developments and applications of numerical simulation in ......projection welding of srew nuts...

26
General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from orbit.dtu.dk on: Aug 31, 2021 Developments and applications of numerical simulation in resistance welding Greitmann, Martin; Nielsen, Chris Valentin; Zhang, Wenqi Publication date: 2013 Link back to DTU Orbit Citation (APA): Greitmann, M. (Author), Nielsen, C. V. (Author), & Zhang, W. (Author). (2013). Developments and applications of numerical simulation in resistance welding. Sound/Visual production (digital)

Upload: others

Post on 07-Jul-2021

43 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Developments and applications of numerical simulation in ......projection welding of srew nuts Optimization of srew nut geometry old new 24 IIW Essen 2013, C-III ©2013 M. J. Greitmann,

General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

You may not further distribute the material or use it for any profit-making activity or commercial gain

You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from orbit.dtu.dk on: Aug 31, 2021

Developments and applications of numerical simulation in resistance welding

Greitmann, Martin; Nielsen, Chris Valentin; Zhang, Wenqi

Publication date:2013

Link back to DTU Orbit

Citation (APA):Greitmann, M. (Author), Nielsen, C. V. (Author), & Zhang, W. (Author). (2013). Developments and applications ofnumerical simulation in resistance welding. Sound/Visual production (digital)

Page 2: Developments and applications of numerical simulation in ......projection welding of srew nuts Optimization of srew nut geometry old new 24 IIW Essen 2013, C-III ©2013 M. J. Greitmann,

1

1IIW Essen 2013, C-III©2013 M. J. Greitmann, Hochschule Esslingen

Martin GreitmannHochschule Esslingen University of Applied SciencesGermany

Chris V. Nielsen and Wenqi ZhangSWANTEC Software and Engineering ApSDenmark

Developments and Applications of Numerical Simulation in

Resistance Welding

IIW-Doc. III-1680-13

2IIW Essen 2013, C-III©2013 M. J. Greitmann, Hochschule Esslingen

Resistance spot welding (material: DC04; t1=0.8mm / t2=1.5 mm)

Quality assurance numerical process analysis

Spotwelder (1997)

Page 3: Developments and applications of numerical simulation in ......projection welding of srew nuts Optimization of srew nut geometry old new 24 IIW Essen 2013, C-III ©2013 M. J. Greitmann,

2

3IIW Essen 2013, C-III©2013 M. J. Greitmann, Hochschule Esslingen

Numerical Simulationresistance welding

SYSWELD ® (FRAMASOFT S.A./FRAMATOME)

SPOTSIM ® (RWTH Aachen, Tula State University)

SPOTWELDER ® (MPA Stuttgart)

SORPAS ® (SWANTEC Software and Engineering ApS)

Software:

4IIW Essen 2013, C-III©2013 M. J. Greitmann, Hochschule Esslingen

Resistance WeldingMODEL FOR NUMERICAL ANALYSIS

Geometry Material data ( Young’s modulus, µ, ... )

Electrode force

Structure mechanicModel

Stress distribution

Deformation

Temperature-

fieldDesign

Welding current Material data ( cp, Rk,, ... )

Electric-thermalModel

Temperature distribution

Numerical process analysis

Page 4: Developments and applications of numerical simulation in ......projection welding of srew nuts Optimization of srew nut geometry old new 24 IIW Essen 2013, C-III ©2013 M. J. Greitmann,

3

5IIW Essen 2013, C-III©2013 M. J. Greitmann, Hochschule Esslingen

Mechanical Model - Machine

Numerical process analysis

6IIW Essen 2013, C-III©2013 M. J. Greitmann, Hochschule Esslingen

Data base

physical material properties

electrical resistivity thermal conductivity heat capacity cp

Numerical process analysis

Page 5: Developments and applications of numerical simulation in ......projection welding of srew nuts Optimization of srew nut geometry old new 24 IIW Essen 2013, C-III ©2013 M. J. Greitmann,

4

7IIW Essen 2013, C-III©2013 M. J. Greitmann, Hochschule Esslingen

Data basemechanical material properties

Numerical process analysis

8IIW Essen 2013, C-III©2013 M. J. Greitmann, Hochschule Esslingen

Database

Material Resistance

and Contact Resistance

20

40

60

80

100

120

140

µ

180

Ele

ctric

al R

esis

tanc

e

0 400 800 1200 °C 2000

Temperature

RAlloy ( t1 = t2 = 1.25 mm; AlMg0.4Si1.2 )RContact Resistanc ( Model: MPA Stuttgart )RAlloy + RContact Resistanc

Temperature

Co

nta

ct

Re

sis

tan

ce

Numerical process analysis

Page 6: Developments and applications of numerical simulation in ......projection welding of srew nuts Optimization of srew nut geometry old new 24 IIW Essen 2013, C-III ©2013 M. J. Greitmann,

5

9IIW Essen 2013, C-III©2013 M. J. Greitmann, Hochschule Esslingen

Measurement - transition resistance

ISO 18594

10IIW Essen 2013, C-III©2013 M. J. Greitmann, Hochschule Esslingen

0 1 2 3 4 5 6 7 8

CuFe2P, t = 0,6 mmCuFe2P, t = 0,4 mmCuFe2P, t = 0,2 mm

CuNi3Si1Mg, t = 0,6 mmCuNi3Si1Mg, t = 0,4 mmCuNi3Si1Mg, t = 0,2 mm

CuNiCo1Si, t = 0,4 mmCuNiCo1Si, t = 0,2 mm

CuSn8, t = 0,6 mmCuSn8, t = 0,4 mmCuSn8, t = 0,2 mm

CuZn37, t = 0,6 mmCuZn37, t = 0,4 mmCuZn37, t = 0,2 mmE-Cu58, t = 0,6 mmE-Cu58, t = 0,4 mmE-Cu58, t = 0,2 mm

CuCrAgFeTiSi, t = 0,4 mmCuCrAgFeTiSi, t = 0,2 mm

Übergangswiderstand / m

Transition resistance (copper alloys)

(MPA Stuttgart)Transition resistance

Page 7: Developments and applications of numerical simulation in ......projection welding of srew nuts Optimization of srew nut geometry old new 24 IIW Essen 2013, C-III ©2013 M. J. Greitmann,

6

11IIW Essen 2013, C-III©2013 M. J. Greitmann, Hochschule Esslingen

Numerical process analysisHot staking process

Resistance welding of commutator segments with hook geometry

12IIW Essen 2013, C-III©2013 M. J. Greitmann, Hochschule Esslingen

Numerical process analysisHot staking process

Resistance welding of commutator segments

slot geometry hook geometry

Page 8: Developments and applications of numerical simulation in ......projection welding of srew nuts Optimization of srew nut geometry old new 24 IIW Essen 2013, C-III ©2013 M. J. Greitmann,

7

13IIW Essen 2013, C-III©2013 M. J. Greitmann, Hochschule Esslingen

Numerical process analysisHot staking process

1984 R. Schwab (doctoral thesis): Numerical simulation of Hot Staking process

commutator segments with slot geometry

temperature field temperature-time-curve

(Schweißen und Schneiden, 38 (1986), Heft 8, S. 365-369)

14IIW Essen 2013, C-III©2013 M. J. Greitmann, Hochschule Esslingen

Numerical process analysisHot staking process (2012)

(Lanier)

Resistance welding of commutator segments with hook geometry

Page 9: Developments and applications of numerical simulation in ......projection welding of srew nuts Optimization of srew nut geometry old new 24 IIW Essen 2013, C-III ©2013 M. J. Greitmann,

8

15IIW Essen 2013, C-III©2013 M. J. Greitmann, Hochschule Esslingen

Numerical process analysisHot staking process (2012)

(Lanier)

Resistance welding of commutator segments with hook geometry

16IIW Essen 2013, C-III©2013 M. J. Greitmann, Hochschule Esslingen

Numerical process analysiselectrotecnic application

wire termination

Page 10: Developments and applications of numerical simulation in ......projection welding of srew nuts Optimization of srew nut geometry old new 24 IIW Essen 2013, C-III ©2013 M. J. Greitmann,

9

17IIW Essen 2013, C-III©2013 M. J. Greitmann, Hochschule Esslingen

W-Elektrode

W-Elektrode

CuSn6 -Gabel

CuL -Draht

Numerical process analysiselectrotechnic application

FEM Model & Process

(Dötzer)

18IIW Essen 2013, C-III©2013 M. J. Greitmann, Hochschule Esslingen

Numerical process analysiselectrotechnic application

(Dötzer)

Page 11: Developments and applications of numerical simulation in ......projection welding of srew nuts Optimization of srew nut geometry old new 24 IIW Essen 2013, C-III ©2013 M. J. Greitmann,

10

19IIW Essen 2013, C-III©2013 M. J. Greitmann, Hochschule Esslingen Projection Welding - Joint Geometry

Stress distribution(von Mises)

Numerical process analysiselectrotechnic application

Projection welding

20IIW Essen 2013, C-III©2013 M. J. Greitmann, Hochschule Esslingen

Numerical process analysiselectrotechnic application

Calculated projection deformation and temperature distribution

(Kußmaul, Blind, Zeng, Greitmann, Schäfer, 1991)

Database: Temperature-dependent stress-strain behaviour of the used projection

Page 12: Developments and applications of numerical simulation in ......projection welding of srew nuts Optimization of srew nut geometry old new 24 IIW Essen 2013, C-III ©2013 M. J. Greitmann,

11

21IIW Essen 2013, C-III©2013 M. J. Greitmann, Hochschule Esslingen

calculated movement and temperature distribution

Numerical process analysiselectrotechnic application

(Vichniakov, Herold, Greitmann, Roos, 2002 in Mathematical modelling of the weld phenomena )

2001 Alexei Vichniakov (doctoral thesis): numerical simulation of projection welding

22IIW Essen 2013, C-III©2013 M. J. Greitmann, Hochschule Esslingen

(Bschorr, Cramer, SLV München NL der GSI mbH)

Numerical process analysisprojection welding of srew nuts

Projection welding: srew nuts onto high strength steel sheet

Page 13: Developments and applications of numerical simulation in ......projection welding of srew nuts Optimization of srew nut geometry old new 24 IIW Essen 2013, C-III ©2013 M. J. Greitmann,

12

23IIW Essen 2013, C-III©2013 M. J. Greitmann, Hochschule Esslingen

(Bschorr, Cramer, SLV München NL der GSI mbH)

Numerical process analysisprojection welding of srew nuts

Optimization of srew nut geometry

old new

24IIW Essen 2013, C-III©2013 M. J. Greitmann, Hochschule Esslingen

• Square nut welding

Numerical process analysisprojection welding

Page 14: Developments and applications of numerical simulation in ......projection welding of srew nuts Optimization of srew nut geometry old new 24 IIW Essen 2013, C-III ©2013 M. J. Greitmann,

13

25IIW Essen 2013, C-III©2013 M. J. Greitmann, Hochschule Esslingen

circular saw

stellite hard facing

1920 1960

Brazing (CuAg solder)

resistance welding Laser beam welding

1985 1992

band saw(grinded)

padsaw

padsaw

Numerical process analysisCarbide tipped saw blade

26IIW Essen 2013, C-III©2013 M. J. Greitmann, Hochschule Esslingen

FE-Model (geometry)

FE-Model

ElektrodeTrägersegment

HartmetallElektrodenbacken

Experimental setup

Numerical process analysisCarbide tipped band saw

(Greitmann, Wink)

Page 15: Developments and applications of numerical simulation in ......projection welding of srew nuts Optimization of srew nut geometry old new 24 IIW Essen 2013, C-III ©2013 M. J. Greitmann,

14

27IIW Essen 2013, C-III©2013 M. J. Greitmann, Hochschule Esslingen

Current distribution

A

A

Temperature field

time: 70 ms

Videoclip

Numerical process analysisCarbide tipped band saw

(Greitmann, Wink)

28IIW Essen 2013, C-III©2013 M. J. Greitmann, Hochschule Esslingen

Carbide tipped saw band

Hartmetall

Sägeband

Numerical process analysisCarbide tipped band saw

(Greitmann, Wink)

Page 16: Developments and applications of numerical simulation in ......projection welding of srew nuts Optimization of srew nut geometry old new 24 IIW Essen 2013, C-III ©2013 M. J. Greitmann,

15

29IIW Essen 2013, C-III©2013 M. J. Greitmann, Hochschule Esslingen

Längsschnitt

Realtime-Bildfolgezeit

5 ms

Konturabstand 100 °C

Temperatur-bereich

0°C bis 2000 °C

nach 70 msVideoclip

Numerical process analysisCarbide tipped band saw

(Greitmann, Wink)

30IIW Essen 2013, C-III©2013 M. J. Greitmann, Hochschule Esslingen

APPLICATION

Spot Welding

Numerical process analysisresistance spot welding

Page 17: Developments and applications of numerical simulation in ......projection welding of srew nuts Optimization of srew nut geometry old new 24 IIW Essen 2013, C-III ©2013 M. J. Greitmann,

16

31IIW Essen 2013, C-III©2013 M. J. Greitmann, Hochschule Esslingen

Numerical process analysisresistance spot welding (1996)

32IIW Essen 2013, C-III©2013 M. J. Greitmann, Hochschule Esslingen

Example: Variable sheet thickness

Numerical process analysisresistance spot welding (1996)

Page 18: Developments and applications of numerical simulation in ......projection welding of srew nuts Optimization of srew nut geometry old new 24 IIW Essen 2013, C-III ©2013 M. J. Greitmann,

17

33IIW Essen 2013, C-III©2013 M. J. Greitmann, Hochschule Esslingen

100

200

300

400

µ

600

Res

ista

nce

0 10 20 30 40 50 60 ms 80

Time

Pickle: 12% NaOH/60°C/60s Pickle: 12% NaOH/60°C/60s; cleanednatural SurfacePickle: 25% NaOH/65°C/60s; cleanedbrushed surface

Alloy: AlMg0.4Si1.2; ( t = 1.25 mm )

Spot welding Aluminium

Numerical process analysisresistance spot welding

(Greitmann, Kessler, 1990)

34IIW Essen 2013, C-III©2013 M. J. Greitmann, Hochschule Esslingen

Aluminium sheets with variable surface conditions (contact resistance)

Numerical process analysisresistance spot welding (1996)

Page 19: Developments and applications of numerical simulation in ......projection welding of srew nuts Optimization of srew nut geometry old new 24 IIW Essen 2013, C-III ©2013 M. J. Greitmann,

18

35IIW Essen 2013, C-III©2013 M. J. Greitmann, Hochschule Esslingen

Temperature distribution

Numerical process analysisresistance spot welding

(Greitmann, Wink)

36IIW Essen 2013, C-III©2013 M. J. Greitmann, Hochschule Esslingen

local temperature–time history

0

200

400

600

800

1000

1200

1400

1600

1800

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

Time

Tem

per

atu

re

Position 1 Position 2

Position 3 Position 4

Position 5 Position 6

Position 7 Position 8

Position 9 Position 10

Position 11 Position 12

Position 13

Sheet material: DX54D+Z100 Sheet thickness: 1,0 mmElektrode material: CuCrZrDome radius: 40 mmElektrode force: 2,5 kNWelding current: 8 kACurrent-flow time: 240 ms

s

°C

current flow time

Numerical process analysisresistance spot welding

(Greitmann, Wink)

Page 20: Developments and applications of numerical simulation in ......projection welding of srew nuts Optimization of srew nut geometry old new 24 IIW Essen 2013, C-III ©2013 M. J. Greitmann,

19

37IIW Essen 2013, C-III©2013 M. J. Greitmann, Hochschule Esslingen

Spot welding 3-sheets

Numerical process analysisresistance spot welding

38IIW Essen 2013, C-III©2013 M. J. Greitmann, Hochschule Esslingen

Microstructure and hardness distribution

Spot welding 1.5 mm DP600 steel sheets

Measured micro hardness comparing to simulated hardness near the weld nugget

Macrograph of real weld comparing to simulated weld nugget and martensite distribution

Numerical process analysisresistance spot welding

Page 21: Developments and applications of numerical simulation in ......projection welding of srew nuts Optimization of srew nut geometry old new 24 IIW Essen 2013, C-III ©2013 M. J. Greitmann,

20

39

Weldability Lobe Welding process window

Welding current

Fo

rce

Minimum weld size

Acceptable

weld size

Expulsion

Zone

TypicalNugget failures

40

Weld process optimization

Undersizedweld

Acceptable

weld size

Expulsion

Zone

Sorpas®

Page 22: Developments and applications of numerical simulation in ......projection welding of srew nuts Optimization of srew nut geometry old new 24 IIW Essen 2013, C-III ©2013 M. J. Greitmann,

21

41IIW Essen 2013, C-III©2013 M. J. Greitmann, Hochschule Esslingen

Weld Schedule Specifications with optimal welding parameters

Weld PlanningWeld Schedule Specification

42

Spot welding – Electrode misalignmet

Page 23: Developments and applications of numerical simulation in ......projection welding of srew nuts Optimization of srew nut geometry old new 24 IIW Essen 2013, C-III ©2013 M. J. Greitmann,

22

43

Projection welding Longitudinal embossment

44

Square nut projection welding

Page 24: Developments and applications of numerical simulation in ......projection welding of srew nuts Optimization of srew nut geometry old new 24 IIW Essen 2013, C-III ©2013 M. J. Greitmann,

23

45

3D simulation of weld strength testing

• Tensile shear test of weld strength after welding

46

3D simulation of weld strength testing

• Tensile shear test of weld strength with SORPAS® 3D

Tensile shear weld strength test curve simulated by SORPAS® 3D

Tensile shear weld strength curve in ISO 14273:2000.

Page 25: Developments and applications of numerical simulation in ......projection welding of srew nuts Optimization of srew nut geometry old new 24 IIW Essen 2013, C-III ©2013 M. J. Greitmann,

24

47

3D simulation of weld strength testing

• Cross tension test of weld strength after welding

48

3D simulation of weld strength testing

• Cross tension test of spot weld strength

Cross tension weld strength test curve simulated by SORPAS® 3D

Cross tension weld strength curve in ISO 14272:2000.

Page 26: Developments and applications of numerical simulation in ......projection welding of srew nuts Optimization of srew nut geometry old new 24 IIW Essen 2013, C-III ©2013 M. J. Greitmann,

25

49

Resistance WeldingNumerical Simulation

• Process simulation – Weldability of materials, weld nugget sizes

– Electrode geometry and coatings

• Process optimisation – Weld growth curves

– Weldability lobes - welding process windows

• Process planning – Optimal welding process parameters

• Weld quality and properties after welding– Microstructures and hardness

– Weld strengths and fracture modes

• Welding with adhesives– Fluid adhesives

– Solid polymer or plastics