depth dependent investigations of thin films and

60
12th PSI Summer School on Condensed Matter Research Zuoz 20.8.2013 1 Depth dependent investigations of thin films and heterostructures with polarized low energy muons Elvezio Morenzoni Paul Scherrer Institute CH-5232 Villigen PSI Switzerland Generation of polarized low energy muons, beam line and instrument Selected examples of investigations in near surface region, thin films and heterostructures (superconductivity, magnetism) This lecture and a ETH/Univ. ZH course (Physics with muons) on http://people.web.psi.ch/morenzoni/

Upload: others

Post on 13-May-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Depth dependent investigations of thin films and

12th PSI Summer School on Condensed Matter Research

Zuoz20.8.2013 1

Depth dependent investigations of thin films and heterostructures with

polarized low energy muonsElvezio Morenzoni

Paul Scherrer InstituteCH-5232 Villigen PSI

Switzerland

Generation of polarized low energy muons, beam line and instrument

Selected examples of investigations in near surface region, thin films and heterostructures (superconductivity, magnetism)

This lecture and a ETH/Univ. ZH course (Physics with muons) on http://people.web.psi.ch/morenzoni/

Page 2: Depth dependent investigations of thin films and

2Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

Thin films and Heterostructures

- Fundamental physics:

• coupling, proximity effects

• coexistence / competition of order parameters

• new electronic states (e.g. surfaces, interfaces)

• dimensional effects

• provide new insight into the intrinsic nature of the constituents

• some materials can be grown only as thin films

- Technological applications: Faster, smaller, more efficient devices, new functionalities

Physics characterized by spatially varying properties on nm (or sub nm) scale.

We need probes that can measure local magnetic (electronic) properties of these regions and access buried layers ( LE- muons, -NMR,….).

Page 3: Depth dependent investigations of thin films and

3Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

0 50 100 150 2000,00

0,01

0,02

0,03

0,04

0,05

29.4 keV

24.9 keV20.9 keV

15.9 keV

6.9 keV

3.4 keV

Depth [nm]

Stop

ping

Den

sity

YBa2Cu3O7 bulk

Implantation profiles and ranges

For thin films studies we need muons with energies in the region of keV rather than MeV

Tunable energy (E < 30 keV) allows depth-dependent SR studies ( ~ 2 – 300 nm)

bulk

thin filmsheterostructures near surface regions,…

From πdecay at rest

Page 4: Depth dependent investigations of thin films and

4Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

100 m Ag 500 nms-Ne, s-Ars-N2

6 K

Generation of polarized epithermal muons by moderation

„Surface“Muons

4 MeV 100% polarized

Source of low energy muons (E ~ 15 eV)

D. Harshmann et al., Phys. Rev. B 36, 8850 (1987)E. Morenzoni et al. J. Appl. Phys. 81, 3340 (1997).T. Prokscha et al. Appl. Surf. Sci. (2001)

Page 5: Depth dependent investigations of thin films and

5Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

Mechanism

Escape of small fraction of muons before thermalization

Suppression of electronic loss processes for Eµ º Eg (wide band gap insulator)

Characteristics of epithermal muons

s-Nes-Ar

s-N2

Layer Thickness [nm]

Effi

cien

cy [

a.u.

]

L

epith 4 5Mu

4MeV

N (1 F )L 10 10N R

Moderation efficiency:

R Stopping width of surface muons º100 m

FMu Muonium formation

Time [ s]

Asy

mm

etry

AP

(t)

E. Morenzoni, F. Kottmann, D. Maden, B. Matthias, M. Meyberg, Th. Prokscha, Th. Wutzke, U. Zimmermann, Phys.Rev.Lett. 72, 2793 (1994).

Polarization 100% Large escape depth L (50-250 nm)

Page 6: Depth dependent investigations of thin films and

6Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

Low energy + beam and instrument for LE-SR

~ 11000 +/s; accelerate up to 20 keV

~1.9 • 108 +/s

- UHV system, 10-10 mbar

- some parts LN2 cooled

Polarized Low Energy Muon BeamEnergy: 0.5-30 keVE, t: 400 eV, 5 nsDepth: ~ 2 – 300 nmPolarization: ~ 100 %

Beam Spot: ~ 12 mm (FWHM)

at sample: up to ~ 4500 +/s

Sample environment:

B┴ = 0 – 0.3 T, B║ 0 – 0.03 T (to sample surface)

T = 2.5 – 320 K

Beam spot at sample

Spin-rotator(E x B)

Conical lens

Start (trigger)detector(10 nm C-foil)

Sample cryostate+ detectors

Electrostatic mirror

Einzel lens(LN2 cooled)

moderator

Einzel lens(LN2 cooled)

MCP detector

“surface” µ+ beam, ~4 MeV

Spin

Page 7: Depth dependent investigations of thin films and

7Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

Muon Spin

B-Field

E-Field

Moderator

Mirror

Sample Cryo

Muon Momentum

(10 nm)

Trigger detector

APD PositronSpectrometer

Low energy + beam and instrument for LE-SR

Page 8: Depth dependent investigations of thin films and

8Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

LE-+ Apparatus @ E4

Th. Prokscha, E. Morenzoni, K. Deiters, F. Foroughi,D. George, R. Kobler, A. Suter and V. VrankovicPhysica B 374-375, 460-464 (2006)and Nucl. Instr. Meth. A 595, 317-331 (2008)

~6 •108 +/s total

~1.9 •108 +/s on LEM source

Because of low moderation efficiency we need a high flux of “fast”muons: specially designed beam line E4 at PSI

Page 9: Depth dependent investigations of thin films and

9Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

0 1 2 3 4 5 6 7 8 9 10

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Muo

n Sp

in P

olar

isat

ion

Time (s)

0 1 2 3 4 5 6 7 8 9 10

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Muo

n Sp

in P

olar

isat

ion

Time (s)

0 1 2 3 4 5 6 7 8 9 10

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Muo

n Sp

in P

olar

isat

ion

Time (s)

B(z)

z0

Superconductor

Magnetic field profile B(z) over nm scale <B> vs <z> B(z)

Bext

Depth dependent SR measurements

loc(z) B (z)

Page 10: Depth dependent investigations of thin films and

10Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

Simulating and testing stopping profiles of muons

YBa2Cu3O7-δ

Stopping profiles calculated with the Monte Carlo code Trim.SP W. Eckstein, MPI Garching

Experimentally tested: E. Morenzoni, H. Glückler, T. Prokscha, R. Khasanov, H. Luetkens, M. Birke, E. M. Forgan, Ch. Niedermayer, M. Pleines, NIM B192, 254 (2002).

Page 11: Depth dependent investigations of thin films and

11Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

Examples

Physical object: near surface region, thin film, heterostructure,….

System/Compound

Information and μSR tool used

Page 12: Depth dependent investigations of thin films and

12Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

Examples I

- Near surface region, thin films and heterostructures of unconventional superconductors

- YBa2Cu3O6+x and Ba(CoxFe1-x)2As2 crystals, La2-xCexCuO4 films, La2-xSrxCuO4 heterostructures

- magnetic field profiles, magnetic penetration depth, anisotropy, superconducting gap, symmetry, spatial separation of magnetism and superconductivity, proximity effects

- Weak field parallel to surface, Bappl < Bc1 , Meissner state, muon spin perpendicular to B

Page 13: Depth dependent investigations of thin films and

13Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

Magnetic flux is excluded/expelled in the bulk of a superconductor (Bappl <Bc1)

perfect diamagnetism

Diamagnetism and zero resistivity described by London equations

Meissner-Ochsenfeld effect

0( ) 0 B H M

Fritz and Heinz London, Proc. Roy. Soc. A149, 71 (1935)

Page 14: Depth dependent investigations of thin films and

14Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

London equations

20 L

2 20 L 0 L

Well describe electrodynamics response of extreme Type II sc, (e.g. cuprates)

dj 11) E dt

1 12) rotj B (j= A)

L

0 2L

appl

z *

appl L 020 s

1From 2), rotB= j and rot(rotB) = grad divB B B B

ˆFor B surface (x):

mB(z)=B e (T) (in "clean limit" >> )e n (T)

L

S

magnetic penetration depth (London) m*, n effective mass and density of superconducting carriers

Magnetic field (and shielding current) penetrate the superconductor to a small extent: magnetic penetration depth λL (or λ)

Page 15: Depth dependent investigations of thin films and

15Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

Magnetic penetration depthDependence of magnetic penetration depth λ on T, Bappl, orientation, composition.. gives information about microscopic properties of superconductor (order parameter, gap symmetry, anisotropy,..)

Two complementary methods:

Determination from Vortex state (A. Amato talk) based on:

-theory describing vortex state (Ginzburg-Landau, London, …) relating measured field distribution p(B) (or its moments) with λ

-regular vortex lattice (symmetry)

-take into account effects of field, non-local, non-linear, influence of disorder

-very efficient and quick

Determination from Meissner state:

-gives absolute value without assumptions on the sc state

-needs good films or flat crystals

-measurements more time consuming

Page 16: Depth dependent investigations of thin films and

16Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

a , b anisotropy in YBa2Cu3O6+x

~ 55 mm2

samples produced by R. Liang, W. Hardy, D. Bonn, Univ. of British Columbia

ext b

ext a

Field decay determined by shielding current

ˆˆflowing in a or bˆH a-axis ˆH b-axis

Ultraclean YBa2Cu3O6+x crystals

(Tc= 94.1 K, Tc 0.1K @OP)

Detwinning factor > 95%

x=0.92 Optimally doped

x=0.998 Ortho I

x=0.52 Ortho II

Chain Oxygen x

(provide carriers to CuO2 planes)

Page 17: Depth dependent investigations of thin films and

17Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

appl ˆB 9.47mT a-axis

T 110 K

T 8 K

µSR Spectra: A(t)=A0P(t)

Page 18: Depth dependent investigations of thin films and

18Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

extB = 9.47 mT , T = 8 K

Field profiles

R. Kiefl et al. , Phys. Rev. B81, 180502(R) (2010)

B[G

]

extB = 4.68 mT , T = 5 K

Ortho I: YBa2Cu3O6.998YBa2Cu3O6.92

Page 19: Depth dependent investigations of thin films and

19Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

S. Nandi et al., PRL 104, 057006 (2009)

An iron-based sc (122): Ba(CoxFe1-x)2As2

Ba(Co0.074Fe0.926)2As2

Tc=21.7 K, ΔTc=0.8 K

Page 20: Depth dependent investigations of thin films and

20Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

Fermi surface and superconducting gap

From J. Paglione, R.L. Green, Nat. Phys. 2010

s +-s+/-

Page 21: Depth dependent investigations of thin films and

21Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

Superfluid density ρ(T)

SS2 *

22

2

n (T)1Superfluid density : ρ (T) (T) m

λ (0) Δλ(T)Normalized superfluid density: ρ(T)= (1+ ) Δλ(0)λ (T)

2π 2 2 2aa 2bb 2

0 0

λ(T)=λ(T) λ(0)

cos (φ) ε +Δ (T,φ)1Ex.: 2D cylindrical Fermi surface: ρ (T) = 1 cosh ( )dεdφ 2πT 2Tsin (φ)

2 2

ε +Δ (T,φ) : quasiparticle energy

2 2k ε=

2m* (T, ): superconductin

g gap

s wave gap:(T, )= (T)

y

x

d wave gap:(T, )= (T)cos(2 )

ktan

k

Page 22: Depth dependent investigations of thin films and

22Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

Magnetic penetration depth

O. Ofer et al., Physical Review B 85, 060506(R) (2012)

Ba(Co0.074Fe0.926)2As2

(0) 250.2(2.6) nm + 3% Stopping profile uncertainty

Combination of LE-µSR and microwave absorption (μW)measurement λ(0) , Δλ(T)

Page 23: Depth dependent investigations of thin films and

23Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

Data well fitted with two s-wave gaps (s+/-)

L

B c

S

B c

2 (0) 3.46(10) BCS ratio= 3.53k T e

2 (0) 1.20(7) with 9.7(1) % weightk T

Superfluid density ρ(T)

Page 24: Depth dependent investigations of thin films and

24Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

Competition and separation of phases in La2-xCexCuO4

Nd3+ Ce4+ La3+Sr2+

La3+ Ce4+ (thin film)

Page 25: Depth dependent investigations of thin films and

25Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

La2-xCexCuO4 thin film

0 10 20 30 40 50 60 700.0

0.2

0.4

0.6

0.8

1.0

Freq

uenc

y (M

Hz)

Temperature (K)

x = 0.02 - 0.04, Antiferromagnetic

AF Order

x=0.135 superconducting(overdoped) no magnetism

x=0.135, OD

H. Luetkens, Y. Krockenberger et al.,

Page 26: Depth dependent investigations of thin films and

26Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

Phase diagram of La2-xCexCuO4

Center

Surface

Center

Surface

x=0.075 (underdoped)

0 1 2 3 4 5 60.00

0.05

0.10

0.15

0.20

0.25

0.30

Asy

mm

etry

Time (s)0 1 2 3 4 5 6

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Asy

mm

etry

Time (s)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.00.0

0.2

0.4

0.6

0.8

1.0 2.1keV 24.6keV

M

uon

spin

pol

ariz

atio

n

Time (s)

x=0.0825, OP

x=0.0825 (optimally doped)

Magnetic surface, superconducting center. Coexistence of both in the same sample. Competing orders.

Several tests indicatethat the formation of themagnetic layer isintrinsic.

ZF

TF

Page 27: Depth dependent investigations of thin films and

27Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

La1.84Sr0.16CuO446nm Tc 32 K

La1.94Sr0.06CuO446nm Tc

’ < 5K

Giant proximity effect:

Field exclusion in a “non-superconducting” thick layer embedded in two superconductors

c

cN '

B c

d 0.3 nm,

vd 3 nm2 k (T T )

(for T 10K)

La1.84Sr0.16CuO446nm Tc 32 K

E.Morenzoni., B. Wojek, A. Suter, T. Prokscha, G. Logvenov, I. Božovic, Nat. Commun. 2:272 (2011).

La1.84Sr0.16CuO4 / La1.94Sr0.06CuO4 / La1.84Sr0.16CuO4

Page 28: Depth dependent investigations of thin films and

28Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

- Thin films (MBE) of diluted magnetic semiconductors, (GaMn)As

- Intrinsic spatial inhomogeneity (phase separation?) or homogeneous magneticground state?, Strength of ferromagnetic interaction

- Weak transverse field, zero field

Example II

Page 29: Depth dependent investigations of thin films and

29Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

Semiconductor, where small concentration of magnetically active element doped at a cation site.

Semiconducting (information processing)

and ferromagnetic properties (storage)

spintronics (see Talk T. Jungwirth)

DMS: diluted magnetic semiconductors

Ga1-xMnxAsMn2+ @ Ga3+ site: magnetic moment + hole

FM semiconductor(H. Ohno, Science 281, 951 (1998))

Can be grown only as thin films, low temp. MBE

Page 30: Depth dependent investigations of thin films and

30Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

Electric field control of magnetismElectric field control of magnetism, H. Ohno et al. Nature 408, 944 (2000)

Magnetization vector manipulation by electric fields, D. Chiba et al. Nature 455, 515-518 (2008)

Page 31: Depth dependent investigations of thin films and

31Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

Properties highly sensitive to preparationcondition and heat treatment

Nature of FM state: unavoidable and instrinsic strong spatial inhomogeneities or homogeneous ground state?

Evolution from paramagnetic insulator to ferromagnetic metal

Spatially homogeneous ferromagnetism?

Page 32: Depth dependent investigations of thin films and

32Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

Determining the magnetic volume fraction

In case of two phases (e.g. a magnetic and a non-magnetic) the μSR signal will be:

S Mag S nonMag BgA(t) A G (t) A G (t) Af (1 ) f

The magnetic fraction f can be easily determined in a wTF measurements

appl MagB B (M)

T>TC f=0 (PM Phase, GnonMag(t) ≈ 1):

S Bg applA(t) A cos( Bt ) A cos( B t ) appl PMB B B

= 0

T< TC :

When the applied field is larger than the internal static fields sensed by the muons, the amplitude of the asymmetry component oscillating in the applied field represents para- / non-magnetic volume (+ Bg)

osc S Bg applA (t) (1 f) A cos( Bt ) A cos( B t )

Page 33: Depth dependent investigations of thin films and

33Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

Determining the magnetic volume fraction

T<TC

T>TC

Weak Transverse Field 10mT

Page 34: Depth dependent investigations of thin films and

34Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

FM of properly grown samples is homogeneous

S. Dunsiger et al., Nature Materials 9, 299 (2010)

Magnetic volume fraction

Page 35: Depth dependent investigations of thin films and

35Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

- Buried or spacer layers

- Probing the electron polarization <se(x)> in Fe/Ag/Fe and in an organic spin valve

- Fourier transform of P(t) field distribution p(B) spatial variation of electron polarization <se(x)>

Examples III

?

Fe Ag Fe

x

?

Page 36: Depth dependent investigations of thin films and

36Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

Muons measure local fields generated by: moments, spins, (super)currents,..

Dipolar field from a localized moment:

Contact field (determined by electron

spin polarization at muon position r=0):

Contributions to local field Bµ

2c 0 e B z

e

0

2B g s (0) A 3

( contact interaction H=A s s )

2(Magnetized sphere M gives field B= M)3

20 i i i i i

dip i 5i

0 i i Bdip 3 3 3

1

3( r ) r rB (r )4 r

[ ]B T (typical 0.1 T, 4 r d [A ]

dominant term in magnetic materials)

Page 37: Depth dependent investigations of thin films and

37Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

Sources of electron polarization

-External field in simple metals Pauli paramagnetism of conduction electrons

-Magnetic moments (layers) interacting via polarization of conduction electronsRKKY interaction

-Spin injection: Polarized electrons injected/tunneling from a FM into a non-magnetic layer

-….

Page 38: Depth dependent investigations of thin films and

38Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

RKKY interaction

(leading term for spherical FS. Details depend on Fermi surface)

Interaction between two moments via oscillating polarization of conduction electrons

Two magnetic layers: Integrate RKKY over interfaces

Oscillating polarization of the conduction electrons

Interlayer exchange coupling oscillates with thickness d

Muons probe the oscillating electron polarization of the nonmagnetic spacer (Spin Density Wave) mediating the coupling between the FM layers.

Page 39: Depth dependent investigations of thin films and

39Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

Interlayer exchange coupling in Fe/Ag/FeOscillating polarization of conduction electrons

H. Luetkens, J. Korecki, E. Morenzoni, T. Prokscha, M. Birke, H. Glückler, R. Khasanov, H.-H. Klauss, T. Slezak, A. Suter, E. M. Forgan, Ch. Niedermayer, and F. J. Litterst Phys Rev. Lett. 91, 017204 (2003).

4nm 20nm 4nm

Oscillating polarization of conduction electrons <sz(x)> produces an oscillating contact field Bspin(x) ∂ <sz(x)>

The depth resolution of LE-µSR cannot resolve the oscillations (WL ~ 1 nm or less), but the oscillating behavior is reflected in the field distribution p(Bμ) sensed by the muons.

Fe/Ag/FeImplantation profile of 3 keV muons

n(x)

Bµ(

x)

Page 40: Depth dependent investigations of thin films and

40Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

Relation muon spin polarization - field distribution

In our case: TF θ=90, Bμ=Bext+Bspin(x) || x

zA(t) P (t) p(B )cos( B t )dB

Formula for “static” fields (A. Amato lecture):

Pz(t) is the cosine Fourier transform of the magnetic field distribution

p(Bμ) can be obtained by fast Fourier transform, maximum entropy method, or modeled and fitted in time domain

2 2zP (t) p( ) cos sin cos( B t ) d B B

Page 41: Depth dependent investigations of thin films and

41Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

LE-SR on Fe/Ag/Fe: Time domain

Field distribution

zA(t) P (t) p(B )cos( B t )dB

Bμ=Bext+Bspin(x)

Page 42: Depth dependent investigations of thin films and

42Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

LE-µSR on Fe/Ag/Fe: Field domain

Alternating positive and negativeBspin(x) contributions (contact field)

Turning points of oscillations produce side bands to the Bext

Bμ=Bext+Bspin(x)

Bµ [mT]

Bµ(

x)

p(Bµ)

p(B

µ)

H. Luetkens et al, Phys. Rev. Lett. 91 (2003) 017204.

Page 43: Depth dependent investigations of thin films and

43Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

H. Luetkens et al, Phys. Rev. Lett. 91 (2003) 017204.

LE-µSR on Fe/Ag/Fe: Field domainResults:

- From p(Bμ) Oscillating electron spinpolarization <sz(x)> within Ag

- <sz(x)> and IEC oscillate with the sameperiod, determined by the Ag FS

- Attenuation of electron spin polarization: significantly smaller than the one of IECstrength (beyond RKKY: confined electron states in a quantum wellmodel)

i

2

spin z i i ii 1

1B (x) s (x) C sin(q x )x

=0.8(1)

eff= 1.18 nm

eff= 0.47 nm

qx (nm-1)

p(B

µ)

Bµ [mT]

Page 44: Depth dependent investigations of thin films and

44Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

Spacer: organic semiconductorAlq3: C27 H18 N3 O3Al

Magnetoresistance and Hysteresis

Probing spin injection in an organic spin valve

AP P

AP

R RRMRR R

A. Drew et al. Nature Materials 8, 109-114 (2009)

Bappl

Page 45: Depth dependent investigations of thin films and

45Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

Giant magnetoresistance in organic spin valves

Z.H. Xiong et al.,Nature 427, 821 (2004)

Magnetoresistance vs T

AP P

AP

R RRMRR R

GMR: 1988: Discovered in metallic multilayers2007: Nobel Prize A. Fert, P. Grünberg1997: First application: read sensors of hard disks

Goal of experiment:

Better understand spin injection (e.g. diffusion length) and its relation to MR in organic SV

MR vs thickness

Page 46: Depth dependent investigations of thin films and

46Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

I on

I off

Spin injection detected by shape analysis of local field distribution p(Bµ)

appl

-Injected spins have long spin coherence time ~10-5 s >> τµ

-In the organic material they produce static field Bspin ∂ <sz(x)> that adds to Bappl used to select spin valve state

-Bµ is detected by muons stopped at various depths p(Bµ)

-The Bspin component can be separated by switching on/off the injection with I (V) and changing its sign with respect to Bappl

Principle of the LE-µSR experiment

Alq3

Page 47: Depth dependent investigations of thin films and

47Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

Magnetoresistance

Skewness

field distributions: Ion - Ioff

I on

I off

p(Bµ) field distribution

The LE-µSR experiment

Page 48: Depth dependent investigations of thin films and

48Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

- Temperature dependence of spin diffusion length correlates with magnetoresistance- Polarization of injected carriers can be reversed by 1-nm thin polar LiF layer at the interface

A. Drew et al. Nature Materials 8, 109 (2009)

L. Schultz et al. Nature Materials 10, 39 (2011)

Spin diffusion length in organic spin valve

Spin injection detected by shape analysis of local field distribution p(Bµ)First direct measurement of spin diffusion length in a working spin valve.

Page 49: Depth dependent investigations of thin films and

49Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

Example IV: Probing dynamics

Change in polarization P(t) is caused by:

1) Distribution of local fields p(Bμ) dephasing (“static” fields)

2) Exchange of energy between muon spin and the system under study(dynamics)

Dynamics: spin fluctuations, current fluctuations, molecular motion, muondiffusion,….

Up to now examples of category 1)

One example of 2)

Page 50: Depth dependent investigations of thin films and

50Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

Muon in a fluctuating environment

Bµ = Bext + Bfl(t)

Fluctuating term <Bfl(t)>=0

but <ΔBi(t)2 > ≠ 0

Zeeman splitting in Bext:

ext flH B (B B (t)) s

m= +1/2

m= -1/2

s

ext ext LE 2 B 2s B (neV- eV !)

Page 51: Depth dependent investigations of thin films and

51Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

Muon in a fluctuating environment

Bµ = Bext + Bfl(t)

Zeeman splitting in Bext:

ext flH B (B B (t)) s

m= +1/2

m= -1/2ext ext LE 2 B 2s B (neV- eV !)

s

At t=0: P(0)=1 i.e. all muons in m=+1/2 state

Bfl(t) induces transitions between the Zeeman states

muon spin relaxation tP(t) P(0) e

Page 52: Depth dependent investigations of thin films and

52Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

Muon in a fluctuating environment

L L

2i t i t

x x y y1

1 ( B (t)B (t t ) e B (t)B (t t ) e )dtT 2

B P zext || ( )|| 0

The relaxation rate is a function of the field fluctuations. Field fluctuations characterized by autocorrelation function. (Redfield theory, see e.g. C. Slichter, Principles of nuclear magnetic resonance)

The longitudinal relaxation rate is proportional to the Fourier transform of the correlation function of the local field, evaluated at the Larmor frequency. The muon spin relaxation is an intrinsically resonant phenomenon.

(In many cases the field correlation function <Bi Bi> reflects the electronic spin autocorrelation function <Si Si>)

Page 53: Depth dependent investigations of thin films and

53Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

Correlation time

c

c

t 2

q q q

t 2

q q q

B (t)B (t t ) B (0) e

S (t)S (t t ) S (0) e

2 2 2 cx y 2 2

L c( B B )

1

In case of exponential autocorrelation function with one correlation time:

2 2 tc2 2

L c2 B P(t)=P(0)e

1

For fluctuating Gauss distributed fields (with width <ΔBµ2>)

produced by fluctuating spins with a fluctuation time τcthe muon spin relaxation rate is given by:

Page 54: Depth dependent investigations of thin films and

54Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

Slowing down of fluctuations

Large increase of λZ (sμ ^ c) when T TN+ (57 K): critical slowing down of

magnetic fluctuations ( λZ ∂ τc )

Anisotropy of λZ(T) reflects anisotropy of fluctuations

Page 55: Depth dependent investigations of thin films and

55Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

Freezing in Spin Glasses

C. Mulder et al., PRB23, 1384 (1981)meast

rkiti

iti

t taverage time

N 0eSN1

spin impurityS 0S

Spin Glass: a system with disorder and frustration

Example: canonical Spin Glasses AuFe, CuMn, AgFe (1-5 at%)

Cooperative freezing at Tfwith static moment formation, butno long range order

Randomness (site disorder) and oscillating RKKY interaction competition, frustration

CuMn(1%)

Page 56: Depth dependent investigations of thin films and

56Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

Thickness dependence( t)P(t) P(0) e

AuFe 3% CuMn 2%

Dimensional effects in spin glasses

Reduction of λ with thickness and….

Page 57: Depth dependent investigations of thin films and

57Paul Scherrer Institut • 5232 Villigen PSI 12th PSI Summer School, Zuoz / 20. 8. 2013 / E. Morenzoni

( t)P(t) P(0) e

E. Morenzoni, H. Luetkens, A. Suter, Th. Prokscha, S. Vongtragool, F. Galli, M. Hesselberth, N. Garifianov, R. KhasanovPhysical Review Letters 100, 147205 (2008)

AuFe 3%

AuFe(3%) 220 nm: depth dependence

5 K

Cooperative freezing at similar Tf as in bulk but increasing dynamics on approaching the surface (length scale ~10 nm) and reduction of order parameter (static moment)

…..and depth

Page 58: Depth dependent investigations of thin films and

300μ

Polarized muons are sensitive local probes

of magnetic, superconducting and.. properties

Static and dynamic

Tunable low energy depth dependent investigations

Range a few nm to a few hundreds of nm

Thin films, near surface regions, heterostructures

Page 59: Depth dependent investigations of thin films and

Thank you!

Page 60: Depth dependent investigations of thin films and

BOOKS

•A. Yaouanc, P. Dalmas de Réotier, MUON SPIN ROTATION, RELAXATION and RESONANCE (Oxford University Press, 2010)

•A. Schenck, MUON SPIN ROTATION SPECTROSCOPY, (Adam Hilger, Bristol 1985)

•E. Karlsson, SOLID STATE PHENOMENA, As Seen by Muons, Protons, and Excited Nuclei, (Clarendon, Oxford 1995)

•S.L. Lee, S.H. Kilcoyne, R. Cywinski eds, MUON SCIENCE: MUONS IN PHYSICS; CHEMISTRY AND MATERIALS, (IOP Publishing, Bristol and Philadelphia, 1999)

•INTRODUCTORY ARTICLES

•S.J. Blundell, SPIN-POLARIZED MUONS IN CONDENSED MATTER PHYSICS, Contemporary Physics 40, 175 (1999)

•P. Bakule, E. Morenzoni, GENERATION AND APPLICATIONN OF SLOW POLARIZED MUONS, Contemporary Physics 45, 203-225 (2004).

REVIEW ARTICLES, APPLICATIONS

•P. Dalmas de Réotier and A. Yaouanc, MUON SPIN ROTATION AND RELAXATION IN MAGNETIC MATERIALS, J. Phys. Condens. Matter 9 (1997) pp. 9113-9166

•A. Schenck and F.N. Gygax, MAGNETIC MATERIALS STUDIED BY MUON SPIN ROTATION SPECTROSCOPY,In: Handbook of Magnetic Materials, edited by K.H.J. Buschow, Vol. 9 (Elsevier, Amsterdam 1995) pp. 57-302

•B.D. Patterson, MUONIUM STATES IN SEMICONDUCTORS, Rev. Mod. Phys. 60 (1988) pp. 69-159

•A. Amato, HEAVY-FERMION SYSTEMS STUDIED BY µSR TECHNIQUES, Rev. Mod. Phys., 69, 1119 (1997)

•V. Storchak, N. Prokovev, QUANTUM DIFFUSION OF MUONS AND MUONIUM ATOMS IN SOLIDS, Rev. Mod. Physics, 70, 929 (1998)

•J. Sonier, J. Brewer, R. Kiefl, SR STUDIES OF VORTEX STATE IN TYPE-II SUPERCONDUCTORS, Rev. Mod. Physics, 72, 769 (2000)

•E. Roduner, THE POSITIVE MUON AS A PROBE IN FREE RADICAL CHEMISTRY, Lecture Notes in Chemistry No. 49 (Springer Verlag, Berlin 1988)

Literature