design of steel w in biaxial flexure.pdf

14
Client: Project: Location: Job #: Description: Revision #: Done by:_______ Checked by:_______ Date:_______ Company Name Design of Structural Steel W Shapes Subject to Biaxial Flexure Rev # 1 2 3 4 5 Revision Description Revised By Date Notes 1 2 3 4 5 1 of 14

Upload: cesar-cristobal-pino-guzman

Post on 19-Oct-2015

14 views

Category:

Documents


3 download

TRANSCRIPT

  • Client:Project:Location:

    Job #:Description:Revision #:

    Done by:_______Checked by:_______

    Date:_______

    Company NameDesign of Structural Steel W Shapes

    Subject to Biaxial Flexure Rev #

    1

    2

    3

    4

    5

    Revision Description Revised By Date

    Notes

    1

    2

    3

    4

    5

    1 of 14

  • Client:Project:Location:

    Job #:Description:Revision #:

    Done by:_______Checked by:_______

    Date:_______

    Design of Structural Steel W ShapesSubject to Biaxial Flexure

    Description:This worksheet will choose a hot rolled steel wide flange shape in biaxial flexure based on input loadsand parameters.The capacity is calculated using AISC 360-05, Sections F2, F3, F6, G2, G7, and H 1.The user can input loading as uniformly distributed and point loads with an inclination angle, separateuniformly distributed and point loads for each axis, or separate ultimate shear and moment in thebeam when an outside analysis program has been used. This worksheet allows to user to choosebetween flange loading and loading through the shear center of the member. This worksheet checksshear and moment capacities of each axis as well as combined loading effects.

    Notes:

    According to AISC 360-05Only valid for Steel Wide Flange Shapes with a yield strength of 50 ksi

    Annotation Guide (Open to View)

    Worksheet Instructions (Open to View)

    2 of 14

  • Client:Project:Location:

    Job #:Description:Revision #:

    Done by:_______Checked by:_______

    Date:_______

    Inputs Beam Properties

    Cb 1:= Lateral Torsional Buckling Modification Factor (A value of 1 can be used for a conservat ive design)

    L 20 ft:= Length of Beam

    Lbx 5 ft:= Strong Axis Laterally U nbraced Length

    Lby 10 ft:= Weak Axis Laterally Unbraced Length

    Depthmax 40 in:= Maximum Allowable Beam Depth

    Loading Factor 5 %:= Minimum Desired Factor Between Mu and b Mn

    Choose How to Input Beam Loading

    Loading Case Diagrams (Open to View)

    Choose the Loading Case (View Above Diagrams for Clarification)

    Case 1: Both components of load applied through shear center of member.Case 2: Only vertical component of load is applied through shear center of member.

    3 of 14

  • Client:Project:Location:

    Job #:Description:Revision #:

    Done by:_______Checked by:_______

    Date:_______

    Inputs (continued)Loading (continued)

    Input Loads With Inclination Angle (Open to View)

    Loads on Beam

    Factored Uniformly Distributed Loads

    Factored Point Loads Distance to Point Loads From Beam End

    wui

    3.621

    klf:= Pi

    3.520

    kip:= Ci

    3170

    ft:=

    20 := Angle Between Loading Plane and Web Plane (Open Load Case Diagrams to View)

    Input Loads With Inclination Angle (Open to View)

    Input Separate Loads for Each Axis (Open to View)

    Internal Moment and Shear (Open to View)

    4 of 14

  • Client:Project:Location:

    Job #:Description:Revision #:

    Done by:_______Checked by:_______

    Date:_______

    Calculations Loading Calculations

    Vux 65 kip= Max Shear Force in Strong Axis

    Vuy 24 kip= Max Shear Force in Weak Axis

    Mux 318 kip ft= Max Moment in Strong Axis

    Muy 116 kip ft= Max Moment in Weak Axis

    Beam Property Calculations

    Beam "W36X160"=

    Notes ""=

    A 47 in2= Area of Beam Ix 9760 in4

    = Strong Axis Mom ent of Inertia

    d 36 in= Depth of Beam Zx 624 in3

    = Strong Axis Plastic Sect ion Modulus

    bf 12 in= Width of FlangeSx 542 in

    3= Strong Axis Elastic Sect ion Modulus

    tw 0.65 in= Thickness of Web

    rx 14.4 in= Strong Axis Radius of Gyrationtf 1.02 in= Thickness of Flange

    Cw 90200 in6

    = Warping Constant Iy 295 in4

    = Weak Axis Moment of Inertia

    J 12.4 in4= Torsional Moment of Inert ia Zy 77.3 in3

    = Weak Axis Plastic Section Modulus

    ratiobf2tf 5.88= Ratio bf

    2 tf Sy 49.1 in3

    = Weak Axis Elastic Section Modulus

    ratiohtw 49.9= Ratio htw

    ry 2.5 in= Weak Axis Radius of Gyration

    5 of 14

  • Client:Project:Location:

    Job #:Description:Revision #:

    Done by:_______Checked by:_______

    Date:_______

    Calculations (continued) Compactness Check (AISC Section B4)

    Check for flange compactness, Table B4.1 Case 1

    flan ratiobf2tf 5.88=:= Width Thickness Ratio

    pflan 0.38EFy

    9.152=:= Limiting Width Thickness Ratio for Compact

    rflan 1.0EFy

    24.083=:= Limiting Width Thickness Ratio for Noncompact

    Check for web compactness, Table B4.1 Case 9

    web ratiohtw 49.9=:= Width Thickness Ratio

    pweb 3.76EFy

    90.553=:= Limiting Width Thickness Ratio for Compact

    rweb 5.70EFy

    137.274=:= Limiting Width Thickness Ratio for Noncompact

    Check1 "Flange is compact"= Check for Flange Compactness

    Check2 "Web is compact"= Check for Web Compactness

    6 of 14

  • Client:Project:Location:

    Job #:Description:Revision #:

    Done by:_______Checked by:_______

    Date:_______

    Calculations (continued) Limiting Lengths (AISC Section F2)

    c 1:= AISC 360-05 Eq F2-8a

    ho d tf 34.98 in=:= Distance Between the Flange Centroids

    rtsIy Cw

    Sx3.085 in=:= Effective Radius of Gyration (AISC 360-05 Eq F2-7)

    Lp 1.76 ryEFy

    8.831 ft=:= Limiting Laterally Unbraced Length for Yielding(AISC 360-05 Eq F2-5)

    Limiting Laterally UnbracedLength for Inelastic LateralTorsional Buckling (AISC 360-05 Eq F2-6)

    Lr 1.95 rtsE

    0.7 Fy

    J cSx ho

    1 1 6.760.7 Fy

    E

    Sx ho

    J c

    2

    ++ 25.805 ft=:=

    Lp 8.8 ft= Limiting Laterally Unbraced Length for Yielding

    Lr 25.8 ft= Limiting Laterally Unbraced Length for Inelastic Lateral Torsional Buckling

    7 of 14

  • Client:Project:Location:

    Job #:Description:Revision #:

    Done by:_______Checked by:_______

    Date:_______

    Strong Axis Calculations

    Compact Flange Moment Capacity (AISC Section F2)F2.1 Yielding

    Mpx Fy Zx:= Flexural Yielding Moment Capacity (AISC 360-05 Eq F2-1)

    Mn2.1 Mpx 2600 kip ft=:=

    F2.2b Inelastic LTB

    Inelastic Lateral Torsional BucklingMoment Capacity (AISC 360-05 Eq F2-2)

    Mn2.2b min Cb Mpx Mpx 0.7 Fy Sx( ) Lbx LpLr Lp

    Mpx,

    :=

    Mn2.2b 2600 kip ft=

    F2.2c Elastic LTB

    FcrCb pi

    2 E

    Lbxrts

    21 0.078

    J cSx ho

    Lbxrts

    2

    + 764 ksi=:= Critical Stress (AISC 360-05 Eq F2-4)

    Mn2.2c min Fcr Sx Mpx, ( ):= Elastic Lateral Torsional Buckling Moment Capacity (AISC 360-05 Eq F2-3)Mn2.2c 2600 kip ft=

    Resulting Compact Flange Moment Capacity

    Mncom Mn2.1 Lbx Lpif

    Mn2.2b Lbx Lp> Lbx Lrif

    Mn2.2c Lbx Lr>if

    0 Check1 "Flange is compact" Check2 "Web is compact"if

    :=

    Determination of Compact Moment Capacity,0 if Flange or Web is Not Compact

    Mncom 2600 kip ft=

    8 of 14

  • Client:Project:Location:

    Job #:Description:Revision #:

    Done by:_______Checked by:_______

    Date:_______

    Strong Axis Calculations (continued) Noncompact and Slender Flange Moment Capacity (AISC Section F3)

    F3.1 LTB

    Note: Section F2.2 Appl ies for Lateral Torsional Buckling

    - F2.2b Inelastic LTB

    Inelastic Lateral Torsional BucklingMoment Capacity (AISC 360-05 Eq F2-2)

    Mn2.2b min Cb Mpx Mpx 0.7 Fy Sx( ) Lbx LpLr Lp

    Mpx,

    :=

    Mn2.2b 2600 kip ft=

    - F2.2c Elastic LTB

    FcrCb pi

    2 E

    Lbxrts

    21 0.078

    J cSx ho

    Lbxrts

    2

    + 764 ksi=:= Critical Stress (AISC 360-05 Eq F2-4)

    Mn2.2c min Fcr Sx Mpx, ( ):= Elastic Lateral Torsional Buckling Moment Capacity (AISC 360-05 Eq F2-3)Mn2.2c 2600 kip ft=

    Mn3.1 Mn2.2b Lbx Lp> Lbx Lrif

    Mn2.2c Lbx Lr>if

    0 otherwise

    :=

    Determination of LTB failure, 0 if LTB Doesn't Apply

    Mn3.1 0 kip ft=

    9 of 14

  • Client:Project:Location:

    Job #:Description:Revision #:

    Done by:_______Checked by:_______

    Date:_______

    Strong Axis Calculations (continued) Noncompact and Slender Flange Moment Capacity (AISC Section F3)

    F3.2a Compression Flange Local Buckling with Noncompact Flanges

    Mn3.2a Mpx Mpx 0.7 Fy Sx( ) flan pflanrflan pflan

    := AISC 360-05 Eq F3-1

    Mn3.2a 2823 kip ft=

    F3.2b Compression Flange Local Buckling with Slender Flanges

    x4

    ratiohtw:=

    kc 0.35 x 0.35if

    :=Coefficient for Slender Unstiffened Elements

    kc 0.566=

    Mn3.2b0.9 E kc Sx

    flan2

    := AISC 360-05 Eq F3-2

    Mn3.2b 19307 kip ft=

    Mn3.2 Mn3.2a Check1 "Flange is non-compact"=if

    Mn3.2b Check1 "Flange is slender"=if

    0 otherwise

    :=

    Determination of FLB, 0 if FLB doesn't apply

    Mn3.2 0 kip ft=

    Resulting Noncompact and Slender Flange Moment CapacityDetermination ofNoncompact and SlenderMoment Capacity, 0 ifFlange is Compact or Webis Not Compact

    Mnncs min Mn3.1 Mn3.2, ( ) Mn3.1 0 Mn3.2 0if0 Check1 "Flange is compact"= Check2 "Web is compact"if

    max Mn3.1 Mn3.2, ( ) otherwise

    :=

    Mnncs 0 kip ft=

    10 of 14

  • Client:Project:Location:

    Job #:Description:Revision #:

    Done by:_______Checked by:_______

    Date:_______

    Strong Axis Calculations (continued)Strong Axis Moment Capacity

    Mnx 2600 kip ft= Nominal Strong Axis Moment Capacity

    b Mnx 2340 kip ft= Design Strong Axis Moment Capac ity for Selected Beam

    Mux 318 kip ft= Maximum Applied Strong Axis Moment

    Check if Beam is Adequate in Strong Axis FlexureMust Not Exceed 100%Checkbx

    Muxb Mnx

    13.6 %=:=

    Shear Capacity Calculations (AISC Section G2)G2.1 Nominal Shear Strength

    v 1.0 ratiohtw 2.24EFy

    if

    0.9 otherwise

    := AISC 360-05 Section G2.1a

    v 1.0=

    Cv 1:= AISC 360-05 Eq G2-2

    Aw d tw 23.4 in2

    =:= Web Area

    Vnx 0.6 Fy Aw Cv:= Nominal Strong Axis Shear Capacity (AISC 360-05 Eq G2-1)

    Vnx 702 kip=

    Strong Axis Shear CapacityVnx 702 kip= Nominal Strong Axis Shear Capacity

    v Vnx 702 kip= Design Strong Axis Shear Capacity for Selected Beam

    Vux 65 kip= Maximum Applied Strong Axis Shear

    Check if Beam is Adequate in Strong Axis ShearMust Not Exceed 100%Checkvx

    Vuxv Vnx

    9.3 %=:=

    11 of 14

  • Client:Project:Location:

    Job #:Description:Revision #:

    Done by:_______Checked by:_______

    Date:_______

    Weak Axis CalculationsCompact, Noncompact, and Slender Flange Moment Capacity (AISC Section F6)

    F6.1 Yielding

    Mpy min Fy Zy 1.6 Fy Sy, ( ):= Weak Axis Flexural Yielding Moment Capacity (AISC 360-05 Eq F6-1)Mn6.1 Mpy 322 kip ft=:=

    F6.2 Flange Local Buckling

    F6.2a Compact FlangesFor Compact Flange Shapes, the Limit State of Yielding Applies.

    F6.2b Noncompact FlangesNoncompact Flange FLB MomentCapacity (AISC 360-05 Eq F6-2)Mn6.2b Mpy Mpy 0.7 Fy Sy( ) flan pflan

    rflan pflan

    :=

    Mn6.2b 361 kip ft=

    F6.2c Slender Flanges

    Fcr0.69 E

    bf2 tf

    2578 ksi=:= Critical Stress (AISC 360-05 Eq F6-4)

    Mn6.2c Fcr Sy:= Slender Flange FLB Moment Capacity (AISC 360-05 Eq F6-3)

    Mn6.2c 2 103

    kip ft=

    Resulting Weak Axis Moment Capacity

    Mny Mn6.1 Check1 "Flange is compact"=if

    min Mn6.1 Mn6.2b, ( ) Check1 "Flange is non-compact"=ifmin Mn6.1 Mn6.2c, ( ) Check1 "Flange is slender"=if

    := Determination of Weak AxisMoment Capacity Based onFlange Slenderness

    Mny 322 kip ft=

    12 of 14

  • Client:Project:Location:

    Job #:Description:Revision #:

    Done by:_______Checked by:_______

    Date:_______

    Weak Axis Calculations (continued)Weak Axis Moment Capacity

    Mny 322 kip ft= Nominal Weak Axis Moment Capacity

    b Mny 290 kip ft= Design Weak Axis Moment Capacity for Selected Beam

    Muy 116 kip ft= Maximum Applied Weak Axis Mom ent

    Check if Beam is Adequate in Weak Axis FlexureMust Not Exceed 100%Checkby

    Muyb Mny

    39.9 %=:=

    Shear Capacity Calculations (AISC Section G7)kv 1.2:= AISc 360-05 Section G7

    Cv 1.0bftf

    1.10kv E

    Fyif

    1.10kv E

    Fy

    bftf

    bftf

    1.10kv E

    Fy>

    bftf

    1.37kv E

    Fyif

    1.51 E kv

    bftf

    2

    Fy

    bftf

    1.37kv E

    Fy>if

    :=

    Web Shear Coefficient (AISC Eqs G2-3, G2-4, and G2-5)

    Cv 1.00=

    Aw 2 bf tf:= Shear Area (AISC 360-05 Section G7)

    Aw 24.48 in2

    =

    Vny 0.6 Fy Aw Cv:= Nominal Weak Axis Shear Capacity (AISC 360-05 Eq G2-1)

    Vny 734 kip=

    13 of 14

  • Client:Project:Location:

    Job #:Description:Revision #:

    Done by:_______Checked by:_______

    Date:_______

    Weak Axis Calculations (continued)Weak Axis Shear Capacity

    Vny 734 kip= Nominal Weak Axis Shear Capacity

    v Vny 734 kip= Design Weak Axis Shear Capacity for Selected Beam

    Vuy 24 kip= Maximum Applied Weak Axis Shear

    Check if Beam is Adequate in Weak Axis ShearMust Not Exceed 100%Checkvy

    Vuyv Vny

    3.2 %=:=

    Interaction Calculations Force Interaction Check (AISC Section H1)b Mnx 2340 kip ft= Design Moment Capacity About Strong Axis

    b Mny 290 kip ft= Design Moment Capacity About Weak Axis

    Mux 318 kip ft= Ultimate Moment About Strong Axis

    Muy 116 kip ft= Ultimate Moment About Weak Axis

    CheckMux

    b Mnx

    Muyb Mny

    +

    Case 1=if

    Muxb Mnx

    Muy0.5 b Mny( )+

    Case 2=if

    :=Check of Force Interactions Based onLoading Conditions (AISC 360-05 Eq H1-1)

    Check 0.93=

    Check if Beam is Adequate for Com bined ForcesMust Not Exceed 100%Checki

    Check1.00

    93.4 %=:=

    Final Results

    Beam "W36X160"=

    Results "Selected Beam is Adequate for Given Parameters"=

    14 of 14