design water tank

118
Page 1 :: DESIGN OF SIDE WALL & FOOTING :: PROJECT : 30KLPD TOTAL SPIRIT March 4 CLIENT : SHREE VITHALRAO SHINDE S S K LTD. DESIGN DATA :-- a) Liquid depth Ld = 2700 b) Free board, if any f b = 300 c) Unit weight of Concrete = 25 d) Unit weight of water = 10 e) Unit weight of soil = 18 f) Angle of Repose f = 30 g) Safe Bearing Capacity of Soil = 200 h) Grade of concrete = 25 i) thickness of wall at base t k = 250 ii) thickness of wall at top = 250 iv) total height of wall, (Sd+fb) h = 3000 v) width of Toe slab = 300 vi) width of Heel slab = 1500 vii) base width of wall footing b = 2050 viii) thickness of raft t r = 250 f b h S d Toe Heel t r b g 1 g 2 g 3 PROPERTIES OF WALL :-- t 1k b 1 b 2 t1 k b 1 b 2

Upload: hemant-sonawadekar

Post on 26-Nov-2015

267 views

Category:

Documents


34 download

DESCRIPTION

Excel file design

TRANSCRIPT

DESIGN OF WALL & FOOTING

prop-cantilever-side wall:: DESIGN OF SIDE WALL & FOOTING ::PROJECT : 30KLPD TOTAL SPIRITMarch 4, 2003CLIENT : SHREE VITHALRAO SHINDE S S K LTD.DESIGN DATA :--a)Liquid depthLd=2700mmb)Free board, if anyf b=300mmc)Unit weight of Concreteg 1=25kN/m3d)Unit weight of waterg 2=10kN/m3e)Unit weight of soilg 3=18kN/m3f)Angle of Reposef=30og)Safe Bearing Capacity of Soil=200kN/m2h)Grade of concrete=25N/mm2PROPERTIES OF WALL :--i)thickness of wall at baset k=250mmii)thickness of wall at topt 1k=250mmiv)total height of wall, (Sd+fb)h=3000mmv)width of Toe slabb 1=300mmvi)width of Heel slabb 2=1500mmvii)base width of wall footingb=2050mmviii)thickness of raftt r=250mmt1 kf bhS dToeHeelt rb 1t kb 2bDESIGN OF WALL -Bending Moment in wall at the base,B.M.max.g 2 x h3=18.00kNm15Depth reqd,dreqd.=B.M. max x 1000 =236.58mm0.3216 x 1000Thickness of wall at base =250mmThickness of wall at top =250mmAst.reqd=BM * 106here s st =150N/mm2s st* j * dd =205mm=650mm2Ast.min=0.1029% of cross sect. area=257mm2 in each directionVertical :Provide 10F@ 100 c/c on inner face upto 1m, above 10F @ 200 c/cAst.pro =714mm2 >650mm2\--SAFE--Provide 10F@ 200 c/c on outer faceHorizontal :Provide 8F@ 180 c/c on both facesAst.pro =279mm2 >257mm2\--SAFE--DESIGN OF WALL FOOTING -25030030001270043ToeHeel250230025015002050SATBILITY ANALYSIS :--WeightLeverMomentComponent MarkedArm@ Toe(kN)(m)(kN-m)Vertical Wall 1=(t k *h)*g 118.750.4257.969Wall Footing 2=(t r*b)*g 112.811.02513.133Soil3=(Sd*b2)*g 245.001.30058.500Vertical Wall 4= ((t k - t1 k) * h1) *g 10.000.3000.0002Total Weight(SW1)=76.5679.602Overturning Moment ( = Mnt. @ Bottom of Wall) =18.000Net Stabilising Moment(SM1)=61.602Factor of Safety against Overturning=Stabalising Moment=79.60Overturning Moment18.00=4.422>2\--SAFE--Distance of resultant from Toe, x =Net Stabalising Mmt(SM1)=61.60Total Weight (SW1)76.56=0.8046mEccentricity, e=( b / 2 ) - x=0.2204b / 6=0.3417as eccentricity is less than b / 6,\--SAFE--SW16 x eMaximum pressure @ Toe, p-max =( 1 + )bb=61.44kN/m2Max. pr. is less than Bearing Capacity which is200kN/m2\--SAFE--SW16 x eMinimum pressure @ Heel, p-min =( 1 - )bb=13.25kN/m2Pressure at variuos points is as shown in PRESSURE DIAGRAM.20503002501500Toe ABCD Heel61.4454.3948.5113.25DESIGN OF HEEL SLAB :--Downward pressure on Slab due to --i)self weight of slab =t r *g 1 =6.25kN/m2ii)weight of soil =l d *g 2 =27.00kN/m233.25kN/m2 ()\Net pressure at point C,say PC=33.2548.51=-15.26kN/m2 ()andNet pressure at point D,say PD=33.2513.25=20.00kN/m2 ()PD =20.00\Max. B. M. @ point CPC==15.26C649851D1500=9.27kN-mtk of heel slab reqd.=BM @ C * 1060.32161000=169.8mm\Provide250mm thick raftAst.reqd=BM @ C * 106here s st =150N/mm2s st* j * dd =195mm=352mm2Ast.min=0.1029% of cross sect. area=257mm2 in each direction\Provide 10 F @ 200 c/c at top of wall footing,Ast.pro =393mm2 >352mm2\--SAFE--Provide 8 F @ 180 c/c as distribution steel at top of wall footing having,Ast.pro =279mm2 >257mm2\--SAFE--DESIGN OF TOE SLAB :--Downward pressure on Slab due to --self weight of slab =t r *g 1 =6.25kN/m2 ()\Net pressure at point B,say PB=6.2554.39=-48.14kN/m2 ()andNet pressure at point A,say PA=6.2561.44=-55.19kN/m2 ()\Max. B. M. @ point B55.19=PAPB =48.14=(PB*(b1 2)/2)+ (1/2(b1*(PA-PB))*((2/3)b1))ABb1=300=2.38kN-m\tk of toe slab reqd.=BM @ B * 1060.31261000=87mm\Provide250mm thick raftAst.reqd=BM @ B * 106here s st =150N/mm2s st* j * d=90mm2Ast.min=0.1029% of cross sect. area=257mm2 in each direction\Provide 10F @ 200c/c at bottom of wall footing,Ast.pro =393mm2 >257mm2\--SAFE--Provide 8 F @ 180 c/c as distribution steel at top of wall footing having,Ast.pro =279mm2 >257mm2\--SAFE--DESIGN OF CENTRAL RAFT -Provide 250 mm thick central raftProvide 8F @ 150c/c bothways at top and bottom.As the liquid depth for all the Aeration tanks is same, therefore design of walls and footingswill remain same as above.

Page &P

prop-cantilever-cen wall:: DESIGN OF SIDE WALL & FOOTING ::PROJECT : 30KLPD TOTAL SPIRITMarch 4, 2003CLIENT : SHREE VITHALRAO SHINDE S S K LTD.DESIGN DATA :--a)Liquid depthLd=2700mmb)Free board, if anyf b=300mmc)Unit weight of Concreteg 1=25kN/m3d)Unit weight of waterg 2=10kN/m3e)Unit weight of soilg 3=18kN/m3f)Angle of Reposef=30og)Safe Bearing Capacity of Soil=200kN/m2h)Grade of concrete=25N/mm2PROPERTIES OF WALL :--i)thickness of wall at baset k=250mmii)thickness of wall at topt 1k=250mmiv)total height of wall, (Sd+fb)h=3000mmv)width of Toe slabb 1=600mmvi)width of Heel slabb 2=600mmvii)base width of wall footingb=1450mmviii)thickness of raftt r=250mmt1 kf bhS dToeHeelt rb 1t kb 2bDESIGN OF WALL -Bending Moment in wall at the base,B.M.max.g 2 x h3=18.00kNm15Depth reqd,dreqd.=B.M. max x 1000 =236.58mm0.3216 x 1000Thickness of wall at base =250mmThickness of wall at top =250mmAst.reqd=BM * 106here s st =150N/mm2s st* j * dd =205mm=650mm2Ast.min=0.1029% of cross sect. area=257mm2 in each directionVertical :Provide 10F@ 100 c/c on inner face upto 1m, above 10F @ 200 c/cAst.pro =714mm2 >650mm2\--SAFE--Provide 10F@ 200 c/c on outer faceHorizontal :Provide 8F@ 180 c/c on both facesAst.pro =279mm2 >257mm2\--SAFE--DESIGN OF WALL FOOTING -25030030001270043ToeHeel25026002506001450SATBILITY ANALYSIS :--WeightLeverMomentComponent MarkedArm@ Toe(kN)(m)(kN-m)Vertical Wall 1=(t k *h)*g 118.750.72513.594Wall Footing 2=(t r*b)*g 19.060.7256.570Soil3=(Sd*b2)*g 218.001.15020.700Vertical Wall 4= ((t k - t1 k) * h1) *g 10.000.6000.0002Total Weight(SW1)=45.8140.864Overturning Moment ( = Mnt. @ Bottom of Wall) =18.000Net Stabilising Moment(SM1)=22.864Factor of Safety against Overturning=Stabalising Moment=40.86Overturning Moment18.00=2.270>2\--SAFE--Distance of resultant from Toe, x =Net Stabalising Mmt(SM1)=22.86Total Weight (SW1)45.81=0.4991mEccentricity, e=( b / 2 ) - x=0.2259b / 6=0.2417as eccentricity is less than b / 6,\--SAFE--SW16 x eMaximum pressure @ Toe, p-max =( 1 + )bb=61.13kN/m2Max. pr. is less than Bearing Capacity which is200kN/m2\--SAFE--SW16 x eMinimum pressure @ Heel, p-min =( 1 - )bb=2.06kN/m2Pressure at variuos points is as shown in PRESSURE DIAGRAM.1450600250600Toe ABCD Heel61.1336.6926.502.06DESIGN OF HEEL SLAB :--Downward pressure on Slab due to --i)self weight of slab =t r *g 1 =6.25kN/m2ii)weight of soil =l d *g 2 =27.00kN/m233.25kN/m2 ()\Net pressure at point C,say PC=33.2526.50=6.75kN/m2 ()andNet pressure at point D,say PD=33.252.06=31.19kN/m2 ()PD =31.19\Max. B. M. @ point CPC==(PC*(b2 2)/2)6.75+ (1/2(b2*(PD-PC))*((2/3)b2))CD600=4.15kN-mtk of heel slab reqd.=BM @ C * 1060.32161000=113.6mm\Provide250mm thick raftAst.reqd=BM @ C * 106here s st =150N/mm2s st* j * dd =195mm=158mm2Ast.min=0.1029% of cross sect. area=257mm2 in each direction\Provide 10 F @ 200 c/c at top of wall footing,Ast.pro =393mm2 >257mm2\--SAFE--Provide 8 F @ 180 c/c as distribution steel at top of wall footing having,Ast.pro =279mm2 >257mm2\--SAFE--DESIGN OF TOE SLAB :--Downward pressure on Slab due to --self weight of slab =t r *g 1 =6.25kN/m2 ()\Net pressure at point B,say PB=6.2536.69=-30.44kN/m2 ()andNet pressure at point A,say PA=6.2561.13=-54.88kN/m2 ()\Max. B. M. @ point B54.88=PAPB =30.44=(PB*(b1 2)/2)+ (1/2(b1*(PA-PB))*((2/3)b1))ABb1=600=8.41kN-m\tk of toe slab reqd.=BM @ B * 1060.31261000=164mm\Provide250mm thick raftAst.reqd=BM @ B * 106here s st =150N/mm2s st* j * d=320mm2Ast.min=0.1029% of cross sect. area=257mm2 in each direction\Provide 10F @ 200c/c at bottom of wall footing,Ast.pro =393mm2 >320mm2\--SAFE--Provide 8 F @ 180 c/c as distribution steel at top of wall footing having,Ast.pro =279mm2 >257mm2\--SAFE--DESIGN OF CENTRAL RAFT -Provide 250 mm thick central raftProvide 8F @ 150c/c bothways at top and bottom.As the liquid depth for all the Aeration tanks is same, therefore design of walls and footingswill remain same as above.

Page &P

cover8. DESIGN OF COVER SLABS(CS) :Clear Covers -Slabs & beams bottom=25mmSlabs & beams top=30mmColumns=40mmStructural Configuration :lx =3750mmly =5600mmly =1.49< 2.0lxDesign slab as twowayTwo adjacent edges discontinuousLoad Calculations :Assume slab thickness = t =160mmdassumed =130mm1. Self weight of slab = 25 x t=4.00KN/m22. Floor finish/waterproofing=0.10KN/m2Total dead load=4.10KN/m23. Live Load on slab=3.00KN/m2Total UDL on slab = w ==7.10KN/m2Bending Moments -Support - short span (-ve)=0.075x7.10x3.752=7.49KNmMid - short span (+ve)=0.056x7.10x3.752=5.59KNmSupport - long span (-ve)=0.047x7.10x3.752=4.69KNmMid - long span (+ve)=0.035x7.10x3.752=3.49KNmThickness -Thickness of wall required=7.49x1.00E+060.3216x1000=152.59mmProvide160mmthick wall.Reinforcement -Ast1=7.49x1.00E+06230x0.87x126=297.0mm2Ast2=5.59x1.00E+06150x0.87x130=329.6mm2Ast3=4.69x1.00E+06230x0.87x126=186.1mm2Ast4=3.49x1.00E+06150x0.87x130=206.0mm2Astmin=0.1131x160x1000(on each face)100=181.03mm2Provide top reinf. as below,Short span -8 F @ 110 c/c extra at supportsAst =502.6mm2Long span -8 F @ 160 c/c extra at supportsAst =314.2mm2Provide bottom reinf. as below,Short span -8 F @ 120 c/c main throughoutatAst =418.9mm2Long span -8 F @ 160 c/c main throughoutatAst =314.2mm29. DESIGN OF COVER BEAMS (CB) :Load Calculations :Assume size of beam = B x D =230x450dassumed =415mmspan of beam =4.50m1. Self weight of beam =1.67kN/m2. Load from cover slab =13.08kN/mTotal dead load14.74kN/m3. Live Load from cover slab9.57kN/mTotal UDL on beam = w =24.31kN/mBending Moments -Mid support moment -moment for DL=0.1x14.74x4.502=29.86kNmmoment for LL=0.111x9.57x4.502=21.51kNmTotal support moment=51.36kNmMid span moment -moment for DL=0.0833x14.74x4.502=24.88kNmmoment for LL=0.1x9.57x4.502=19.38kNmTotal midspan moment=44.26kNmCheck for depth (uncracked) -1715160450290230length of beam =4.500mlo = 0.7 x eff. length of beam =3.150mbf = lo/6 + bw + 6Df =1.715mbt available =4.500mA =2744.00667.00=3411.00cm2y =12.40cmI =376923.959762533cm4z = I/y =30397.7403447175cm3Max. Bending Moment =44.26KNmActual bending stress sb = Mmax / z =1.46N/mm2< 1.8N/mm2 hence safeReinforcement -Support reinf.Ast1=51.36x1.00E+06230x0.87x415=618.5mm2Mid reinf.Ast2=44.26x1.00E+06150x0.87x415=817.2mm2Astmin=0.20x230x450(on each face)100=207.00mm2Top reinforcement -8F - 2st. + 16F - 3 extra at supportAst =703mm2Bottom reinforcement -16F - 2 + 12F - 1 st. + 16F - 2 cutail barsAst =917mm2Shear Design -Maximum Shear Force = SF =55KNLongitudinal reinf. in beam =703mm2Percentage of longitudinal reinf. = Ast =100Astb x d=0.745%Permissible shear stress in concrete as IS 456tc =0.358N/mm2Actual shear stress = tv =SFb x d0.573N/mm2Assuming strirups of 8F bars (two legged)Spacing of stirrups reqd. = s =ssv x Asv(tv - tc) x b=353.71mmMin. spacing = 0.87fy x Asv/ 0.4b =392.45mmTherefore provide double legged stirrups - 8F @ 100 c/c at supportsand 8 F @ 180 c/c for central portion.10. LOAD ON INTERNAL COLUMNS (C18, C19, C20, C21) :Load Calculations :Assume size of column = B x D =230x230Height of columns =3.00m1. Self weight of beam =3.97kN2. Load from cover beams =218.81kNTotal load =222.78kNFor design calculations refer page no.11. DESIGN OF PLATFORM SLAB(PS) NEAR BLOWERS :Clear Covers -Slabs=20mmStructural Configuration :lx =2000mmly =5100mmly =2.55>2.0lxDesign slab as onewayLoad Calculations :Assume slab thickness = t =150mmdassumed =120mm1. Self weight of slab = 25 x t=3.75KN/m22. Floor finish/waterproofing=0.50KN/m2Total dead load=4.25KN/m23. Live Load on slab=3.00KN/m2Total UDL on slab = w ==7.25KN/m2Bending Moments -Max. BM=0.125x7.25x22=3.63KNmThickness -Thickness of wall required=3.63x1.00E+060.3855x1000=96.97mmProvide150mmthick wall.Reinforcement -Ast1=3.63x1.00E+06230x0.87x126=143.8mm2Astmin=0.1143x150x1000(on each face)100=171.43mm2Provide top reinf. as below,Main reinf. -8 F @ 200 c/cAst =502.6mm2Dist. Reinf. -8 F @ 230 c/cAst =218mm2Provide bottom reinf. as below,Main reinf. -8 F @ 120 c/cAst =418.9mm2Dist. Reinf. -8 F @ 230 c/cAst =218mm212. DESIGN OF PLATFORM BEAMS (PB1, PB3, GB4) :Load Calculations :Assume size of beam = B x D =230x500dassumed =472mmspan of beam =2.00m1. Self weight of beam =2.88kN/m2. Load from plt. slab =4.83kN/mTotal load7.71kN/mPoint load from blower ==6.625kNBending Moments -=0.125x7.71x2.0020.25x6.63x2.00=7.17kNmDepth -D required=7.17x1.00E+061.5x1000=69.12mmProvide500mmDepthReinforcement -Ast1=7.17x1.00E+06230x0.87x472=75.9mm2Astmin=0.2000x230x500(on each face)100=230.00mm2Top reinforcement -16F - 2st. at topAst =402mm2Bottom reinforcement -16F - 2st. at bottomAst =402mm2Shear Design -Maximum Shear Force = SF =8KNLongitudinal reinf. in beam =402mm2Percentage of longitudinal reinf. = Ast =100Astb x d=0.370%Permissible shear stress in concrete as IS 456tc =0.273N/mm2Actual shear stress = tv =SFb x d0.071N/mm2Assuming strirups of 8F bars (two legged)Spacing of stirrups reqd. = s =ssv x Asv(tv - tc) x b=-376.68mmMin. spacing = 0.87fy x Asv/ 0.4b =392.45mmTherefore provide double legged stirrups - 8F @ 150 c/c throughout13. DESIGN OF PLATFORM BEAMS (PB2) :Load Calculations :Assume size of beam = B x D =230x500dassumed =472mmspan of beam =5.10m1. Self weight of beam =2.88kN/m2. Load from plt. slab =3.63kN/mTotal load6.50kN/mPoint load from PB1=15.42kN(assuming twice point load from beam PB1 at center)Bending Moments -=0.125x6.50x5.1020.25x15.42x5.10=40.79kNmDepth -D required=40.79x1.00E+061.5x1000=164.90mmProvide500mmDepthReinforcement -Ast1=40.79x1.00E+06230x0.87x472=431.9mm2Astmin=0.2000x230x500(on each face)100=230.00mm2Top reinforcement -16F - 2. + 12F - 1 throughout at topAst =515mm2Bottom reinforcement -16F - 2. + 12F - 1 throughout at botomAst =515mm2Shear Design -Maximum Shear Force = SF =17KNLongitudinal reinf. in beam =515mm2Percentage of longitudinal reinf. = Ast =100Astb x d=0.474%Permissible shear stress in concrete as IS 456tc =0.31N/mm2Actual shear stress = tv =SFb x d0.153N/mm2Assuming strirups of 8F bars (two legged)Spacing of stirrups reqd. = s =ssv x Asv(tv - tc) x b=-483.65mmMin. spacing = 0.87fy x Asv/ 0.4b =392.45mmTherefore provide double legged stirrups - 8F @ 150 c/c throughout14. LOAD ON PLATFORM COLUMNS (C13, C14, C15, C16, C17) :Load Calculations :Assume size of column = B x D =300x300Height of columns =4.00m1. Self weight of col. =9.00kN2. Load from beams =40.86kNTotal load =49.86kNFor design calculations refer page no. =22, 2315. DESIGN OF STAIR SLAB :Clear Covers -Slabs=20mmStructural Configuration :lx =4220mmRise =188Tread =230Load Calculations :Assume slab thickness = t =180mmdassumed =150mm1. Self weight of slab = 25 x t4.50KN/m2wt. in hori. Area=7.11KN/m22. Dead wt. of steps=2.88KN/m23. Floor finish1.00KN/m2Total dead load10.99KN/m24. Live Load on slab3.00KN/m2Total UDL on slab = w =13.99KN/m2Bending Moments -Max. BM=0.125x13.99x4.222=31.13KNmThickness -Thickness of wall required=31.13x1.00E+061.5x1000=144.07mmProvide180mmthick slabReinforcement -Ast1=31.13x1.00E+06230x0.87x156=997.3mm2Astmin=0.1200x180x1000(on each face)100=216.00mm2Provide reinf. as below,Main reinf. -12 F @ 110 c/cAst =1027.3mm2Dist. Reinf. -8 F @ 230 c/cAst =218mm2

&C&8RCC DESIGN OF DIRTY BACKWASH TANK&R&"Arial,Bold"&8THERMAX LTD.&L&"Arial,Bold"&8BPCL, MAHUL&C&P

Column_INT_PLT16. DESIGN OF COLUMNS (INTERNAL COL & PLATFORM COL.) -SR.D E S C R I P T I O NNOTA-UNITFORMULAInternalPlatformNO.-TIONC18 TO C21,C13 TO C17IDESIGN DATAa) Axial load on ColumnPkN222.7849.86b) Moment @ Major AxisMxkNm4.461.00c) Moment @ Minor Axis(due to Min Eccn)MykNm4.461.00d) Width of Columnbmm300.0300.0Depth of ColumnDmm300.0300.0e1) Dia of barFmm12.012.0f1) No. of barsno.4.06.0e2) Dia of barFmm0.00.0f2) No. of barsno.0.00.0g) Longi.reinf.in ColumnAscmm2452679h) Unsupported length of Column@ Major Axislexmm3000.04000.0@ Minor Axisleymm3000.04000.0i) Grade of ConcretefckN/mm2M3535.035.0j) Grade of SteelfyN/mm2Fe415415.0415.0k) Clear coverd'mm50.050.0l) Modular ratiom8.128.122.0a) Slenderness Ratio @Major AxisSRxlex/D10.0013.33b) Slenderness Ratio @Minor AxisSRyley/b10.0013.33c) As S.R.is > 12 @ Major Axis,therefore Column is...........SHORT COLLONG COLd) As S.R.is > 12 @ Minor Axis,therefore Column is...........SHORT COLLONG COL3Reduction factor for stress @ Major axisCrx1.25 -(lex/(48xD)1.000.97Reduction factor for stress @ Minor axisCry1.25 -(ley/(48xb)1.000.97Direct stress (Permissible)scc permN/mm29 or 9 x Cr9.009.004Bending stress(Permissible)scbc permN/mm211.5 or 11.5 x Cr11.5011.50Compressive stress (Permissible)ssc permN/mm2190 or 190 x Cr190.00190.005Load carrying capacity of columnPkNscc Ac + ssc Asc891.88932.82SAFESAFE6Properties of column sectiona) Equivalent AreaAemm2Ac+1.5mAsc9.51E+049.76E+04b) Moment of Inertia @ Major AxisIxxmm4bD3/126.75E+086.75E+08c) Moment of Inertia @ Minor AxisIyymm4Db3/126.75E+086.75E+08d) Section Modulus @ Major axisZxxmm3Ixx/( D/2)4.50E+064.50E+06e) Section Modulus @ Minor axisZyymm3Iyy/( b/2)4.50E+064.50E+06IICHECK FOR STRESSESDirect stressscc calN/mm2P/Ae2.340.51Bending stress @ Major Axisscbc calN/mm2Mx / Zxx0.990.22Bending stress @ Minor Axisscbc calN/mm2My / Zyy0.990.22scc cal scbcx cal scbcy cal0.430.10scc perm scbc perm scbc perm< 1 SAFE< 1 SAFETensile stress = scbcx cal + scbcy cal - scc calN/mm2-0.36-0.07no tensionno tension0.35 ( scc cal + scbcx cal + scbcy cal ) orN/mm21.510.330.25 ( scc cal + Max of ( scbcx cal or scbcy cal ))safesafe3/4 (Modulus of rupture at 7days)N/mm21.801.80safesafeIIICOLUMN SECTION TO BE PROVIDEDa) Provide Width of Column asbmm300.0300.0Provide Depth of Column asDmm300.0300.0b1) Provide Longi. Reinf. asdiamm12.012.0c1) Provide No. of bars asNos.4.06.0b2) Provide Longi. Reinf. asdiamm0.00.0c2) Provide No. of bars asNos.0.00.0

&C&8RCC DESIGN OF DIRTY BACKWASH TANK&R&"Arial,Bold"&8THERMAX LTD.&"Arial,Regular"&L&"Arial,Bold"&8BPCL, MAHUL&C&P

Footing_PLT17. DESIGN OF ISOLATED PAD FOOTINGS - (Working Stress Method)S NDESIGN STEPNOT'NUNITFORMULAPlatform COL.C13 TO C17I. DATA1.0i Bearing CapacityqkN/m2250.0ii Design LoadPkN49.86iii Design Moment @ X-axisMxkNm1.00iv Design Moment @ Y-axisMykNm1.00v Dimensions of Columns(a)Widthbmm300(b)DepthDmm300vi Material Details:-(a)Grade of ConcreteM35N/mm235.0(b)Grade of SteelfyN/mm2415.0(c)Per.sress in SteelfstN/mm2230.0(d)Design ConstantsQN/mm21.5(e)Lever Arm Constantsj0.9pt.minpt.min%0.2II. SIZE OF FOOTING2.0Assuming self wt of footing 5%there fore Area of footing reqd.m2(1.05*P)/q0.2093.0Increased area of footing toReq.Afm20.209incorporate effect of Moment.4.0(a) Assuming equal projectionsin two perpendicular directions,(D-b)/2reqd length of footing,Req.Lfmm+SQRT(((D-b)2)/4+Af)458(b) Reqd width of footingReq.BfmmAf/Lf458(c) Provided length of footingLfmmLENGTH OF FOOTING PRO.800.0(d) Provided width of footingBfmmWIDTH OF FOOTING PRO.800.0(e) Provided Area of footingAfm2Lf*Bf0.6405.0Upward reaction due to loadpdkN/m2P/Af77.906.0Upward reaction due to mnt Mxpb,xkN/m2Mx*6/(Bf*Lf2)11.69Max upward pr. @ X-axispmax,xkN/m2pd + pb,x89.59Min upward pr. @ X-axispmin,xkN/m2pd - pb,x66.22Max upward pr is less than SafeBearing Capacity of Soil,T'fore--SAFE--7.0Upward reaction due to mnt Mypb,ykN/m2My*6/(Lf*Bf2)11.69Max upward pr. @ Y-axispmax,ykN/m2pd + pb,y89.59Min upward pr. @ Y-axispmin,ykN/m2pd - pb,y66.22Max upward pr is less than SafeBearing Capacity of Soil,T'fore--SAFE--8.0Projection of footing forx1mm(Lf-D)/2250bending @ X-axis parallel to Lf9.0Projection of footing fory1mm(Bf-b)/2250bending @ Y-axis parallel to BfIII. DEPTH OF FOOTING FORTWO WAY BENDING10.0Upward pr at the face of Columnpd,xkN/m2pmin,x+(pmax,x-pmin,x)82.29@ X-axis*(x1+D)/Lf(a)Bending Moment at Coln FaceMwxkN-m((pd,x*x1^2/2)+(1/2*x12.18@ X-axis(pmax,x-pd,x)*(2/3*x1))*Bf11.0Upward pr at the face of Columnpd,ykN/m2pmin,y+(pmax,y-pmin,y)82.29@ Y-axis*(y1+b)/Bf(b)Bending Moment at Coln FaceMwykN-m((pd,y*y1^2/2)+(1/2*y1*2.18@ Y-axis(pmax,y-pd,y)*(2/3*y1))*Lf12.0(a)Reqd effective depth forReq.dxmmSQRT(Mwx/(Q*Bf))43bending @ X-axis(b)Reqd effective depth forbending @ Y-axisReq.dymmSQRT(Mwy/(Q*Lf))4313.0(a)Assumed bar diameterdiamm10.0(b)Req cover d'x for bottom barsd'xmmEff. cover=50+(dia/2)55(c)Req cover d'y for top barsd'ymmEff. cover=50+dia+(dia/2)65(d)Reqd total depth of footingfor bending @ X-axisReq.DfmmReq.dx+d'x98(e)Reqd total depth of footingfor bending @ Y-axisReq.DfmmReq.dy+d'y10810814.0(a)Provided total depthDfmmDEPTH OF FOOTING PROV.300.0(b)Provided eff depth dxdxmmDf-d'x245(c)Provided eff depth dydymmDf-d'y235IV. CHECK FOR TWO-WAYSHEARCritical section for two-wayshear is a peripheral sectionat a distance dy/2 from theperiphery of column15.0(a)Length @ critical sectionL2mmD+2*(dy/2)535(b)Width @ critical sectionB2mmb+2*(dy/2)535(c)Eff depth @ peripharal sect.d2mmMin of dx and dy235(d)Area resisting shearA2mm22(L2+B2)*d250290016.0Shear strength of concrete fortwo way bending, Tc2=ks*T'uc(a)t'uc=0.25*(SQRT(fck))t'ucN/mm20.16*(SQRT(fck))0.947(b)bc = b/Dbcb/D1.00(c)ks.act = (0.5+Bc) but < = 1ks.act(0.5+bc)1.50terefore ks permissibleks.per1.00ks1.00(d) tuc2 = ks * t'uctc2N/mm2ks*t'uc0.94717.0Shear resistance of concreteVc2kNtuc2*A2476.0318.0Design shearVd2kNpmax,x*(Lf*Bf-L2*B2)31.6919.0Vc2 is greater than Vd2,hence--SAFE--V. AREA OF STEEL20.0(a)Req Area of steel @ X-axisAstx.reqmm2Mwx/(fst*j*dx)43(b)Req area of steel @ Y-axisAsty.reqmm2Mwy/(fst*j*dy)4521.0(a)Req Ast minimum @ Y-axisAsty.minpt.min*Bf*dx/100392(b)Req Ast minimum @ X-axisAstx.minmm2pt.min*Lf*dy/10037622.0(a)Ast req to provide @ Y-axisAsty.promm2Max=Asty.req/Asty.min392(b)Ast req to provide @ X-axisAstx.promm2Max=Astx.req/Astx.min37623.0(a)Provide no. of bars parallelNxNo.Astx.pro / ast6.0to the length of footing formmSpacing (cal)150.0bending @ X-axismm2Astx.pro.cal471(b)Provide no. of bars parallelNyNo.Asty.pro / ast6.0to width of footing formmSpacing (cal)150.0bending @ Y-axismm2Asty.pro.cal471VI. CHECK FOR ONE - WAYSHEAR @ Y - AXIS24.0(a) Width at top of footing atLy1mmLf800critical section(b) Effective depth 0f footingdy1mmdy235at critical section(c) Area of footing at criticalAy1mmAy1=Ly1*dy1188000section25.0Percentage of steel prov.pty%pty=100*Asty/Ay10.25126.0Shear Strength of Concrete inTcy10.2300One Way Shear (Tucy1)27.0Shear Resistance of Concrete inVcy1kNVcy1=Tucy1*Ay143.24One Way Shear28.0Design ShearVdy1kNVdy1=pmax,y*Lf*(y1-dy)1.0829.0Vucy1 greater than Vudy1,hence--SAFE--VII. CHECK FOR ONE - WAYSHEAR @ X - AXIS30.0(a) Width at top of footing atBx1mmBf800critical section(b) Effective depth 0f footingdx1mmdx245at critical section(c) Area of footing at criticalAx1mmAx1=Bx1*dx1196000section31.0Percentage of steel prov.ptx%ptx=100*Astx/Ax10.24032.0Shear Strength of Concrete inTcx10.2280One Way Shear (Tucx1)33.0Shear Resistance of Concrete inVcx1kNVcx1=Tucx1*Ax144.69One Way Shear34.0Design ShearVdx1kNVdx1=pmax,x*Bf*(x1-dx)0.3635.0Vucx1 greater than Vudx1,hence--SAFE--

&C&8RCC DESIGN OF DIRTY BACKWASH TANK&R&"Arial,Bold"&8THERMAX LTD.&L&"Arial,Bold"&8BPCL, MAHUL&C&P

cantilever:: DESIGN OF SIDE WALL & FOOTING ::PROJECT : 30KLPD TOTAL SPIRITMarch 4, 2003CLIENT : SHREE VITHALRAO SHINDE S S K LTD.DESIGN DATA :--a)Liquid depthLd=2700mmb)Free board, if anyf b=300mmc)Unit weight of Concreteg 1=25kN/m3d)Unit weight of waterg 2=10kN/m3e)Unit weight of soilg 3=18kN/m3f)Angle of Reposef=30og)Safe Bearing Capacity of Soil=200kN/m2h)Grade of concrete=25N/mm2PROPERTIES OF WALL :--i)thickness of wall at baset k=400mmii)thickness of wall at topt 1k=150mmiv)total height of wall, (Sd+fb)h=3000mmv)width of Toe slabb 1=400mmvi)width of Heel slabb 2=1800mmvii)base width of wall footingb=2600mmviii)thickness of raftt r=350mmt1 kf bhS dToeHeelt rb 1t kb 2bDESIGN OF WALL -Bending Moment in wall at the base,B.M.max.g 2 x h3=45.00kNm6Depth reqd,dreqd.=B.M. max x 1000 =374.07mm0.3216 x 1000Thickness of wall at base =400mmThickness of wall at top =150mmAst.reqd=BM * 106here s st =150N/mm2s st* j * dd =355mm=939mm2Ast.min=0.0857% of cross sect. area=343mm2 in each directionVertical :Provide 12F@ 115 c/c on inner face upto 2.5m, above 12F @ 230 c/cAst.pro =983mm2 >939mm2\--SAFE--Horizontal :DESIGN OF WALL FOOTING -15030030001270043ToeHeel350240040018002600SATBILITY ANALYSIS :--WeightLeverMomentComponent MarkedArm@ Toe(kN)(m)(kN-m)Vertical Wall 1=(t k *h)*g 111.250.7258.156Wall Footing 2=(t r*b)*g 122.751.30029.575Soil3=(Sd*b2)*g 254.001.70091.800Vertical Wall 4= ((t k - t1 k) * h1) *g 19.380.5675.3132Total Weight(SW1)=97.38134.844Overturning Moment ( = Mnt. @ Bottom of Wall) =45.000Net Stabilising Moment(SM1)=89.844Factor of Safety against Overturning=Stabalising Moment=134.84Overturning Moment45.00=2.997>2\--SAFE--Distance of resultant from Toe, x =Net Stabalising Mmt(SM1)=89.84Total Weight (SW1)97.38=0.9227mEccentricity, e=( b / 2 ) - x=0.3773b / 6=0.4333as eccentricity is less than b / 6,\--SAFE--SW16 x eMaximum pressure @ Toe, p-max =( 1 + )bb=70.06kN/m2Max. pr. is less than Bearing Capacity which is200kN/m2\--SAFE--SW16 x eMinimum pressure @ Heel, p-min =( 1 - )bb=4.84kN/m2Pressure at variuos points is as shown in PRESSURE DIAGRAM.26004004001800Toe ABCD Heel70.0660.0350.004.84DESIGN OF HEEL SLAB :--Downward pressure on Slab due to --i)self weight of slab =t r *g 1 =8.75kN/m2ii)weight of soil =l d *g 2 =27.00kN/m235.75kN/m2 ()\Net pressure at point C,say PC=35.7550.00=-14.25kN/m2 ()andNet pressure at point D,say PD=35.754.84=30.91kN/m2 ()PD =30.91\Max. B. M. @ point CPC==(PC*(b2 2)/2)14.25+ (1/2(b2*(PD-PC))*((2/3)b2))CD1800=41.08kN-mtk of heel slab reqd.=BM @ C * 1060.30781000=365.3mm\Provide350mm thick raftAst.reqd=BM @ C * 106here s st =150N/mm2s st* j * dd =295mm=1031mm2Ast.min=0.0800% of cross sect. area=280mm2 in each direction\Provide 12 F @ 140 c/c at top of wall footing,Ast.pro =808mm2 >1031mm2\--UNSAFE--Provide 12 F @ 150 c/c as distribution steel at top of wall footing having,Ast.pro =754mm2 >280mm2\--SAFE--DESIGN OF TOE SLAB :--Downward pressure on Slab due to --self weight of slab =t r *g 1 =8.75kN/m2 ()\Net pressure at point B,say PB=8.7560.03=-51.28kN/m2 ()andNet pressure at point A,say PA=8.7570.06=-61.31kN/m2 ()\Max. B. M. @ point B61.31=PAPB =51.28=(PB*(b1 2)/2)+ (1/2(b1*(PA-PB))*((2/3)b1))ABb1=400=4.64kN-m\tk of toe slab reqd.=BM @ B * 1060.30781000=123mm\Provide350mm thick raftAst.reqd=BM @ B * 106here s st =150N/mm2s st* j * d=116mm2Ast.min=0.0800% of cross sect. area=280mm2 in each direction\Provide 12F @ 185 c/c + 20F @ 185 c/c at bottom of wall footing,Ast.pro =2309mm2 >280mm2\--SAFE--Provide 12 F @ 150 c/c as distribution steel at top of wall footing having,Ast.pro =754mm2 >280mm2\--SAFE--

Page &P

prop-cantilever-side wall_r1:: DESIGN OF SIDE WALL & FOOTING ::PROJECT : 30KLPD TOTAL SPIRITMarch 19, 2003CLIENT : SHREE VITHALRAO SHINDE S S K LTD.DESIGN DATA :--a)Liquid depthLd=3030mmb)Free board, if anyf b=150mmc)Unit weight of Concreteg 1=25kN/m3d)Unit weight of waterg 2=10kN/m3e)Unit weight of soilg 3=18kN/m3f)Angle of Reposef=30og)Safe Bearing Capacity of Soil=200kN/m2h)Grade of concrete=25N/mm2PROPERTIES OF WALL :--i)thickness of wall at baset k=270mmii)thickness of wall at topt 1k=270mmiv)total height of wall, (Sd+fb)h=3180mmv)width of Toe slabb 1=300mmvi)width of Heel slabb 2=1500mmvii)base width of wall footingb=2070mmviii)thickness of raftt r=270mmt1 kf bhS dToeHeelt rb 1t kb 2bDESIGN OF WALL -Bending Moment in wall at the base,B.M.max.g 2 x h3=21.44kNm15Depth reqd,dreqd.=B.M. max x 1000 =258.19mm0.3216 x 1000Thickness of wall at base =270mmThickness of wall at top =270mmAst.reqd=BM * 106here s st =150N/mm2s st* j * dd =225mm=706mm2Ast.min=0.1006% of cross sect. area=272mm2 in each directionVertical :Provide 10F@ 100 c/c on inner face upto 1m, above 10F @ 200 c/cAst.pro =714mm2 >706mm2\--SAFE--Provide 10F@ 200 c/c on outer faceHorizontal :Provide 8F@ 170 c/c on both facesAst.pro =295mm2 >272mm2\--SAFE--DESIGN OF WALL FOOTING -27015031801303043ToeHeel270230027015002070SATBILITY ANALYSIS :--WeightLeverMomentComponent MarkedArm@ Toe(kN)(m)(kN-m)Vertical Wall 1=(t k *h)*g 121.470.4359.337Wall Footing 2=(t r*b)*g 113.971.03514.462Soil3=(Sd*b2)*g 247.701.32062.964Vertical Wall 4= ((t k - t1 k) * h1) *g 10.000.3000.0002Total Weight(SW1)=83.1486.763Overturning Moment ( = Mnt. @ Bottom of Wall) =21.438Net Stabilising Moment(SM1)=65.325Factor of Safety against Overturning=Stabalising Moment=86.76Overturning Moment21.44=4.047>2\--SAFE--Distance of resultant from Toe, x =Net Stabalising Mmt(SM1)=65.32Total Weight (SW1)83.14=0.7857mEccentricity, e=( b / 2 ) - x=0.2493b / 6=0.3450as eccentricity is less than b / 6,\--SAFE--SW16 x eMaximum pressure @ Toe, p-max =( 1 + )bb=69.18kN/m2Max. pr. is less than Bearing Capacity which is200kN/m2\--SAFE--SW16 x eMinimum pressure @ Heel, p-min =( 1 - )bb=11.15kN/m2Pressure at variuos points is as shown in PRESSURE DIAGRAM.20703002701500Toe ABCD Heel69.1860.7753.2011.15DESIGN OF HEEL SLAB :--Downward pressure on Slab due to --i)self weight of slab =t r *g 1 =6.75kN/m2ii)weight of soil =l d *g 2 =30.30kN/m237.05kN/m2 ()\Net pressure at point C,say PC=37.0553.20=-16.15kN/m2 ()andNet pressure at point D,say PD=37.0511.15=25.90kN/m2 ()PD =25.90\Max. B. M. @ point CPC==16.15C576924D1500=13.37kN-mtk of heel slab reqd.=BM @ C * 1060.32161000=203.9mm\Provide270mm thick raftAst.reqd=BM @ C * 106here s st =150N/mm2s st* j * dd =215mm=461mm2Ast.min=0.1006% of cross sect. area=272mm2 in each direction\Provide 10 F @ 160 c/c at top of wall footing,Ast.pro =490mm2 >461mm2\--SAFE--Provide 8 F @ 170 c/c as distribution steel at top of wall footing having,Ast.pro =295mm2 >272mm2\--SAFE--DESIGN OF TOE SLAB :--Downward pressure on Slab due to --self weight of slab =t r *g 1 =6.75kN/m2 ()\Net pressure at point B,say PB=6.7560.77=-54.02kN/m2 ()andNet pressure at point A,say PA=6.7569.18=-62.43kN/m2 ()\Max. B. M. @ point B62.43=PAPB =54.02=(PB*(b1 2)/2)+ (1/2(b1*(PA-PB))*((2/3)b1))ABb1=300=2.68kN-m\tk of toe slab reqd.=BM @ B * 1060.31261000=93mm\Provide270mm thick raftAst.reqd=BM @ B * 106here s st =150N/mm2s st* j * d=92mm2Ast.min=0.1006% of cross sect. area=272mm2 in each direction\Provide 10F @ 200c/c at bottom of wall footing,Ast.pro =393mm2 >272mm2\--SAFE--Provide 8 F @ 180 c/c as distribution steel at top of wall footing having,Ast.pro =279mm2 >272mm2\--SAFE--DESIGN OF CENTRAL RAFT -Provide 250 mm thick central raftProvide 8F @ 150c/c bothways at top and bottom.As the liquid depth for all the Aeration tanks is same, therefore design of walls and footingswill remain same as above.

Page &P

prop-cantilever-cen wall_r1:: DESIGN OF SIDE WALL & FOOTING ::PROJECT : 30KLPD TOTAL SPIRITMarch 19, 2003CLIENT : SHREE VITHALRAO SHINDE S S K LTD.DESIGN DATA :--a)Liquid depthLd=3030mmb)Free board, if anyf b=150mmc)Unit weight of Concreteg 1=25kN/m3d)Unit weight of waterg 2=10kN/m3e)Unit weight of soilg 3=18kN/m3f)Angle of Reposef=30og)Safe Bearing Capacity of Soil=200kN/m2h)Grade of concrete=25N/mm2PROPERTIES OF WALL :--i)thickness of wall at baset k=270mmii)thickness of wall at topt 1k=270mmiv)total height of wall, (Sd+fb)h=3180mmv)width of Toe slabb 1=650mmvi)width of Heel slabb 2=650mmvii)base width of wall footingb=1570mmviii)thickness of raftt r=270mmt1 kf bhS dToeHeelt rb 1t kb 2bDESIGN OF WALL -Bending Moment in wall at the base,B.M.max.g 2 x h3=21.44kNm15Depth reqd,dreqd.=B.M. max x 1000 =258.19mm0.3216 x 1000Thickness of wall at base =270mmThickness of wall at top =270mmAst.reqd=BM * 106here s st =150N/mm2s st* j * dd =225mm=706mm2Ast.min=0.1006% of cross sect. area=272mm2 in each directionVertical :Provide 10F@ 100 c/c on inner face upto 1m, above 10F @ 200 c/cAst.pro =714mm2 >706mm2\--SAFE--Provide 10F@ 200 c/c on outer faceHorizontal :Provide 8F@ 170 c/c on both facesAst.pro =295mm2 >272mm2\--SAFE--DESIGN OF WALL FOOTING -27015031801303043ToeHeel27026502706501570SATBILITY ANALYSIS :--WeightLeverMomentComponent MarkedArm@ Toe(kN)(m)(kN-m)Vertical Wall 1=(t k *h)*g 121.470.78516.850Wall Footing 2=(t r*b)*g 110.600.7858.319Soil3=(Sd*b2)*g 220.671.24525.734Vertical Wall 4= ((t k - t1 k) * h1) *g 10.000.6500.0002Total Weight(SW1)=52.7350.903Overturning Moment ( = Mnt. @ Bottom of Wall) =21.438Net Stabilising Moment(SM1)=29.465Factor of Safety against Overturning=Stabalising Moment=50.90Overturning Moment21.44=2.374>2\--SAFE--Distance of resultant from Toe, x =Net Stabalising Mmt(SM1)=29.46Total Weight (SW1)52.73=0.5588mEccentricity, e=( b / 2 ) - x=0.2262b / 6=0.2617as eccentricity is less than b / 6,\--SAFE--SW16 x eMaximum pressure @ Toe, p-max =( 1 + )bb=62.63kN/m2Max. pr. is less than Bearing Capacity which is200kN/m2\--SAFE--SW16 x eMinimum pressure @ Heel, p-min =( 1 - )bb=4.55kN/m2Pressure at variuos points is as shown in PRESSURE DIAGRAM.1570650270650Toe ABCD Heel62.6338.5828.594.55DESIGN OF HEEL SLAB :--Downward pressure on Slab due to --i)self weight of slab =t r *g 1 =6.75kN/m2ii)weight of soil =l d *g 2 =30.30kN/m237.05kN/m2 ()\Net pressure at point C,say PC=37.0528.59=8.46kN/m2 ()andNet pressure at point D,say PD=37.054.55=32.50kN/m2 ()PD =32.50\Max. B. M. @ point CPC==(PC*(b2 2)/2)8.46+ (1/2(b2*(PD-PC))*((2/3)b2))CD650=5.17kN-mtk of heel slab reqd.=BM @ C * 1060.32161000=126.8mm\Provide270mm thick raftAst.reqd=BM @ C * 106here s st =150N/mm2s st* j * dd =215mm=178mm2Ast.min=0.1006% of cross sect. area=272mm2 in each direction\Provide 10 F @ 200 c/c at top of wall footing,Ast.pro =393mm2 >272mm2\--SAFE--Provide 8 F @ 170 c/c as distribution steel at top of wall footing having,Ast.pro =295mm2 >272mm2\--SAFE--DESIGN OF TOE SLAB :--Downward pressure on Slab due to --self weight of slab =t r *g 1 =6.75kN/m2 ()\Net pressure at point B,say PB=6.7538.58=-31.83kN/m2 ()andNet pressure at point A,say PA=6.7562.63=-55.88kN/m2 ()\Max. B. M. @ point B55.88=PAPB =31.83=(PB*(b1 2)/2)+ (1/2(b1*(PA-PB))*((2/3)b1))ABb1=650=10.11kN-m\tk of toe slab reqd.=BM @ B * 1060.31261000=180mm\Provide270mm thick raftAst.reqd=BM @ B * 106here s st =150N/mm2s st* j * d=348mm2Ast.min=0.1006% of cross sect. area=272mm2 in each direction\Provide 10F @ 200c/c at bottom of wall footing,Ast.pro =393mm2 >348mm2\--SAFE--Provide 8 F @ 170 c/c as distribution steel at top of wall footing having,Ast.pro =295mm2 >272mm2\--SAFE--DESIGN OF CENTRAL RAFT -Provide 250 mm thick central raftProvide 8F @ 150c/c bothways at top and bottom.As the liquid depth for all the Aeration tanks is same, therefore design of walls and footingswill remain same as above.

Page &P

cantilever_r1:: DESIGN OF SIDE WALL & FOOTING ::PROJECT : 30KLPD TOTAL SPIRITMarch 19, 2003CLIENT : SHREE VITHALRAO SHINDE S S K LTD.DESIGN DATA :--a)Liquid depthLd=3030mmb)Free board, if anyf b=150mmc)Unit weight of Concreteg 1=25kN/m3d)Unit weight of waterg 2=10kN/m3e)Unit weight of soilg 3=18kN/m3f)Angle of Reposef=30og)Safe Bearing Capacity of Soil=200kN/m2h)Grade of concrete=25N/mm2PROPERTIES OF WALL :--i)thickness of wall at baset k=420mmii)thickness of wall at topt 1k=150mmiv)total height of wall, (Sd+fb)h=3180mmv)width of Toe slabb 1=400mmvi)width of Heel slabb 2=1800mmvii)base width of wall footingb=2620mmviii)thickness of raftt r=370mmt1 kf bhS dToeHeelt rb 1t kb 2bDESIGN OF WALL -Bending Moment in wall at the base,B.M.max.g 2 x h3=53.60kNm6Depth reqd,dreqd.=B.M. max x 1000 =408.23mm0.3216 x 1000Thickness of wall at base =420mmThickness of wall at top =150mmAst.reqd=BM * 106here s st =150N/mm2s st* j * dd =375mm=1059mm2Ast.min=0.0834% of cross sect. area=350mm2 in each directionVertical :Provide 10F@ 170 c/c + 12F @ 170c/con inner face upto 1m, above 10F @ 170 c/cAst.pro =1127mm2 >1059mm2\--SAFE--Provide 10F@ 170 c/c on outer faceHorizontal :Provide 8F@ 130 c/c upto 1m on both facesAst.pro =387mm2 >350mm2\--SAFE--Provide 8F@ 180 c/c from 1m to 2m on both facesProvide 8F@ 230 c/c from 2m to top on both facesDESIGN OF WALL FOOTING -15015031801303043ToeHeel370240042018002620SATBILITY ANALYSIS :--WeightLeverMomentComponent MarkedArm@ Toe(kN)(m)(kN-m)Vertical Wall 1=(t k *h)*g 111.930.7458.884Wall Footing 2=(t r*b)*g 124.241.31031.748Soil3=(Sd*b2)*g 257.241.72098.453Vertical Wall 4= ((t k - t1 k) * h1) *g 110.730.5806.2252Total Weight(SW1)=104.13145.310Overturning Moment ( = Mnt. @ Bottom of Wall) =53.596Net Stabilising Moment(SM1)=91.714Factor of Safety against Overturning=Stabalising Moment=145.31Overturning Moment53.60=2.711>2\--SAFE--Distance of resultant from Toe, x =Net Stabalising Mmt(SM1)=91.71Total Weight (SW1)104.13=0.8807mEccentricity, e=( b / 2 ) - x=0.4293b / 6=0.4367as eccentricity is less than b / 6,\--SAFE--SW16 x eMaximum pressure @ Toe, p-max =( 1 + )bb=78.82kN/m2Max. pr. is less than Bearing Capacity which is200kN/m2\--SAFE--SW16 x eMinimum pressure @ Heel, p-min =( 1 - )bb=0.67kN/m2Pressure at variuos points is as shown in PRESSURE DIAGRAM.26204004201800Toe ABCD Heel78.8266.8954.360.67DESIGN OF HEEL SLAB :--Downward pressure on Slab due to --i)self weight of slab =t r *g 1 =9.25kN/m2ii)weight of soil =l d *g 2 =30.30kN/m239.55kN/m2 ()\Net pressure at point C,say PC=39.5554.36=-14.81kN/m2 ()andNet pressure at point D,say PD=39.550.67=38.88kN/m2 ()PD =38.88\Max. B. M. @ point CPC==(PC*(b2 2)/2)14.81+ (1/2(b2*(PD-PC))*((2/3)b2))C4971303D1800=33.99kN-mtk of heel slab reqd.=BM @ C * 1060.30781000=332.3mm\Provide370mm thick raftAst.reqd=BM @ C * 106here s st =150N/mm2s st* j * dd =315mm=799mm2Ast.min=0.0891% of cross sect. area=330mm2 in each direction\Provide 12 F @ 170 c/c + 10F @ 340c/c at top of wall footing,Ast.pro =896mm2 >799mm2\--SAFE--Provide 8F @ 130 c/c as distribution steel at top of wall footing having,Ast.pro =387mm2 >330mm2\--SAFE--DESIGN OF TOE SLAB :--Downward pressure on Slab due to --self weight of slab =t r *g 1 =9.25kN/m2 ()\Net pressure at point B,say PB=9.2566.89=-57.64kN/m2 ()andNet pressure at point A,say PA=9.2578.82=-69.57kN/m2 ()\Max. B. M. @ point B69.57=PAPB =57.64=(PB*(b1 2)/2)+ (1/2(b1*(PA-PB))*((2/3)b1))ABb1=400=5.25kN-m\tk of toe slab reqd.=BM @ B * 1060.30781000=131mm\Provide370mm thick raftAst.reqd=BM @ B * 106here s st =150N/mm2s st* j * d=123mm2Ast.min=0.0891% of cross sect. area=330mm2 in each direction\Provide 10F @ 170 at bottom of wall footing,Ast.pro =462mm2 >330mm2\--SAFE--Provide 8 F @ 130 c/c as distribution steel at top of wall footing having,Ast.pro =387mm2 >330mm2\--SAFE--

Page &P

temp:: DESIGN OF SIDE WALL & FOOTING ::PROJECT : 30KLPD TOTAL SPIRITMarch 4, 2003CLIENT : SHREE VITHALRAO SHINDE S S K LTD.DESIGN DATA :--a)Liquid depthLd=2700mmb)Free board, if anyf b=300mmc)Unit weight of Concreteg 1=25kN/m3d)Unit weight of waterg 2=10kN/m3e)Unit weight of soilg 3=18kN/m3f)Angle of Reposef=30og)Safe Bearing Capacity of Soil=200kN/m2h)Grade of concrete=25N/mm2PROPERTIES OF WALL :--i)thickness of wall at baset k=400mmii)thickness of wall at topt 1k=150mmiv)total height of wall, (Sd+fb)h=3000mmv)width of Toe slabb 1=450mmvi)width of Heel slabb 2=1800mmvii)base width of wall footingb=2650mmviii)thickness of raftt r=350mmt1 kf bhS dToeHeelt rb 1t kb 2bDESIGN OF WALL -Bending Moment in wall at the base,B.M.max.g 2 x h3=45.00kNm6Depth reqd,dreqd.=B.M. max x 1000 =374.07mm0.3216 x 1000Thickness of wall at base =400mmThickness of wall at top =150mmAst.reqd=BM * 106here s st =150N/mm2s st* j * dd =355mm=939mm2Ast.min=0.0857% of cross sect. area=343mm2 in each directionVertical :Provide 12F@ 115 c/c on inner face upto 2.5m, above 12F @ 230 c/cAst.pro =983mm2 >939mm2\--SAFE--Horizontal :DESIGN OF WALL FOOTING -15030030001270043ToeHeel350245040018002650SATBILITY ANALYSIS :--WeightLeverMomentComponent MarkedArm@ Toe(kN)(m)(kN-m)Vertical Wall 1=(t k *h)*g 111.250.7758.719Wall Footing 2=(t r*b)*g 123.191.32530.723Soil3=(Sd*b2)*g 254.001.75094.500Vertical Wall 4= ((t k - t1 k) * h1) *g 19.380.6175.7812Total Weight(SW1)=97.81139.723Overturning Moment ( = Mnt. @ Bottom of Wall) =45.000Net Stabilising Moment(SM1)=94.723Factor of Safety against Overturning=Stabalising Moment=139.72Overturning Moment45.00=3.105>2\--SAFE--Distance of resultant from Toe, x =Net Stabalising Mmt(SM1)=94.72Total Weight (SW1)97.81=0.9684mEccentricity, e=( b / 2 ) - x=0.3566b / 6=0.4417as eccentricity is less than b / 6,\--SAFE--SW16 x eMaximum pressure @ Toe, p-max =( 1 + )bb=66.71kN/m2Max. pr. is less than Bearing Capacity which is200kN/m2\--SAFE--SW16 x eMinimum pressure @ Heel, p-min =( 1 - )bb=7.11kN/m2Pressure at variuos points is as shown in PRESSURE DIAGRAM.26504504001800Toe ABCD Heel66.7156.5947.597.11DESIGN OF HEEL SLAB :--Downward pressure on Slab due to --i)self weight of slab =t r *g 1 =8.75kN/m2ii)weight of soil =l d *g 2 =27.00kN/m235.75kN/m2 ()\Net pressure at point C,say PC=35.7547.59=-11.84kN/m2 ()andNet pressure at point D,say PD=35.757.11=28.64kN/m2 ()PD =28.64\Max. B. M. @ point CPC==(PC*(b2 2)/2)11.84+ (1/2(b2*(PD-PC))*((2/3)b2))CD1800=37.33kN-mtk of heel slab reqd.=BM @ C * 1060.30781000=348.2mm\Provide350mm thick raftAst.reqd=BM @ C * 106here s st =150N/mm2s st* j * dd =295mm=937mm2Ast.min=0.0800% of cross sect. area=280mm2 in each direction\Provide 12 F @ 140 c/c at top of wall footing,Ast.pro =808mm2 >937mm2\--UNSAFE--Provide 12 F @ 150 c/c as distribution steel at top of wall footing having,Ast.pro =754mm2 >280mm2\--SAFE--DESIGN OF TOE SLAB :--Downward pressure on Slab due to --self weight of slab =t r *g 1 =8.75kN/m2 ()\Net pressure at point B,say PB=8.7556.59=-47.84kN/m2 ()andNet pressure at point A,say PA=8.7566.71=-57.96kN/m2 ()\Max. B. M. @ point B57.96=PAPB =47.84=(PB*(b1 2)/2)+ (1/2(b1*(PA-PB))*((2/3)b1))ABb1=450=5.53kN-m\tk of toe slab reqd.=BM @ B * 1060.30781000=134mm\Provide350mm thick raftAst.reqd=BM @ B * 106here s st =150N/mm2s st* j * d=139mm2Ast.min=0.0800% of cross sect. area=280mm2 in each direction\Provide 12F @ 185 c/c + 20F @ 185 c/c at bottom of wall footing,Ast.pro =2309mm2 >280mm2\--SAFE--Provide 12 F @ 150 c/c as distribution steel at top of wall footing having,Ast.pro =754mm2 >280mm2\--SAFE--SATBILITY ANALYSIS :--WeightLeverMomentComponent MarkedArm@ Toe(kN)(m)(kN-m)Vertical Wall 1=(t k *h)*g 111.251.87521.094Wall Footing 2=(t r*b)*g 123.191.32530.723Soil3=(Sd*b2)*g 224.302.42558.9286.752.36715.975Surcharge35.002.30080.500Vertical Wall 4= ((t k - t1 k) * h1) *g 19.381.88317.6562Total Weight(SW1)=109.86224.876Overturning Moment ( = Mnt. @ Bottom of Wall) =0.000Net Stabilising Moment(SM1)=224.876Factor of Safety against Overturning=Stabalising Moment=224.88Overturning Moment0.00=0.000>2\0Distance of resultant from Toe, x =Net Stabalising Mmt(SM1)=224.88Total Weight (SW1)109.86=2.0469mEccentricity, e=( b / 2 ) - x=-2.0469b / 6=0.0000as eccentricity is less than b / 6,\--SAFE--SW16 x eMaximum pressure @ Toe, p-max =( 1 + )bb=0.00kN/m2Max. pr. is less than Bearing Capacity which is0kN/m2\0SW16 x eMinimum pressure @ Heel, p-min =( 1 - )bb=0.00kN/m2Pressure at variuos points is as shown in PRESSURE DIAGRAM.0000Toe ABCD Heel0.000.000.000.00DESIGN OF HEEL SLAB :--Downward pressure on Slab due to --i)self weight of slab =t r *g 1 =0.00kN/m2ii)weight of soil =l d *g 2 =0.00kN/m20.00kN/m2 ()\Net pressure at point C,say PC=0.000.00=0.00kN/m2 ()andNet pressure at point D,say PD=0.000.00=0.00kN/m2 ()PD =0.00\Max. B. M. @ point CPC==(PC*(b2 2)/2)0.00+ (1/2(b2*(PD-PC))*((2/3)b2))CD0=0.00kN-mtk of heel slab reqd.=BM @ C * 1060.30781000=0.0mm\Provide0mm thick raftAst.reqd=BM @ C * 106here s st =150N/mm2s st* j * dd =-55mm=0mm2Ast.min=0.0800% of cross sect. area=0mm2 in each direction\Provide 12 F @ 100 c/c at top of wall footing,Ast.pro =1131mm2 >0mm2\0Provide 10 F @ 150 c/c as distribution steel at top of wall footing having,Ast.pro =524mm2 >0mm2\--SAFE--DESIGN OF TOE SLAB :--Downward pressure on Slab due to --self weight of slab =t r *g 1 =0.00kN/m2 ()\Net pressure at point B,say PB=0.000.00=0.00kN/m2 ()andNet pressure at point A,say PA=0.000.00=0.00kN/m2 ()\Max. B. M. @ point B0.00=PAPB =0.00=(PB*(b1 2)/2)+ (1/2(b1*(PA-PB))*((2/3)b1))ABb1=0=0.00kN-m\tk of toe slab reqd.=BM @ B * 1060.30781000=0mm\Provide0mm thick raftAst.reqd=BM @ B * 106here s st =150N/mm2s st* j * d=0mm2Ast.min=0.0800% of cross sect. area=0mm2 in each direction\Provide 10 F @ 100 c/c at bottom of wall footing,Ast.pro =785mm2 >0mm2\0Provide 10 F @ 150 c/c as distribution steel at top of wall footing having,Ast.pro =524mm2 >0mm2\--SAFE--DESIGN OF CENTRAL RAFT -Provide 250 mm thick central raftProvide 8F @ 150c/c bothways at top and bottom.As the liquid depth for all the Aeration tanks is same, therefore design of walls and footingswill remain same as above.

Page &P