di erential calculus on jordan algebras and jordan modules · 1 physical motivations i: foundations...

32
Differential calculus on Jordan algebras and Jordan modules Based on A.C., L. Dabrowski, M. Dubois-Violette: Lett. Math. Phys. May 2018, https://doi.org/10.1007/s11005-018-1102-z Information geometry, Quantum mechanics and apllications. Alessandro Carotenuto SISSA Policeta, 27 June 2018 Alessandro Carotenuto (SISSA) Differential calculus on Jordan algebras and Jordan modules Policeta, 27 June 2018 1 / 28

Upload: others

Post on 22-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Di erential calculus on Jordan algebras and Jordan modules · 1 Physical motivations I: Foundations of quantum mechanics 2 Physical motivations II: The exceptional quantum space 3

Differential calculus on Jordan algebras and Jordanmodules

Based on A.C., L. Dabrowski, M. Dubois-Violette:Lett. Math. Phys. May 2018, https://doi.org/10.1007/s11005-018-1102-z

Information geometry, Quantum mechanics and apllications.

Alessandro Carotenuto

SISSA

Policeta, 27 June 2018

Alessandro Carotenuto (SISSA) Differential calculus on Jordan algebras and Jordan modules Based on A.C., L. Dabrowski, M. Dubois-Violette: Lett. Math. Phys. May 2018, https://doi.org/10.1007/s11005-018-1102-zPoliceta, 27 June 2018 1 / 28

Page 2: Di erential calculus on Jordan algebras and Jordan modules · 1 Physical motivations I: Foundations of quantum mechanics 2 Physical motivations II: The exceptional quantum space 3

1 Physical motivations I: Foundations of quantum mechanics

2 Physical motivations II: The exceptional quantum space

3 Modules over Jordan algebras

4 Differential calculus and connections

5 Conclusions

Alessandro Carotenuto (SISSA) Differential calculus on Jordan algebras and Jordan modules Based on A.C., L. Dabrowski, M. Dubois-Violette: Lett. Math. Phys. May 2018, https://doi.org/10.1007/s11005-018-1102-zPoliceta, 27 June 2018 2 / 28

Page 3: Di erential calculus on Jordan algebras and Jordan modules · 1 Physical motivations I: Foundations of quantum mechanics 2 Physical motivations II: The exceptional quantum space 3

Observables of any quantum system are given by hermitian (self-adjoint) elementsin a C* algebra (⊆ B(H) for a separable Hilbert space H). Nevertheless

”The basic operations on matrices or operators are multiplication by a complexscalar, addition, multiplication of matrices (composition of operators), andforming the complex conjugate transpose matrix (adjoint operator).This formalism is open to the objection that the operations are not“observable,” not intrinsic to the physically meaningful part of the system.In 1932 Jordan proposed a program to discover a new algebraic setting forquantum mechanics, which would be freed from dependence on an invisible butall-determining metaphysical matrix structure.”

K. Mc Crimmon, A Taste of Jordan Algebras

Alessandro Carotenuto (SISSA) Differential calculus on Jordan algebras and Jordan modules Based on A.C., L. Dabrowski, M. Dubois-Violette: Lett. Math. Phys. May 2018, https://doi.org/10.1007/s11005-018-1102-zPoliceta, 27 June 2018 3 / 28

Page 4: Di erential calculus on Jordan algebras and Jordan modules · 1 Physical motivations I: Foundations of quantum mechanics 2 Physical motivations II: The exceptional quantum space 3

Jordan algebras were introduced in the 30’s to formalize properties of a finitedimensional quantum system.

We must understand what are the essential operations to perform on physicalobservables:

The multiplication by a real scalar

The sum of two observables

Identity

Powers of observables

Alessandro Carotenuto (SISSA) Differential calculus on Jordan algebras and Jordan modules Based on A.C., L. Dabrowski, M. Dubois-Violette: Lett. Math. Phys. May 2018, https://doi.org/10.1007/s11005-018-1102-zPoliceta, 27 June 2018 4 / 28

Page 5: Di erential calculus on Jordan algebras and Jordan modules · 1 Physical motivations I: Foundations of quantum mechanics 2 Physical motivations II: The exceptional quantum space 3

Define the commutative product x y = 12

((x + y)2 − x2 − y2

).

Theorem (Jordan 1932)

Let J be a real vector such that

x ∈ J → ∃ xn ∈ J ∀ n ∈ N.

then the following are equivalent:

1 x r x s = x r+s (Power associativity)

2 x (y x2) = (x y) x2. ( Jordan Identity)

Alessandro Carotenuto (SISSA) Differential calculus on Jordan algebras and Jordan modules Based on A.C., L. Dabrowski, M. Dubois-Violette: Lett. Math. Phys. May 2018, https://doi.org/10.1007/s11005-018-1102-zPoliceta, 27 June 2018 5 / 28

Page 6: Di erential calculus on Jordan algebras and Jordan modules · 1 Physical motivations I: Foundations of quantum mechanics 2 Physical motivations II: The exceptional quantum space 3

Definition

A Jordan algebra (J, ), is a vector space J together with a bilinear product : J × J → J, such that ∀x , y ∈ J:

x y = y x(x y) x2 = x (y x2)

In quantum mechanics one has to deal with Euclidean Jordan algebras:

x2 + y2 = 0⇒ x = y = 0.

Alessandro Carotenuto (SISSA) Differential calculus on Jordan algebras and Jordan modules Based on A.C., L. Dabrowski, M. Dubois-Violette: Lett. Math. Phys. May 2018, https://doi.org/10.1007/s11005-018-1102-zPoliceta, 27 June 2018 6 / 28

Page 7: Di erential calculus on Jordan algebras and Jordan modules · 1 Physical motivations I: Foundations of quantum mechanics 2 Physical motivations II: The exceptional quantum space 3

Example (Special Jordan algebras)

Let A be an associative algebra, equip it with the product:

x y =1

2(xy + yx).

(A, ) is a Jordan algebra. Every Jordan algebra isomorphic to an algebra of thiskind is called a special Jordan algebra.Notice that if A is a ∗−algebra and Asa is the subspace of self-adjoint elements ofA, then Asa is not a subalgebra of A but it is a Jordan subalgebra of (A, ).

Alessandro Carotenuto (SISSA) Differential calculus on Jordan algebras and Jordan modules Based on A.C., L. Dabrowski, M. Dubois-Violette: Lett. Math. Phys. May 2018, https://doi.org/10.1007/s11005-018-1102-zPoliceta, 27 June 2018 7 / 28

Page 8: Di erential calculus on Jordan algebras and Jordan modules · 1 Physical motivations I: Foundations of quantum mechanics 2 Physical motivations II: The exceptional quantum space 3

Example (The exceptional Jordan algebra)

The exceptional Jordan algebra ( Albert algebra)

J83 = x ∈ M3(O) | x = x∗

x y = 12 (xy + yx)

In 1934 Albert proved that J83 is not special.

Alessandro Carotenuto (SISSA) Differential calculus on Jordan algebras and Jordan modules Based on A.C., L. Dabrowski, M. Dubois-Violette: Lett. Math. Phys. May 2018, https://doi.org/10.1007/s11005-018-1102-zPoliceta, 27 June 2018 8 / 28

Page 9: Di erential calculus on Jordan algebras and Jordan modules · 1 Physical motivations I: Foundations of quantum mechanics 2 Physical motivations II: The exceptional quantum space 3

Theorem (Jordan–von Neumann–Wigner 1934)

Any finite dimensional Euclidean Jordan algebra is a finite direct sum of simple,Euclidean, finite-dimensional Jordan algebras. Any finite-dimensional simpleEuclidean Jordan algebra is isomorphic to one of:

R, JSpinn+2 = R⊕ Rn+2

J1n+3, J

2n+3, J

4n+3, J

83 n ∈ N.

Apart from J83 all other simple finite dimensional euclidean Jordan algebras are

special.

Alessandro Carotenuto (SISSA) Differential calculus on Jordan algebras and Jordan modules Based on A.C., L. Dabrowski, M. Dubois-Violette: Lett. Math. Phys. May 2018, https://doi.org/10.1007/s11005-018-1102-zPoliceta, 27 June 2018 9 / 28

Page 10: Di erential calculus on Jordan algebras and Jordan modules · 1 Physical motivations I: Foundations of quantum mechanics 2 Physical motivations II: The exceptional quantum space 3

Connes’s noncommutative geometry has proved itself as a powerfulmathematical tool to extract all the physics of SM out o pure mathematicalspeculation...with two (significant) flaws:

Q = 2/3(Quarks) u c tQ = 0 (Leptons) νe νµ ντ

Q = −1/3(Quarks) d s bQ = −1(Leptons) e µ τ

In ”Exceptional quantum geometry and particle physics” (November 2016), M.Dubois-Violette proposed a way to overcome all of this allowing for quantumobservables in the exceptional Jordan algebra J8

3 , as we shall briefly review.

Alessandro Carotenuto (SISSA) Differential calculus on Jordan algebras and Jordan modules Based on A.C., L. Dabrowski, M. Dubois-Violette: Lett. Math. Phys. May 2018, https://doi.org/10.1007/s11005-018-1102-zPoliceta, 27 June 2018 10 / 28

Page 11: Di erential calculus on Jordan algebras and Jordan modules · 1 Physical motivations I: Foundations of quantum mechanics 2 Physical motivations II: The exceptional quantum space 3

Consider the Hilbert space C3 equipped with the usual vector product ×. Thisproduct is nonassociative and SU(3)−invariant.Equip C with the trivial representation of SU(3)

(g , z) 7→ z g ∈ SU(3), z ∈ C.

Let A = C⊕ C3, with the SU(3)−invariant product:

(z ,Z )(z ′,Z ′) = (zz ′ − 〈Z ,Z ′〉, zZ ′ − z ′Z + iZ × Z ′) .

Alessandro Carotenuto (SISSA) Differential calculus on Jordan algebras and Jordan modules Based on A.C., L. Dabrowski, M. Dubois-Violette: Lett. Math. Phys. May 2018, https://doi.org/10.1007/s11005-018-1102-zPoliceta, 27 June 2018 11 / 28

Page 12: Di erential calculus on Jordan algebras and Jordan modules · 1 Physical motivations I: Foundations of quantum mechanics 2 Physical motivations II: The exceptional quantum space 3

Proposition

The algebra A is isomorphic to the algebra of octonions O. SU(3) is the subgroupof the special Lie group Aut(O) which preserves the decomposition O = C⊕ C3.

If we interpret C3 as the internal colour space of quarks, and C as the (trivial)internal colour space of leptons ⇒ quark-lepton symmetry is just aconsequence of SU(3)−colour symmetry.

Alessandro Carotenuto (SISSA) Differential calculus on Jordan algebras and Jordan modules Based on A.C., L. Dabrowski, M. Dubois-Violette: Lett. Math. Phys. May 2018, https://doi.org/10.1007/s11005-018-1102-zPoliceta, 27 June 2018 12 / 28

Page 13: Di erential calculus on Jordan algebras and Jordan modules · 1 Physical motivations I: Foundations of quantum mechanics 2 Physical motivations II: The exceptional quantum space 3

Proposition

The algebra A is isomorphic to the algebra of octonions O. SU(3) is the subgroupof the special Lie group Aut(O) which preserves the decomposition O = C⊕ C3.

If we interpret C3 as the internal colour space of quarks, and C as the (trivial)internal colour space of leptons ⇒ quark-lepton symmetry is just aconsequence of SU(3)−colour symmetry.

Alessandro Carotenuto (SISSA) Differential calculus on Jordan algebras and Jordan modules Based on A.C., L. Dabrowski, M. Dubois-Violette: Lett. Math. Phys. May 2018, https://doi.org/10.1007/s11005-018-1102-zPoliceta, 27 June 2018 12 / 28

Page 14: Di erential calculus on Jordan algebras and Jordan modules · 1 Physical motivations I: Foundations of quantum mechanics 2 Physical motivations II: The exceptional quantum space 3

From the decomposition O = C⊕ C3 one gets J83 = J2

3 ⊕M3(C) :ξ1 x3 x2

x3 ξ2 x1

x2 x3 ξ3

=

ξ1 z3 z2

z3 ξ2 z1

z2 z3 ξ3

⊕ (Z1,Z2,Z3)

xi = zi + Zi xi ∈ O, zi ∈ C,Zi ∈ C3, ξi ∈ R.

Proposition

The subgroup of Aut(J83 ) which preserves the decomposition above is

(SU(3)× SU(3)) /Z3, with action of (U,V ) ∈ (SU(3)× SU(3)) /Z3 :

H 7→ VHV ∗ M 7→ UMV ∗

(H,M) ∈ J23 ⊕M3(C).

We have given the observables, now we should talk about states. Which leaves uswith the question: what does it mean to represent a Jordan algebra?

Alessandro Carotenuto (SISSA) Differential calculus on Jordan algebras and Jordan modules Based on A.C., L. Dabrowski, M. Dubois-Violette: Lett. Math. Phys. May 2018, https://doi.org/10.1007/s11005-018-1102-zPoliceta, 27 June 2018 13 / 28

Page 15: Di erential calculus on Jordan algebras and Jordan modules · 1 Physical motivations I: Foundations of quantum mechanics 2 Physical motivations II: The exceptional quantum space 3

From the decomposition O = C⊕ C3 one gets J83 = J2

3 ⊕M3(C) :ξ1 x3 x2

x3 ξ2 x1

x2 x3 ξ3

=

ξ1 z3 z2

z3 ξ2 z1

z2 z3 ξ3

⊕ (Z1,Z2,Z3)

xi = zi + Zi xi ∈ O, zi ∈ C,Zi ∈ C3, ξi ∈ R.

Proposition

The subgroup of Aut(J83 ) which preserves the decomposition above is

(SU(3)× SU(3)) /Z3, with action of (U,V ) ∈ (SU(3)× SU(3)) /Z3 :

H 7→ VHV ∗ M 7→ UMV ∗

(H,M) ∈ J23 ⊕M3(C).

We have given the observables, now we should talk about states. Which leaves uswith the question: what does it mean to represent a Jordan algebra?

Alessandro Carotenuto (SISSA) Differential calculus on Jordan algebras and Jordan modules Based on A.C., L. Dabrowski, M. Dubois-Violette: Lett. Math. Phys. May 2018, https://doi.org/10.1007/s11005-018-1102-zPoliceta, 27 June 2018 13 / 28

Page 16: Di erential calculus on Jordan algebras and Jordan modules · 1 Physical motivations I: Foundations of quantum mechanics 2 Physical motivations II: The exceptional quantum space 3

DefinitionLet J be a Jordan algebra, let M be a vector space equipped with a right and leftbilinear maps:

J ⊗M → M x ⊗ Φ 7→ xΦ

M ⊗ J → M Φ⊗ x 7→ Φx

On J ⊕M, define the bilinear product (x ,Φ)(x ′,Φ′) = (xx ′, xΦ′ + Φx ′), then M isa Jordan bimodule if J ⊕M endowed with this product is a Jordan algebra, thatis:

xΦ = Φx

x(x2Φ) = x2(xΦ)

(x2y)Φ− x2(yΦ) = 2((xy)Φ− x(yΦ))

1JΦ = Φ

Alessandro Carotenuto (SISSA) Differential calculus on Jordan algebras and Jordan modules Based on A.C., L. Dabrowski, M. Dubois-Violette: Lett. Math. Phys. May 2018, https://doi.org/10.1007/s11005-018-1102-zPoliceta, 27 June 2018 14 / 28

Page 17: Di erential calculus on Jordan algebras and Jordan modules · 1 Physical motivations I: Foundations of quantum mechanics 2 Physical motivations II: The exceptional quantum space 3

Example (Free modules)

Let J be a finite dimensional Jordan algebra. A free J−module M is:

M = J ⊗ E

where E is a finite dimensional vector space and the action of J on M is given bymultiplication on the first component of M.

As matter of fact every Jordan module over J83 is a free module.

Now we get back to Standard Model

Alessandro Carotenuto (SISSA) Differential calculus on Jordan algebras and Jordan modules Based on A.C., L. Dabrowski, M. Dubois-Violette: Lett. Math. Phys. May 2018, https://doi.org/10.1007/s11005-018-1102-zPoliceta, 27 June 2018 15 / 28

Page 18: Di erential calculus on Jordan algebras and Jordan modules · 1 Physical motivations I: Foundations of quantum mechanics 2 Physical motivations II: The exceptional quantum space 3

There are two familes for each generations ⇒ take the module M = J83 ⊕ J8

3 , withthe particle assignment:

Ju =

α1 ντ νµντ α2 νeνµ νe α3

+ (u, c , t) Jd =

β1 τ µτ β2 eµ e β3

+ (d , s, b)

H 7→ VHV ∗ M 7→ UMV ∗

(H,M) ∈ J23 ⊕M3(C).

The action of U ∈ SU(3) is responsible the usual color mixing.

The action of V ∈ SU(3) is responsible for the mixing of differentgenerations of leptons.

New real fields appears on the diagonal (There is room for a small stepbeyond Standard Model!).

Alessandro Carotenuto (SISSA) Differential calculus on Jordan algebras and Jordan modules Based on A.C., L. Dabrowski, M. Dubois-Violette: Lett. Math. Phys. May 2018, https://doi.org/10.1007/s11005-018-1102-zPoliceta, 27 June 2018 16 / 28

Page 19: Di erential calculus on Jordan algebras and Jordan modules · 1 Physical motivations I: Foundations of quantum mechanics 2 Physical motivations II: The exceptional quantum space 3

There are two familes for each generations ⇒ take the module M = J83 ⊕ J8

3 , withthe particle assignment:

Ju =

α1 ντ νµντ α2 νeνµ νe α3

+ (u, c , t) Jd =

β1 τ µτ β2 eµ e β3

+ (d , s, b)

H 7→ VHV ∗ M 7→ UMV ∗

(H,M) ∈ J23 ⊕M3(C).

The action of U ∈ SU(3) is responsible the usual color mixing.

The action of V ∈ SU(3) is responsible for the mixing of differentgenerations of leptons.

New real fields appears on the diagonal (There is room for a small stepbeyond Standard Model!).

Alessandro Carotenuto (SISSA) Differential calculus on Jordan algebras and Jordan modules Based on A.C., L. Dabrowski, M. Dubois-Violette: Lett. Math. Phys. May 2018, https://doi.org/10.1007/s11005-018-1102-zPoliceta, 27 June 2018 16 / 28

Page 20: Di erential calculus on Jordan algebras and Jordan modules · 1 Physical motivations I: Foundations of quantum mechanics 2 Physical motivations II: The exceptional quantum space 3

An important tool to study morphism between Jordan modules:

DefinitionFor any category of algebras, the center of an algebra A is the commutative andassociative subalgebra:

Z (A) = z ∈ A | [x , z ] = 0, [x , y , z ] = [x , z , y ] = 0 ∀x , y ∈ A

where we have defined the associator:

[x , y , z ] = (xy)z − x(yz).

Alessandro Carotenuto (SISSA) Differential calculus on Jordan algebras and Jordan modules Based on A.C., L. Dabrowski, M. Dubois-Violette: Lett. Math. Phys. May 2018, https://doi.org/10.1007/s11005-018-1102-zPoliceta, 27 June 2018 17 / 28

Page 21: Di erential calculus on Jordan algebras and Jordan modules · 1 Physical motivations I: Foundations of quantum mechanics 2 Physical motivations II: The exceptional quantum space 3

DefinitionLet J be a Jordan algebra, let M and N be two modules over J, then a modulehomomorphism between M and N is a linear map ϕ : M → N such that

jϕ(x) = ϕ(jx) ∀ x ∈ M,∀ j ∈ J.

We got the following result concerning homomorphism between free modules overJordan algebras:

Proposition (A.C., L. Dabrowski, M. Dubois-Violette)

Let J be a finite dimensional, unital, simple Jordan algebra, let M = J ⊗ E andN = J ⊗ F , where E ,F are two finite dimensional vector spaces, be free modulesover J. Then every module homomorphism ϕ : M → N is written as

ϕ(x ⊗ v) = x ⊗ Av x ∈ J, v ∈ E

where A : M → N is a linear map.

Alessandro Carotenuto (SISSA) Differential calculus on Jordan algebras and Jordan modules Based on A.C., L. Dabrowski, M. Dubois-Violette: Lett. Math. Phys. May 2018, https://doi.org/10.1007/s11005-018-1102-zPoliceta, 27 June 2018 18 / 28

Page 22: Di erential calculus on Jordan algebras and Jordan modules · 1 Physical motivations I: Foundations of quantum mechanics 2 Physical motivations II: The exceptional quantum space 3

TheoremLet J be a finite dimensional, unital, Jordan algebra, let M = J ⊗ E andN = J ⊗ F be free modules over J, with E ,F finite dimensional vector space ofdimension m and n respectively. Then if f : M → N is homomorphism of Jmodules, there exist αk ∈ Z (J) and fk ∈ Mm×n such that:

f (1⊗ e) =∑k

αk ⊗ fk(e). ∀e ∈ E .

In a more functorial fashion:

Theorem

Let J be a unital Jordan algebra with center Z (J). Denote as FModJ the categoryof free Jordan modules over J with and as FModZ(J) the category of free modulesover the associative algebra Z (J) with. Then the following functor is anisomorphism of categories:

F : J ⊗ E → Z (J)⊗ E

(ϕ : J ⊗ E → J ⊗ F ) 7→ (ϕZ(J) : Z (J)⊗ E → Z (J)⊗ F )

where ϕZ(J) is the restriction of ϕ to Z (J)⊗ E .

Alessandro Carotenuto (SISSA) Differential calculus on Jordan algebras and Jordan modules Based on A.C., L. Dabrowski, M. Dubois-Violette: Lett. Math. Phys. May 2018, https://doi.org/10.1007/s11005-018-1102-zPoliceta, 27 June 2018 19 / 28

Page 23: Di erential calculus on Jordan algebras and Jordan modules · 1 Physical motivations I: Foundations of quantum mechanics 2 Physical motivations II: The exceptional quantum space 3

DefinitionLet Ω = ⊕n∈NΩn be a N unital graded algebra and for x ∈ Ω, Ω is a Jordansuperalgebra if it is graded commutative, that is

xy = (−1)|x||y |yx

and respects the Jordan identity

Alessandro Carotenuto (SISSA) Differential calculus on Jordan algebras and Jordan modules Based on A.C., L. Dabrowski, M. Dubois-Violette: Lett. Math. Phys. May 2018, https://doi.org/10.1007/s11005-018-1102-zPoliceta, 27 June 2018 20 / 28

Page 24: Di erential calculus on Jordan algebras and Jordan modules · 1 Physical motivations I: Foundations of quantum mechanics 2 Physical motivations II: The exceptional quantum space 3

Der(J) = X ∈ End(J) | X (xy) = X (x)y + xX (y) is a Z (J)−module and withthe commutator as product it is a Lie algebra.

Definition

Let Ω1(J) be J −module of Z (J)−homomorphism of Der(J) into J. Define thedifferential:

d : J → Ω1(J), (dx)(X ) = X (x) ∀x ∈ J X ∈ Der(J).

We refer to (Ω1(J), d) as first order derivation based differential calculus overJ.

Then we extend d to a linear endomorphism of ΩDer (J). By means of theChavelley-Ellenberg formula.d is an antiderivation and d2 = 0. We refer to the pair (Ω, d) as derivationbased differential calculus.

Alessandro Carotenuto (SISSA) Differential calculus on Jordan algebras and Jordan modules Based on A.C., L. Dabrowski, M. Dubois-Violette: Lett. Math. Phys. May 2018, https://doi.org/10.1007/s11005-018-1102-zPoliceta, 27 June 2018 21 / 28

Page 25: Di erential calculus on Jordan algebras and Jordan modules · 1 Physical motivations I: Foundations of quantum mechanics 2 Physical motivations II: The exceptional quantum space 3

More generally:

DefinitionIf Ω = ⊕n∈NΩn is a Jordan superalgebra and d is an antiderivation on Ω such thatd2 = 0, d is called a differential and Ω is called a differential graded Jordanalgebra. If every Ωn is a module over a Jordan algebra J we call (Ω, d) adifferential calculus over J.

In general, derivation based differential calculus does not play any privileged rolein the theory of differential calculus over a give Jordan algebra, with oneinteresting exception:

Theorem (A.C., L.Dabrowski, M. Dubois-Violette)

Let (Ω, d) be a differential calculus over J83 and let φ : J8

3 → Ω0 be anhomomorphism of unital Jordan algebras. Then there exists a unique extensionφ : ΩDer

(J8

3

)→ Ω such that d φ = φ dDer .

Alessandro Carotenuto (SISSA) Differential calculus on Jordan algebras and Jordan modules Based on A.C., L. Dabrowski, M. Dubois-Violette: Lett. Math. Phys. May 2018, https://doi.org/10.1007/s11005-018-1102-zPoliceta, 27 June 2018 22 / 28

Page 26: Di erential calculus on Jordan algebras and Jordan modules · 1 Physical motivations I: Foundations of quantum mechanics 2 Physical motivations II: The exceptional quantum space 3

More generally:

DefinitionIf Ω = ⊕n∈NΩn is a Jordan superalgebra and d is an antiderivation on Ω such thatd2 = 0, d is called a differential and Ω is called a differential graded Jordanalgebra. If every Ωn is a module over a Jordan algebra J we call (Ω, d) adifferential calculus over J.

In general, derivation based differential calculus does not play any privileged rolein the theory of differential calculus over a give Jordan algebra, with oneinteresting exception:

Theorem (A.C., L.Dabrowski, M. Dubois-Violette)

Let (Ω, d) be a differential calculus over J83 and let φ : J8

3 → Ω0 be anhomomorphism of unital Jordan algebras. Then there exists a unique extensionφ : ΩDer

(J8

3

)→ Ω such that d φ = φ dDer .

Alessandro Carotenuto (SISSA) Differential calculus on Jordan algebras and Jordan modules Based on A.C., L. Dabrowski, M. Dubois-Violette: Lett. Math. Phys. May 2018, https://doi.org/10.1007/s11005-018-1102-zPoliceta, 27 June 2018 22 / 28

Page 27: Di erential calculus on Jordan algebras and Jordan modules · 1 Physical motivations I: Foundations of quantum mechanics 2 Physical motivations II: The exceptional quantum space 3

DefinitionA connection on a Jordan module M is a linear map

∇ : Der(J)→ End(M)

X 7→ ∇X

such that ∀x ∈ J, m ∈ M and z ∈ Z (J) :∇X (xm) = X (x)m + x∇X (m)

∇zX (m) = z∇X (m)

It follows that ∇−∇′ ∈ End(M).

DefinitionThe curvature of a connection ∇ is

RX ,Y = [∇X ,∇Y ]−∇[X ,Y ].

Alessandro Carotenuto (SISSA) Differential calculus on Jordan algebras and Jordan modules Based on A.C., L. Dabrowski, M. Dubois-Violette: Lett. Math. Phys. May 2018, https://doi.org/10.1007/s11005-018-1102-zPoliceta, 27 June 2018 23 / 28

Page 28: Di erential calculus on Jordan algebras and Jordan modules · 1 Physical motivations I: Foundations of quantum mechanics 2 Physical motivations II: The exceptional quantum space 3

Example (Free modules)

M = J ⊗ E , we have a base connection ∇0 = d ⊗ IdE : J ⊗ E → Ω1Der ⊗ E . Any

connection on M is then written as:

∇ = ∇0 +A

A : Der(J)→ Mn(R).

We get the following characterization, which is very similar to its counterpart inthe context of Lie algebra:

Proposition (A.C., L.Dabrowski, M. Dubois-Violette)

Flat connections on M are in one to one correspondence with Lie algebrahomomorphisms A : Der(J)→ Mn(R). That is, for a basis Xµ ⊂ Der(J) withstructure constants [Xµ,Xν ] = cτµνXτ :

[A(Xµ),A(Xν)] = cτµνA(Xτ ).

Alessandro Carotenuto (SISSA) Differential calculus on Jordan algebras and Jordan modules Based on A.C., L. Dabrowski, M. Dubois-Violette: Lett. Math. Phys. May 2018, https://doi.org/10.1007/s11005-018-1102-zPoliceta, 27 June 2018 24 / 28

Page 29: Di erential calculus on Jordan algebras and Jordan modules · 1 Physical motivations I: Foundations of quantum mechanics 2 Physical motivations II: The exceptional quantum space 3

We can use the following classical result to define a connection on many Jordanmodules:

Theorem (Jacobson 1951)

Let J be a finite dimensional, semi-simple Jordan algebra, let δ ∈ Der(J). Thereexist a finite number of couples of elements xi , yi ∈ J such that, for every z ∈ J :

δ(z) =∑

[xi , z , yi ].

This is analogue to the second Whitehead’s lemma for Lie algebras.

Alessandro Carotenuto (SISSA) Differential calculus on Jordan algebras and Jordan modules Based on A.C., L. Dabrowski, M. Dubois-Violette: Lett. Math. Phys. May 2018, https://doi.org/10.1007/s11005-018-1102-zPoliceta, 27 June 2018 25 / 28

Page 30: Di erential calculus on Jordan algebras and Jordan modules · 1 Physical motivations I: Foundations of quantum mechanics 2 Physical motivations II: The exceptional quantum space 3

Example (Connections for semi simple Jordan algebras)

Let J be a semi simple Jordan algebra. Der(J) 3 X =[x i , ·, y i

]lift to a derivation

J ⊕M. We define:

∇ : Der(J)→ End(M)

X 7→[x i , ·, y i

]Here the ”leibiniz rule for connection” is equivalent to the Leibniz rule on J ⊕M.

Alessandro Carotenuto (SISSA) Differential calculus on Jordan algebras and Jordan modules Based on A.C., L. Dabrowski, M. Dubois-Violette: Lett. Math. Phys. May 2018, https://doi.org/10.1007/s11005-018-1102-zPoliceta, 27 June 2018 26 / 28

Page 31: Di erential calculus on Jordan algebras and Jordan modules · 1 Physical motivations I: Foundations of quantum mechanics 2 Physical motivations II: The exceptional quantum space 3

The study of connections on Jordan modules has revealed some interestingnonassociative geometry. These might be crucial in a future reformulation ofstandard model in this new context.There is a lot of work to do:

On the mathematical side:I Study Jordan module homomorphism and connections for non free modules.I Recover all the algebraic machinery from Noncommutative geometry.

On the physical side:I Get SU(2)× U(1) gauge symmetry.I Study what happens when coupling with space-time degrees of freedom.I Write down a suitable action and study some dynamics.

Alessandro Carotenuto (SISSA) Differential calculus on Jordan algebras and Jordan modules Based on A.C., L. Dabrowski, M. Dubois-Violette: Lett. Math. Phys. May 2018, https://doi.org/10.1007/s11005-018-1102-zPoliceta, 27 June 2018 27 / 28

Page 32: Di erential calculus on Jordan algebras and Jordan modules · 1 Physical motivations I: Foundations of quantum mechanics 2 Physical motivations II: The exceptional quantum space 3

M. Dubois-Violette ”Exceptional quantum geometry and particle physics”Nuclear Physics B, Volume 912, November 2016, Pages 426− 449.

A.C., L. Dabrowsky, M. Dubois-Violette, Differential calculus on Jordanalgebra and Jordan modules March 2018, Letters in Mathematical Physics

R. Iordanescu Jordan structures in mathematics and physicsarXiv:1106.4415v1 [math.DG] 22 Jun 2011

N. Jacobson, Structure and Representations of Jordan Algebras, AmericanMathematical Society, 1968.

Alessandro Carotenuto (SISSA) Differential calculus on Jordan algebras and Jordan modules Based on A.C., L. Dabrowski, M. Dubois-Violette: Lett. Math. Phys. May 2018, https://doi.org/10.1007/s11005-018-1102-zPoliceta, 27 June 2018 28 / 28