hit number

CC

E (%

)

0 200 400 600 800 10000

10

20

30

40

50

60

70

80

90

100

Single hit Trend

CC

E (%

)

Hit number

20

Characterization under alpha particles - Results

Polarization study – Holes drift (pc-CVD sample)

Planar 3D

Diamond Sensors Laboratory

0 500 1000 1500 20000

10

20

30

40

50

60

70

80

90

100

Single hit Trend

CC

E (%

)

Hit number0 500 1000 1500 2000

0

10

20

30

40

50

60

70

80

90

100

Single hit Trend

CC

E (%

)

Hit number

21

Characterization under alpha particles - Results

Polarization study – Electrons drift (pc-CVD sample)

Planar 3D

Diamond Sensors Laboratory

0 20 40 60 80 1001

10

100

Cou

nts

CCE (%)

Planar 3D

0 20 40 60 80 1001

10

100

Cou

nts

CCE (%)

Planar 3D

22

Characterization under alpha particles - Results

Holes drift (pc-CVD sample)

αα

Amplitude has been normalized with the signal of a sc-CVD « e6 electronic grade » diamond

Diamond Sensors Laboratory

23

Characterization under alpha particles - Results

Electrons drift (pc-CVD sample)

0 20 40 60 80 1001

10

100

Cou

nts

CEE (%)

Planar 3D

0 20 40 60 80 1001

10

100

Cou

nts

CCE (%)

Planar 3D

αα

Amplitude has been normalized with the signal of a sc-CVD « e6 electronic grade » diamond

michal
why not larger graphs

Diamond Sensors Laboratory

24

Characterization under alpha particles - Analysis

α

α

Low CCE

High CCE

Electric field simulation 3D Geometry but pseudo–3D detector

700µm

200µm

HV +500V

V/µm5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

Diamond Sensors Laboratory

25

SC-CVD DETECTOR

E6 electronic grade - <100> oriented3 x 3 x 0.3 mm3

Sample courtesy Eleni Berdermann

Diamond Sensors Laboratory

26

SC-CVD DETECTOROPTICAL CHARACTERIZATION

Diamond Sensors Laboratory

27

Bulk strain mapping after graphitization

Micro structured sc-CVD diamond observed with crossed polarizers

Test areas

Detector area

Detector’s optical characterization – Optical microscopy

Diamond Sensors Laboratory

28

Detector’s optical characterization – Optical microscopy

Detector after metallization

Diamond Sensors Laboratory

29

SC-CVD DETECTORELECTRICAL CHARACTERIZATION

Diamond Sensors Laboratory

30

Electrical characterization – Device leakage current

sc-CVD sample after plasma O2 etching

HV on cracked surface HV on clean surface

-200 -100 0 100 2001E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4 Increasing Voltage Decreasing Voltage

Cur

rent

(A

)Voltage (V)

-200 -100 0 100 2001E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4 Increasing Voltage Decreasing Voltage

Cur

rent

(A

)

Voltage (V)

Diamond Sensors Laboratory

31

SC-CVD DETECTORTRANSIENT CURRENT

MEASUREMENTS

Diamond Sensors Laboratory

32

2D Zone

HV +100V

ELECTRICAL CHARACTERIZATION – SETUP AND METHODS

2D Zone

Signal

ScopeAmpli

Transient current measurements

300µm

Ultra-Fast 40 dB, 2 GHz Broadband Amplifier

Diamond Sensors Laboratory

Signal 3D~500mV

Electrons drift

Mixed e/h drift

Signal 2D~100mV

Signal 2D~80mV

Holes drift

33

TRANSIENT CURRENT MEASUREMENTS - RESULTS

Without collimator

Alphas’ injection on cracked side Alphas’ injection on clean side

1 ns

Diamond Sensors Laboratory

34

TRANSIENT CURRENT MEASUREMENTS - RESULTS

With collimator

1 nsMixed e/h drift

Alphas’ injection on cracked side

Diamond Sensors Laboratory

V/µm

35

TRANSIENT CURRENT MEASUREMENTS - ANALYSIS

Electric field simulation

3

2.5

2

1.5

1

0.5

0

300µm

+100 Vα

α

Planar+3D signal

Planar signal only

Diamond Sensors Laboratory

36

TRANSIENT CURRENT MEASUREMENTS - RESULTS

Experimental results

-2 0 2 4 6 8 100.0

0.1

0.2

0.3

0.4

0.5

0.6

Planar 3D

Sig

nal a

mpl

itude

(V

)

Time (ns) Selection of relevant events

Amplitude ratio = 6

Diamond Sensors Laboratory

-2 0 2 4 6 8 100,0

5,0x10-5

1,0x10-4

1,5x10-4

2,0x10-4

2,5x10-4

Ana

lytic

ally

cal

ulat

ed s

igna

ls (

A)

Time (ns)

Planar 3D

Amplitude ratio = 23.8

2GHz low pass filter

37

TRANSIENT CURRENT MEASUREMENTS - RESULTS

Analytically calculated signals

-2 0 2 4 6 8 100,0

5,0x10-5

1,0x10-4

1,5x10-4

2,0x10-4

2,5x10-4

An

aly

tica

lly c

alu

late

d s

ign

als

(A

)

Time (ns)

Planar 3D

Theoritical response

Amplitude ratio = 22

Diamond Sensors Laboratory

Amplitude’s ratio = 6.2

38

TRANSIENT CURRENT MEASUREMENTS - RESULTS

Analytically calculated signals

350 MHz low pass filter

Ampli + device bandwith ~350MHz

Rdevice ~ 520Ω

12 channels connected

Rchannel ~ 6 kΩ

-2 0 2 4 6 8 100,0

5,0x10-5

1,0x10-4

1,5x10-4

2,0x10-4

2,5x10-4

Ana

lytic

ally

cal

ulat

ed s

igna

ls (

A)

Time (ns)

Planar 3D

Diamond Sensors Laboratory

39

Conclusion

• Conductive graphitic structures has been achieved on both pc- and sc-CVD sample

• These structures are suitable for detectors applications

• Two dectetors using 3D-geometry electrodes has been produced

• A real improvement between planar and 3D geometry has ben observed Higher signal Faster response « Polarization effect » decrease on pc-CVD detector

But real 3D detector hasn’t been achieved yet…

Diamond Sensors Laboratory

40

Thanks for your attention !