development of novel r/o electronics for lar detectors 6.10.2006 max hess controller adc data...

15
Development of novel R/O electronics for LAr detectors 6.10.2006 Max Hess Controll er ADC Data Reduction Ethernet 10/100Mbi t Host Detector typical block diagram for R/O electronics Amplifier

Post on 22-Dec-2015

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Development of novel R/O electronics for LAr detectors 6.10.2006 Max Hess Controller ADC Data Reduction Ethernet 10/100Mbit Host Detector typical block

Development of novel R/O electronics for LAr detectors

6.10.2006 Max Hess

ControllerADCData

Reduction

Ethernet 10/100Mbit

HostDetector

typical block diagram for R/O electronics

Amplifier

Page 2: Development of novel R/O electronics for LAr detectors 6.10.2006 Max Hess Controller ADC Data Reduction Ethernet 10/100Mbit Host Detector typical block

Preamplifier for Dark Matter Experiment (ETHZ)

Detector: 2 stages LEM ( Large Electron Multiplier )

LEM Gain = 100 / stage

1 electron produce a Q nom = 104 1.6 10-19 C = 1.6 fC

Gain = 40 mV / fC

Charge amplifier

4 FET‘s in parallel

Shaper

VADC

ADC

CF = 1 pF

CD

RD

RI

+-CI

RF = 470 MRD CD = 1.8 s

RI CI = 0.6 s Noise = 2.1 mV rms

VADC input signal: 200 nA 50 ns = 10 fC

6.10.2006 Max Hess

Page 3: Development of novel R/O electronics for LAr detectors 6.10.2006 Max Hess Controller ADC Data Reduction Ethernet 10/100Mbit Host Detector typical block

Argon Tube

Signal pulse width & charge in one pad in function from the trace angle

p = 10 mm

trace

d

pad

s

pulse width: tp = d / vdrift = p / (vdrift cot )

signal charge: QS = Qnom p s = Qnom p / cos

vdrift

signal current: IS = QS / tp

Pad dimensions: 10 mm x 10 mm

vdrift = 2 mm/µs @ Edrift = 1 kV/cm

LEM Gain = 100

1 MIP produces 6000 e- /mm in LAr

Qnom = 100 6000 1.6 10-19 C = 100 fC/mm

6.10.2006 Max Hess

Page 4: Development of novel R/O electronics for LAr detectors 6.10.2006 Max Hess Controller ADC Data Reduction Ethernet 10/100Mbit Host Detector typical block

Values for simulation

d

[mm]

s

[mm]tp

[s]

QS

[pC]

IS

[nA]

* 0° 0 10.0 50•10- 3 1.00 20•103

30° 5.7 11.5 2.85 1.15 403

45° 10.0 14.1 5.00 1.41 282

60° 17.3 20.0 8.65 2.00 231

89° 600.0 600.1 300.00 60.01 200

* theoretical: tp 0 and IS ∞

p = 10 mm

trace

d

pad

s

vdrift

6.10.2006 Max Hess

Page 5: Development of novel R/O electronics for LAr detectors 6.10.2006 Max Hess Controller ADC Data Reduction Ethernet 10/100Mbit Host Detector typical block

Preamplifier for Argon Tube

Transimpedance Amplifier

1 FET

Amplifier with lo- and hi-pass filter

VADC

ADC

CF = 0.1pF

CD

RD

RI

+-CI

RF = 1 M

Gain = 5.3 mV / nA

RI CI = 0.7 s

RD CD = 1 ms

Noise = 400 V rms

input signal: 2 uA / 50 ns

input signal: 20 nA / 10 s

VADC

VADC

6.10.2006 Max Hess

Page 6: Development of novel R/O electronics for LAr detectors 6.10.2006 Max Hess Controller ADC Data Reduction Ethernet 10/100Mbit Host Detector typical block

Preamplifier for Argon Tube with Op Amp

Op Amp AD8655

Linear Amplifierwith BW limiting

CF = 2.2pF

C2

R2

R1

+-C1

RF = 330 kR1 C2 = 0.7 s

R2 C2 = 0.7 s

+-

Transimpedance Amplifier

VADC

ADC

Noise = 860 V rms

Gain = 3.5 mV / nA

input signal: 2 uA / 50 ns

input signal: 20 nA / 10 s

VADC

VADC

6.10.2006 Max Hess

Page 7: Development of novel R/O electronics for LAr detectors 6.10.2006 Max Hess Controller ADC Data Reduction Ethernet 10/100Mbit Host Detector typical block

DAQ box

8 front-end boards

19“ case

Block diagram for R/O electronics

Ethernet 10/100Mbit

Host

other DAQ subsystems

Flat cables from detector

shortest possible:- cable capacitance- noise from outside

25

6 c

ha

nn

els

8 Serial linkslength max. 10 meter

Embeded

PCADC Data

Reduction

32 channels

ADC

ADC

MUX

6.10.2006 Max Hess

Clock module

one for all DAQ systemelectrically isolated

System ground inside the detector

Page 8: Development of novel R/O electronics for LAr detectors 6.10.2006 Max Hess Controller ADC Data Reduction Ethernet 10/100Mbit Host Detector typical block

DS92LV16

Front-end board

ADC 1 SHIFT REG

REG

MUX

12

1 SHIFT REG

REG

Preamplifier modulesinterchangeable for LArDM, ArgonTube, etc.

CODER SERIALIZER16

DE-SERIALIZER

CONTROL LOGIC

rclk: 2

sclk

CS* (16)

CODER: create DC-balanced signal code ( 3 4B5B-code)

MUX: 32 ADC channels + 1 channel for status

(12)

to DAQ

from DAQ

720 Mb/s

electrically isolated

CS*: ADC conversion start (1MS/s)

sclk: sample clock = 20 MHz

rclk: Readout clock = 40 MHz

32 channels

12

12

12

12

FPGAAltera EP1C3T144C8

ADC

6.10.2006 Max Hess

Page 9: Development of novel R/O electronics for LAr detectors 6.10.2006 Max Hess Controller ADC Data Reduction Ethernet 10/100Mbit Host Detector typical block

Front-end board

Ethernet connectorserial link to DAQ board

32 ADC‘sADC121S101

Resolution: 12 bit

Sample rate: 1 MS/s

Full scale: 3.2 V

2 amplifier / print

100 mm

input connector for 32 channels(68 pole flat cable)

Serializer/DeserializerNS DS92LV16

MultiplexerFPGA AlteraEP1C3T144C8

6.10.2006 Max Hess

Page 10: Development of novel R/O electronics for LAr detectors 6.10.2006 Max Hess Controller ADC Data Reduction Ethernet 10/100Mbit Host Detector typical block

Front-end case

input connector

for 32 channels(68 pole flat cable)

8 Front-End modules

= 256 channels / case

3 HE = 133 mm

6.10.2006 Max Hess

Ethernet connectorserial link to DAQ board

Page 11: Development of novel R/O electronics for LAr detectors 6.10.2006 Max Hess Controller ADC Data Reduction Ethernet 10/100Mbit Host Detector typical block

DS92LV16

Data reduction

EXTERNALCLOCK

MODULE

one for all DAQ system

INPUTFIFO

rclk: Readout clock = 2 x ADC clock

CS*: ADC conversion start

DE-SERIALIZER

16

SERIALIZER

rclk

CS*

circular buffer logicfor input memory

signal comparator

data reduction logicfrom input memory to output FIFO

watch for time stamp generation

to Front-end

from Front-end

720 Mb/s

rclk

INPUTMEMORY

OUTPUTFIFO

ext. trigger in

signal detect out

FPGA

watch clock

16 16

slow control

BUS to Embeded PC and other data reduction boards

6.10.2006 Max Hess

Page 12: Development of novel R/O electronics for LAr detectors 6.10.2006 Max Hess Controller ADC Data Reduction Ethernet 10/100Mbit Host Detector typical block

Block diagram for data reduction (draft)

INPUTBUFFER(SRAM)

DATAREDUCTION

LOGICOUTPUT

FIFO(DRAM)

SIGNAL DET. OUT

1618

DATA16

MEMORYCONTROLLER

addr

INPUTFIFO

WRITEADDRESSCOUNTER

READADDRESSCOUNTER

TRIGGERADDRESS

FIFO

I / OCONTROLLER

MUX

16

: Altera Cyclone FPGA family

with tacc < 12ns it‘s possible to write 32 words and read 48 words in 1µs

DELAYFIFO

A-BA

B

COMP

TRIGGERDELAY

COUNTER

WATCH(resolution 1us)

THRESHOLD

EXTERN TRIGGER INPUT

each channel use 1 circular buffer with 2 sectors = 2 x 4096 x 16 bit total used memory = 4 Mb

CLOCK80 MHz

16

bu

s to

em

be

de

d P

C

fro

m s

eria

l lin

k

to serial link,slow control

6.10.2006 Max Hess

Page 13: Development of novel R/O electronics for LAr detectors 6.10.2006 Max Hess Controller ADC Data Reduction Ethernet 10/100Mbit Host Detector typical block

Organisation of input buffer

pre

tri

gg

er

tim

e

SD

writeaddress pointer

readaddresspointer

SD: signal detectedone independend circular buffer for each channel with two sectors = 2 x 4096 x 16 bit

sector A

sector B

6.10.2006 Max Hess

Page 14: Development of novel R/O electronics for LAr detectors 6.10.2006 Max Hess Controller ADC Data Reduction Ethernet 10/100Mbit Host Detector typical block

Data reduction by frame building

npostnpre

Frame 1

npre

Frame 2

npost

digitalcomparatorthreshold

6.10.2006 Max Hess

t1

registration of possible data during 4095 s = 4095 samples

n samples over threshold

absolute time t2

npostnpre

npre npost

digitalcomparatorthreshold

t3

Frame

Page 15: Development of novel R/O electronics for LAr detectors 6.10.2006 Max Hess Controller ADC Data Reduction Ethernet 10/100Mbit Host Detector typical block

Summary

Ethernet 10/100Mbitdata reduction

Front-end modul

amplifier

ADC

serial link

serial link

6.10.2006 Max Hess

- ASIC Amplifier Higher number of channels per board

Lower power consumption

Lower price per channel up to 100‘000

- The system is adaptable for different event rates, variable number of data reduction boards per embeded PC

Future design:

- ADC with higher sample rate Better time resolution (if needed)

- Optical link Longer possible distance from the detector to the DAQ electronic

Higher bandwidth

- High flexibility for signal conditioning

- Optimized for development time to price per channel (for small systems)

Actual design:

- DAQ Logic Data reduction logic and embeded processor in the same FPGA ( Altera Stratix, Cyclone familly)

DAQ box

embeded PC