density neutron crossover

22
Chapter 13 Gas Bearing Formation Interpretation Lecture notes for PET 370 Spring 2011 Prepared by: Thomas W. Engler, Ph.D., P.E.

Upload: 1234abcd

Post on 02-Apr-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

7/27/2019 Density Neutron Crossover

http://slidepdf.com/reader/full/density-neutron-crossover 1/22

Chapter 13 –Gas Bearing

Formation Interpretation

Lecture notes for PET 370

Spring 2011

Prepared by: Thomas W. Engler, Ph.D., P.E.

7/27/2019 Density Neutron Crossover

http://slidepdf.com/reader/full/density-neutron-crossover 2/22

Gas-Bearing Formation Interpretation

• Effect of gas on neutron log response

 – lower hydrogen content than calibrated value, thus higher count rateresulting in low a.

 – Shale effect is opposite to the gas effect, makes detection extremelydifficult

• Effect of gas on density log response 

 – presence of gas reduces bulk density, resulting in a high apparent porosity.

 – shale effect can increase or decrease bulk density, dependent on shale’s

bulk density.

• Effect of gas on sonic log response 

 – increase in sonic log porosity in poorly-consolidated sands.

 – not quantitative or predictable

Impact

7/27/2019 Density Neutron Crossover

http://slidepdf.com/reader/full/density-neutron-crossover 3/22

Gas-Bearing Formation Interpretation

• Log response is function of different depths of investigation of the FDC – 

CNL tools and the degree of invasion. 

Background

2 4 6 8 10

Distance from borehole wall, in

   G  e  o  m  e   t  r   i  c

   f  a  c   t  o  r

0.2

0.4

0.6

0.8FDC

CNL

7/27/2019 Density Neutron Crossover

http://slidepdf.com/reader/full/density-neutron-crossover 4/22

7/27/2019 Density Neutron Crossover

http://slidepdf.com/reader/full/density-neutron-crossover 5/22

Gas-Bearing Formation Interpretation Example

Density – neutron logillustrating Type I gas effect

(Hilchie, 1978)

- deep invasion, or

- Extremely shallow invasion

7/27/2019 Density Neutron Crossover

http://slidepdf.com/reader/full/density-neutron-crossover 6/22

Gas-Bearing Formation Interpretation Example

Density – neutron log illustrating

the effect of shallow to moderate

invasion. (Type II)

(Bassiouni, 1994)

7/27/2019 Density Neutron Crossover

http://slidepdf.com/reader/full/density-neutron-crossover 7/22

Gas-Bearing Formation Interpretation Example

Density – neutron log illustrating

a gas-bearing shaly sand. (Type III)

(Hilchie, 1978)

7/27/2019 Density Neutron Crossover

http://slidepdf.com/reader/full/density-neutron-crossover 8/22

Gas-Bearing Formation Interpretation False Gas Effect

7/27/2019 Density Neutron Crossover

http://slidepdf.com/reader/full/density-neutron-crossover 9/22

Gas-Bearing Formation Interpretation

• Assume invasion extends beyond the density tool,

where

rg is “apparent gas density” seen by the density log 

In terms of porosity, Eq (1) can be written as

where

* gas density is f(P,T,g)* Mud filtrate density is f(salinity)

Where n is fractional salinity (Cppmx10-6)

Porosity Determination

n73.01mf  r

]g)xoS1(mf xoS[ma)1( b rrrr

]g)D)(xoS1(xoS[D

mf ma

gmag)D(

rr

rr

(1)

(2)

(3)

(4)

7/27/2019 Density Neutron Crossover

http://slidepdf.com/reader/full/density-neutron-crossover 10/22

7/27/2019 Density Neutron Crossover

http://slidepdf.com/reader/full/density-neutron-crossover 11/22

Gas-Bearing Formation Interpretation

•Consider the simple case of:

1. fresh mud rmf = 1, Hmf = 1

2. Low pressure  rg  0, Hg  0

solve for porosity,

solve for flushed zone saturation,

Case I: Fresh mud, low pressure reservoir

ma

 ND

ma

1ma=

or ,ma

 N)

 bma(

=

r

 

  

 r

r

rrr

NxoS

(9)

(10)

(11)

Porosity Determination

7/27/2019 Density Neutron Crossover

http://slidepdf.com/reader/full/density-neutron-crossover 12/22

Gas-Bearing Formation Interpretation

Empirical derivation, applicable for any rg.

If fresh mud,

Further reduce by assuming Sxo is large, such that ,12(1-Sxo) 0,

1/2

2

2 N

2D=

 

 

 

 

General case

2)]xoS1(n5.1[2)]xoS1(12.1[2

2 N

2D=2

2)]xoS1(12.1[2

2 N

2D=2

(12)

(13)

(14)

7/27/2019 Density Neutron Crossover

http://slidepdf.com/reader/full/density-neutron-crossover 13/22

Gas-Bearing Formation Interpretation

• properly calibrated neutron log will respond to hydrogen in water andhydrocarbons.

• Due to low H2 content of gas,

the neutron log responds to

the water fraction, only.

• Difference between two

formations is the “Excavation”of 15% by volume of matrix

material and replaced by gas.

• Magnitude of excavation effect

dependent on hydrocarbon

saturation and fluid HI.

Excavation Effect

7/27/2019 Density Neutron Crossover

http://slidepdf.com/reader/full/density-neutron-crossover 14/22

7/27/2019 Density Neutron Crossover

http://slidepdf.com/reader/full/density-neutron-crossover 15/22

Gas-Bearing Formation Interpretation

Example

Swh = Sxo = 0.5, fresh mud, Hgas = 0

Measured Neutron porosity =

24%

Excavation effect, Nex

= 6%

Corrected neutron porosity =

24 + 6 = 30%

Excavation Effect

Typical excavation effect curve:

Dolomite, = 30%, Hgas = 0

7/27/2019 Density Neutron Crossover

http://slidepdf.com/reader/full/density-neutron-crossover 16/22

Gas-Bearing Formation Interpretation

On density logs:

Or

On neutron logs:

Gas effect on crossplot

 Nex)gHmf H)(xoS1( Ng

)Dg1)(xoS1(Dg

)gmf )(xoS1(g rrr

(19)

(20)

(21)

7/27/2019 Density Neutron Crossover

http://slidepdf.com/reader/full/density-neutron-crossover 17/22

Gas-Bearing Formation Interpretation Flowchart

INPUT DATA{rma, N, rb or D,

Cppm, P,T,g}

INITIAL GUESS Sxo 

{crossplot} {Eq.11}

GAS DENSITY 

{EOS}Hydrogen IndicesHmf {Eq.6} Hg {Eq.7}

r g or  Dg{Eq 18} {Eq. 19}

SwH {Eq.17}

Excavation Effect{Eq.15}

Ng  {Eq.20}

Update and Sxo

< TOL?

STOP

END

Y

N

 

     n

 xoS 

nd 

;2

Mineral Fractions

rmaa

7/27/2019 Density Neutron Crossover

http://slidepdf.com/reader/full/density-neutron-crossover 18/22

Gas-Bearing Formation Interpretation

13.1 A clean sandstone, suspected to be gas bearing, had the following

recorded log readings: a lithology-correct  N = 5% and a r b = 2.00gm/cc. Assuming the gas is low density and the mud is fresh mud,

determine the true porosity and the flushed zone saturation.

Exercises

7/27/2019 Density Neutron Crossover

http://slidepdf.com/reader/full/density-neutron-crossover 19/22

Gas-Bearing Formation Interpretation

13.2 Repeat Ex. 13.1 but include the excavation effect. Compare with

the answers to Example 13.1.

Exercises

7/27/2019 Density Neutron Crossover

http://slidepdf.com/reader/full/density-neutron-crossover 20/22

Gas-Bearing Formation Interpretation

13.3 A clean, gas-bearing sandstone exhibited neutron and density

 porosity readings of 10 and 20 %, respectively. Assume a freshmud filtrate. Investigate the effect of gas density on the resulting

true porosity and flushed zone saturation by considering two

separate cases: (1) with a gas density assumed to be zero, and (2) a

gas density = 0.25 gm/cc. Ignore excavation effect.

Exercises

7/27/2019 Density Neutron Crossover

http://slidepdf.com/reader/full/density-neutron-crossover 21/22

Gas-Bearing Formation Interpretation

13.4 In Example 13.3, consider the porosity readings are on a limestone 

matrix . Determine the true porosity and flushed zone saturation.What is the effect in change of matrix type?

Exercises

7/27/2019 Density Neutron Crossover

http://slidepdf.com/reader/full/density-neutron-crossover 22/22

Gas-Bearing Formation Interpretation References

Theory, Measurement, and Interpretation of Well Logs, Bassiouni, SPE

Textbook Series, Vol. 4, (1994)

Chapter 16 – Evaluation of Gas-Bearing Formations