design on mems-based biochip for time dependent drug

60
義守大學 機械與自動化工程學系 碩士論文 微機電製程動態藥劑釋放生物晶片 設計 Design on MEMS-Based Biochip for Time Dependent Drug-Released Capsule 生: 吳恆豪 指導教授: 徐祥禎 博士 共同指導教授:李炯達 博士 中華民國九十九年七月

Upload: others

Post on 16-Oct-2021

1 views

Category:

Documents


0 download

TRANSCRIPT



Released Capsule
AdvisorHsiang-Chen Hsu
AdvisorChiung-Ta Lee

I-Shou University
for the Master degree

i

w/o
w/o/w

ii
Abstract
In this study, the microfluidic emulsion chips was fabricated using
micro-electro-mechanical system(MEMS) technique. There is the research in this
thesis. It is two-step emulsification with two-dimentional hydrodynamic focusing
structure; The research is shape design in microchannel. By cascading two
hydrodynamic focusing s t ructure , double emuls ion droplets can be
generated.
The microfluidic chip proposed can also be used to generate well size-controlled
double emulsion microdroplets in liquids by integrating three mechanisms including a
traditional emulsification process by a T-junction design, hydrodynamic focusing
structure and microchannels. By the combination of these mechanisms of the
incroporated T-junction channel design and microchannels, water-in-oil (w/o) droplets
at the intersection of the water phase and the oil phase can be generated. Then, double
emulsion droplets (w/o/w) were formed by using the hydrodynamic focusing structure
at intersection of the oil phase and the external water phase. The emulsion droplets
with different diameters were produced by change water phase and oil
phase velocity.
The chip in this study is to combine SU-8 negative photoresist in the process of
photolithography to produce circular microchannel mould. This mold can then be used
to replicate circular microchannel with PDMS. Since PDMS is a soft material, there
will be a crack on structure while demolding. However, the crack can be recovered
during the process of thermal bonding of PDMS componants, for PDMS molecules
would osmose into the crack. Therefore we can reproduce circular microfluidic
channels by PDMS demolding process. We successfully fabricate emulsification chips
iii
with hydrodynamic focusing structure to produce double emulsion droplets. These
device have shown great promise in various applications including emulsification,
nano-medicine and droplet-based microfluidicds.
PDMS, MEMS


4-3 ………………………………………………………..39
4-4 ……………………………..40
3.1 ………………………………………………………29
3.1 ………………………………………………………30
3.3 ……………………………………………………30
ix

1.4 T…………………………………..........................6 1.5 W/O/W …………………………………..……6
1.6 …….…….7
1.7 ……………….……….…7
1.8 ………………..8
1.9 ………………………………………………..9
1.10 …………………9
1.11 ………......10
1.13 …………………………………..11
1.14 ………………………..11
2.1 ……………………………………....16
2.2 ……………………………………16
2.3 …………………………………………18
3.10 …………..……………………………………33
3.11 ………………...…………...35
4.1 ………………………………………………37
4.3 T -…………………………………39
4.4 -…………………………………39
DI WaterDeionized Water
HLBHydrophilic lipophilic balance
MEMSMicro-electro-mechanical-systems
PRPhotoresist
PDMSPolydimethylsiloxane
UVUltraviolet
μ-TASMicro-total-analysis-systems
o/woil-in-water
w/owater-in-oil
o/w/ooil-in-water-in-oil
w/o/wwater-in-oil-in-water






2
-





[11]
4

[12] 5%
1.2 2005
2%
5
2001 Thorsen T
[14] 1.4 Takasi Nisisako 2002
6
[16] 1.5
1.6(a)
[35]
[16]
1.7
1.7 [18]

8
1.8(b)
(a)
(b)


[23]
1.12(b)
[25]
1.14


PDMS


U 2.1
uu(y)uUy/b 2.1
(velocity gandient)
b aδδβδβ =≈tan

(Newtonian fluids) 2-1
FTL-2 BG 1bs/ft2 SI Ns/m2
2.1 [30]

(capillary action)()
( )
γπR2h
θσπγπ cos22 RhR =
17
pΔ πR2
22 RpR πσπ Δ=

18
Ca


(water in oil)


2.5
“” (oil in water)“” (water in oil)


(a) (b) (c) (d)
”“”

[31]
1. (anionic surfactants)


2-2HLB HLB

23
2-3
2-D Sample flow
Sheath flow

[37]
Dvd 11= …………………………………………………...…(2-4)




Start
BOE
5

1300 /(rpm) SU8(3035) 1300
/(rpm) 30 80 (μm) 3.4

28

3.5 95 30
SU8 3.1
29
( m J / c m 2 )
( 3-1 )

65 1 95 5
3.3
3.3

3.4


(1) PDMS 101 1

3.8


PDMS (Oxygen Plasma)
3.9 O2 Plasma
COOHOH PDMS
33
3.9 O2Plasma
(e)PDMS (f)

PDMS



37



(c)

()(DI Water)
115μm 2
675μm 120μm 5
600μm 135μm 10
SampleA, V2
SampleB, V1
micro droplets
165μm 50 400μm
185μm
50 115μm
1








1
(μm)
(μm)
40
4-4


w/o/w
Engineering,”Boston:Artech House, 1, 2000.
[2] M. U. Kopp, A. J. de Mello and A. Manz, “Chemical Amplification:
Continuous-Flow PCR on a Chip,” Science, 280, 1046-1048, 1998.
[3] M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster,
M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H.
Mastrangelo and D. T. Burke, “An Integrated Nanoliter DNA Analysis
Device,” Science, 282, 484-487, 1998.
[4] D. J . Harrison, K. Fluri , Z. Fan, C. S. Effenhauser and A. Manz,
“Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical
Analysis System on a Chip,” Science, 261, 895-897, 1993.
[5] S. J. Haswell and V. Skelton, “Chemical and Biochemical Microreactors,”
Trends in Analytical Chemistry, 19, 389-395, 2000.
[6] T. McCreedy, “Fabrication Techniques and Materials Commonly Used for the
Production of Microreactors and Micro Total Analytical Systems,” Trends in
Analytical Chemistry, 19, 396-401, 2000.
[7] K. Seiler, D. J. Harrison, and A Manz, “Planar chips technology for
miniaturization and integration of separation techniques into monitoring
systems,” Journal of Chomatography, 593, 253-258, 1992.
[8] J. B. Yoon, C. H. Han, E. Yoon, and C. K. Kim, “Monolithic Integration of 3-D
Electroplated Microstructures with Unlimited Number of Levels Using
Planarization with a Sacrificial Metallic Mold (PSMM),” 12th IEEE
International Conference on MEMS, Jan. 17-21, 624-629, 1999.
[9] T. Kawakatsu, Y. Kikuchi and M. Nakajima, “Regular-Sized Cell Creation in
44
American Oil Chemists’ Society, 74, 317-321, 1997
[10] T. Kawakatsu, H. Komori, M. Nakajima, Y. Kikuchi and T. Yonemoto,
“Production of Monodispersed Oil-in-Water Emulsion Using Crossflow-Type
Silicon Microchannel Plate,” Journal of Chemical Engineering of Japan, 32,
241-244, 1999.
[11] Simon M. Joscelyne and Gun Trägårdh,”Membrane emulsification — a
literature review,“Journal of Membrane Science, 169, 107-117, 2000.
[12] S. Sugiura, M. Nakajima, K. Yamamoto, S. Iwamoto, T. Oda, M. Satake and
M. Seki, “Preparation characteristics of water-in-oil-in-water multiple
emulsions using microchannel emulsification,” Journal of Colloid and
Interface Science, 270, 221-228, 2004.
[13] I. Kobayashi, S. Mukataka and M. Nakajima, “Novel Asymmetric
Through-Hole Array Microfabricated on a Silicon Plate for Formulating
Monodisperse Emulsions,” Langmuir, 21, 7629-7632, 2005.
[14] T. Thorsen, R. W. Roberts, F. H. Arnold and S. R. Quake, “Dynamic pattern
formation in a vesicle-generating microfluidic device,” Phys. Rev. Lett., 86,
4163-4166, 2001
[15] T. Nisisako, T. Torii and T. Higuchi, “Droplet formation in a microchannel
network,” Lab Chip, 2, 24-26, 2002.
[16] T. Nisisako, S. Okushima and T. Torii, “Controlled formulation of
monodisperse double emulsions in a multiple-phase microfluidic system,”
Soft Matter, 1, 23, 2005
[17] S. L. Anna, N. Bontoux and H. A, Stone, “Formation of dispersions using
flow focusing in microchannels,” Appl. Phys.Lett., 2003.
[18] P. Garstecki, I. Gitlin, W. DiLuzio, G. M. Whitesides, E. Kumacheva and H. A.
45
device,” Appl. Phys. Lett., 2004.
[19] Q. Xu and M. Nakajima, “The generation of highly monodisperse droplets
through the breakup of hydrodynamically focused microthread in a
microfluidic device,” Appl. Phys. Lett., 2004.
[20] Y. C. Tan, J. S. Fisher, A. I. Lee, V. Cristini and A. P. Lee, “Design of
microfluidic channel geometries for the control of droplet volume, chemical
concentration, and sorting,” Lab Chip, 4, 292-298, 2004.
[21] Y. C. Tan, V. Cristini and A. P. Lee, “Monodispersed microfluidic droplet
generation by shear focusing microfluidic device,” Sensors and Actuators, B:
Chemical, 114, 350-356, 2006.
[22] C. T. Chen and G. B. Lee, “Microfluidic systems for formation of
micro-droplets inLiquids utilizing active pneumatic choppers,”
, 2005.
[23] A. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone and D. A.
Weitz, “Monodisperse double emulsions generated form a microcapillary
device,” Science, 308, 537-541, 2005.
[24] J. H. Xu, G. S. Luo, S. W. Li and G. G. Chen, “Shear force induced
monodisperse droplet formation in a microfluidic device by controlling
wetting properties,” Lab Chip, 6, 131-136, 2006.
[25] H. Willaime, V. Barbier, L. Kloul, S. Maine and P. Tabeling, “Arnold tongues in
a microfluidic drop emitter,” Phys. Rev. Lett., 96, 054501-054501, 2006.
[26] S. H. Hung, W. H, Tanl, F. G. Tseng and S. Takeuchi, “A monolithically
three-dimensional flow-focusing device for formation of single/double
emulsions in closed/open microfluidic systems,” Journal of Micromechanics
and Microengineering, 16, 2336-2344, 2006.
46
[27] , 1995, VLSI , ,
[28] J u l i a n W . G a r d n e r , V i j a y K . V a r a d a n , O s a m a O . A w a d e l k a r i
2005, , ,
[29] Sergej Fatikow Ulrich Rembold, , ,
[30] Donald F. Young, Bruce R. Munson, Theodore H. Okiishi and Wade W.
Huebsch, 2008, , ,
[31] http://www.niea.gov.tw/analysis/publish/month/44/44th2-1.htm
[33]
96
[34]
96
[36]
96
[37] R. J. Yang, C. C. Chang, S. B. Huang and G. B. Lee, “A new focusing model
and switching approach for electrokinetic flow inside microchannels,”
Journal of Micromechanics and Microengineering, 15, 2141-2148, 2005.