design of an inland cargo vessel with 950 dwt cargo capacity

Upload: bariulkarim

Post on 14-Oct-2015

67 views

Category:

Documents


8 download

DESCRIPTION

Knowledge of ship design is difficult to attain & requires extensive experience & research work. To reach a high degree of proficiency in ship design the purely theoretical knowledge is in itself insufficient. Realizing this fact, Department of Naval Architecture &Marine Engineering of Bangladesh University of Engineering &Technology introduced NAME 338 course known as “Ship Design Project & Presentation” which provides us with valuable opportunity of getting involved in whole ship designing process. We got the first hand experience to implement our achieved theoretical knowledge in our project work to attain proficiency.

TRANSCRIPT

  • DEPARTMENT OF NAVAL ARCHITECTURE

    & MARINE ENGINEERING

    BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY.

    NAME 338 Ship design project & presentation ---- By ----

    Md. Bariul Karim Student No. 0812032 & Nabila Naz Student No. 0812032

    Under the Guidance of

    DR. Mir Tareque Ali

    Professor, Department of Naval Architecture & Marine Engineering.

    BUET, Dhaka 1000.

  • 2

    Page 2

  • 3

    Page 3

  • 4

    Page 4

    Knowledge of ship design is difficult to attain & requires extensive experience &

    research work. To reach a high degree of proficiency in ship design the purely

    theoretical knowledge is in itself insufficient. Realizing this fact, Department of

    Naval Architecture &Marine Engineering of Bangladesh University of Engineering

    &Technology introduced NAME 338 course known as Ship Design Project &

    Presentation which provides us with valuable opportunity of getting involved in

    whole ship designing process. We got the first hand experience to implement our

    achieved theoretical knowledge in our project work to attain proficiency.

    We have completed our project under the supervision of Dr.Mir Tareque Ali .

    We wish to express our sincerest gratitude to Sir for his heartiest co operation

    throughout the preparation of the project. From the very beginning to the end of

    our project work Sir supported us with his constructive suggestions & ideas. At

    every step of our designing process Sir helped us a lot to correct our mistakes as

    well as provided endless encouragement to fulfill our work.

    We are also grateful to all the teachers of the Department of Naval Architecture

    & Marine Engineering for their valuable suggestions and necessary information

    during the preparation and presentation of the project.

  • 5

    Page 5

    Serial No.

    Topic Name Page

    1. Introduction to the project detail 5

    2. Selection of the basis ship 6 3. Determination of principal particulars 7

    4. Preliminary engine power calculation 8

    5. Manning of ship 9

    6. General Arrangement drawing 10-16

    7. Lines plan & offset table 17-21 8. Hydrostatic calculation (manual) 22-51

    9. Hydrostatic curves (individual) 52-56

    10. Hydrostatic curves (overall) 57

    11. Scantling calculation 58-66

    12. Midship section drawing 67-70 13. Longitudinal construction 71-75

    14. Shell expansion 76-78

    15. Resistance & power Calculation 79-90

    16. Engine & gear box selection 91-96

    17. Engine &gear box foundation 97-103 18. Rudder & steering arrangement 98-109

    19. Propeller blade calculation 110-119

    20. Propeller blade drawing 120-121

    21. Propeller shafting arrangement 122-128

    22. Detail weight calculation 129-148 23. Determination of LCG & VCG 149-157

    24. Stability calculation 158-179

    25. Trim calculation 180-181

  • 6

    Page 6

    Project name:

    Design of an inland cargo vessel with 950 DWT cargo capacity.

    Project route Class 1

    Draft 3.66-3.96 m

    Length 683 km

    Route specification Chittagong-Chowkighata-Chandpur-Shambhupara-

    Narayangang-Dhaka- Shambhupara-Bhairab bazaar.

    Type of cargo Grains,Timber,Clinkers,

    Service speed 10 knot

  • 7

    Page 7

    Principal particulars

    of basis ship:

    DWT 800

    LBP 42.50

    L/B 4.6096

    B/T 2.535

    B/D 2.286

  • 8

    Page 8

    Length: (According to cube root formula)

    L= { (

    ) (

    )}

    =44.99 m Breadth: Draft: Depth L/B=4.6096 B/T=2.535 B/D=2.286 B=9.76 m T=3.85m D=4.269m Displacement: Block coefficient: =DWT/Cd CB = LB =950/0.685 =0.82 =1386.86ton

    LOA 52.42 m

    LBP 44.99 m

    BREADTH (mld) 9.76 m

    DEPTH (mld) 4.27 m

    DRAFT (LOADED) 3.85 m

    FREE BOARD 0.42 m

    Block coefficient 0.82

    SERVICE SPEED 10 Knots

  • 9

    Page 9

    Engine Power: where, Ac =Admiralty Coefficient

    P=^2/3*V^3/Ac =26*(L+C/V)

    =(1386.86)^(2/3)*10^3/277.84 =277.84

    =448.25 KW

    MANNING OF SHIP

    ON DECK

    Class-I Inland master 01

    Certified Crew (Sukani) 03

    Uncertified Crew (Laskar) 03

    Cook (Bhandary) 01

    Owner 01

    AT ENGINE

    Class-I Inland Driver 01

    Class-II Inland Driver 01

    Oil Man 01

    Total 12

  • 10

    Page 10

  • 11

    Page 11

    Under deck arrangement

    AFT PEAK TANK 53.16 m3

    CARGO HOLD 1 385.8 m3

    CARGO HOLD 2 705.8 m3

    ENGINE ROOM 219.5 m3

    FORE PEAK TANK 30.53 m3

    ENGINE ROOM PARTICULARS:

    MAIN ENGINE 2

    GENERATOR 2

    FUEL OIL SERVICE

    TANK

    2

    FUEL OIL RESERVE TANK

    1

    GENERAL SERVICE PUMP

    2

    BILGE PUMP 1

    SWITCH BOARD 1

    BATTERY BOX 1

    TOOL BOX 1

    OIL TRAY 1

    SEA CHEST 2

  • 12

    Page 12

    MAIN DECK ARRANGEMENT

    AFT PORTION :

    SPACE TYPE QUANTITY

    SINGLE CABIN 4

    DOUBLE CABIN 2

    WASH ROOM 3

    GALLEY 1

    COMMON ROOM 1

    MIDDLE PORTION:

    CARGO HATCH 2

    TRANSVERSE

    HATHWAY BEAM SECTION MODULUS 38.00(TABLE 32)

    HATCH COVER

    STIFFENER SECTION MODULUS 38.00(TABLE 34)

    BOLLARD (Double) 06

    FORWARD PORTION :

    WATERTIGHT CHAIN LOCKERS & MANHOLE .

  • 13

    Page 13

    POOP DECK ARRANGEMENT

    OWNER CABIN CLASS 1 MASTERS CABIN

    SUKANIS CABIN (DOUBLE) WASH ROOM,

    BOLLARD (Double-02)

    NAVIGATION DECK ARAANGEMENTS

    FORECASTLE DECK ARRANGEMENTS

    SEARCH LIGHT

    ANCHOR CHAIN

    ANCHOR WINCH

    ENGINE FOR WINCH

    FUEL TANK FOR THAT ENGINE

    FORE MAST

    BOLLARD (Double-02)

    WHEEL HOUSE-(steering,speed telegraph,compass,switch control)

    SKY LIGHT

    TOWING&STEM LIGHT

    FUNNEL (2)

    FRESH WATER TANK

  • 14

    Page 14

    GA(overall)-A3

  • 15

    Page 15

    Under deck_A4

  • 16

    Page 16

    Main deck-A4

  • 17

    Page 17

    Poop,foxl deck-A4

  • 18

    Page 18

    Lines plan(overall)-A3

  • 19

    Page 19

    Body plan A4

  • 20

    Page 20

    Half breadth plan A4

  • 21

    Page 21

    Sheer plan A4

  • 22

    Page 22

    Offset table

  • 23

    Page 23

  • 24

    Page 24

    Brief discussion about formulae;-

    1. Area displacement and moment:-

    Area , displacement and moment can be calculated by Simpsons 1 st,2nd

    and 3rd rule.

    S.M 1st rule = 1/3*h*(y1+4y2+y3) where,

    S.M 2nd rule = 3/8*h*(y1+3y2+3y3+y4) h= spacing between two ordinates

    S.M 3rd rule = 1/12*h*(5y1+8y2 - y3) y= length of ordinates

    Moment rule for two ordinate= 1/24*h2*(3y1+10y2 y3)

    2. KB:- KB = moment of WPA about keel / volume of displacement

    3. GMT:- GMT BMT,

    BMT = I/displacement =

    / displacement

    I= moment of inertia about midship ordinate

    4. GML:- GML BML

    BML= ICF/displacement = I-Ad2/ displacement

    ICF = moment of inertia about centre of floatation.

    I = moment of inertia about midship

    A = area of water plane

    d = distance between C.F and midship ordinate

    5. C.F:- C.F = moment/ area

    6. MCTC:- MCT 1 cm =w* GML / 100 L

    7. TPI:- WPA/97.56

    8. Form coefficients:-

    CB=/LBT, CM = AM/BT, Cp= CB/ CM, Cw =Aw/BL

  • 25

    Page 25

    Calculation for area for WL-1

    Calculation for volume upto WL-1

    station half breadth Y (mm)

    Simpson's Multiplier SM

    Product of area (mm^2) (Y.dx)

    Multipliers for volume (x)

    Product of moment (Yx. dx)

    Product of moment of inertia Yx^2 dx

    Y^3 Product of moment for inertia

    AP(0) 0 0.5 0 5 0 0 0 0

    0.5 0 2 0 4.5 0 0 0 0

    1 0 1 0 4 0 0 0 0

    1.5 0 2 0 3.5 0 0 0 0

    2 3002 1 3002 3 9006 27018 2.7054E+10 27054036008

    2.5 4093 2 8186 2.5 20465 51162.5 6.8569E+10 1.37137E+11

    3 4548 1.5 6822 2 13644 27288 9.4072E+10 1.41108E+11

    4 4548 4 18192 1 18192 18192 9.4072E+10 3.76289E+11

    5 4548 2 9096 0 0 0 9.4072E+10 1.88144E+11

    6 4548 4 18192 -1 -18192 18192 9.4072E+10 3.76289E+11

    7 4548 1.5 6822 -2 -13644 27288 9.4072E+10 1.41108E+11

    7.5 3852 2 7704 -2.5 -19260 48150 5.7156E+10 1.14311E+11

    8 2504 1 2504 -3 -7512 22536 1.57E+10 15700120064

    8.5 1410 2 2820 -3.5 -9870 34545 2803221000 5606442000

    9 754 1 754 -4 -3016 12064 428661064 428661064

    9.5 224 2 448 -4.5 -2016 9072 11239424 22478848

    10 0.5 -5 0

    Sum of product of area =

    84542 Excess of product of moment=

    -12203 295507.5 1.5232E+12

    No. of ordinate

    AREA OF WL mm^2

    s.m product of volume

    interval from base

    product of moment

    0 0

    1. WL 0 0 5 0 0 0

    2.WL 1 263.83 8 2110.64 1 2110.64

    3.WL 2 306.07 -1 -306.07 2 -612.14

    Total 1804.57 1498.5

  • 26

    Page 26

    Calculation for area for WL-2

    Sum of product of area

    98078 Excess of product of moment

    -4572 Sum of product of moment of inertia

    416808 Sum of product of moment of inertia=1.93E+12

    Calculation for volume upto WL-2

    station half breadth Y (mm)

    Simpson's Multiplier

    Product of area(mm^2)

    Multipliers for volume

    Product of moment

    Product of moment of inertia

    Y3 Product of moment for inertia

    AP(0) 0 0.5 0 5 0 0 0 0

    0.5 0 2 0 4.5 0 0 0 0

    1 0 1 0 4 0 0 0 0

    1.5 2249 2 4498 3.5 15743 55100.5 1.14E+10 2.28E+10

    2 3913 1 3913 3 11739 35217 5.99E+10 5.99E+10

    2.5 4564 2 9128 2.5 22820 57050 9.51E+10 1.9E+11

    3 4804 1.5 7206 2 14412 28824 1.11E+11 1.66E+11

    4 4804 4 19216 1 19216 19216 1.11E+11 4.43E+11

    5 4804 2 9608 0 0 0 1.11E+11 2.22E+11

    6 4804 4 19216 -1 -19216 19216 1.11E+11 4.43E+11

    7 4804 1.5 7206 -2 -14412 28824 1.11E+11 1.66E+11

    7.5 4437 2 8874 -2.5 -22185 55462.5 8.74E+10 1.75E+11

    8 2415 1 2415 -3 -7245 21735 1.41E+10 1.41E+10

    8.5 2253 2 4506 -3.5 -15771 55198.5 1.14E+10 2.29E+10

    9 1282 1 1282 -4 -5128 20512 2.11E+09 2.11E+09

    9.5 505 2 1010 -4.5 -4545 20452.5 1.29E+08 2.58E+08

    10 0 0.5 0 -5 0 0 0 0

    No. of ordinate

    AREA OF WL mm^2 s.m

    product of volume

    interval from base

    product of moment

    1. WL 0 0 1 0 0 0

    2.WL 1 263.83 4 1055.32 1 1055.32

    3.WL 2 306.07 1 306.07 2 612.14

    Total 1361.39 1667.46

  • 27

    Page 27

    Calculation for area for WL-3

    station half

    breadth Y (mm)

    Simpson's

    Multiplier

    Product

    of area

    Multiplier

    for volume

    Product

    of moment

    Product

    moment of inertia of

    Y 3^ Product of

    moment for inertia

    (mm 2^)

    AP(0) 0.5 5 0

    0.5 2 4.5 0

    1 1 4 0

    1.5 3438 2 6876 3.5 24066 84231 40636623672 8.1273E+10

    2 4310 1 4310 3 12930 38790 80062991000 8.0063E+10

    2.5 4751 2 9502 2.5 23755 59387.5 1.0724E+11 2.1448E+11

    3 4880 1.5 7320 2 14640 29280 1.16214E+11 1.7432E+11

    4 4880 4 19520 1 19520 19520 1.16214E+11 4.6486E+11

    5 4880 2 9760 0 0 0 1.16214E+11 2.3243E+11

    6 4880 4 19520 -1 -19520 19520 1.16214E+11 4.6486E+11

    7 4880 1.5 7320 -2 -14640 29280 1.16214E+11 1.7432E+11

    7.5 4645 2 9290 -2.5 -23225 58062.5 1.00221E+11 2.0044E+11

    8 3854 1 3854 -3 -11562 34686 57244679864 5.7245E+10

    8.5 2806 2 5612 -3.5 -19642 68747 22093422616 4.4187E+10

    9 1768 1 1768 -4 -7072 28288 5526456832 5526456832

    9.5 799 2 1598 -4.5 -7191 32359.5 510082399 1020164798

    10 0.5 -5 0

    106250 sum= -7941 502151.5 2.195E+12

    Calculation for volume upto WL-3

    No. of ordinate

    AREA OF WL mm 2^

    s.m product of volume

    interval from base

    product of moment

    1.WL 0 0 1 0 0 0

    1. WL 1 263.83 3 791.49 1 791.49

    2.WL 2 306.07 3 918.21 2 1836.42

    3.WL 3 331.57 1 331.57 3 994.71

    Total 2041.27 3622.62

  • 28

    Page 28

    Calculation for area for WL-4

    Calculation for volume upto WL-4

    No. of ordinate

    AREA OF WL mm 2^

    s.m product of volume

    interval from base

    product of moment

    1.WL 0 0 1 0 0 0

    1. WL 1 263.83 4 1055.32 1 1055.32

    2.WL 2 306.07 2 612.14 2 1224.28

    3.WL 3 331.57 4 1326.28 3 3978.84

    4.WL 4 348.17 1 348.17 4 1392.68

    Total 3341.91 7651.12

    station half breadth

    Y (mm)

    Simpson's Multiplier

    Product of area

    Multipliers for volume

    Product of

    moment

    Product of moment of

    inertia

    Y 3^ Product of moment for

    inertia

    AP(0) 0.5 5 0

    0.5 2 4.5 0

    1 2245 1 2245 4 8980 35920 11314856125 1.1315E+10

    1.5 4070 2 8140 3.5 28490 99715 67419143000 1.3484E+11

    2 4563 1 4563 3 13689 41067 95006081547 9.5006E+10

    2.5 4799 2 9598 2.5 23995 59987.5 1.10523E+11 2.2105E+11

    3 4880 1.5 7320 2 14640 29280 1.16214E+11 1.7432E+11

    4 4880 4 19520 1 19520 19520 1.16214E+11 4.6486E+11

    5 4880 2 9760 0 0 0 1.16214E+11 2.3243E+11

    6 4880 4 19520 -1 -19520 19520 1.16214E+11 4.6486E+11

    7 4270 1.5 6405 -2 -12810 25620 77854483000 1.1678E+11

    7.5 4731 2 9462 -2.5 -23655 59137.5 1.05891E+11 2.1178E+11

    8 4163 1 4163 -3 -12489 37467 72147158747 7.2147E+10

    8.5 3274 2 6548 -3.5 -22918 80213 35094254824 7.0189E+10

    9 2189 1 2189 -4 -8756 35024 10489077269 1.0489E+10

    9.5 1068 2 2136 -4.5 -9612 43254 1218186432 2436372864

    10 0.5 -5 0

    111569 sum= -446 585725 2.2825E+12

  • 29

    Page 29

    Calculation for area for WL-5

    station half

    breadth Y (mm)

    Simpson's

    Multiplier

    Product

    of area

    Multipliers

    for volume

    Product

    of moment

    Product of

    moment of inertia

    Y 3^ Product of

    moment for inertia

    AP(0) 0 0.5 5 0 0 0 0

    0.5 0 2 4.5 0 0 0 0

    1 2245 1 2245 4 8980 35920 11314856125 1.1315E+10

    1.5 4070 2 8140 3.5 28490 99715 67419143000 1.3484E+11

    2 4563 1 4563 3 13689 41067 95006081547 9.5006E+10

    2.5 4799 2 9598 2.5 23995 59987.5 1.10523E+11 2.2105E+11

    3 4880 1.5 7320 2 14640 29280 1.16214E+11 1.7432E+11

    4 4880 4 19520 1 19520 19520 1.16214E+11 4.6486E+11

    5 4880 2 9760 0 0 0 1.16214E+11 2.3243E+11

    6 4880 4 19520 -1 -19520 19520 1.16214E+11 4.6486E+11

    7 4270 1.5 6405 -2 -12810 25620 77854483000 1.1678E+11

    7.5 4731 2 9462 -2.5 -23655 59137.5 1.05891E+11 2.1178E+11

    8 4163 1 4163 -3 -12489 37467 72147158747 7.2147E+10

    8.5 3274 2 6548 -3.5 -22918 80213 35094254824 7.0189E+10

    9 2189 1 2189 -4 -8756 35024 10489077269 1.0489E+10

    9.5 1068 2 2136 -4.5 -9612 43254 1218186432 2436372864

    10 0 0.5 -5 0

    111569 sum= -446 585725 2.2825E+12

    Calculation for volume upto WL-5

    No. of ordinate

    AREA OF WL mm 2^

    s.m product of volume

    interval from base

    product of moment

    1.WL 0 0 5 0 0 0

    1. WL 1 263.83 13 3429.79 1 3429.79

    2.WL 2 306.07 12 3672.84 2 7345.68

    3.WL 3 331.57 12 3978.84 3 11936.52

    4.WL 4 348.17 12 4178.04 4 16712.16

    5.WL 5 363.32 7 2543.24 5 12716.2

    6.WL 6 370.71 -1 -370.71 5 -1853.55

    Total 17432.04 50286.8

  • 30

    Page 30

    Calculation for area for WL-6

    Calculation for volume upto WL-6

    No. of

    ordinate

    AREA OF

    WL mm 2^

    s.m product of

    volume

    interval from

    base

    product of

    moment

    1.WL 0 1 0 0 0

    1. WL 1 263.83 3 791.49 1 791.49

    2.WL 2 306.07 3 918.21 2 1836.42

    3.WL 3 331.57 2 663.14 3 1989.42

    4.WL 4 348.17 3 1044.51 4 4178.04

    5.WL 5 363.32 3 1089.96 5 5449.8

    6.WL 6 370.71 1 370.71 6 2224.26

    Total 4878.02 16469.43

    station half breadth Y (mm)

    Simpson's Multiplier

    Product of area

    Multipliers for volume

    Product of moment

    multipliers for moment

    of inertia

    Product of moment

    of inertia

    Y 3^ Product of moment for inertia

    AP(0) 0 0.5 0 5 0 5 0 0 0

    0.5 0 2 0 4.5 0 4.5 0 0 0

    1 3764 1 3764 4 15056 4 60224 53327207744 5.3327E+10

    1.5 4614 2 9228 3.5 32298 3.5 113043 98227427544 1.9645E+11

    2 4806 1 4806 3 14418 3 43254 1.11007E+11 1.1101E+11

    2.5 4880 2 9760 2.5 24400 2.5 61000 1.16214E+11 2.3243E+11

    3 4880 1.5 7320 2 14640 2 29280 1.16214E+11 1.7432E+11

    4 4880 4 19520 1 19520 1 19520 1.16214E+11 4.6486E+11

    5 4880 2 9760 0 0 0 0 1.16214E+11 2.3243E+11

    6 4880 4 19520 -1 -19520 -1 19520 1.16214E+11 4.6486E+11

    7 4880 1.5 7320 -2 -14640 -2 29280 1.16214E+11 1.7432E+11

    7.5 4804 2 9608 -2.5 -24020 -2.5 60050 1.10869E+11 2.2174E+11

    8 4545 1 4545 -3 -13635 -3 40905 93886178625 9.3886E+10

    8.5 3823 2 7646 -3.5 -26761 -3.5 93663.5 55874402767 1.1175E+11

    9 2874 1 2874 -4 -11496 -4 45984 23738883624 2.3739E+10

    9.5 1560 2 3120 -4.5 -14040 -4.5 63180 3796416000 7592832000

    10 0 0.5 -5 0 -5

    118791 sum= -3780 678903.5 2.5627E+12

  • 31

    Page 31

    Calculation for area for WL-7

    station half breadth

    Y (mm)

    Simpson's Multiplier

    Product of area

    Multipliers for volume

    Product of

    moment

    Product of moment of

    inertia

    Y 3^ Product of moment for

    inertia

    AP(0) 0.5 5 0

    0.5 1825 2 3650 4.5 16425 73912.5 6078390625 1.2157E+10

    1 4042 1 4042 4 16168 64672 66037242088 6.6037E+10

    1.5 4701 2 9402 3.5 32907 115174.5 1.03889E+11 2.0778E+11

    2 4836 1 4836 3 14508 43524 1.13099E+11 1.131E+11

    2.5 4880 2 9760 2.5 24400 61000 1.16214E+11 2.3243E+11

    3 4880 1.5 7320 2 14640 29280 1.16214E+11 1.7432E+11

    4 4880 4 19520 1 19520 19520 1.16214E+11 4.6486E+11

    5 4880 2 9760 0 0 0 1.16214E+11 2.3243E+11

    6 4880 4 19520 -1 -19520 19520 1.16214E+11 4.6486E+11

    7 4880 1.5 7320 -2 -14640 29280 1.16214E+11 1.7432E+11

    7.5 4820 2 9640 -2.5 -24100 60250 1.1198E+11 2.2396E+11

    8 4633 1 4633 -3 -13899 41697 99445904137 9.9446E+10

    8.5 3993 2 7986 -3.5 -27951 97828.5 63664587657 1.2733E+11

    9 3127 1 3127 -4 -12508 50032 30576209383 3.0576E+10

    9.5 1794 2 3588 -4.5 -16146 72657 5773874184 1.1548E+10

    10 0.5 -5 0 0 0 0

    124104 sum= 9804 778347.5 2.6351E+12

    Calculation for volume upto WL-7

    No. of ordinate

    AREA OF WL mm 2^

    s.m product of volume

    interval from base

    product of moment

    1.WL 0 5 0 0 0

    1. WL 1 263.83 13 3429.79 1 44587.27

    2.WL 2 306.07 12 3672.84 2 44074.08

    3.WL 3 331.57 12 3978.84 3 47746.08

    4.WL 4 348.17 12 4178.04 4 50136.48

    5.WL 5 363.32 12 4359.84 5 52318.08

    6.WL 6 370.71 12 4448.52 6 53382.24

    7.WL 7 378.28 7 2647.96 7 18535.72

    8.WL 8 396.2 -1 -396.2 8 396.2

    Total 26319.63 311176.15

  • 32

    Page 32

    Calculation for area for WL-8

    Calculation for volume upto WL-8

    No. of

    ordinate

    AREA OF

    WL mm 2^

    s.m product of

    volume

    interval from

    base

    product of

    moment

    1.WL 0 1 0 0 0

    1. WL 1 263.83 4 1055.32 1 1055.32

    2.WL 2 306.07 2 612.14 2 1224.28

    3.WL 3 331.57 4 1326.28 3 3978.84

    4.WL 4 348.17 2 696.34 4 2785.36

    5.WL 5 363.32 4 1453.28 5 7266.4

    6.WL 6 370.71 2 741.42 6 4448.52

    7.WL 7 378.28 4 1513.12 7 10591.84

    8.WL 8 396.2 1 396.2 8 3169.6

    Total 7794.1 34520.16

    station half breadth Y (mm)

    Simpson's Multiplier

    Product of area

    Multipliers for volume

    Product of moment

    Product of moment

    of inertia

    Y 3^ Product of moment inertia

    AP(0) 0 0.5 0 5 0 0 0 0

    0.5 2685 2 5370 4.5 24165 108742.5 19356769125 3.8714E+10

    1 4210 1 4210 4 16840 67360 74618461000 7.4618E+10

    1.5 4737 2 9474 3.5 33159 116056.5 1.06294E+11 2.1259E+11

    2 4847 1 4847 3 14541 43623 1.13873E+11 1.1387E+11

    2.5 4880 2 9760 2.5 24400 61000 1.16214E+11 2.3243E+11

    3 4880 1.5 7320 2 14640 29280 1.16214E+11 1.7432E+11

    4 4880 4 19520 1 19520 19520 1.16214E+11 4.6486E+11

    5 4880 2 9760 0 0 0 1.16214E+11 2.3243E+11

    6 4880 4 19520 -1 -19520 19520 1.16214E+11 4.6486E+11

    7 4835 1.5 7252.5 -2 -14505 29010 1.13029E+11 1.6954E+11

    7.5 4832 2 9664 -2.5 -24160 60400 1.12819E+11 2.2564E+11

    8 4679 1 4679 -3 -14037 42111 1.02438E+11 1.0244E+11

    8.5 4133 2 8266 -3.5 -28931 101258.5 70598620637 1.412E+11

    9 3326 1 3326 -4 -13304 53216 36793129976 3.6793E+10

    9.5 1997 2 3994 -4.5 -17973 80878.5 7964053973 1.5928E+10

    10 0 0.5 0 -5 0 0 0

    126962.5 sum= 14835 831976 2.7002E+12

  • 33

    Page 33

    Calculation for area for WL-9

    station half

    breadth Y (mm)

    Simpson's

    Multiplier

    Product

    of area

    Multipliers

    for volume

    Product

    of moment

    Product of

    moment of inertia

    Y 3^ Product of

    moment inertia

    AP(0) 0.5 5 0

    0.5 3141 2 6282 4.5 28269 127210.5 30988732221 6.1977E+10

    1 4345 1 4345 4 17380 69520 82029363625 8.2029E+10

    1.5 4791 2 9582 3.5 33537 117379.5 1.09971E+11 2.1994E+11

    2 4857 1 4857 3 14571 43713 1.14579E+11 1.1458E+11

    2.5 4880 2 9760 2.5 24400 61000 1.16214E+11 2.3243E+11

    3 4880 1.5 7320 2 14640 29280 1.16214E+11 1.7432E+11

    4 4880 4 19520 1 19520 19520 1.16214E+11 4.6486E+11

    5 4880 2 9760 0 0 0 1.16214E+11 2.3243E+11

    6 4880 4 19520 -1 -19520 19520 1.16214E+11 4.6486E+11

    7 4844 1.5 7266 -2 -14532 29064 1.13661E+11 1.7049E+11

    7.5 4837 2 9674 -2.5 -24185 60462.5 1.13169E+11 2.2634E+11

    8 4701 1 4701 -3 -14103 42309 1.03889E+11 1.0389E+11

    8.5 4244 2 8488 -3.5 -29708 103978 76440958784 1.5288E+11

    9 3479 1 3479 -4 -13916 55664 42107871239 4.2108E+10

    9.5 2164 2 4328 -4.5 -19476 87642 10133786944 2.0268E+10

    10 0.5 -5 0

    128882 sum= 16877 866262.5 2.7634E+12

    Calculation for volume upto WL-9

    No. of

    ordinate

    AREA OF

    WL mm 2^

    s.m product of

    volume

    interval from

    base

    product of

    moment

    1.WL 0 1 0 0 0

    1. WL 1 263.83 3 791.49 1 791.49

    2.WL 2 306.07 3 918.21 2 1836.42

    3.WL 3 331.57 2 663.14 3 1989.42

    4.WL 4 348.17 3 1044.51 4 4178.04

    5.WL 5 363.32 3 1089.96 5 5449.8

    6.WL 6 370.71 2 741.42 6 4448.52

    7.WL 7 378.28 3 1134.84 7 7943.88

    8.WL 8 396.2 3 1188.6 8 9508.8

    9.WL 9 402.2 1 402.2 9 3619.8

    Total 7974.37 39766.17

  • 34

    Page 34

    Calculation for area for WL-10

    Calculation for volume upto WL-10

    No. of ordinate

    AREA OF WL mm 2^

    s.m product of volume

    interval from base

    product of moment

    1.WL 0 1 0 0 0

    1. WL 1 263.83 4 1055.32 1 1055.32

    2.WL 2 306.07 2 612.14 2 1224.28

    3.WL 3 331.57 4 1326.28 3 3978.84

    4.WL 4 348.17 2 696.34 4 2785.36

    5.WL 5 363.32 4 1453.28 5 7266.4

    6.WL 6 370.71 2 741.42 6 4448.52

    7.WL 7 378.28 4 1513.12 7 10591.84

    8.WL 8 396.2 2 792.4 8 6339.2

    9.WL 9 402.2 4 1608.8 9 14479.2

    10.WL 10 406.57 1 406.57 10 4065.7

    Total 10205.67 56234.66

    station half breadth Y (mm)

    Simpson's Multiplier

    Product of area

    Multipliers for volume

    Product of moment

    Product of moment of inertia

    Y 3^ Product of moment inertia

    AP(0) 0.5 5 0

    0.5 3458 2 6916 4.5 31122 140049 41349947912 8.27E+10

    1 4440 1 4440 4 17760 71040 87528384000 8.7528E+10

    1.5 4793 2 9586 3.5 33551 117428.5 1.10109E+11 2.2022E+11

    2 4866 1 4866 3 14598 43794 1.15217E+11 1.1522E+11

    2.5 4880 2 9760 2.5 24400 61000 1.16214E+11 2.3243E+11

    3 4880 1.5 7320 2 14640 29280 1.16214E+11 1.7432E+11

    4 4880 4 19520 1 19520 19520 1.16214E+11 4.6486E+11

    5 4880 2 9760 0 0 0 1.16214E+11 2.3243E+11

    6 4880 4 19520 -1 -19520 19520 1.16214E+11 4.6486E+11

    7 4851 1.5 7276.5 -2 -14553 29106 1.14155E+11 1.7123E+11

    7.5 4851 2 9702 -2.5 -24255 60637.5 1.14155E+11 2.2831E+11

    8 4726 1 4726 -3 -14178 42534 1.05556E+11 1.0556E+11

    8.5 4332 2 8664 -3.5 -30324 106134 81295282368 1.6259E+11

    9 3606 1 3606 -4 -14424 57696 46889669016 4.689E+10

    9.5 2310 2 4620 -4.5 -20790 93555 12326391000 2.4653E+10

    10 0.5 -5 0

    130282.5 sum= 17547 891294 2.8138E+12

  • 35

    Page 35

    Calculation for area for WL-11

    station half breadth Y (mm)

    Simpson's Multiplier

    Product of area

    Multipliers for volume

    Product of moment

    Product of moment of inertia

    Y 3^ Product of moment for inertia

    AP(0) 0 0.5 0 5 0 0 0 0

    0.5 3715 2 7430 4.5 33435 150457.5 51271550875 1.0254E+11

    1 4508 1 4508 4 18032 72128 91611864512 9.1612E+10

    1.5 4799 2 9598 3.5 33593 117575.5 1.10523E+11 2.2105E+11

    2 4870 1 4870 3 14610 43830 1.15501E+11 1.155E+11

    2.5 4880 2 9760 2.5 24400 61000 1.16214E+11 2.3243E+11

    3 4880 1.5 7320 2 14640 29280 1.16214E+11 1.7432E+11

    4 4880 4 19520 1 19520 19520 1.16214E+11 4.6486E+11

    5 4880 2 9760 0 0 0 1.16214E+11 2.3243E+11

    6 4880 4 19520 -1 -19520 19520 1.16214E+11 4.6486E+11

    7 4856 1.5 7284 -2 -14568 29136 1.14508E+11 1.7176E+11

    7.5 4855 2 9710 -2.5 -24275 60687.5 1.14437E+11 2.2887E+11

    8 4742 1 4742 -3 -14226 42678 1.06631E+11 1.0663E+11

    8.5 4399 2 8798 -3.5 -30793 107775.5 85125933199 1.7025E+11

    9 3728 1 3728 -4 -14912 59648 51811684352 5.1812E+10

    9.5 2468 2 4936 -4.5 -22212 99954 15032647232 3.0065E+10

    10 0 0.5 -5 0

    131484 sum= 17724 913190 2.859E+12

    Calculation for volume upto WL-11

    No. of ordinate

    AREA OF WL mm 2^

    s.m product of volume

    interval from base

    product of moment

    1.WL 0 0 0 0 0

    1. WL 1 263.83 1 263.83 1 263.83

    2.WL 2 306.07 4 1224.28 2 2448.56

    3.WL 3 331.57 2 663.14 3 1989.42

    4.WL 4 348.17 4 1392.68 4 5570.72

    5.WL 5 363.32 2 726.64 5 3633.2

    6.WL 6 370.71 4 1482.84 6 8897.04

    7.WL 7 378.28 2 756.56 7 5295.92

    8.WL 8 396.2 4 1584.8 8 12678.4

    9.WL 9 402.2 2 804.4 9 7239.6

    10.WL 10 406.57 4 1626.28 10 16262.8

    11.WL 11 410.32 1 410.32 11 4513.52

    Total 10935.77 68793.01

  • 36

    Page 36

    CALCULATION OF MIDSHIP SECTION AREA

    UPTO WL 1 FROM BASE LINE

    No. of ordinate

    HALF BREADTH

    s.m Product of area

    1. WL 0 0 5 0

    2.WL 1 4548 8 36384

    3.WL 2 4804 -1 -4804

    Total 9352 31580

    UPTO WL 2 FROM BASE LINE

    No. of ordinate

    HALF BREADTH

    s.m product of AREA

    1. WL 0 0 1 0

    2.WL 1 4548 4 18192

    3.WL 2 4804 1 4804

    Total 9352 22996

    UPTO WL 4 FROM BASE LINE

    No. of ordinate

    HALF BREADTH

    s.m product of AREA

    1,WL 0 0 1 0

    1. WL 1 4548 4 18192

    2.WL 2 4804 2 9608

    3.WL 3 4880 4 19520

    4.WL 4 4880 1 4880

    Total 19112 52200

    UPTO WL 3 FROM BASE LINE

    No. of ordinate

    HALF BREADTH

    s.m product of AREA

    1,WL 0 0 1 0

    1. WL 1 4548 3 13644

    2.WL 2 4804 3 14412

    3.WL 3 4880 1 4880

    Total 14232 32936

    UPTO WL 5 FROM BASE LINE

    No. of

    ordinate

    HALF

    BREADTH

    s.m product of

    AREA

    1,WL 0 0 5 0

    1. WL 1 4548 13 59124

    2.WL 2 4804 12 57648

    3.WL 3 4880 12 58560

    4.WL 4 4880 12 58560

    5.WL 5 4880 7 34160

    6,WL 6 4880 -1 -4880

    Total 263172

  • 37

    Page 37

    UPTO WL 7FROM BASE LINE

    No. of ordinate

    HALF BREADTH

    s.m product of AREA

    1,WL 0 0 1 0

    1. WL 1 4548 3 13644

    2.WL 2 4804 3 14412

    3.WL 3 4880 2 9760

    4.WL 4 4880 3 14640

    5.WL 5 4880 3 14640

    6,WL 6 4880 1 4880

    Total 28872 71976

    UPTO WL 7FROM BASE LINE

    No. of

    ordinate

    HALF

    BREADTH

    s.m product of

    AREA

    1,WL 0 0 5 0

    1. WL 1 4548 13 59124

    2.WL 2 4804 12 57648

    3.WL 3 4880 12 58560

    4.WL 4 4880 12 58560

    5.WL 5 4880 12 58560

    6,WL 6 4880 12 58560

    7.WL 7 4880 7 34160

    8.WL 8 4880 -1 -4880

    Total 38632 380292

    UPTO WL 8 FROM BASE LINE

    No. of

    ordinate

    HALF

    BREADTH

    s.m product of AREA

    1,WL 0 0 1 0

    1. WL 1 4548 4 18192

    2.WL 2 4804 2 9608

    3.WL 3 4880 4 19520

    4.WL 4 4880 2 9760

    5.WL 5 4880 4 19520

    6,WL 6 4880 2 9760

    7.WL 7 4880 4 19520

    8.WL 8 4880 1 4880

    Total 38632 110760

  • 38

    Page 38

    UPTO WL 9 FROM BASE LINE

    No. of

    ordinate

    HALF

    BREADTH

    s.m product of

    AREA

    1,WL 0 0 1 0

    1. WL 1 4548 3 13644

    2.WL 2 4804 3 14412

    3.WL 3 4880 2 9760

    4.WL 4 4880 3 14640

    5.WL 5 4880 3 14640

    6,WL 6 4880 2 9760

    7.WL 7 4880 3 14640

    8.WL 8 4880 3 14640

    9.WL 9 4880 1 4880

    Total 43512 111016

    UPTO WL 10 FROM BASE LINE

    No. of ordinate

    HALF BREADTH

    s.m product of AREA

    1,WL 0 0 1 0

    1. WL 1 4548 4 18192

    2.WL 2 4804 2 9608

    3.WL 3 4880 4 19520

    4.WL 4 4880 2 9760

    5.WL 5 4880 4 19520

    6,WL 6 4880 2 9760

    7.WL 7 4880 4 19520

    8.WL 8 4880 2 9760

    9.WL 9 4880 4 19520

    10.WL 10 4880 1 4880

    Total 48392 140040

  • 39

    Page 39

    Hydrostatic Calculation(WL-1)

    Water plane area, Aw=2 x hL/3product of area=263.83m2

    1. Moment about middle ordinate= 2 x hL/3 x excess of product of moment by

    (F) or (A) x hL.=178.26m3 by F

    2. Position of CF of amid ship (A/F): CF= Moment about middle ordinate

    Area of water plane

    =.68mby F

    3. Moment of inertia about middle ordinate

    IO= 2xhL/3 x product of M.I x hL2=20206.6m4

    4. Longitudinal M.I, about, CF, I2= IO AWCF2=20084.61m4

    5. Longitudinal metacentre, BML= IL/V1

    UPTO WL 11FROM BASE LINE

    No. of ordinate

    HALF BREADTH

    s.m product of AREA

    1,WL 0 0 0

    1. WL 1 4548 1 4548

    2.WL 2 4804 4 19216

    3.WL 3 4880 2 9760

    4.WL 4 4880 4 19520

    5.WL 5 4880 2 9760

    6,WL 6 4880 4 19520

    7.WL 7 4880 2 9760

    8.WL 8 4880 4 19520

    9.WL 9 4880 2 9760

    10.WL 10 4880 4 19520

    11.WL 11 4880 1 4880

    Total 145764

  • 40

    Page 40

    KM2 = KB+BML

    Calculation of Volume and CB:

    Volume up to WL1, V1 = 1/12 x HV x product of volume=52.63m3

    hV = WL spacing

    Moment of volume displacement about base, = 1/12 x (hV)2 x product for

    moment.

    =15.3m4

    The distance of Center of buoyancy above base, KB1 = Moment/V1=.29m

    Up to WL1 Calculation of Midship Section Area

    AM1 = 2 x 1/12 x hV x product of area.=1.84m2

    Transverse M.I , IT = 2 x 1/3 x 1/3 x hL x product of M.I=118.47m4

    BMT = IT/V1=2.25m

    KMT = KB-BMT=1.19m

    Hydrostatic Calculation(wl 2)

    Water plane area, Aw=2 x hL/3product of area.=306.07m2

    1. Moment about middle ordinate= 2 x hL/3 x excess of product of moment by

    (F) or (A) x hL=66.79m3 by F

    2. Position of CF of amid ship (A/F): CF= Moment about middle ordinate

    Area of water plane

    =.22 m

    3. Moment of inertia about middle ordinate

    IO= 2xhL/3 x product of M.I x hL2.=28501.04m4

  • 41

    Page 41

    4. Longitudinal M.I, about, CF, IL= IO AWCF2.=28486.23m4

    5. Longitudinal metacentre, BML= IL/V1=

    KM2 = KB+BML

    Calculation of Volume and CB:

    Volume up to WL1, V1 = 1/3 x HV x product of volume =158.82m3

    hV = WL spacing

    Moment of volume displacement about base, = 1/3 x (hV)2 x product for

    moment.=68.09m4

    The distance of Center of buoyancy above base, KB1 = Moment/V1=.43m

    Up to WL1 Calculation of Midship Section Area

    AM1 = 2 x 1/12 x hV x product of area.

    Transverse M.I , IT = 2 x 1/3 x 1/3 x hL x product of M.I.

    BMT = IT/V1

    KMT = KB=BMT

    Hydrostatic Calculation(wl 3)

    Water plane area, Aw=2 x hL/3product of area.=331.57m2

    1. Moment about middle ordinate= 2 x hL/3 x excess of product of moment by

    (F) or (A) x hL.=116m3

    2. Position of CF of amid ship (A/F): CF= Moment about middle ordinate

    Area of water plane

    =0.35m

  • 42

    Page 42

    3. Moment of inertia about middle ordinate

    IO= 2xhL/3 x product of M.I x hL2=34336.77m4

    4. Longitudinal M.I, about, CF, I2= IO AWCF2=34296.15m4

    5. Longitudinal metacentre, BML= IL/V1=

    KML = KB+BML

    Calculation of Volume and CB:

    Volume up to WL1, V1 = 3/8 x HV x product of volume=267.92m3

    hV = WL spacing

    Moment of volume displacement about base, =3/8x (hV)2 x product for

    moment.=166.41m4

    The distance of Center of buoyancy above base, KB1 = Moment/V1=.62m

    Up to WL1 Calculation of Midship Section Area

    AM1 = 2 x3/8 x hV x product of area.=8.65m2

    Transverse M.I , IT = 2 x 1/3 x 1/3 x hL x product of M.I.=2283.29m4

    BMT = IT/V1=8.5

    KMT = KB+BMT=9.14m

    Hydrostatic Calculation(wl 4)

    Water plane area, Aw=2 x hL/3product of area=348.17m2

    1. Moment about middle ordinate= 2 x hL/3 x excess of product of moment by

    (F) or (A) x hL.=6.52m3

  • 43

    Page 43

    2. Position of CF of amid ship (A/F): CF= Moment about middle ordinate

    Area of water plane

    =.019mby F

    3. Moment of inertia about middle ordinate

    IO=2xhL/3 x product of M.I x hL2=40051.47m4

    4. Longitudinal M.I, about, CF, I2= IO AWCF2.=40051.34m4

    5. Longitudinal metacentre, BML= IL/V1

    KM2 = KB+BML

    Calculation of Volume and CB:

    Volume up to WL1, V1 = 1/3 x HV x product of volume =389.89m3

    hV = WL spacing

    Moment of volume displacement about base, = 1/3x (hV)2 x product for

    moment.=312.42m4

    The distance of Center of buoyancy above base, KB1 = Moment/V1=0.8m

    Up to WL1 Calculation of Midship Section Area

    AM1 = 2 x 1/3 x hV x product of area.=12.18m2

    Transverse M.I , IT = 2 x 1/3 x 1/3 x hL x product of M.I.=2374.31

    BMT = IT/V1=6.09m

    KMT = KB+BMT=6.89m

  • 44

    Page 44

    Hydrostatic Calculation(wl 5)

    Water plane area, Aw=2 x hL/3product of area.363.32m2

    1. Moment about middle ordinate= 2 x hL/3 x excess of product of moment by

    (F) or (A) x hL=19.71m3

    2. Position of CF of amid ship (A/F): CF= Moment about middle ordinate

    Area of water plane

    =.05m by f

    3. Moment of inertia about middle ordinate

    IO= 2x hL/3 x product of M.I x hL2=44076.85m4

    4. Longitudinal M.I, about, CF, I2= IO AWCF2.=44075.95m4

    5. Longitudinal metacentre, BML= IL/V1

    KM2 = KB+BML

    Calculation of Volume and CB:

    Volume up to WL1, V1 = 1/12 x HV x product of volume =508.44m3

    hV = WL spacing

    Moment of volume displacement about base, = 1/12 x (hV)2 x product for

    moment.=513.34m4

    The distance of Center of buoyancy above base, KB1 = Moment/V1=1m

    Up to WL1 Calculation of Midship Section Area

    AM1 = 2 x 1/12 x hV x product of area.=15.35m2

    Transverse M.I , IT = 2 x 1/3 x 1/3 x hL x product of M.I.=2574.55m4

  • 45

    Page 45

    BMT = IT/V1=5.06

    KMT = KB+BMT=6.06m

    Hydrostatic Calculation(wl 6)

    Water plane area, Aw=2 x hL/3product of area.=370.71m2

    1. Moment about middle ordinate= 2 x hL/3 x excess of product of moment by

    (F) or (A) x hL=55.22m3

    2. Position of CF of amid ship (A/F): CF= Moment about middle ordinate

    Area of water plane

    =.15m by F

    3. Moment of inertia about middle ordinate

    IO=2x hL/3 x product of M.I x hL2=46422.95m4

    4. Longitudinal M.I, about, CF, I2= IO AWCF2=46414.61m4

    5. Longitudinal metacentre, BML= IL/V1

    KM2 = KB+BML

    Calculation of Volume and CB:

    Volume up to WL1, V1 = 3/8x HV x product of volume=640.24m3

    hV = WL spacing

    Moment of volume displacement about base, = 3/8x (hV)2 x product for

    moment.=746.56m4

    The distance of Center of buoyancy above base, KB1 = Moment/V1=1.2m

    Up to WL1 Calculation of Midship Section Area

  • 46

    Page 46

    AM1 = 2 x 3/8 x hV x product of area.=18.9m2

    Transverse M.I , IT = 2 x 1/3 x 1/3 x hL x product of M.I.=2665.77m4

    BMT = IT/V1=4.16m

    KMT = KB+BMT=5.36m

    Hydrostatic Calculation(WL 7)

    Water plane area, Aw=2 x hL/3product of area.

    =38.73X10^7mm^2=387.28 m^2

    1. Moment about middle ordinate= 2 x hL/3 x excess of product of moment by

    (F) or (A) x hL=1.43x1011mm3=143.22m3by aft

    2. Position of CF of amid ship (A/F): CF= Moment about middle ordinate

    Area of water plane

    =0.37m by aft

    3. Moment of inertia about middle ordinate

    IO= hL/3 x product of M.I x hL2=53222.86m4

    4. Longitudinal M.I, about, CF, I L= IO AWCF2.=53169.84m4

    5. Longitudinal metacentre, BML= IL/V1=

    KM2 = KB+BML

    Calculation of Volume and CB:

    Volume up to WL1, V1 = 1/12 x HV x product of volume=767.66m3 hV =

    WL spacing

    Moment of volume displacement about base, = 1/12 x (hV)2 x product for

    moment.=3176.59m4

  • 47

    Page 47

    The distance of Center of buoyancy above base, KB1 = Moment/V1=4.1m

    Up to WL1 Calculation of Midship Section Area

    AM1 = 2 x 1/12 x hV x product of area.=22.2m2

    Transverse M.I , IT = 2 x 1/3 x 1/3 x hL x product of M.I.=2741.09m4

    BMT = IT/V1=3.57

    KMT = KB+BMT=7.67m

    Hydrostatic Calculation(WL 8)

    Water plane area, Aw=2 x hL/3product of area.

    =39.62x107mm2=396.2 m2

    1. Moment about middle ordinate= 2 x hL/3 x excess of product of moment by

    (F) or (A) x hL.=2.17x1011 mm3=216.71m3by aft

    2. Position of CF of amid ship (A/F): CF= Moment about middle ordinate

    Area of water plane

    =0.55m

    3. Moment of inertia about middle ordinate

    IO= 2xhL/3 x product of M.I x hL2=56889.92m4

    4. Longitudinal M.I, about, CF, I2= IO AWCF2=56770.07m4

    5. Longitudinal metacentre, BML= IL/V1

    KM2 = KB+BML

    Calculation of Volume and CB:

    Volume up to WL1, V1 = 1/3x HV x product of volume=909.31m3

  • 48

    Page 48

    hV = WL spacing

    Moment of volume displacement about base, = 1/3 x (hV)2 x product for

    moment.=1409.57m4

    The distance of Center of buoyancy above base, KB1 = Moment/V1=1.56m

    Up to WL1 Calculation of Midship Section Area

    AM1 = 2 x 1/3 x hV x product of area.=25.84m2

    Transverse M.I , IT = 2 x 1/3 x 1/3 x hL x product of M.I.=2808.6m4

    BMT = IT/V1=3.09m

    KMT = KB+BMT=4.64m

    Hydrostatic Calculation(WL 9)

    Water plane area, Aw=2 x hL/3product of area=40.22X107mm2=402.2m2

    1. Moment about middle ordinate= 2 x hL/3 x excess of product of moment by

    (F) or (A) x hL=2.47x1011mm3=246.54m3by aft

    2. Position of CF of amid ship (A/F): CF= Moment about middle ordinate

    Area of water plane

    =0.613m by aft

    3. Moment of inertia about middle ordinate

    IO= 2xhL/3 x product of M.I x hL2=59234.42m4

    4. Longitudinal M.I, about, CF, I2= IO AWCF2=59073.29m4

    5. Longitudinal metacentre, BML= IL/V1

    KM2 = KB+BML

    Calculation of Volume and CB:

  • 49

    Page 49

    Volume up to WL1, V1 = 3/8 x HV x product of volume=1046.64m3

    hV = WL spacing

    Moment of volume displacement about base, = 3/8x (hV)2 x product for

    moment.=1826.76m4

    The distance of Center of buoyancy above base, KB1 = Moment/V1=1.75m

    Up to WL1 Calculation of Midship Section Area

    AM1 = 2 x 3/8x hV x product of area.=29.14m2

    Transverse M.I , IT = 2 x 1/3 x 1/3 x hL x product of M.I.=2874.56m4

    BMT = IT/V1=2.75m

    KMT = KB+BMT=4.5m

    Hydrostatic Calculation(WL 10)

    Water plane area, Aw=2 x hL/3product of area=40.66x107mm2=406.57m2

    1. Moment about middle ordinate= 2 x hL/3 x excess of product of moment by

    (F) or (A) x hL=2.56x1011mm3=256.32m3 by aft

    2. Position of CF of amid ship (A/F): CF= Moment about middle ordinate

    Area of water plane

    =0.63m by aft

    3. Moment of inertia about middle ordinate

    IO= 2xhL/3 x product of M.I x hL2=60946.06m4

    4. Longitudinal M.I, about, CF, I2= IO AWCF2=60784.69m4

    5. Longitudinal metacentre, BML= IL/V1

    KM2 = KB+BML

  • 50

    Page 50

    Calculation of Volume and CB:

    Volume up to WL1, V1 = 1/3 x HV x product of volume =1190.66m3

    hV = WL spacing

    Moment of volume displacement about base, = 1/3x (hV)2 x product for

    moment.=2296.25m4

    The distance of Center of buoyancy above base, KB1 = Moment/V1=1.93m

    Up to WL1 Calculation of Midship Section Area

    AM1 = 2 x 1/3 x hV x product of area.=32.68m2

    Transverse M.I , IT = 2 x 1/3 x 1/3 x hL x product of M.I.=2926.98m4

    BMT = IT/V1=2.46m

    KMT = KB+BMT=4.4m

    Hydrostatic Calculation(WL 11)

    Water plane area, Aw=2 x hL/3product of area=41.03X107mm2=410.32m2

    1. Moment about middle ordinate= 2 x hL/3 x excess of product of moment by

    (F) or (A) x hL=2.59x1011mm3=259m3

    2. Position of CF of amid ship (A/F): CF= Moment about middle ordinate

    Area of water plane

    =0.631m by aft

    3. Moment of inertia about middle ordinate

    IO=2x hL/3 x product of M.I x hL2=62443.3m4

    4. Longitudinal M.I, about, CF, I2= IO AWCF2=62279.9m4

  • 51

    Page 51

    5. Longitudinal metacentre, BML= IL/V11

    KM11 = KB+BML

    Calculation of Volume and CB:

    Volume up to WL1, V1 = 1/3 x HV x product of volume=1275.84m3

    hV = WL spacing

    Moment of volume displacement about base, = 1/3 x (hV)2 x product for

    moment.=2809.05m4

    The distance of Center of buoyancy above base, KB1 = Moment/V1=2.2m

    Up to WL1 Calculation of Midship Section Area

    AM1 = 2 x 1/3 x hV x product of area.=34m2

    Transverse M.I , IT = 2 x 1/3 x 1/3 x hL x product of M.I.=2973.99

    BMT = IT/V1=2.33

    KMT = KB+BMT=4.53m

  • 52

    Page 52

    Draught HWL (m)

    Water Plane Area AW (m^2)

    Displacement (Tonne)

    KB (m)

    KML (m)

    KM t (m)

    CB CM CP LCF TPC MCTC 1m

    Cw

    0 0 0 0 0 0 0 0 0 0

    0.35 263.83 52.63 0.29 381.62 30.4 0.34 0.54 0.53 -0.59 2.64 446.32 0.6

    0.7 306.07 158.82 0.43 179.8 13.07 0.52 0.79 0.66 -0.56 3.07 633.03 0.69

    1.05 331.57 267.92 0.62 128.63 9.14 0.58 0.84 0.69 -0.51 3.31 762.14 0.75

    1.4 348.17 389.89 0.8 103.52 6.89 0.64 0.89 0.72 -0.45 3.48 890.03 0.79

    1.75 363.32 508.44 1 87.69 6.06 0.66 0.9 0.73 -0.36 3.63 979.47 0.82

    2.1 370.71 640.24 1.2 73.7 5.36 0.69 0.92 0.75 -0.15 3.7 1071.3 0.86

    2.45 378.28 767.66 1.4 70.66 4.97 0.72 0.93 0.78 0.37 3.82 1181.55 0.88

    2.8 396.2 909.31 1.56 64 4.64 0.74 0.94 0.79 0.55 3.96 1261.56 0.9

    3.15 402.2 1046.64 1.75 58.2 4.5 0.76 0.95 0.8 0.613 4.02 1312.74 0.92

    3.5 406.57 1190.66 1.93 52.98 4.4 0.78 0.96 0.81 0.63 4.06 1350.77 0.93

    3.85 410.32 1275.84 2.2 51.01 4.53 0.82 0.97 0.83 0.631 4.1 1383.99 0.93

  • 53

    Page 53

    Hydrostatic curves

    0

    1

    2

    3

    4

    5

    0 500 1000 1500

    DRAFT

    VOLUME

    DISPLACEMENT

    0

    1

    2

    3

    4

    5

    0 0.5 1 1.5 2 2.5

    DRAFT

    KB

    0

    1

    2

    3

    4

    5

    0 100 200 300 400 500

    DRAFT

    AW

    Draft vs.

    volume

    displacement

    Draft vs. KB

    Draft vs. AW

  • 54

    Page 54

    0

    1

    2

    3

    4

    5

    -1 -0.5 0 0.5 1

    DRAFT

    LCF

    0

    1

    2

    3

    4

    5

    0 200 400 600

    DRAFT

    KML

    0

    1

    2

    3

    4

    5

    0 10 20 30 40

    DRAFT

    KMt

    Draft vs. KML

    Draft vs. LCF

    Draft vs. KMt

  • 55

    Page 55

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    0 2 4 6

    DRAFT

    TPC

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    0 500 1000 1500

    DRAFT

    MCT 1m

    Draft vs. TPC

    Draft vs. MCT1m

    1m

    MCTc

  • 56

    Page 56

    Hydrostatic form curves

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    0 0.2 0.4 0.6 0.8 1

    DRAFT

    Cb

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    0 0.5 1 1.5

    DRAFT

    Cm

    Draft vs. Cb

    1m

    MCTc

    Draft vs. Cm

    1m

    MCTc

  • 57

    Page 57

    0

    1

    2

    3

    4

    5

    0 0.5 1

    DRAFT

    Cp

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    0 0.5 1

    DRAFT

    Draft vs. Cp

    1m

    MCTc

    Draft vs. Cw

    1m

    MCTc

  • 58

    Page 58

    Hydrostatic curves (at a glance)

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    -5000 0 5000

    aw

    lcf

    displacement

    bml

    kb

    kml

    mct

    tpm

    bmt

    kmt

    lcb

    cb

    cm

  • 59

    Page 59

  • 60

    Page 60

    Framing information

    Framing System Transverse

    Frame Spacing (midship) 550mm

    Frame Spacing (for& aft) 500mm

    No. of Main Frames 80

    No. of Web Frames 17

    No. of Bulkheads 4

    Shell Structure

    Plates Thickness

    Keel Plate 10mm

    Bottom Plate 8mm

    Bilge Plate 9mm

    Shell Plate 8mm

  • 61

    Page 61

    Scantling calculation

    Particulars

    Frame spacing, a =0.55m

    Web frame spacing =2.02m

    Length of ship=52.42m

    Breadth of ship= 9.76m

    Draft,T= 3.85m

    Deptht ,d =4.27m

    Block coefficient 2

    Material factor for higher strength hull structural steel.

    Bottom shell plating

    Frame spacing, a = 0.55 m

    Length coefficient CL= (L/90) (for L

  • 62

    Page 62

    The thickness of the bottom shell plating within 0.4 L amidships is not to be less

    than:

    tB1 = 1.9 nf a (pB k) + tK (mm) = 1.9 1 0.55 (51.23 0.72) + 1.5 (mm) (as t 10 mm) = 7.85 (mm)

    Within 0.1 L forward of the aft end of the length L and within 0.05 L aft of F.P. the thickness is not to

    be less than.

    tB2 = 1.21 a (pB k) + tK (mm)

    = 1.21 0.55 (51.23 0.72) + 1.5(mm)

    = 5.54 (mm)

    The thickness of bottom plating should not be less than the greater of the two

    following values

    Tmin = (L.k) mm for L 50m = 6.14 mm

    So we take the thickness of our bottom plate as tB = 8 mm

    Spacing between side girders not exceed L/250+0.9 m

    Bottom structure (Keelson):(Single bottom)

    According to B.V rule:

    Web height for center keelson within 0.7L amidship : 0.085D+0.15=512.95mm

    G.L: Min Web Thickness, t =.07L+5.5=9.17mm

    Face plate sectional area should not be less than (0.7L amidship)

    =0.7L+12=48.694 cm2

    So we get,10x2=48.694cm

    2

  • 63

    Page 63

    x=2.21cm=22.07mm (min)

    So,10x=10X22.07 =220.67mm~230mm

    Flange width=230mm

    Flange thickness=10mm (according to rule not greater than 14mm)

    Dimension T- 513 230 10 (.7L amidship)

    But towards end, thickness of web &sectional area of top plate reduced by 10% so

    lightening hold is avoided.

    SIDE KEELSON:

    Web height for side keelson=

    G.L: Min Web Thickness=.04L+5=7.0968mm~8mm

    Face plate sectional area should not be less than (0.7L amidship)

    =0.2L+6=16.484cm2

    So we get,10x2=16.484

    x =1.28cm=12.84mm

    So,10x=10X12.84=128.39~129mm , Flange width 129mm

    Flange thickness=(16.484/12.9)=1.28cm=12.78mm~10mm

    Dimension T-

    Flat keel plating

    Width =800+5L = 800+5X52.42=1062.1mm~1063mm

    The thickness of flat plate keel should not be less than tFK = tB + 1.5

    = 8 +1.5

  • 64

    Page 64

    = 9.5mm

    So we take the thickness of our flat plate keel as tFK = 10mm

    Bilge plating

    Bilge thickness = Bottom plate thickness = 9 mm\

    Side shell plating :

    Vertical distance of the structure load centre from base line z =

    = 0.5(depth- double bottom depth) + double bottom depth

    = 0.5(4.27-0) +0= 2.135 m

    Load on sides, Ps = 10 (T-Z) + Po CF (1+ Z/T) = 10 (3.85-2.135) + 12.73 1.0 (1+2.135 /3.85)

    = 36.94 KN/mm2

    The thickness of the side shell plating should not be less than the greater of

    those following values

    Ts1 = 1.9 nf a ( PS K) + tk = 1.9 1 0.55 ( 36.94 0.72) + 1.5

    = 6.89 mm, So we take the thickness of our side shell plating as, ts = 8mm

    `Web frame and Side Stringers l = Length of unsupported span = 2.73 m

    Where web frames and supporting stringers are fitted instead of tiers of beams,

    their scantlings are to be determined as follows:

    Section modulus, W = 0.55 e l2 P nc K

    = 0.55 2.02 2.732 36.94 1 0.72

    = 220.23 cm3

    where,nc = Reduction coefficient = 1 (as there is no cross ties)

    Dimension L- 160X80X12

  • 65

    Page 65

    Side Stinger:

    We take the dimension of side stringer same as that of web frame. So the

    dimension of side stringer is L- 160X80X12

    Main Frame:

    Length of unsupported span= 2.73 m

    Maximum height for curve,s=0 for main frame

    n=0.9-.0035X L for L

  • 66

    Page 66

    Thickness of side shell plate =T+Co/2=3.85+6.894/2=7.297~8mm

    Transverse Deck beam &Deck Longitudinal:

    P=PD=Pressures on ships deck =Po*{20*T/(10+z-T)H}*Cd=27.71kN/mm2

    Sectional modulus of Transverse Deck beam Deck

    Longitudinal,WD=c*a*p*l2*k=.75*.55*27.71*(2.73)

    2*.72=61.34cm

    3

    Dimension-L 100X65X7

    Dimensions of non-effective superstructures:

    Here P=Ps

    The thickness of side plating above the strength deck should not be less than the

    two following values,

    =5mm

    So we take the thickness of the side plates of superstructures as tsp=5mm

    Here

    =1.21

    =30.141.21= 36.45kN/m2

    The thickness of poop deck plating should not be less than,

    =.75*.55*(36.94*.72)+1.5=3.63mm So we take the thickness of deck tDP= 6mm

  • 67

    Page 67

    Bracket:

    The thickness of brackets is not to be less than:

    t = c 31K

    W+ tk

    =5.98mm

    WB = n c a l

    2 p k = 0.7 10.55 (2.135)

    251.230.72 = 64.73cm

    3

    c = 1.0,n=.7 P=PB=51.23k N/mm

    2

    k1 = material factor k for the section= 0.72

    The arm length of brackets should not be less than= 46.2 x 31K

    Wxc=206.97mm

    Dimension of bracket 300X300X7

    Framing&Continuous Items Using G.L& NK RULE BOOK 08

    Bottom Structures Single Bottom

    Center Keelson T-513X230X10

    Side Keelson T-470X8+129X10

    Floor plates T-492X125X10

    Web Frame L-160X80X12

    Main Frame L-100X65X7

    Side Frame L-75X75X8

    Transverse Deck Beam 100X65X7

    Main deck plate 7mm

    Main deck longitudinal

    L-100X65X7

    Side Stringer L-160X80X12

    Bracket 300X300X7

    Hatchway Beam 80X65X7

    Hatch Coaming Height 1000mm

  • 68

    Page 68

    Midship

    section(overall)-A3

  • 69

    Page 69

    Main frame-A4

  • 70

    Page 70

    Web frame-A4

  • 71

    Page 71

    Connections-A4

  • 72

    Page 72

    Longitudinal

    construction(overall)-

    A3

  • 73

    Page 73

    Under deck-A4

  • 74

    Page 74

    Main deck-A4

  • 75

    Page 75

    Poop,foxl-A4

  • 76

    Page 76

    profile-A4

  • 77

    Page 77

    Shell expansion-A4

  • 78

    Page 78

    Plate dimension-A4

  • 79

    Page 79

    Plate dimension-A4

  • 80

    Page 80

  • 81

    Page 81

    METHODS OF RESISTANCE CALCULATION

    1. Taylors Method.

    2. Moors Method.

    3. Holtrop & Mennens Method.

    4. Guldhammer & Harvalds Method.

    HOLTROP &Total Resistance of the Ship,

    RT =RF(1+K1)+RAPP+RW+RB+RTR+RA

    RF = FRICTIONAL RESISTANCE ACCORDING TO THE ITTC 1957

    FRICTION FORMULA

    RAPP = RESISTANCE OF APPENDAGES

    Rw = WAVE MAKING AND WAVE BREAKING RESISTANCE

    RB = ADDITIONAL RESISTANCE DUE TO BULBOUS BOW

    RTR =ADDITIONAL PRESSURE RESISTANCE OF IMMERSED TRANSOM

    STERN

    RA = MODEL SHIP CORRELATION RESISTANCE

  • 82

    Page 82

    Holtrop & Mennens Method.

    C w p =

    =410.32/44.99*9.76=0.93

    C.F = 0.631 m aft

    L.C.B =24.165 m aft=1.67 m f about amidship

    Transverse sectional area of BULB, A BT = 0

    M.C.T 1 m = 1393.99

    A T = 0 m2

    The Wetted Area,

    S= L (2T+B) C M (0.453+0.4425 C B 0.2862 C M 0.003467(B/T) + 0.3696 C w p) +2.38

    A BT/ C B

    S = 675.534 m2

    Reynoldss No, R e =

    =

    At room temperature,(30 C), Kinematic Viscosity of Water,

    = 0.801 X m2/s

    R e = 2.89 X

    CF = 0.075/ ((log10 R e ) - 2 )2 = 1.8 X

    Frictional Resistance, RF = 0.5 V2 S CF = 0.5*996*5.15

    2*675.534*1.8*10-3=16.06 KN

    C12 = ) 0.222844 = 0.578

    C13 = 1+0.003 Cstern = 1.003

    Cstern = 1, for normal shaped ship

  • 83

    Page 83

    L R = (1 Cp + 0.06 CP LCB (4 Cp - 1)) X L

    =10.44

    1+ k1 = C13 (0.93 + C12 (B/ L R) 0.92497 (0.95- C p)

    -.521448 (1- C p + .0225 LCB) 0.6903 )

    = 1.63

    C7 =

    = 0.216 , 0.11 < (B/L) < 0.25

    iE =1 + 89exp {-(L/B) 0.80856(1 CWP)

    0.30484 (1- CP -0.02255 LCB) 0.6367 (L R /B)

    0.34574 (100 X /

    L3) 0.16302} = 54.41

    C1 = 2223105C7 03.78613 (T/B)1.07961(90 - iE)

    -1.37565

    =18.06

    C3 = 0

    C2 = exp (- 1.89 3) = 1

    C5 = 1 0.48AT/(BTCM) = 1

    = 1.446CP -0.03 L/B L/B < 12

    =1.21

    m1 = 0.0140407L/T 1.752541/3/L 4.79323B/L C16

    = -2.44

    C16 = 8.07981CP 13.8673CP2+ 6.984388Cp

    3

    = 1.138 (taking cp >0.8)

  • 84

    Page 84

    Fn = V/ = .245 (V in m/s)

    c15 = - 1.69385 {(L3/VOLUME) < 512}

    m2 = c15 CP2 exp (-0.1Fn

    -2) = -0.266

    d = -0.9

    Rw = C1 C2 C5 g exp{ m1 Fn d + m2 cos ( Fn-2 ) }

    = 30.64 KN

    RB = 0.11 exp (-3 PB -2

    ) Fni 3

    A BT 1.5 g/(1+ Fni

    1.5 ) =0

    RA = 0.5 V2 S Ca = 5.85 kN

    CA = 0.006(L+100)-.016 -.00205 +.003 CB 4 C2 (.04- C4)

    =6.56X10 -4

    C4 = 0.04

    TF /L > .04

    RAPP = 0.5 V2 SAPP (1+k2)EQ X CF

    =0.481KN (SAPP = 2% of S =13.51)

    (1+k2)EQ=1.50

    RTR =0.5 V2 A T C6 =0

  • 85

    Page 85

    C6 =0.2(1-0.2F NT) =0

    F NT = V/ B B

    =4.81

    Total Resistance of the Ship

    RT =RF(1+K1)+RAPP+RW+RB+RTR+RA

    =16.06*1.63+0.481+30.64+0+0+5.85=79.98 KN

    PE=RT*V=79.98 *5.15=411.9 KW

    Effective, PE 411.9 KW

    Ship type Typical values for the quasi-propulsive

    coefficient (QPC)

    tanker 0.670.72

    slow cargo vessel 0.720.75

    passenger ship 0.650.70

    Let, QPC=0.73 t=takes typical values of 0.99 for aft end machineryand 0.98 for amidships machineryThe losses in a the thrust block should be less than 1% of the power transmitted. Ps=PE/ QPC* t=(411.9 /0.73*.99) =570 KW Taking MCR 85% , Ps=670 KW

    Shaft power, PS= PD/t=499.74 kw=750 hp

  • 86

    Page 86

    Summary of resistance calculation

    RESISTANCE VALUE

    FRICTIONAL RESISTANCE , RF 18.02 KN

    1+K1 1.55

    RESISTANCE OF APPENDAGES , RApp

    0.541 KN

    WAVE MAKING AND WAVE BREAKING RESISTANCE , R

    W`

    10.43KN

    ADDITIONAL RESISTANCE DUE TO BULBOUS BOW, R

    B

    00.00 KN

    RESISTANCE OF IMMERSED TRANSOM STERN ,R

    TR

    00.00 KN

    MODEL SHIP CORRELATION RESISTANCE , R

    A

    6.29 KN

    TOTAL RESISTANCE, RT 45.19 KN

  • 87

    Page 87

    Summary of power calculation

    Resistance(total) 45.18522 KN

    Power(effective) 232.703883

    KW

    nd (QPC) 0.50462707

    Delivered, Pd 461.140306 KW

    Shaft power, Ps 468.162747

    KW

    Brake power, Pb 487.669528 KW

    MCR 85% 573.728857 KW

    P=RXV

    Pd=P/nd

    nd=0.84-NL/1000

    Ps=Pd/t

    t=0.985

    Pb=Ps/g

    g=0.96

  • 88

    Page 88

    Air resistance

    Formula used:

    1. {1-.15*(1-/90)-0.8*(1-/90)^3}*90 degree

    2.a/L 0.291+0.0023. in degree

    3.Crwd 1.142-0.142cos2-0.367cos4-0.133cos6

    4.Rwd 0.5*Crwd*Vrwd^2(Af cos^2+Al sin^2)

    Item Al (m^2) Af (m^2)

    Hull 17.1 3.71

    Solid railing 29.0 9.76

    1st

    deck 24.0 19.52

    2nd

    deck 13.8 15.6

    Wheel house 5.51 14.63

    Funnel 3.45 3.45

    92.8562 66.6468

  • 89

    Page 89

    Air Resistance= 0.79952 KN

    Air Power = 4.12 KW

    a/L Crwd COS SIN Vs COS Vrwd=Vw+Vs COS

    Rwd Vrwd=Vs Rwd

    0 4.5 0.291 0.75 0.99 0 5.149 15.44 7195.7

    30 59.6 0.36 1.19 0.50 0.5 4.45 14.757 11467.5

    60 82.8 0.429 1.21 0.12 0.866 2.5 12.87 10524.9

    90 90 0.498 1.29 6.12E-17

    1 3.15E-16 10.298 7.66E+03 5.149 799.526

    120 97.1 0.567 1.739 -0.124 0.866 -2.5 7.72 5377.17

    150 120.3 0.636 1.664 -0.50 0.5 -4.45 5.83 2505.5

  • 90

    Page 90

    Resistance vs.speed curve:

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    0 2 4 6 8

    Re

    sist

    ance

    (KN

    )

    Speed (m/s)

    Series1

    V(m/s) R Total(KN) R water(KN) R air(KN)

    4.12 24.522 24.01 0.512

    4.63 34.247 33.6 0.647

    5.15 45.989 45.19 0.799

    5.66 69.367 68.4 0.967

    6.18 80.83 79.68 1.15

  • 91

    Page 91

    Power vs.speed curve:

    0

    200

    400

    600

    800

    1000

    1200

    1400

    0 2 4 6 8

    Po

    we

    r(K

    W)

    Speed m/s)

    Series1

    V(m/s) Pt(KW) Pw(KW) Pa(KW)

    4.12 246.01 243.91 2.1

    4.63 386.503 383.502 3.001

    5.15 577.85 573.73 4.12

    5.66 959.984 954.504 5.48

    6.18 1221.19 1214.06 7.13

  • 92

    Page 92

  • 93

    Page 93

    ENGINE AT A GLANCE

  • 94

    Page 94

  • 95

    Page 95

    ENGINE CONFIGURATION

    MODEL 6AYM-WGT L-rating

    Number of cylinder 6

    Arrangement In-Line type

    Nominal rating 500 kw (PS)

    Rated speed 1938 rpm

    Fuel consumption at nominal rating 60 L /h(at Avrg

    SP)

    Bore 155 mm

    Stroke 180 mm

    Displacement 20.379

    Length upto flywheel house edge 5940 mm

    Width 1590 mm

    Height 4008 mm

    Average weight of engine ready for installation (dry)

    2365 kg

    Exhaust-gas status IMO

  • 96

    Page 96

  • 97

    Page 97

    GEAR BOX SPECIFICATION

    MODEL YXH-180

    TYPE HYDRAULIC MULTI DISC CLUTCH

    REDUCTION RATIO (ahead) 1.95 2.27 2.56 3.03 3.48

    DIRECTION OF ROTATION

    (Propeller Shaft) CLOCKWISE or COUNTER CLOCKWISE

    DRY WEIGHT 645 KG

  • 98

    Page 98

  • 99

    Page 99

    Engine Foundation Scantling

    Frame spacing

    Web frame spacing

    Engine output

    Top plate dimension

    The thickness of top plate should approximately be equal to the diameter of the

    fitted-in bolts. So we have the thickness of the top plate as

    Thickness of top plating,T=41 mm

    Again the sectional area of the top plate should not be less than, for

    So the width of top plate will be,

    So we take width of top plate as

  • 100

    Page 100

    Engine foundation

    The foundation shall be constructed for the proper transmission of forces in the

    transverse and longitudinal directions. Longitudinal girders forming seatings of the

    engine, the gearbox and the thrust block shall therefore extend to the engine room

    bulkheads and are to be supported transversely by floors, web frames or wing

    bulkheads. Floors in the engine room are generally to be fitted at every frame.

    Additional intermediate frames may be appropriate.

    Plate floors

    Plate floors are to be fitted at every frame. Dimension of floor plate T-

    492X125X10

    From our previous calculation, the thickness of floor is 10 mm

    Thickness of plate floors will be increased by = 3.6+

    [%]

    = 4.94 %

    As, Minimum 5per cent, maximum 15 per cent

    So , we take 12 % increase of the thickness.

    Thus, the thickness of the plate floors will be = 11.2mm

    Dimension= T - 950x150x9

    P = single engine output [kW] = 670 KW

    Side girders

    The thickness of side girders under an engine foundation top plate inserted

    into the inner bottom is to be similar to the thickness of side girders above

    the inner bottom according to

    t = (P/15)+6 [mm] for P< 1500 KW = 10mm

    Dimension= T - 950x274x10

  • 101

    Page 101

    P = single engine output [kW]

    Inner Bottom Plating

    Between the foundation girders, the thickness of the inner bottom plating required

    is to

    be increased by 2 mm.

    Thickness of inner bottom plating in other place=8mm

    So the thickness of inner bottom plating will be,tbe=8+2

    =10mm

    So we take the thickness of inner bottom plating in way of engine as 10mm

    Engine seating

    Foundation bolts

    The foundation bolts for fastening the engine at the seating shall be spaced no more

    than apart, S=3Xd

    Where,d diameter of the foundation bolt=41mm

    So we have S=3Xd=152 mm

    So we take the spacing of foundation bolt from the foundation girder 152mm

    Floor plate thickness

    The floor thickness is to be increased as follows,

    Here,

    Engine output

    So we have,

    (

    )

    (

    )

    So we take floor plate thickness as in way of engine

  • 102

    Page 102

    Longitudinal girders

    The thickness of longitudinal girders above the inner bottom is not to be less than,

    for

    P < 1500 kW

    So we take the thickness of longitudinal girder as

    Where two longitudinal girders are fitted on either side of the engine, their

    thickness required according to 3.2.1 may be reduced by 4 mm.

    Web frame

    The longitudinal girders of the engine seatingare to be supported transversely by

    means of web frames. The scantlings of webframes are to be taken as before.

    Hence the dimension of the web frame T -section is

  • 103

    Page 103

    Engine foundation-profile,underdeck-A4

  • 104

    Page 104

    Engine foundation-main engine n gear box section-A4

  • 105

    Page 105

  • 106

    Page 106

    Rudder Calculation Materials

    minimum nomi-nal upper yield point,Reh = 250 Nmm-2

    material factor,kr = (

    )0.75

    = (238/250)^0.75

    = 0.95

    Rudder Force

    Rudder force:-

    For middle line rudders behind twin screws for both ahead and stern motion

    Qr = 18 AV2 N

    Here, A= area of rudder= 2.464 m2

    V = speed of the ship = 10knots

    For = 35

    Q=18*2.464*(10*.5149)2 *35=41155.42 N

    By using the formula from Ship design and construction by Robert Taggart,

    Qr = 196*A*Vk2 = 196* 2.464*102 = 48294.4 N

    Centre of pressure:-

    By using the formula from Ship design and construction by Robert Taggart

    The centre of the pressure of the ship , Xp =(0.195+0.305*sin )*c

    C.p abaft leading edge, Xp =(0.195+0.305*sin 35)*1.12 =0.41 m

    Turning axis from the leading edge, t = 15~20 % of c

    = 18% of 1.12 = 0.2016m

    So, C.P from the turning axis, r = Xp- t = .41 0.2016= 0.2034 m

    Rudder torque, Tr = Qr * r

    = 48294.4 * 0.5168 = 24958.55 N-m

  • 107

    Page 107

    Calculation of rudder stock dia,

    Diameter of the stock D3 = 16*Tr / * f

    F = allowable stress for cast steel = 77.2*106 N/m2

    So, Diameter of the stock ,D = (16*24958.55 / * 77.2*106 )1/3

    = 109.86 mm

    CALCULATION BASED ON GERMANISCHER LLOYD

    Aspect ratio:

    Aspect ratio, ^ = b2/At = b2/bc = b/c = 1.96

    b = 2.2 m

    c =1.12 m

    Rudder force

    = aspect ratio = 1.96 k1= ( + 2) /3 = (1.96 + 2) /3

    = 1.32 k2= 1.35 (ahead) , 1.4 (astern)

    k3= 1 k4= 1 rudder force,Cr = 132*A*v

    2*k1*k2*k3*k4*kt = 132*2.464*102*(1.32)*1.35*1*1*1 = 57959.1936 (ahead)

    rudder torque rudderr torque = Qr = 0,33 for ahead condition = 0,75 for astern condition

    Af = area of the rudder ahead of the rudder stroke kb = balance factor = (Af/A)

    = 0.23 c = 1.12 m

    r = c(-kb) = 2.324*(.33-.23) = .2234(ahead)

    r = c(-kb) = 2.324*(.75-.23)

  • 108

    Page 108

    = 1.208(astern) rmin = 0.1*c

    = 0.1*2.324 = 0.2324

    rudder torque,Qr = Cr*r =369515.52 (ahead)*0.2234 = 82549.77 (ahead)

    rudder stock diameter

    D= 4.2* = 4.2*3(82549.77*.95) = 110mm (ahead)

    So, we take the diameter as 110mm rudder torque

    rudderr torque = Qr = 0,33 for ahead condition

    = 0,75 for astern condition Af = area of the rudder ahead of the rudder stroke kb = balance factor

    = (Af/A) = 0.23

    c = 1.12 m r = c(-kb) = 2.324*(.33-.23)

    = .2234(ahead) r = c(-kb)

    = 2.324*(.75-.23) = 1.208(astern) rmin = 0.1*c

    = 0.1*2.324 = 0.2324

    rudder torque,Qr = Cr*r =369515.52 (ahead)*0.2234 = 82549.77 (ahead)

    rudder stock diameter

    D= 4.2*( Qr * Kr) = 4.2*3(82549.77*.95) = 110mm (ahead)

    So, we take the diameter as 110mm

    Horizontal coupling

    Diameter of coupling bolts,db db = 0.62*(D

    3*Kf/(Kr*n*e))

  • 109

    Page 109

    = 0.62*(1803*0.95/(0.95*6*105)) = 25 mm,

    e=distance from rudder stock center to the axis of bolt=105mm a= minimum distance from center of bolt to the edge of flange =(2/3) db=16.67 mm

    We take a=45 mm Thickness of coupling flanges tf = 0.62(D

    3*Kf/(Kr*n*e))

    = 0.62(1803*0.73/(0.73*6*105)) = 36mm

    Pintle diameter

    d = 0.35*(B1*Kr)

    = 0.35*(113848.416 *0.95) = 160 mm

    Diameter of the pintles at outer surface of the sleeve=.(1.5V+25.2koAC)+ Stock diameter K0=1.3-L/500=1.3-44.99/500=1.21 C=1,A=2.464

    So,dia of the outer sleeve=120 mm

    Rudder stock neck bearing Neck bearings for rudders shall incorporate bushes .

    thickness of bush

    B1 = support force = Cr*b/c

    = 57959.1936 *2.2/1.12 = 113848.416 t = 0.01B1

    = 0.01113848.416 =20 mm Bearing Part:

    (Length of bearing\dia of bearing) not to be less than 1.0 but also should not exceed 1.2 (NK)

    We take, Bearing dia 230 mm &length 250mm

    Diameter of the outer surface of the sleeve = 2.2 k0X3(XA)V2C) +Stock diameter mm

    Here, = lb/3 = 250 = 83.33 mm

    So, Diameter of outer surface of the sleeve = 2.2X1.09X3(83.33X2.464)X102 X1) +110

    = 152 mm

    Housing:

    Inner Diameter of bearing = Diameter of outer sleeve = 152 mm

  • 110

    Page 110

    Outer Diameter of bearing = 230 mm

    bearing clearance

    = (db/100)+1 = (23/100)+1 = 1. 39

    We take the clearance as 1.5 mm

    Calculations for Steering Arrangement:

    Sectional area of the tiller = 0.4 Dt2 cm2

    Here, Dt = Stock diameter = 110 mm

    If diameter of the tiller is d then

    d = 1.8*Dt=198 mm

    Height of tiller ,Dt=110 mm

    Diameter of the link chain = 0.38 (DtXR) mm

    = 0.38(110/ 8077) mm=0.04mm

    Here, Dt = Stock diameter = 110 mm

    R = Length of the chain in mm = B/2 = 9.76 / 2 m =4.88 m

    Diameter of the steering rod = 1.25X diameter of the steering chain

    =1.25X0.04 mm

    =15.1 mm 15mm

    Chain block of steering chain = 16 Xdiameter of the steering chain

    = 16X 12.09 mm = 193.44 mm=194 mm

  • 111

    Page 111

  • 112

    Page 112

    POWER CALCULATION

    The Quasi Propulsive Efficiency, nd = 0.73

    Transmission Efficiency, nt = 98.5% for machinery at aft

    Gearing efficiency, ng = 97%

    TYPE of SHIP TYPICAL VALUE of QPC

    TANKER 0.62-0.72

    SLOW CARGO VESSEL 0.72-0.75

    PASSENGER SHIP 0.65-0.70

    Effective power, PE = R x V = RT*V= 79.98 *5.15=411.9 KW

    Delivered Horsepower, PD = PE / nd = 411.9 /0.73=564.25 KW

    Shaft Horsepower, PS = PD / nt = 564.25/.985=570 KW

    Brake Horsepower, PB = PS / ng = 570/.97=587 KW

    Taking MCR 85% , PB=670 KW= 900 hp

    Marine Analyst Service Handbook

    Slip vs Ship Speed Formula:

    Slip =1.4/(V) 0^.057=1.23

    Wake Factor vs Block Coefficient Formulas for vessels with a SL Ratio of under 2.5:

    Wake Factor Formula Wf = 1 Wt

  • 113

    Page 113

    Single Screw Wf = 1.21 (0.6XCb)=0.718 Speed of Advance Formula:Va=VX Wf=10*0.618=7.18 knots

    Taylor Wake Fraction Formula, Wt =(V-Va) /V=0.282

    Shaft RPM =(1938/5)=387.6=388 rpm

    Delivered Horsepower, PD = 564.25 KW

    Bp=N*(1.34*PD) / (VA2.5) =77.23

    For optimum efficiency using B 4.55 BP- chart:(blade no-4, Ae/Ao=0.55)

    Po/Do=0.5524

    0=340 0=0.475

    0=3.28*(N*Do)/Va, Do=1.92 m

    Po/Do=0.5524, Po=1.061 m

    The dia Db in the behind condition is about 5% less than Do , Db=1.92*0.95=1.824 m

    PB+DB=Po+Do, PB=1.157 m

    Shaft Immersion ,h =4.2 m

    Po-Pu=99.66+10.18 h=142.416 kPa

    qT=.5**V20.7R=351.819 kpa

    V20.7R=Va2+(0.7**n*Do)2

    = Po-Pu/ qT=0.405 T=( PB* 0* R) / Va =55.11 R=o.73, 0=0.475

    using Burrils Cavitations Chart::

    =(T/Ap)/qT=0.144, Ap=1.088

    Ap/ Ad=1.067-0.229*(P/D)=0.9218, Ad=1.18

    To avoid cavitations minimum BAR= Ad/ AB=1.18/ /4*(1.824) 2=0.4516

    But we assume BAR 0.55 so Cavitations will not occur.

  • 114

    Page 114

    Geometry of the propeller B-series:

    Min Tip clearance,c=(0.065*L-0.12)=0.316 m X = 5~10% D=0.128 m(7%) Y = 15~25% D=0.3648 m(20%) Z = Up to 5% D=0.05472 m (3%)

    No of blade 4

    Blade dia 1.824m

    Blade Area ratio 0.55

    Pitch 1.157

    Pitch dia ratio 0.634

    Gear box reduction ratio 5:1

  • 115

    Page 115

    Dimension of 4-bladed B-screw series

    Table for dimensions of Wageningen B-propeller series

    r/R (Cr/D)(Z/AE/AO) ar/cr br/cr Ar Br Sr/D=Ar-

    BrZ 0.2 1.662 0.617 0.35 0.0526 0.004 0.0366

    0.3 1.882 0.613 0.35 0.0464 0.0035 0.0324

    0.4 2.05 0.601 0.351 0.0402 0.003 0.0282

    0.5 2.152 0.586 0.355 0.034 0.0025 0.024

    0.6 2.187 0.561 0.389 0.0278 0.002 0.0198

    0.7 2.144 0.524 0.443 0.0216 0.0015 0.0156

    0.8 1.979 0.463 0.479 0.0154 0.001 0.0114

    0.9 1.582 0.351 0.5 0.0092 0.0005 0.0072

    1 0 0 0 0.003 0 0.003

    r/R r Cr ar br Sr Cr-ar

    0.2 182.4 416.8296 257.1839 145.8904 66.7584 159.6457368

    0.3 273.6 472.0056 289.3394 165.202 59.0976 182.6661672

    0.4 364.8 514.14 308.9981 180.4631 51.4368 205.14186

    0.5 456 539.7216 316.2769 191.6012 43.776 223.4447424

    0.6 547.2 548.4996 307.7083 213.3663 36.1152 240.7913244

    0.7 638.4 537.7152 281.7628 238.2078 28.4544 255.9524352

    0.8 729.6 496.3332 229.8023 237.7436 20.7936 266.5309284

    0.9 820.8 396.7656 139.2647 198.3828 13.1328 257.5008744

    1 912 0 0 0 5.472 0

    ar=distance between leading edge & generator line at r

    br= distance between leading edge & location of maximum thickness

    cr=chord length of blade section at radius r

    Sr=maximum blade section thickness at radius r

    Ar,Br=constants in equation for Sr/D

  • 116

    Page 116

    Values of V1:

    r/R&

    V1

    -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.2 0

    1 0 0 0 0 0 0 0 0 0

    0.9 0 0 0 0 0 0 0 0 0

    0.85 0 0 0 0 0 0 0 0 0

    0.8 0 0 0 0 0 0 0 0 0

    0.7 0 0 0 0 0 0 0 0 0

    0.6 0 0 0 0 0 0 0 0 0

    0.5 0.0522 0.033 0.019 0.01 0.004 0.0012 0 0 0

    0.4 0.1467 0.0972 0.063 0.0395 0.0214 0.0116 0.0044 0 0

    0.3 0.2306 0.179 0.1333 0.0943 0.0623 0.0376 0.0202 0.0033 0

    0.25 0.2598 0.2115 0.1651 0.1246 0.0899 0.0579 0.035 0.0084 0

    0.2 0.2826 0.24 0.1967 0.157 0.1207 0.088 0.0592 0.0172 0

    0.15 0.3 0.265 0.23 0.195 0.161 0.128 0.0955 0.0365 0

    r/R& V1

    0.2 0.4 0.5 0.6 0.7 0.8 0.9 1

    1 0 0 0 0 0 0 0 0

    0.9 0 0 0 0 0 0 0 0

    0.85 0 0 0 0 0 0 0 0

    0.8 0 0 0 0 0 0 0 0

    0.7 0 0 0 0 0 0 0 0

    0.6 0 0 0 0 0 0.0006 0.0067 0.0382

    0.5 0 0 0.0008 0.0034 0.0085 0.0211 0.05 0.1278

    0.4 0 0.0033 0.009 0.0189 0.0357 0.0637 0.1088 0.2181

    0.3 0.0027 0.0148 0.03 0.0503 0.079 0.1191 0.176 0.2923

    0.25 0.0031 0.0224 0.0417 0.0669 0.1008 0.1465 0.2068 0.3256

    0.2 0.0049 0.0304 0.052 0.0804 0.118 0.1685 0.2353 0.356

    0.15 0.0096 0.0384 0.0615 0.092 0.132 0.187 0.2642 0.386

  • 117

    Page 117

    Values of V2:

    r/R&V2 -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.2 0

    .9-1 0 0.19 0.36 0.51 0.64 0.75 0.84 0.96 1

    0.85 0 0.19 0.36 0.51 0.64 0.75 0.84 0.96 1

    0.8 0 0.19 0.36 0.51 0.64 0.75 0.84 0.96 1

    0.7 0 0.19 0.36 0.51 0.64 0.75 0.84 0.96 1

    0.6 0 0.1885 0.3585 0.511 0.6415 0.753 0.8426 0.9613 1

    0.5 0 0.1865 0.3569 0.514 0.6439 0.758 0.8456 0.9639 1

    0.4 0 0.181 0.35 0.504 0.6353 0.7525 0.8415 0.9645 1

    0.3 0 0.167 0.336 0.4885 0.6195 0.7335 0.8265 0.9583 1

    0.25 0 0.1567 0.3228 0.474 0.605 0.7184 0.8139 0.9519 1

    0.2 0 0.1455 0.306 0.4535 0.5842 0.6995 0.7984 0.9446 1

    0.15 0 0.1325 0.287 0.428 0.5585 0.677 0.7805 0.936 1

    r/R&V2 0.2 0.4 0.5 0.6 0.7 0.8 0.9 1

    .9-1 0.96 0.84 0.75 0.54 0.51 0.36 0.19 0

    0.85 0.9615 0.845 0.755 0.6455 0.516 0.366 0.195 0

    0.8 0.9635 0.852 0.7635 0.6545 0.5285 0.3765 0.2028 0

    0.7 0.9675 0.866 0.785 0.684 0.5615 0.414 0.2337 0

    0.6 0.969 0.879 0.809 0.72 0.606 0.462 0.272 0

    0.5 0.971 0.888 0.8275 0.7478 0.643 0.5039 0.3056 0

    0.4 0.9725 0.8933 0.8345 0.7593 0.659 0.522 0.3235 0

    0.3 0.975 0.892 0.8315 0.752 0.6505 0.513 0.3197 0

    0.25 0.9751 0.8899 0.8259 0.7415 0.6359 0.4982 0.3042 0

    0.2 0.975 0.8875 0.817 0.7277 0.613 0.4777 0.284 0

    0.15 0.976 0.8825 0.8055 0.7105 0.5995 0.452 0.26 0

  • 118

    Page 118

    Y (face) = V1(tmax - t)

    tmax r/R -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.2

    5.47 1 0 0 0 0 0 0 0 0

    13.13 0.9 0 0 0 0 0 0 0 0

    20.79 0.8 0 0 0 0 0 0 0 0

    28.45 0.7 0 0 0 0 0 0 0 0

    36.11 0.6 0 0 0 0 0 0 0 0

    43.7 0.5 2.285107 1.444608 0.831744 0.43776 0.175104 0.052531 0 0

    51.43 0.4 7.545779 4.999657 3.240518 2.0317536 1.100748 0.596667 0.226322 0

    59.09 0.3 13.62791 10.57847 7.87771 5.57290368 3.68178 2.22207 1.193772 0.195022

    66.75 0.2 18.86592 16.02202 13.13138 10.4810688 8.057739 5.874739 3.952097 1.148244

    tmax 0 0.2 0.4 0.5 0.6 0.7 0.8 0.9 1

    5.472 0 0 0 0 0 0 0 0 0

    13.1328 0 0 0 0 0 0 0 0 0

    20.7936 0 0 0 0 0 0 0 0 0

    28.4544 0 0 0 0 0 0 0 0 0

    36.1152 0 0 0 0 0 0 0.021669 0.241972 1.379601

    43.776 0 0 0 0.035021 0.148838 0.372096 0.923674 2.1888 5.594573

    51.4368 0 0 0.169741 0.462931 0.972156 1.836294 3.276524 5.596324 11.21837

    59.0976 0 0.159564 0.874644 1.772928 2.972609 4.66871 7.038524 10.40118 17.27423

    66.7584 0 0.327116 2.029455 3.471437 5.367375 7.877491 11.24879 15.70825 23.76599

  • 119

    Page 119

    r/R V1+V2

    -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.2 0

    1 0 0.19 0.36 0.51 0.64 0.75 0.84 0.96 1

    0.9 0 0.19 0.36 0.51 0.64 0.75 0.84 0.96 1

    0.8 0 0.19 0.36 0.51 0.64 0.75 0.84 0.96 1

    0.7 0 0.1885 0.3585 0.511 0.6415 0.753 0.8426 0.9613 1

    0.6 0 0.1865 0.3569 0.514 0.6439 0.758 0.8456 0.9639 1

    0.5 0.0522 0.214 0.369 0.514 0.6393 0.7537 0.8415 0.9645 1

    0.4 0.1467 0.2642 0.399 0.528 0.6409 0.7451 0.8309 0.9583 1

    0.3 0.2306 0.3357 0.4561 0.5683 0.6673 0.756 0.8341 0.9552 1

    0.2 0.2826 0.3725 0.4837 0.585 0.6792 0.765 0.8397 0.9532 1

    r/R V1+V2

    0.2 0.4 0.5 0.6 0.7 0.8 0.9 1

    1 0.96 0.84 0.75 0.54 0.51 0.36 0.19 0

    0.9 0.9615 0.845 0.755 0.6455 0.516 0.366 0.195 0

    0.8 0.9675 0.866 0.785 0.684 0.5615 0.414 0.2337 0

    0.7 0.969 0.879 0.809 0.72 0.606 0.462 0.272 0

    0.6 0.971 0.888 0.8275 0.7478 0.643 0.5045 0.3123 0.0382

    0.5 0.9725 0.8933 0.8353 0.7627 0.6675 0.5431 0.3735 0.1278

    0.4 0.975 0.8953 0.8405 0.7709 0.6862 0.5767 0.4285 0.2181

    0.3 0.9778 0.9047 0.8559 0.7918 0.7149 0.6173 0.4802 0.2923

    0.2 0.9809 0.9129 0.8575 0.7909 0.7175 0.6205 0.4953 0.356

  • 120

    Page 120

    0 0.2 0.4 0.5 0.6 0.7 0.8 0.9 1

    5.472 5.25312 4.59648 4.104 2.95488 2.79072 1.96992 1.03968 0

    13.1328 12.62719 11.09722 9.915264 8.477222 6.776525 4.806605 2.560896 0

    20.7936 20.11781 18.00726 16.32298 14.22282 11.67561 8.60855 4.859464 0

    28.4544 27.57231 25.01142 23.01961 20.48717 17.24337 13.14593 7.739597 0

    36.1152 35.06786 32.0703 29.88533 27.00695 23.22207 18.22012 11.27878 1.379601

    43.776 42.57216 39.1051 36.56609 33.38796 29.22048 23.77475 16.35034 5.594573

    51.4368 50.15088 46.05137 43.23263 39.65263 35.29593 29.6636 22.04067 11.21837

    59.0976 57.78563 53.4656 50.58164 46.79348 42.24887 36.48095 28.37867 17.27423

    66.7584 65.48331 60.94374 57.24533 52.79922 47.89915 41.42359 33.06544 23.76599

    Y (back) =(V1+V2)(tmax - t)

    tmax r/R -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.2

    5.472 1 0 1.03968 1.96992 2.79072 3.50208 4.104 4.59648 5.25312

    13.1328 0.9 0 2.495232 4.727808 6.697728 8.404992 9.8496 11.03155 12.60749

    20.7936 0.8 0 3.950784 7.485696 10.604736 13.3079 15.5952 17.46662 19.96186

    28.4544 0.7 0 5.363654 10.2009 14.5401984 18.2535 21.42616 23.97568 27.35321

    36.1152 0.6 0 6.735485 12.88951 18.5632128 23.25458 27.37532 30.53901 34.81144

    43.776 0.5 2.285107 9.368064 16.15334 22.500864 27.986 32.99397 36.8375 42.22195

    51.4368 0.4 7.545779 13.5896 20.52328 27.1586304 32.96585 38.32556 42.73884 49.29189

    59.0976 0.3 13.62791 19.83906 26.95442 33.58516608 39.43583 44.67779 49.29331 56.45003

    66.7584 0.2 18.86592 24.8675 32.29104 39.053664 45.34231 51.07018 56.05703 63.63411

  • 121

    Page 121

  • 122

    Page 122

    Propeller blade-A3

  • 123

    Page 123

  • 124

    Page 124

    CALCULATION OF SHAFT DIAMETER (Using analytical formula)

    Shaft speed, f =

    =

    =387.6 RPM=388 rpm

    Torque, T = P

    = (670*1000*60)/(2*3.1416*388)=16489.73 Nm

    According to NK:

    Torsional Vibration of the Shafting:

    =45-24*.91=25106

    N/m2

    if =0.91

    Stress, =

    Here, = 25106

    N/m2

    T =16489.73 Nm

    C = d/2

    J = d4/32

    Then, 25106

    = (16489.73 *d/2)/(3.1416)*d^4/32)

    d =.1498m

  • 125

    Page 125

    Diameter of the shaft 149.8mm=150 mm

    Now, l=6.15 m

    Twisting Angle, =

    = (16489.73*1.97)/(8.274*10^9* 4.97*10^-5) =0.018 rad =

    0.804deg

    J = d4/32=4.97*10^-5

    MINIMUM SHAFT DIAMETER: (Using NK rule book)

    ds=100*1.26*

    ))=136.5 mm =137 mm=140 mm

    (available)

    dt=119.19=120 mm here,F1=100

  • 126

    Page 126

    t1=0.03*137+7.5=11.61 mm

    t2=11.6mm

    SHAFT BEARING: Guided values for the maximum permissible distance between b