delineating)paleoseismologicalfeatures...

44
82 nd Annual Meeting of the Eastern Section of the Seismological Society of America October 1819, 2010 DELINEATING PALEOSEISMOLOGICAL FEATURES USING GROUND PENETRATING RADAR AND CAPACITIVELY COUPLED RESISTIVITY ALQADHI, Okba, MAHDI, Hanan, ALSHUKRI, Haydar, Applied Science Department, University of Arkansas at Little Rock, Little Rock, AR 72204, TUTTLE, Tish, M. Tuttle & Associates,128 Tibbetts Lane, Georgetown, ME 04548 Abstract: Satellite images and field surveys reveal the existence of several earthquake induced liquefaction features in eastcentral Arkansas in an area not previously known to have experienced major earthquakes in the past. Sand blows and feeder dikes were mapped with ground penetrating radar (GPR) using a 400MHz central frequency monostatic antenna with a highspeed acquisition system and capacitively coupled resistivity (CCR) with different transmitter and receiver spacing intervals. GPR and CCR surveys were performed along profiles tens of meters to hundreds of meters in length and over the same areas to independently verify the location of liquefaction features. This implementation allowed us to image, in three dimensions, sand blows and feeder dikes and related ground subsidence as well as to track for 17 km a northwestoriented lineament delineated by sand blows. Both techniques were instrumental in locating feeder dikes of sand blows and visualizing the contact between sand blows and the buried paleosurfaces. The most prominent anomalies in both GPR and resistivity data correlate with the breach of the silt loam layer indicative of sand dikes. In some cases, resistivity is superior to GPR for imaging sand blows and sand dikes, especially when the sediment is wet. Due to the deeper penetration of electric current, the resistivity method can reveal deeper information than the GPR technique. In addition, CCR is better at identifying the boundaries of sand blows than GPR. On the other hand, GPR is able to precisely locate the feeder dikes, which is an essential step for citing trenches for paleoseismic study of the liquefaction features. The results support using resistivity in combination with GPR to map liquefaction features. Presentation Type: Oral Presenting Author: Okba AlQadhi 7

Upload: others

Post on 30-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • 82nd  Annual  Meeting  of  the  Eastern  Section  of  the  Seismological  Society  of  America  October  18-‐19,  2010  

     

    DELINEATING  PALEOSEISMOLOGICAL  FEATURES  USING  GROUND  PENETRATING  RADAR  AND  CAPACITIVELY  COUPLED  RESISTIVITY  

    AL-‐QADHI,  Okba,  MAHDI,  Hanan,  AL-‐SHUKRI,  Haydar,  Applied  Science  Department,  University  of  Arkansas  at  Little  Rock,  Little  Rock,  AR  72204,  TUTTLE,  Tish,  M.  Tuttle  &  Associates,128  Tibbetts  Lane,  Georgetown,  ME  04548  

     Abstract:  Satellite  images  and  field  surveys  reveal  the  existence  of  several  earthquake-‐induced  liquefaction  features  in  east-‐central  Arkansas  in  an  area  not  previously  known  to  have  experienced  major  earthquakes  in  the  past.  Sand  blows  and  feeder  dikes  were  mapped  with  ground  penetrating  radar  (GPR)  using  a  400MHz  central  frequency  monostatic  antenna  with  a  high-‐speed  acquisition  system  and  capacitively  coupled  resistivity  (CCR)  with  different  transmitter  and  receiver  spacing  intervals.  GPR  and  CCR  surveys  were  performed  along  profiles  tens  of  meters  to  hundreds  of  meters  in  length  and  over  the  same  areas  to  independently  verify  the  location  of  liquefaction  features.  This  implementation  allowed  us  to  image,  in  three  dimensions,  sand  blows  and  feeder  dikes  and  related  ground  subsidence  as  well  as  to  track  for  17  km  a  northwest-‐oriented  lineament  delineated  by  sand  blows.  Both  techniques  were  instrumental  in  locating  feeder  dikes  of  sand  blows  and  visualizing  the  contact  between  sand  blows  and  the  buried  paleosurfaces.  The  most  prominent  anomalies  in  both  GPR  and  resistivity  data  correlate  with  the  breach  of  the  silt  loam  layer  indicative  of  sand  dikes.  In  some  cases,  resistivity  is  superior  to  GPR  for  imaging  sand  blows  and  sand  dikes,  especially  when  the  sediment  is  wet.  Due  to  the  deeper  penetration  of  electric  current,  the  resistivity  method  can  reveal  deeper  information  than  the  GPR  technique.  In  addition,  CCR  is  better  at  identifying  the  boundaries  of  sand  blows  than  GPR.  On  the  other  hand,  GPR  is  able  to  precisely  locate  the  feeder  dikes,  which  is  an  essential  step  for  citing  trenches  for  paleoseismic  study  of  the  liquefaction  features.  The  results  support  using  resistivity  in  combination  with  GPR  to  map  liquefaction  features.  

    Presentation  Type:  Oral  

    Presenting  Author:  Okba  Al-‐Qadhi  

     

     

     

    7

  • 82nd  Annual  Meeting  of  the  Eastern  Section  of  the  Seismological  Society  of  America  October  18-‐19,  2010  

     

    Paper  Withdrawn  

    EARTHQUAKE  EARLY  WARNING  SYSTEM  FOR  IRAN  

    AMIRNEZHAD  MOZHDEHI,  Sahar,  ZARE,  Mehdi,  International  Institute  of  Earthquake  Engineering  and  Seismology  (IIEES),  Tehran,  Iran,  [email protected]  

     Abstract:  Iran  is  a  seismically  active  region  and  both  historic  and  instrumental  records  indicate  the  occurrence  of  many  devastating  seismic  events,  especially  in  densely  populated  areas  which  are  located  in  the  vicinity  of  major  faults.  Tehran,  the  capital  of  Iran,  for  example,  accommodates  nearly  10,000,000  people  and  is  surrounded  by  many  active  faults  (Mosha,  North  Tehran,  Kahrizak…).  Therefore,  an  earthquake  early  warning  is  an  appropriate  short  term  solution  to  reduce  losses  of  a  probable  large  earthquake.  As  of  seismic  instrumentation,  three  major  seismic  networks  are  operating  which  need  serious  development  and  integrity.  Iran  Strong  Motion  Network  (ISMN)  was  founded  in  1973  (with  less  than  300  analog  accelerographs),  and  was  extended  in  1993  by  installation  of  digital  accelerographs  (over  1000  in  2007),  but  only  50  stations  use  GPS  timing.  Iranian  National  Seismic  Network  (INSN)  includes  30  real-‐time  broadband  stations.  The  Iranian  Seismic  Telemetry  Network  was  founded  in  1995  with  70  3-‐component  seismographs  (mostly  short-‐period  and  occasionally  broadband)  which  are  in  real-‐time  connection  with  processing  center.  Expectedly,  the  available  seismic  records  are  sometimes  of  poor  quality  (due  to  low  network  density)  and  mostly  lack  absolute  timing.  To  optimize  the  use  of  accessible  data,  a  method  should  be  used  which  is  capable  of  using  both  single-‐station  and  multi-‐station  data,  so  that  we  can  make  the  best  use  of  existing  data.  Therefore,  a  combination  of  Elarms  and  tau-‐c  Pd  methods  is  chosen  for  this  area.  At  the  end,  the  results  can  be  used  to  optimize  and  modify  the  existing  seismic  networks  to  form  an  earthquake  early  warning  system  for  important  cities,  especially  Tehran.  

    Presentation  Type:  Poster  

    Presenting  Author:  Sahar  Amirnezhad  Mozhdehi  

     

     

     

     

    8

  • 82nd  Annual  Meeting  of  the  Eastern  Section  of  the  Seismological  Society  of  America  October  18-‐19,  2010  

     

    EARTHSCOPE  TRANSPORTABLE  ARRAY  (TA)  PLANS  FOR  EASTERN  NORTH  AMERICA  

    BUSBY  R.W.,  HAFNER  K.,  WOODWARD  R.,  Incorporated  Research  Institutions  for  Seismology  (IRIS)Washington  DC  20005  USA      [email protected]  

     Abstract:  The  Transportable  Array  (TA)  element  of  Earthscope  /  US  Array  is  a  large  deployment  of  400  high  quality  broadband  seismographs.    The  Transportable  Array  is  operated  by  the  IRIS  Consortium,  and  is  part  of  the  EarthScope  Project  sponsored  by  the  National  Science  Foundation.    The  construction  of  this  array  began  in  October  2003  and  the  full  deployment  of  USArray  TA  is  now  continuously  rolling  from  west  to  east  across  the  continental  US.    This  requires  the  installation  (and  removal)  of  approximately  18  stations  each  month  for  a  ten  year  period.    The  TA  has  now  occupied  over  1000  sites  in  the  western  United  States  and  is  midway  through  its  multiyear  migration  to  reach  the  last  installation  in  the  Eastern  North  America  in  Sept  2013.  

     

    The  USArray  portion  of  the  EarthScope  Project  was  recently  authorized  by  the  National  Science  Foundation  to  plan  deployment  of  about  50  stations  in  the  Ontario  and  Quebec  Provinces  of  Canada.  These  locations  would  supplement  existing  seismic  stations  operated  by  Geological  Survey  of  Canada  and  the  POLARIS  project  to  form  a  uniform  70km  grid  of  stations  south  of  47  degrees  latitude.    The  deployment  is  contingent  upon  continued  execution  of  the  TA  throughout  the  continental  US  on  schedule  and  budget.    We  will  be  soliciting  university  and  student  assistance  in  siting  stations  and  refining  locations  with  any  partners  that  might  yield  permanent  stations.  

    Presentation  Type:  Oral  

    Presenting  Author:  Robert  Busby  

     

     

     

     

    9

  • 82nd  Annual  Meeting  of  the  Eastern  Section  of  the  Seismological  Society  of  America  October  18-‐19,  2010  

     

    FINITE-FAULT  MODEL  SIMULATIONS  FOR  INSIGHT  INTO  NEAR-SOURCE  GROUND  MOTIONS  IN  EASTERN  NORTH  AMERICA  

    CHAPMAN,  Martin  C.,  Department  of  Geosciences,  Virginia  Tech,  Blacksburg,  VA,  24061,  [email protected]  

     Abstract:  A  full  wavefield  finite-‐fault  simulation  method  is  being  used  to  explore  the  nature  of  ground  motion  near  the  earthquake  source,  with  particular  focus  on  path  and  site  conditions  found  in  eastern  North  America.    Among  the  issues  being  investigated  by  modeling  is  the  nature  of  the  vertical  component  at  near-‐fault  distances,  in  terms  of  the  rate  at  which  amplitudes  decay  with  distance  (apparent  geometrical  spreading)  and  dependence  on  crustal  structure,  focal  depth  and  focal  mechanism.  The  vertical  component  is  of  particular  interest  because  it  has  received  relatively  little  attention  from  the  earthquake  engineering  community.  The  existing  world-‐wide  strong  motion  data  set  shows  that  vertical  amplitudes  are  usually  less  than  horizontal  at  frequencies  of  primary  engineering  concern.  But  even  the  world-‐wide  data  base  is  sparse  for  sites  within  a  few  kilometers  of  the  rupture,  particularly  so  for  data  collected  at  locations  with  geological  conditions  prevalent  in  eastern  North  America.    Most  structural  dynamic  models  indicate  that  structural  elements  are  most  vulnerable  to  the  horizontal  ground  motions:  vertical  motions  appear  to  have  a  relatively  minor  contribution  to  structural  damage.  However,  non-‐structural  components  may  be  sensitive  to  vertical  motions,  particularly  at  high  frequency.    This  may  be  important  for  near-‐source  rock  sites  in  eastern  North  America  as  well  as  for  sites  with  soil/sediment  overlying  high-‐velocity  basement.    In  the  former  case,  maximum  vertical  amplitudes  near  the  source  appear  to  be    associated  with  a  large  amplitude  SV  arrival,  whereas  in  the  latter,    unusually  efficient  S  to  P  conversion  at  the  basement  interface  and  near-‐vertical    ray  incidence  at  the  surface  may  contribute  to  large  vertical  motions.  

    Presentation  Type:  Oral  

    Presenting  Author:  Martin  Chapman  

     

     

     

     

    10

  • 82nd  Annual  Meeting  of  the  Eastern  Section  of  the  Seismological  Society  of  America  October  18-‐19,  2010  

     

    THE  NEW  MADRID  1811-1812  MAINSHOCKS:  M6S  OR  M7S?  

    CRAMER,  Chris  H.,  and  DANGKUA,  Donny,  CERI,  University  of  Memphis,  Memphis,  TN,  38152-‐3050,  USA,  [email protected]  

     Abstract:  Dangkua  and  Cramer  (2010)  reevaluated  the  ground  motion  verses  intensity  relations  of  Kaka  and  Atkinson  (2004)  and  Atkinson  and  Kaka  (2007),  which  reached  opposing  conclusions  as  to  whether  eastern  North  America  (ENA)  and  California  (CA)  relations  are  different  or  the  same.    We  concluded  that  at  short  periods  (pga,  0.3  s  Sa)  ENA  and  CA  ground  motion  vs.  intensity  relations  are  the  same,  but  at  longer  periods  (pgv,  1.0s  and  2.0s  Sa)  they  are  different  due  to  differences  in  ENA  and  CA  source  spectral  shapes.    Recently,  intensities  (MMIs)  for  the  three  New  Madrid  mainshocks  were  reevaluated  and  their  magnitudes  proposed  to  be  high  M6s  (M6.8).    We  apply  ENA  ground  motion  prediction  equations  (GMPEs)  to  New  Madrid  scenario  ruptures,  make  adjustments  for  local  site  geology,  and  estimate  MMI  from  1.0s  Sa  scenarios  using  the  Dangkua  and  Cramer  (2010)  relations.    The  GMPEs  applied  are  those  of  the  2008  USGS  national  seismic  hazard  maps,  including  weights.    Local  geology  effects  were  taken  into  account  using  the  surface  soil  geology,  soil  thickness,  and  relevant  Vs  reference  profiles.    For  the  December  16,  1811  mainshock,  a  comparison  of  M7.7  and  M6.8  scenario  estimates  of  MMI  to  the  observed  MMIs  suggests  that  the  1811-‐1812  New  Madrid  mainshocks  are  more  likely  M7s  and  not  M6s,  within  uncertainty.    Further  refinements  of  the  scenario  MMI  models  are  needed  to  (1)  extend  ground  motion  estimates  and  hence  MMI  estimates  beyond  the  current  1000  km  distance  limit,  (2)  improve  spatial  resolution  to  less  than  10  km  to  better  resolve  MMIs  in  major  river  valleys,  and  (3)  quantify  the  goodness-‐of-‐fit  of  the  estimates  to  the  observations  so  the  confidence  in  these  conclusions  can  be  improved.  

    Presentation  Type:  Oral  

    Presenting  Author:  Chris  Cramer  

     

     

     

     

     

    11

  • 82nd  Annual  Meeting  of  the  Eastern  Section  of  the  Seismological  Society  of  America  October  18-‐19,  2010  

    GROUND  MOTION  PREDICTION  TRENDS  FOR  EASTERN  NORTH  AMERICA  BASED  ON  THE  NEXT  GENERATION  ATTENUATION  EAST  GROUND  MOTION  DATABASE  

    CRAMER,  Chris  H.,  KUTLIROFF,  Jerome,  and  DANGKUA,  Donny,  CERI,  University  of  Memphis,  Memphis,  TN  38152-‐3050,  USA,  [email protected]  

     Abstract:  A  five-‐year  Next  Generation  Attenuation  (NGA)  East  project  to  develop  new  ground  motion  prediction  equations  for  stable  continental  regions  (SCRs),  including  eastern  North  America  (ENA),  has  begun  at  the  Pacific  Earthquake  Engineering  Research  (PEER)  Center  funded  by  the  Nuclear  Regulatory  Commission  (NRC),  the  U.S.  Geological  Survey  (USGS),  the  Electric  Power  Research  Institute  (EPRI),  and  the  Department  of  Energy  (DOE).    The  initial  effort  focused  on  database  design  and  collection  of  appropriate  M>4  ENA  broadband  and  accelerograph  records  to  populate  the  database.    Ongoing  work  has  focused  on  adding  records  from  smaller  ENA  earthquakes  and  from  other  SCRs  such  as  Europe,  Australia,  and  India.    Currently,  over  6500  horizontal  and  vertical  component  records  from  60  ENA  earthquakes  have  been  collected  and  prepared  (instrument  response  removed,  filtering  to  acceptable-‐signal  band,  determining  peak  and  spectral  parameter  values,  quality  assurance,  etc.)  for  the  database.    Geologic  Survey  of  Canada  (GSC)  strong  motion  recordings,  previously  not  available,  have  also  been  added  to  the  NGA  East  database.    The  additional  earthquakes  increase  the  number  of  ground  motion  recordings  in  the  10  –  100  km  range,  particularly  from  the  2008  M5.2  Mt.  Carmel,  IL  event,  and  the  2005  M4.7  Riviere  du  Loup  and  2010  M5.0  Val  des  Bois  earthquakes  in  Quebec,  Canada.    The  goal  is  to  complete  the  ENA  database  and  make  it  available  in  2011  followed  by  a  SCR  database  in  2012.    Comparisons  of  ground  motion  observations  from  four  recent  M5  ENA  earthquakes  with  current  ENA  ground  motion  prediction  equations  (GMPEs)  suggest  that  current  GMPEs,  as  a  group,  reasonably  agree  with  M5  observations  at  short  periods,  particularly  at  distances  less  than  200  km.    However,  at  one  second,  current  GMPEs  over  predict  M5  ground  motion  observations.    The  2001  M7.6  Bhuj,  India,  earthquake  provides  some  constraint  at  large  magnitudes,  as  geology  and  regional  attenuation  is  analogous  to  ENA.    Cramer  and  Kumar,  2003,  have  shown  that  ENA  GMPE’s  generally  agree  with  the  Bhuj  dataset  within  300  km  at  short  and  long  periods.    But  the  Bhuj  earthquake  does  not  exhibit  the  intermediate-‐period  spectral  sag  (Atkinson,  1993)  of  larger  ENA  earthquakes  and  thus  the  Bhuj  ground  motions  may  be  larger  than  what  could  be  expected  at  one  second  for  M7s  in  ENA.  

    Presentation  Type:  Oral  

    Presenting  Author:  Chris  Cramer    12

  • 82nd  Annual  Meeting  of  the  Eastern  Section  of  the  Seismological  Society  of  America  October  18-‐19,  2010  

     

    THE  APPLICATION  OF  VELOCITY  SPECTRAL  STACKING  METHODS  TO  DETERMINE  THE  SOURCE  SPECTRA  AND  SCALING  RELATIONS  FOR  SMALL  TO  MODERATE  EARTHQUAKES  IN  SOUTHERN  ONTARIO/WESTERN  QUEBEC  

    DINEVA,  Savka,  Queens  University,  Kingston,  Ontario,  K7L  3N6,  [email protected];  MEREU,  Robert,  University  of  Western  Ontario,  London,  Ontario,  N6A  5B7,  [email protected];  ATKINSON,  Gail,  University  of  Western  Ontario,  London,  Ontario,  N6A  5B7,[email protected]  

     Abstract:  We  analyzed  the  spectra  from    370  earthquakes  of  energy  magnitude  (ME)  1.1  to  5.8  recorded  by  the  Southern  Ontario  Seismic  Network  (SOSN)  /POLARIS  network  during  the  period  1991-‐2010  in  the  area  of  southern  Ontario  and  western  Quebec.    The  energy  magnitude  is  based  on  the  square  root  of  the  time-‐domain  signal  energy  (Dineva  and  Mereu  2009).    Over  3000  S-‐wave  spectra  were  processed,  and  used  to  determine  corner  frequencies,  scaling  and  attenuation  relationships  for  the  region.  Several  factors  that  affect  observed  spectra  were  considered  in  this  study:  the  attenuation  of  seismic  waves,  the  station  site  response,  random  scattering  effects,  and  the  magnitude  of  the  earthquakes.  Examination  of  individual  attenuation-‐corrected  spectra  revealed  a  lot  of  complexity  from  station  to  station  for  the  same  event  which  made  the  direct  determination  of  corner  frequencies  problematic.    However  stacking  of  the  velocity  spectra  into  magnitude  bins  removed  most  of  the  complexity  to  reveal  a  well  imaged  source  spectrum  each  with  a  clear  maximum.  Some  of  the  bins  for  a  single  magnitude  contained  more  than  250  spectra.    The  corner  frequency  for    each  of  the  stacked  spectra  was  calculated  by  fitting  to  a  theoretical  Brune  (omega-‐squared)  spectra.  We  obtained  a  very  well-‐constrained  linear  relationship  (slope  approximately  -‐0.22)  between  log  (corner  frequency)  and  energy  magnitude.  This  relation  was  then  used  to  determine  scaling  relations  between  a  number  of  quantities  such  as  energy  magnitude,  moment  magnitude,  seismic  moment  and  stress  drop.  Our  results  also  clearly  show  that  the  earthquakes  in  the  magnitude  range  (1.5-‐4.5)  in  our  study  region  are  not  self-‐similar.  

    Presentation  Type:  Oral  

    Presenting  Author:  Robert  Mereu  

     

     

     

    13

  • 82nd  Annual  Meeting  of  the  Eastern  Section  of  the  Seismological  Society  of  America  October  18-‐19,  2010  

     

    DETERMINING  FOCAL  DEPTHS  OF  EARTHQUAKES    IN  THE  NORTHEASTERN  U.S.  AND  SOUTHEASTERN  CANADA  

    DOUGHERTY,  Laura  B.,  EBEL,  John  E.,  Weston  Observatory,  Department  of  Geology  and  Geophysics,  Boston  College,  Weston,  MA  02493  USA  

     Abstract:  Many  shallow,  small-‐to-‐moderate  earthquakes  occur  throughout  the  Northeastern  U.S.  and  Southeastern  Canada.    The  goal  of  this  research  is  to  create  a  method  to  verify  the  depths  of  local  earthquakes  by  analyzing  the  arrival  times  of  depth  phases  sP  and  pP  in  the  P  waveforms  generated  by  earthquakes  in  the  Northeastern  U.S.  and  Southeastern  Canada.    This  is  important  because  for  the  area  of  interest,  New  England,  New  York,  New  Jersey  and  Southeastern  Canada  (Quebec  and  Ontario),  the  seismic  networks  have  sparsely  distributed  stations,  increasing  the  difficulty  of  accurately  determining  focal  depths  of  local  earthquakes  using  the  arrival  times  of  P  and  S  wave..    Crustal  models  that  are  used  to  locate  earthquakes  in  the  region  were  created  to  determine  the  arrival  times  of  these  depth  phases.    One  earthquake  of  focus  is  the  magnitude  4.9  earthquake  that  occurred  on  June  23,  2010,  64  kilometers  north-‐northeast  of  Ottawa,  Ontario.    The  hypocentral  solution  computed  for  this  earthquake  by  the  Canadian  Geological  Survey  is  19.3  kilometers.    The  P  waveforms  for  this  earthquake  were  analyzed  by  computing  the  estimated  arrival  times  of  the  phases  Pn,  sP  and  pP  for  this  earthquake  from  several  seismic  stations  in  order  to  see  if  the  depth  phases  pP  and  sP  could  be  identified.    To  try  to  enhance  the  possibility  of  observing  these  depth  phases,  the  P  waveforms  were  aligned  at  the  P  first  arrival  time  and  then  stacked  in  order  to  see  if  the  depth  phases  pP  and  sP  become  more  identifiable.    The  stacking  did  not  bring  out  strong  depth  phases,  perhaps  due  to  radiation  pattern  effects.      A  similar  kind  of  analysis  is  being  carried  out  for  the  depth  phases  for  other  earthquakes  in  the  region  in  order  to  determine  the  utility  of  routinely  using  depth  phases  to  find  the  hypocentral  depths  of  earthquakes  in  the  region.  

    Presentation  Type:  Poster  

    Presenting  Author:  Laura  Dougherty  

     

     

     

    14

  • 82nd  Annual  Meeting  of  the  Eastern  Section  of  the  Seismological  Society  of  America  October  18-‐19,  2010  

    REAL-TIME  SEISMIC  MONITORING  OF  AFTERSHOCKS  OF  THE  2010  HAITI  EARTHQUAKE  

    DRYSDALE,  J.  A.;  BENT,  A.  L.;    HALCHUK,  S.;  ADAMS,  J.;    GREENE,  H.;    PROULX,  F.;    MCCORMACK,  D.  A.;  AL-‐KHOUBBI,  I.;  ANDREWS,  C.;  ASUDEH,  I.;  BELIZAIRE,  D.;  and  DORFEUILLE,  H.    

     Abstract:  Following  the  devastating  earthquake  in  Haiti  on  January  12,  2010,  the  need  for  improved  local  monitoring  of  the  seismic  activity  in  that  country  become  apparent.    The  Geological  Survey  of  Canada,  Natural  Resources  Canada,  installed  what  is  believed  to  be  the  first  continuously  transmitting  seismograph  network  in  Haiti.      Three  semi-‐permanent  stations  are  installed  at  Port-‐au-‐Prince,  Jacmel  and  Léogâne.    Each  station  consists  of  a  three-‐component  broadband  seismograph  and  a  three-‐component  strong-‐motion  instrument.    The  strong-‐motion  instruments  have  proven  useful  in  providing  clear  records  in  cases  where  some  of  the  largest  aftershocks  were  clipped  on  the  weak-‐motion  channels.    Continuous  data  are  transmitted  by  satellite  in  real  time  to  Ottawa  for  analysis.  Data  are  also  forwarded  to  the  United  States  Geological  Survey  and  the  Caribbean  Tsunami  Warning  System.    Early  analysis  of  the  data  has  focused  primarily  on  locating  aftershocks  with  the  expectation  that  longer  term  monitoring  will  result  in  improved  seismic  hazard  assessments  for  Haiti.    All  aftershock  locations  and  phase  picks  are  forwarded  to  the  International  Seismological  Centre.    Magnitude  recurrence  curves  show  that  the  aftershock  catalog  is  complete  to  magnitude  2.6.    The  majority  of  the  aftershocks  are  located  just  north  of  the  peninsula.    The  station  geometry  is  not  ideal  for  locating  aftershocks.    Combining  our  data  set  with  that  of  other  stations  deployed  in  the  region  following  the  main  shock  should  result  in  improved  locations  and  better  depth  control.    Focal  mechanisms  have  been  determined  for  many  of  the  aftershocks  by  regional  moment  tensor  inversion  for  large  aftershocks  and  by  composite  first-‐motion  solutions  for  smaller  aftershocks.      Both  methods  show  predominantly  thrust  faulting  at  the  western  end  of  the  aftershock  zone  and  strike-‐slip  faulting  in  the  east,  consistent  with  the  global  moment  tensor  solutions  for  the  main  shock  and  largest  aftershock.    Depths  from  the  moment  tensor  inversion  range  from  2  to  15  km,  with  the  majority  of  the  events  occurring  between  6  and  10  km.    Teleseismic  receiver  functions  are  being  employed  to  derive  improved  velocity  models  for  Haiti.    Results  to  date  are  indicative  of  low  near-‐surface  velocities  and  a  Moho  depth  of  approximately  20  km.  

    Presentation  Type:  Poster  

    Presenting  Author:  Janet  Drysdale    15

  • 82nd  Annual  Meeting  of  the  Eastern  Section  of  the  Seismological  Society  of  America  October  18-‐19,  2010  

     

    A  DATABASE  OF  HISTORICAL  EARTHQUAKES  OF  THE  NORTHEASTERN  U.S.  AND  SOUTHEASTERN  CANADA  

    EBEL,  John  E.,  and  DUPUY,  Megan,  Weston  Observatory,  Department  of  Geology  and  Geophysics,  Boston  College,  Weston,  MA  02493  USA,  [email protected]  

     Abstract:  A  project  has  begun  at  Weston  Observatory  to  create  a  database  of  information  on  historical  earthquakes  of  the  northeastern  U.S.  and  nearby  southeastern  Canada.    Unlike  earlier  flat-‐file  earthquake  catalogs,  this  will  be  a  relational  earthquake  database  that  will  include  all  available  information  about  the  earthquakes,  including  hypocentral  estimates,  damage  and  felt  reports,  MMI  estimates  for  each  report,  magnitude  estimates,  etc.    Original  historical  sources  will  be  scanned  and  incorporated  into  the  database.    Over  180  separate  fields  are  currently  planned  for  the  database  in  the  following  general  categories:    date-‐time,  historical  accounts,  hypocenter,  maximum  ground  motion,  magnitude-‐moment,  intensity,  casualties-‐homeless,  liquefaction-‐landslide-‐tsunami,  focal  mechanism,  fault  information,  other  source  parameters.    The  database  is  being  designed  with  an  interface  so  that  it  can  be  interrogated  by  use  of  a  web  browser.    An  interface  for  input  of  information  into  the  database  has  been  designed  and  is  currently  being  tested.    So  far,  about  450  accounts  of  earthquakes,  including  publication  notes,  have  been  transcribed  for  the  database.    For  all  earthquakes,  primary  sources  concerning  the  events  are  being  procured  and  included  in  the  database  along  with  derived  parameters  such  as  hypocenter,  magnitude,  seismic  moment,  modified-‐Mercalli  intensity,  etc.    The  sources  for  the  derived  event  parameters  are  being  input  as  part  of  the  database,  and  uncertainties  in  the  event  parameters  are  also  included  in  the  database.    New  information  about  earthquakes  in  the  database  can  be  easily  added  in  the  future  as  it  becomes  available.  

    Presentation  Type:  Poster  

    Presenting  Author:  Megan  Dupuy  

     

     

     

     

     

    16

  • 82nd  Annual  Meeting  of  the  Eastern  Section  of  the  Seismological  Society  of  America  October  18-‐19,  2010  

     

    ASSESSING  THE  MAGNITUDE  OF  THE  OCTOBER  20,  1870  CHARLEVOIX,  QUEBEC  EARTHQUAKE  

    EBEL,  John  E.,  DUPUY,  Megan,  Weston  Observatory,  Department  of  Geology  and  Geophysics,  Boston  College,  Weston,  MA  02493  USA,  [email protected],  and  BAKUN,  William  H.,  U.S.  Geological  Survey,  345  Middlefield  Rd.,  Menlo  Park,  CA  94025,  USA  

     Abstract:  One  of  the  strongest  historic  earthquakes  in  the  Charlevoix,  Quebec  seismic  zone  took  place  on  October  20,  1870.    This  earthquake  was  most  damaging  at  Baie-‐Saint-‐Paul,  Saint-‐Urbain,  Ile  au  Coudres  and  Les  Eboulements  in  Quebec,  and  it  caused  two  casualties  at  Les  Eboulements.    The  earthquake  was  felt  throughout  much  of  southeastern  Canada  and  along  the  U.S.  Atlantic  seaboard  from  Maine  to  Maryland.    Site-‐specific  damage  and  felt  reports  from  U.S.  cities  and  towns  were  obtained  from  newspaper  accounts  of  the  earthquake,  and  modified  Mercalli  intensity  (MMI)  values  were  assigned  to  each  account  where  possible.    This  U.S.  MMI  dataset  was  then  combined  with  an  MMI  dataset  for  this  event  from  Canada.    The  combined  MMI  data  were  used  in  a  Bakun  and  Wentworth  analysis  of  the  location  and  magnitude  of  the  earthquake.    From  this  analysis,  the  macroseismic  center  of  the  earthquake  is  determined  to  be  very  close  to  Baie-‐Saint-‐Paul,  where  the  greatest  damage  was  reported,  and  the  intensity  magnitude  MI  is  found  to  be  5.8,  with  a  range  of  5.5-‐6.0.    Comparisons  were  made  at  common  sites  of  the  MMI  data  for  the  1870  earthquake  and  for  the  M  6.2  Charlevoix  earthquake  of  1925.    On  average  the  MMI  readings  are  about  .5  magnitude  units  smaller  for  the  1870  earthquake  than  for  the  1925  earthquake,  suggesting  that  the  1870  earthquake  was  M  5.6-‐5.7  after  corrections  for  epicentral  distance  differences  have  been  applied  to  the  MMI  differences.    A  similar  comparison  of  the  MMI  data  for  the  1870  earthquake  with  the  corresponding  data  for  the  M  5.9  1988  Saguenay  suggests  that  the  1870  earthquake  was  M  5.9-‐6.0.    These  analyses  indicate  that  the  1870  Charlevoix  earthquake  was  M  5.5-‐6.0,  with  a  best  estimate  of  M  5.8.  

    Presentation  Type:  Oral  

    Presenting  Author:  John  Ebel  

     

     

     

    17

  • 82nd  Annual  Meeting  of  the  Eastern  Section  of  the  Seismological  Society  of  America  October  18-‐19,  2010  

     

    RESOLVING  LATERAL  VARIATIONS  IN  UPPER  MANTLE  STRUCTURE  OF  EASTERN  NORTH  AMERICA:  AN  OPPORTUNITY  FOR  USARRAY  

    EBEL,  John  E.,  Weston  Observatory,  Department  of  Geology  and  Geophysics,  Boston  College,  Weston,  MA  02493  USA,  [email protected]  

     Abstract:  There  are  strong  lateral  and  vertical  variations  in  the  Moho  and  the  velocity  structure  of  the  uppermost  mantle  beneath  northeastern  North  America.    Along  coastal  New  England,  which  is  composed  of  exotic  terranes  that  accreted  onto  North  America  during  Paleozoic  and  early  Mesozoic  time,  the  Moho  is  a  sharp  interface  at  a  depth  of  about  30  km.    Inland  from  the  coast,  the  Moho  deepens  in  two  steps  to  western  Maine,  where  it  is  38-‐40  km  deep  and  is  a  gradational  interface.    In  Quebec,  which  is  part  of  the  Grenville  province  of  the  North  American  craton,  the  Moho  is  a  relatively  sharp  interface  at  a  depth  of  about  42  km.    Beneath  New  England  the  sub-‐Moho  velocity  is  about  8.12  km/sec  and  has  no  increase  with  depth  down  to  about  60  km.    On  the  other  hand,  beneath  southern  Quebec  the  sub-‐Moho  velocity  is  about  8.23  km/sec  and  increases  to  about  8.5-‐8.6  km/sec  at  about  60  km  depth.    Details  of  the  spatial  variations  of  the  uppermost  mantle  velocities  are  lacking  in  the  current  data  that  exist  for  this  region.    A  focused  Earthscope  experiment  is  needed  to  get  a  high  resolution  image  of  the  depth  to  the  Moho,  of  the  character  of  the  Moho  interface  (sharp  boundary  versus  gradational  interface)  and  of  the  change  of  velocity  with  depth  in  the  uppermost  mantle  below  the  Moho  across  the  northern  and  southern  Appalachians.    Such  an  experiment  would  make  use  of  data  from  USArray  as  well  as  from  some  high-‐density  seismic  lines  both  across  and  along  the  Appalachians  where  refraction  and  receiver  function  data  would  be  acquired.    A  high-‐resolution  image  of  the  Moho  and  upper  mantle  would  reveal  important  structural  details  to  constrain  models  of  the  assembly  of  the  exotic  terranes  onto  the  east  coast  of  North  America.    It  could  also  provide  important  insights  into  the  structures  that  are  associated  with  the  seismicity  of  the  eastern  U.S.  and  southeastern  Canada.  

    Presentation  Type:  Oral  

    Presenting  Author:  John  Ebel  

     

     

     

    18

  • 82nd  Annual  Meeting  of  the  Eastern  Section  of  the  Seismological  Society  of  America  October  18-‐19,  2010  

     

    THE  JUNE  23,  2010  MW  5.0  VAL-DES-BOIS,  QUEBEC  EARTHQUAKE  

    HAYEK,  Sylvia,  HALCHUK,  Stephen,  DRYSDALE,  Janet,  LIN,  Lan,  PECI,  Veronika,  ADAMS,  John,  PROULX,  Frederic,  BENT,  Allison,  ASUDEH,  Isa,  Canadian  Hazards  Information  Service,  Natural  Resources  Canada,  7  Observatory  Cres.,  Ottawa,  ON  K1A  0Y3  

     Abstract:  On  June  23,  2010  at  17:41  U.T.,  a  magnitude  Mw  5.0  (mN  5.7)  occurred  approximately  10  km  southeast  of  Val-‐des-‐Bois,  Quebec  within  the  West  Quebec  seismic  zone.  It  was  one  of  the  largest  recent  events  to  have  occurred  in  eastern  Canada.  Due  to  its  size  and  proximity  to  Ottawa  (~55  km),  this  earthquake  produced  the  strongest  shaking  ever  felt  in  Ottawa.  It  was  widely  felt  in  eastern  Canada  (from  Thunder  Bay  to  Nova  Scotia)  and  into  the  northeast  United  States,  and  as  far  away  as  Kentucky.  Over  5000  felt  reports  were  entered  via  the  EarthquakesCanada  website.    There  was  light  damage  in  Ottawa  (mostly  to  chimneys  and  contents)  and  similar  damage  in  the  epicentral  region  (but  also  including  failure  of  a  bridge  embankment  and  two  large  landslides  in  clay).    The  main  event  was  well  recorded  by  strong  and  weak  motion  instruments.  A  maximum  PGA  of  ~8-‐10  %g  was  recorded  by  strong  motion  instruments  in  the  Ottawa  region,  and  0.8%  g  in  Montreal.  Together  with  data  from  11  weak-‐motion  stations  (at  epicentral  distances  20-‐160  km)  these  show  that  the  shaking  in  Ottawa  was  well  below  the  1/2475  year  design  spectra  in  the  2005  National  Building  Code  of  Canada.    The  estimated  return  period  for  the  shaking  is  ~150  years.  

     

    Analysis  of  the  main  shock  indicates  a  focal  depth  of  22  km,  with  a  predominantly  thrust  mechanism  on  planes  trending  northwest-‐southeast.  These  findings  are  consistent  with  the  parameters  of  most  other  Western  Quebec  earthquakes.    Seven  aftershock  instruments  were  deployed  in  the  epicentral  region  within  24  hours,  including  one  real-‐time,  continuous  6-‐component  station  VDBQ.  More  than  250  aftershocks  above  M1  have  been  recorded  since  June  23,  six  above  magnitude  3,  the  largest  of  which  was  a  mN  3.3  on  June  23  at  23:34  UT.  

    Presentation  Type:  Poster  

    Presenting  Author:  Janet  Drysdale  

     

    19

  • 82nd  Annual  Meeting  of  the  Eastern  Section  of  the  Seismological  Society  of  America  October  18-‐19,  2010  

     

    SEISMIC  REFRACTION  ANALYSIS  OF  THE  UPPER  MANTLE  PN  WAVE  THROUGH  NORTHEASTERN  NORTH  AMERICA  

    HERTZOG,  Justin  T.,  EBEL,  John  E.,  Boston  College  Department  of  Geology  and  Geophysics,  Chestnut  Hill,  MA  02467  [email protected]  

     Abstract:  Previous  seismic  studies  have  shown  laterally  varying  P-‐wave  seismic  structures  in  the  uppermost  mantle  throughout  northeastern  North  America.    Using  the  seismic  refraction  technique  new  data  from  1992  to  the  present  are  analyzed  to  delineate  with  improved  spatial  resolution  the  upper  mantle  P-‐velocity  structure  throughout  the  Avalon,  northern  Appalachians,  and  Grenville  terranes  of  the  northeastern  US  and  southeastern  Canada.    A  total  of  one  hundred  and  sixty-‐eight  earthquakes  are  being  analyzed,  utilizing  over  one  hundred  seismic  stations  throughout  northeastern  North  America.    The  uppermost  mantle  P-‐wave  velocity  structure  is  best  resolved  horizontally  from  the  seismic  data  in  southeastern  Canada  Grenville  terrane  and  the  Avalon  terrane  in  southeastern  parts  of  New  England.    Data  analyzed  between  200  -‐  400  km,  400  -‐  600  km,  and  600  +  km  throughout  these  regions  are  used  to  study  the  increase  in  velocity  with  depth  in  the  upper  mantle.    The  P-‐wave  velocity  of  the  upper  mantle  Moho  through  the  Avalon  terrane  in  southeastern  New  England  is  found  to  be  uniformly  8.1  –  8.2  km/s  in  this  study  for  epicentral  distances  of  200  km  to  800  km.    No  increase  in  velocity  with  depth  is  recognized  in  the  New  England  region.    Pn  velocities  throughout  the  Grenville  terrane  show  an  average  velocity  of  8.15  km/s  to  8.6  km/s  as  epicentral  distance  increases.    A  jack-‐knife  analysis  was  completed  and  puts  constraints  on  the  uncertainties  of  the  velocity  measurements.    For  these  distances  the  velocities  for  southeastern  Canada  are  8.28,  8.27,  8.60  km/s  and  for  New  England  the  velocities  are  8.16,  8.22,  8.11,  km/s  respectively.    Uncertainties  though  these  areas  range  from  0.012–  0.20  km/s.  

    Presentation  Type:  Poster  

    Presenting  Author:  Justin  Hertzog  

     

     

     

     

    20

  • 82nd  Annual  Meeting  of  the  Eastern  Section  of  the  Seismological  Society  of  America  October  18-‐19,  2010  

     

    CELLULAR  SEISMOLOGY  AND  SEISMIC  SOURCE  CHARACTERIZATION  OF  THE  CENTRAL  AND  EASTERN  UNITED  STATES  

    KAFKA,  Alan  L.,  Weston  Observatory,  Department  of  Geology  and  Geophysics,  Boston  College,  Weston,  MA,  02493  

     Abstract:  Past  seismicity  is  often  used  as  a  significant  component  of  seismic  source  characterization  (SSC)  in  intraplate  regions,  such  as  the  central  and  eastern  United  States  (CEUS),  where  geology  does  not  typically  provide  clear  evidence  of  potential  locations  of  future  earthquakes.  Using  past  seismicity  for  this  purpose,  however,  is  only  scientifically  justified  if  the  tendency  for  past  seismicity  to  delineate  potential  locations  of  future  earthquakes  is  well-‐established  as  a  real,  measurable,  physical  phenomenon.  If  not,  then  this  presumed  tendency  has  no  scientific  basis  as  a  means  of  characterizing  seismic  sources.  To  explore  these  issues,  this  study  builds  upon  the  results  of  Kafka  (2002,  2007)  to  further  investigate  the  scientific  basis  underlying  the  use  of  past  seismicity  for  SSC  in  the  CEUS.  The  USGS  National  Seismic  Hazard  maps  use  Gaussian  Smoothing  (GS)  to  map  the  spatial  distribution  of  past  seismicity  in  the  CEUS.  In  this  study,  I  compare  Cellular  Seismology  (CS)  with  GS  as  a  method  of  mapping  the  spatial  distribution  of  past  seismicity  in  the  CEUS,  and  I  evaluate  each  method's  rate  of  success  for  forecasting  earthquake  locations.  CS  is  a  simple  method  that  considers  a  location  to  be  a  potential  source  point  of  future  earthquakes  even  if  only  one  past  earthquake  occurred  near  that  point.  For  the  cases  analyzed  here,  CS  appears  to  predict  the  locations  of  future  earthquakes  just  as  well  as  GS  when  both  methods  are  applied  to  the  same  past  seismicity  catalog.  For  the  equivalent  percentage  of  map  area  covered  by  the  past  seismicity  forecast,  CS  predicts  some  earthquakes  to  occur  in  places  where  GS  doesn't.  CS  is  simpler  and  based  on  less  assumptions  than  GS.  GS  requires  smoothing  rates  seismicity,  declustering  the  earthquake  catalog  to  remove  dependent  events,  and  deciding  what  parameters  to  use  for  the  smoothing.  CS  does  not  require  any  of  these  complications,  yet  it  appears  to  forecast  the  locations  of  future  earthquakes  just  as  well  as  GS.  

    Presentation  Type:  Oral  

    Presenting  Author:  Alan  Kafka  

     

     

     

    21

  • 82nd  Annual  Meeting  of  the  Eastern  Section  of  the  Seismological  Society  of  America  October  18-‐19,  2010  

    CODA  Q  (QC)  ESTIMATES  IN  THE  NORTH  EAST  (NE)  INDIA  USING  LOCAL  EARTHQUAKES  

    KUMAR,  Mohapatra  Alok,  Research  Scholar,  Department  of  Geology  and  Geophysics,  Indian  Institute  of  Technology,  Kharagpur,  West  Bengal,  India.  Email:  [email protected];  KUMAR,  Mohanty  William,  Associate  Professor,  Department  of  Geology  and  Geophysics,  Indian  Institute  of  Technology,  Kharagpur,  West  Bengal,  India.  Email:[email protected]  

     Abstract:  The  quality  factor  of  coda  waves  (Qc)  has  been  estimated  for  the  Northeastern  (NE)  India,  using  the  digital  data  of  ten  local  earthquakes  from  April  2001  to  November  2002.  The  time  domain  coda  decay  method  of  a  single  back  scattering  model  is  used  to  calculate  frequency  dependent  values  of  Coda  Q  (Qc).  The  earthquakes  with  magnitude  range  3.8  to  4.9  have  been  used  for  estimation  Qc  at  six  central  frequencies  1.5,  3.0,  6.0,  9.0,  12.0,  and  18.0  Hz.  These  earthquakes  are  well  recorded  on  the  broad  band  seismic  observatory  of  NE  India  located  at  Cherrapunji,  Barapani  and  Bahiata.  In  the  present  work  the  Qc  value  of  local  earthquakes  are  estimated  to  understand  the  attenuation  characteristic  and  tectonic  activity  of  the  region.  Based  on  a  criteria  of  homogeneity  in  the  geological  characteristics  and  the  constrains  imposed  by  the  distribution  of  available  events  the  study  region  has  been  divided  into  three  zones  such  as  the  Tibetan  Plateau  Zone  (TPZ),  Bengal  Alluvium  and  Arakan-‐Yuma  Zone  (BAZ),  Sillong  Plateau  Zone  (SPZ).  It  follows  the  power  law  Qc=  Q0  (  f  /f0)  n  where,  Q0  is  the  quality  factor  at  the  reference  frequency  (1  Hz)  f0  and  n  is  the  frequency  parameter  which  varies  from  region  to  region.  The  mean  values  of  Qc  reveals  a  dependance  on  frequency,  varying  from  292.9  at  1.5  Hz  to  4880.1  at  18  Hz.  Average  frequency  dependent  relationship  Qc  values  obtained  of  the  NE  India  is  198  f  1.035,  while  this  relationship  varies  from  the  region  to  region  such  as,  TPZ  :  Qc=  226  f  1.11,  BAZ  :    Qc=  301  f    0.87,    SPZ  :  Qc=  126  f    0.85.  It  indicates  NE  India  is  seismicaly  active  but  comparing  of  all  zones  in  the  study  region  the  Shillong  Plateau  Zone,  Qc=  126  f    0.85  is  seismicaly  most  active.  Where  as  the  Bengal  Alluvium  and  Arakan-‐Yuma  Zone  are  less  active  and  out  of  three  the  Tibetan  Plateau  Zone  is  intermediate  active.  This  study  may  be  useful  for  the  seismic  hazard  assessment.    

     

    Key  words:  Coda  wave,  Lapse  time,  Single  backscattering  model  and  NE  India.  

    Presentation  Type:  Oral  

    Presenting  Author:  ALOK  KUMAR  MOHAPATRA  

     

    22

  • 82nd  Annual  Meeting  of  the  Eastern  Section  of  the  Seismological  Society  of  America  October  18-‐19,  2010  

     

    DEVELOPING  A  POST-EARTHQUAKE  COMMUNICATIONS  STRATEGY  FOR  SEISMOLOGISTS  

    LAMONTAGNE,  Maurice,  Natural  Resources  Canada,  615  Booth  Street,  Ottawa,  ON,  K1A  0Y3;  malamont_@_nrcan.gc.ca;  WYNNE,  Jane,  Natural  Resources  Canada,  Box  6000,  9860  West  Saanich  Road,  Sidney,  B.C.  V8L  4B2;  [email protected]  

     Abstract:  In  the  aftermath  of  a  largely  felt  earthquake,  it  is  the  traditional  role  of  seismologists  to  provide  factual  information  on  the  event  and  its  seismological  context.    In  this  paper,  we  suggest  that  seismologists  make  use  of  this  Teachable  Moment  opportunity  to  provide  earthquake  preparedness  and  mitigation  information  to  the  population.    If  the  earthquake  has  caused  damage,  the  message  conveyed  by  seismologists  should  be  adapted  to  meet  the  needs  of  the  population  in  the  epicentral  region  and  contact  should  be  maintained.    It  should  also  send  clear  and  positive  messages  that  develop  and  maintain  public's  trust.      With  this  strategy,  seismologists  can  help  attenuate  post-‐earthquake  public  anxiety,  relieving  unnecessary  anxiety  and  promoting  positive  preparation.    The  strategy  aims  at  empowering  the  population  in  the  epicentral  region  by  making  residents  active  rather  than  passive.  The  paper  will  present  examples  when  this  post-‐communications  strategy  was  used  following  the  year  2010  Haiti,  Chile  and  Val-‐des-‐Bois,  Qc,  earthquakes.    It  will  also  present  some  communications  challenges  that  seismologists  may  be  confronted  to,  such  as  the  possibility  of  strong  aftershocks,  unfounded  rumors,  and  multiple  sources  of  conflicting  information.  

    Presentation  Type:  Oral  

    Presenting  Author:  Maurice  Lamontagne  

     

     

     

     

     

     

     

    23

  • 82nd  Annual  Meeting  of  the  Eastern  Section  of  the  Seismological  Society  of  America  October  18-‐19,  2010  

     

    WAVE  FIELD  CONTINUATION  AND  DECOMPOSITION  FOR  PASSIVE  SEISMIC  IMAGING  UNDER  DEEP  UNCONSOLIDATED  SEDIMENTS  

    LANGSTON,  CHARLES  A.,    Center  for  Earthquake  Research  and  Information,  University  of  Memphis,  Memphis,  TN    38152-‐3050,  USA,  [email protected]  

     Abstract:  The  coastal  plains  of  the  central  and  eastern  United  States  contain  deep  sections  of  unconsolidated  to  poorly  consolidated  sediments.    These  sediments  mask  deeper  crustal  and  upper  mantle  converted  phases  in  teleseismic  receiver  functions  through  large  amplitude,  near-‐surface  reverberations,  and  also  amplify  ambient  noise  levels  to  generally  reduce  data  signal-‐to-‐noise  ratios.    Removing  shallow  sediment  wave  propagation  effects  is  critical  for  imaging  deep  lithospheric  structure.    A  propagator  matrix  formalism  is  used  to  downward  continue  the  wave  field  for  teleseismic  P  waves  into  the  mid-‐crust  in  order  to  separate  the  upgoing  S  wave  field  from  the  total  teleseismic  response  of  the  P  wave,  exposing  deep  Sp  conversions.    This  method  requires  that  the  earth  model  from  the  surface  to  the  reference  depth  be  known.  Teleseismic  P  wave  data  for  the  Memphis,  TN,  station  (MPH)  are  analyzed  using  a  reference  station  deconvolution  technique  to  produce  vertical  and  radial  P  wave  transfer  functions.    These  transfer  functions  are  modeled  using  a  simple  model  parameterization  for  sediment  structure  through  grid  inversion.    The  inversion  earth  model  is  incorporated  into  the  wave  field  continuation  and  decomposition  technique  to  estimate  the  up-‐going  S  wave  field  at  10  km  depth  in  the  crust.    Moho  and  possible  deeper  Ps  conversion  are  identified  with  this  process.  

    Presentation  Type:  Oral  

    Presenting  Author:  Charles  Langston  

     

     

     

     

     

     

    24

  • 82nd  Annual  Meeting  of  the  Eastern  Section  of  the  Seismological  Society  of  America  October  18-‐19,  2010  

     

    MICROTREMOR  SURVEYS  CROSSING  THE  CONNECTICUT  RIVER  VALLEY  

    LIU,  Lanbo,  WHITE,  Eric,  URIN,  Fatih,  and  ROHRBACH,  Eric,  Department  of  Civil  and  Environmental  Engineering,  University  of  Connecticut,  Storrs,  CT  06269,  USA,  [email protected]  

     Abstract:  For  assess  the  soil  property  and  the  thickness  of  the  sediments  in  the  greater  Hartford  area  we  have  conducted  a  number  of  microtremor  surveys  crossing  the  Connecticut  River  Valley  centered  at  Hartford,  Connecticut.  The  backbone  part  of  these  surveys  was  a  26-‐mile  long  profile  conducted  along  the  east-‐west  running  Route  44  from  the  town  of  Canton  on  the  Western  Highland  of  the  Valley  to  Bolton  Notch  on  the  Eastern  Highland  of  the  River  Valley.  Along  this  profile  there  are  10  sites  have  been  occupied,  with  a  station  spacing  of  approximately  2  miles.  The  instrument  used  to  acquire  the  data  is  the  Gulrap  3-‐component  broadband  seismometer  and  the  sampling  frequency  is  40  Hz.  At  each  site  the  observation  period  is  no  less  than  30  minutes  with  the  maximum  observation  time  at  Avon,  CT  for  more  than  2  hours.  In  addition,  we  have  also  carried  a  more  concentrated  microtremor  survey  on  the  Connecticut  River  bank  in  the  Haddam  Meadows  state  park  with  both  the  Gulrap  seismometer  and  a  48-‐channel  engineering  seismometer  with  4.5  Hz  vertical  and  horizontal  geophones.  The  preliminary  results  shows  the  thickest  sediments  located  east  of  the  Connecticut  River  in  the  town  of  East  Hartford.  The  concentrated  survey  at  Haddam  Meadows  has  shown  the  sediment-‐bedrock  depth  is  about  40  meter,  in  a  good  agreement  with  the  well-‐logging  information  on  the  same  site.  Microtremor  surveys  provide  an  economical  supplement  to  traditional  boring  and  coring  of  soil  samples  through  drilling,  an  optimistic  combination  of  the  microtremor  survey  and  traditional  drilling  will  provide  geotechnical  engineers  a  more  cost-‐effective  tool  in  engineering  site  characterization.  

    Presentation  Type:  Oral  

    Presenting  Author:  Lanbo  Liu  

     

     

     

     

    25

  • 82nd  Annual  Meeting  of  the  Eastern  Section  of  the  Seismological  Society  of  America  October  18-‐19,  2010  

    CRUSTAL  AND  MANTLE  STRUCTURE  AND  DYNAMICS  BENEATH  EASTERN  NORTH  AMERICA:  ANTICIPATING  THE  ARRIVAL  OF  USARRAY  

    LONG,  Maureen  D.,  Department  of  Geology  and  Geophysics,  Yale  University,  New  Haven,  CT,  06520;  BENOIT,  Margaret  H.,  Department  of  Physics,  The  College  of  New  Jersey,  Ewing,  NJ,  08628;  CHAPMAN,  Martin  C.,  KING,  Scott  D.,  Department  of  Geosciences,  Virginia  Polytechnic  Institute  and  State  University,  Blacksburg,  VA,  24061  

     Abstract:  The  migration  of  the  Transportable  Array  component  of  USArray  represents  an  unprecedented  opportunity  to  study  the  structure  and  evolution  of  the  eastern  US  continental  margin,  and  preparations  for  its  arrival  are  underway.  These  include  both  the  framing  of  important  science  questions  and  preparatory  studies  using  existing  seismic  data.  We  describe  two  recent  studies  that  have  investigated  the  structure  and  dynamics  of  the  eastern  US  in  advance  of  the  TA’s  arrival.  In  the  first  study,  we  used  data  from  permanent  stations  in  the  southeastern  US  to  investigate  the  character  of  mantle  flow  beneath  the  passive  margin.  A  variety  of  models  for  this  flow  field  have  been  proposed,  including  those  that  invoke  return  flow  from  the  sinking  Farallon  slab,  small-‐scale  convective  downwelling  at  the  edge  of  the  continental  root,  or  the  upwards  advective  transport  of  volatiles  from  the  deep  slab  through  the  upper  mantle.  We  used  shear  wave  splitting  observations  and  receiver  function  analysis  at  broadband  stations  to  test  these  proposed  scenarios.  SKS  observations  support  a  model  in  which  there  is  a  transition  in  the  geometry  of  mantle  flow  from  the  continental  interior  to  its  edge,  but  the  receiver  function  results  do  not  unequivocally  support  transition  zone  thickening  due  either  to  cold  downwelling  or  to  widespread  hydration.  In  the  second  study,  we  deployed  a  network  of  9  broadband  stations  in  a  linear  transect  from  coastal  North  Carolina  to  Ohio  from  2009-‐2010,  comprising  the  Test  Experiment  for  Eastern  North  America  (TEENA).  The  array  was  designed  to  probe  the  transitions  in  crustal  and  mantle  structure  and  dynamics  from  the  coast  across  the  Appalachian  orogenic  province.  We  find  evidence  for  sharp  transitions  in  both  crustal  thickness  and  shear  wave  splitting  behavior  across  the  array.  We  expect  that  the  necessary  data  to  further  constrain  models  for  crustal  evolution  and  mantle  dynamics  will  be  obtained  from  USArray  in  the  near  future.  

    Presentation  Type:  Oral  

    Presenting  Author:  Maureen  Long  

     

    26

  • 82nd  Annual  Meeting  of  the  Eastern  Section  of  the  Seismological  Society  of  America  October  18-‐19,  2010  

     

    UNCERTAINTY  IN  SEISMIC  RISK  ASSESSMENT  

    MALHOTRA,  Praveen  K.,  StrongMotions  Inc.,  Sharon,  MA  02067,  USA,  [email protected]  

     Abstract:  Uncertainty  is  an  integral  part  of  risk.  There  cannot  be  risk  without  uncertainty  but  there  can  be  uncertainty  without  risk.  There  is  uncertainty  in  every  step  of  seismic  risk  assessment:  (1)  uncertainty  in  time,  location  and  size  of  earthquakes;  (2)  uncertainty  in  ground  shaking  due  to  a  given  earthquake;  and  (3)  uncertainty  in  damage  for  a  given  level  of  ground  shaking.  All  sources  of  uncertainty  affect  the  risk.  While  it  is  important  to  consider  all  sources  of  uncertainty  in  risk  assessment,  it  is  equally  important  to  reduce  the  uncertainty  to  improve  the  value  of  risk  assessment.  This  presentation  will  demonstrate  the  relative  role  played  by  various  sources  of  uncertainty  and  discuss  ways  to  reduce  the  uncertainty  in  seismic  risk  assessment.  

    Presentation  Type:  Oral  

    Presenting  Author:  Praveen  Malhotra  

     

     

     

     

     

     

     

     

     

     

     

     

    27

  • 82nd  Annual  Meeting  of  the  Eastern  Section  of  the  Seismological  Society  of  America  October  18-‐19,  2010  

     

    GEOPHYSICAL  ANALYSIS  OF  A  POSSIBLE  ACTIVE  FAULT  OUTSIDE  THE  NEW  MADRID  SEISMIC  ZONE  (NMSZ),  WESTERN  TENNESSEE,  USA  

    MARTIN,  J.J.,  Department  of  Geology  and  Geophysics,  Boston  College,  Chestnut  Hill,  MA,  02467;  TUTTLE,  Martitia  P.,  M.  Tuttle  &  Associates,  128  Tibbetts  Lane,  Georgetown,  ME,  04548;  EBEL,  J.E.,  Weston  Observatory,  Boston  College,  391  Concord  RD,  Weston,  MA  02493  

     Abstract:  The  New  Madrid  Seismic  Zone  (NMZS)  is  famous  for  producing  the  1811-‐1812  earthquake  sequence,  including  some  of  the  largest  (M  >7.3)  intraplate  earthquakes  within  the  North  American  Plate.    In  addition,  there  is  geologic  evidence  that  the  NMSZ  generated  similar  earthquake  sequences  during  the  Late  Holocene.    During  the  1811-‐1812  earthquake  sequence,  as  well  as  three  prior  events,  strain  apparently  was  distributed  over  three  main  faults  within  the  NMSZ  –  the  New  Madrid  North  Fault,  the  Cottonwood  Grove  Fault,  and  the  Reelfoot  Fault.    There  is  geological  evidence  to  suggest  that  strain  has  been  released  in  earthquakes  along  other  faults  outside  the  NMSZ  proper.    During  a  previous  study,  a  possible  fault  southwest  of  Dyersburg,  TN  was  hypothesized  on  the  basis  of  unusual  ground  failure  exposed  in  the  cutbank  of  the  Obion  River.    In  the  summer  2009,  a  refraction  survey  was  conducted  in  the  vicinity  of  the  site  of  ground  failure  and  across  the  lineament  to  determine  if  there  is  any  near-‐surface  faulting.    However,  the  close  proximity  of  the  water  table  to  the  surface  led  to  inconclusive  results.    A  reflection  survey  was  subsequently  conducted  summer  2010,  the  goal  being  to  image  layers  beneath  near-‐surface  liquefied  layers.    Preliminary  analysis  of  this  data  indicates  possible  displacements  of  layers  at  depths  of  27  meters.    Displacement  in  these  layers  would  indicate  the  presence  of  a  potential  fault.    The  existence  of  such  a  fault  outside  of  the  NMSZ  would  have  implications  for  the  earthquake  source  model  for  this  region.  

    Presentation  Type:  Oral  

    Presenting  Author:  Jake  Martin  

     

     

     

     

     

    28

  • 82nd  Annual  Meeting  of  the  Eastern  Section  of  the  Seismological  Society  of  America  October  18-‐19,  2010  

    CORRELATING  NEAR-SOURCE  ROCK  DAMAGE  FROM  SINGLE-HOLE  EXPLOSIONS  TO  SEISMIC  WAVES  

    MARTIN,  Randolph,  III,  BOYD,  Peter,  New  England  Research,  Inc.,  331  Olcott  Drive,  Ste  L1,  White  River  Junction,  VT  05001,  STROUJKOVA,  Anastasia,  LEIDIG,  Mark,  LEWKOWICZ,  James,  BONNER,  Jessie,  Weston  Geophysical  Corp.,  181  Bedford  St,  Ste  1,  Lexington,  MA  02420,  LIU,  Lanbo,  Physics  Department,  University  of  Connecticut,  Storrs,  CT  06269  

     Abstract:  We  conducted  the  Vermont  Damage  Experiment.  Five  single-‐hole  explosions  with  yields  ranging  from  60.8  to  122.5  kg  were  detonated  in  homogeneous,  low  fracture  density  granite.    Explosives  with  different  velocities  of  detonation  (VOD),  including  black  powder  (0.53  km/sec),  heavy  ANFO  (4.8  km/sec),  and  COMP  B  (8.1  km/sec)  were  detonated  to  relate  the  VOD  to  seismic  wave  generation  and  extent  of  damage  zones  in  the  source  region.  The  goal  of  the  experiment  was  to  quantify  different  levels  of  rock  damage  around  the  source  and  relate  the  seismic  wave  generation  to  the  degree  and  distribution  of  damage  and  fragmentation.        

    Examination  of  the  surface  after  the  blast  found  no  radial  fractures  produced  by  the  COMP  B  explosions,  while  there  were  large  fractures  with  displacement  from  the  heavy  ANFO  and  Black  Powder  shots.  Examination  of  cores  showed  few  native  fractures  in  the  pre-‐shot  medium.  Post-‐blast  core  was  fragmented  in  the  vicinity  of  the  shot  point.  Large  scale  induced  fractures  developed  for  only  short  distances  below  the  shot  points.  Density  of  the  rock  in  the  vicinity  of  the  shot  point  decreased  after  the  blast  while  the  porosity  increased.  Laboratory-‐measured  acoustic  velocities  of  the  rock  decreased  by  greater  than  20%  near  the  shot  point.  

    Over  120  seismic  stations  were  deployed  to  record  the  explosions  at  distances  between  5  m  and  30  km.  Analysis  of  the  seismic  waves  showed  distinct  differences  in  amplitudes  between  the  three  shots  of  the  equal  yields,  with  the  heavy  ANFO  and  COMP  B  producing  larger  seismic  wave  amplitudes  than  the  Black  Powder  at  frequencies  greater  than  10  Hz.  The  slower  VOD  explosives  (e.g.,  ANFO  and  Black  Powder)  produced  larger  amplitudes  at  frequencies  below  8  Hz  than  COMP  B.    We  will  present  the  analysis  of  pre-‐  and  post-‐shot  corings  and  borehole  imaging  and  to  relate  the  microscopic  and  macroscopic  damage  caused  by  the  explosions  to  the  frequency-‐dependent  differences  in  seismic  wave  generation.  This  research  was  sponsored  by  the  Air  Force  Research  Laboratory.  

    Presentation  Type:  Poster  

    Presenting  Author:  Martin  Randolph  

    29

  • 82nd  Annual  Meeting  of  the  Eastern  Section  of  the  Seismological  Society  of  America  October  18-‐19,  2010  

    DID  THE  BELLS  RING  IN  BOSTON?  MYTH,  HISTORY  AND  THE  NEW  MADRID  EARTHQUAKES.  

    MORAN,  Nathan  K.  Center  for  Earthquake  Research  and  Information,  University  of  Memphis,  Memphis,  TN,  38152-‐3050  

     Abstract:  The  1811-‐1812  sequence  of  earthquakes  in  the  New  Madrid  seismic  zone  generated  much  attention  at  the  time  from  newspapers  and  other  sources  because  they  were  felt  as  far  as  the  New  England  states.      In  this  region  the  reports  of  local  effects  were  intermingled  with  accounts  from  closer  to  the  epicenter.  During  the  passage  of  time,  however,  the  accuracy  of  the  accounts  and  the  perception  of  events  have  become  blurry.      Modern  retellings  of  the  events  with  garbled  information  can  lead  to  a  mistaken  perception  of  how  the  earthquakes  occurred  and  cause  the  public  to  have  inaccurate  information..    Myths,  both  generated  at  the  time  and  due  to  modern  retellings,  can  obscure  the  real  impact  that  the  earthquakes  had  and  continue  to  have  on  seismology  and  other  fields  that  study  their  implications  in  the  modern  era.    Historical  research  methods  can  be  used  to  uncover  these  inaccuracies  and  help  better  inform  the  public  and  the  scientific  community.    The  story  of  the  bells  ringing  in  Boston  is  an  example  of  an  inaccurate  account  and  the  methods  used  to  uncover  it.      The  research  method  used  can  be  applied  to  other  accounts  to  test  their  validity.  

    The  use  of  historical  research  methods  can  uncover  further  evidence  about  the  earthquakes  and  even  more  crucially  help  to  judge  if  these  sources  can  be  used  reliably.    Source  information  from  the  historic  method  has  to  be  analyzed  for  its  accuracy  and  importance  before  its  use.    What  would  be  useful  to  a  seismologist  as  information  might  be  irrelevant  to  a  historian  or  the  reverse  might  be  true.      Basic  historic  research  methods  such  as  bibliographic  and  archival  searching  combined  with  databasing  of  information  can  yield  new  information  that  previously  would  have  been  undetected  or  misunderstood.    Historic  research  maxims  such  as  the  use  of  primary  source  material  that  was  created  as  soon  as  possible  after  the  event  in  question  can  help  to  sort  out  the  quality  of  information  and  its  utility.    Background  research  on  the  sources  uncovered  reveals  if  the  source  information  is  accurate  or  valid  to  the  event  being  researched.      Misuse  of  historic  research  can  lead  to  inaccurate  analysis  of  historic  seismic  events  based  on  incorrect  data.    If  historic  data  is  used  properly  and  with  a  contextual  basis,  it  then  can  be  a  solid  source  of  data  for  the  analysis  of  pre-‐instrumental  earthquakes.  

    Presentation  Type:  Oral  

    Presenting  Author:  Nathan  K.  Moran  

    30

  • 82nd  Annual  Meeting  of  the  Eastern  Section  of  the  Seismological  Society  of  America  October  18-‐19,  2010  

     

    THE  BOSTON  COLLEGE  EDUCATIONAL  SEISMOLOGY  PROJECT:  INVITING  STUDENTS  INTO  THE  WORLD  OF  SCIENCE  RESEARCH  

    MOULIS,  Anastasia  M.,  KAFKA,  Alan,  CAMPBELL,  Leslie,  EBEL,  John,  BIBEAU,  Marilyn,  Weston  Observatory,  Department  of  Geology  and  Geophysics,  Boston  College,  Weston,  MA,  02493;  BARNETT,  Michael,  Lynch  School  of  Education,  Boston  College,  Chestnut  Hill,  MA,  02467  

     Abstract:  The  Boston  College  Educational  Seismology  Project  (BC-‐ESP)  operates  an  ed�u�c�a�t�i�o�n�a�l�  �s�e�i�s�m�i�c�  �n�e�t�w�o�r�k�  �c�o�n�s�i�s�t�i�n�g�  �o�f�  �E�Q�1�  �a�n�d�  �A�S�1�  �s�e�i�s�m�o�g�r�a�p�h�s�  �l�o�c�a�t�e�d�  �a�t�  �K�-‐�1�2�  �s�c�h�o�o�l�s�  �i�n�  �M�a�s�s�a�c�h�u�s�e�t�t�s�.�  �E�Q�1�  �a�n�d�  �A�S�1�  �s�e�i�s�m�o�g�r�a�p�h�s�  �a�r�e�  �a�l�s�o�  �l�o�c�a�t�e�d�  �a�t�  �t�h�e�  �B�o�s�t�o�n�  �C�o�l�l�e�g�e�  �c�a�m�p�u�s�  �a�n�d�  �W�e�s�t�o�n�  �O�b�s�e�r�v�a�t�o�r�y�  �a�s�  �p�a�r�t�  �o�f�  �t�h�e�  �B�C�-‐�E�S�P�.�  �T�h�i�s�  �p�r�o�j�e�c�t�  �u�s�e�s�  �s�e�i�s�m�o�l�o�g�y�  �a�s�  �a�  �m�e�d�i�u�m�  �f�o�r�  �i�n�v�i�t�i�n�g�  �s�t�u�d�e�n�t�s�  �i�n�t�o�  �t�h�e�  �w�o�r�l�d�  �o�f�  �s�c�i�e�n�c�e�  �r�e�s�e�a�r�c�h�  �v�i�a�  �i�n�q�u�i�r�y�-‐�b�a�s�e�d�  �l�e�a�r�n�i�n�g�  �t�h�r�o�u�g�h�  �i�n�v�e�s�t�i�g�a�t�i�o�n�  �o�f�  �e�a�r�t�h�q�u�a�k�e�s�  �r�e�c�o�r�d�e�d�  �b�y�  �s�e�i�s�m�o�g�r�a�p�h�s�  �i�n�  �K�-‐�1�2�  �c�l�a�s�s�r�o�o�m�s�.�  �S�i�n�c�e�  �s�e�i�s�m�o�l�o�g�y�  �i�s�  �a�n�  �i�n�t�e�r�d�i�s�c�i�p�l�i�n�a�r�y�  �s�c�i�e�n�c�e�  �t�h�a�t�  �r�e�q�u�i�r�e�s�  �u�n�d�e�r�s�t�a�n�d�i�n�g�  �a�  �w�i�d�e�  �r�a�n�g�e�  �o�f�  �s�c�i�e�n�t�i�f�i�c�  �c�o�n�c�e�p�t�s�,�  �t�h�e�  �B�C�-‐�E�S�P�  �o�f�f�e�r�s�  �n�u�m�e�r�o�u�s�  �p�o�s�s�i�b�i�l�i�t�i�e�s�  �f�o�r�  �i�n�t�r�o�d�u�c�i�n�g�  �s�t�u�d�e�n�t�s�  �t�o�  �t�h�e�  �n�a�t�u�r�e�  �o�f�  �s�c�i�e�n�t�i�f�i�c�  �i�n�q�u�i�r�y�  �a�n�d�  �t�o�  �a�  �w�i�d�e�  �r�a�n�g�e�  �o�f�  �i�m�p�o�r�t�a�n�t�  �s�c�i�e�n�t�i�f�i�c�  �c�o�n�c�e�p�t�s�.�  �S�e�i�s�m�o�g�r�a�p�h�s�  �m�e�a�s�u�r�e�  �t�h�e�  �p�u�l�s�e�  �o�f�  �t�h�e�  �E�a�r�t�h�,�  �a�n�d�  �p�r�o�v�i�d�e�  �d�i�r�e�c�t�  �i�n�f�o�r�m�a�t�i�o�n�  �a�b�o�u�t�  �e�a�r�t�h�q�u�a�k�e  

    Presentation  Type:  Poster  

    Presenting  Author:  Anastasia  Moulis  

     

     

     

     

     

     

     

     

     

    31

  • 82nd  Annual  Meeting  of  the  Eastern  Section  of  the  Seismological  Society  of  America  October  18-‐19,  2010  

     

    THE  NEW  MADRID  EARTHQUAKES  BICENTENNIAL:  A  TEACHABLE  MOMENT?  

    NEW  MADRID  EARTHQUAKE  BICENTENNIAL  EXECUTIVE  COMMITTEE,  co-‐chairs:  CRAMER,  Chris  H.,  CERI,  University  of  Memphis,  Memphis,  38152-‐3050,  USA,  [email protected],  and  WILKINSON,  James  M.,  Central  US  Earthquake  Consortium,  Memphis,  38118,  USA,  [email protected]  

     Abstract:  The  bicentennial  of  the  1811-‐1812  New  Madrid  sequence  of  M7  earthquakes  is  an  opportunity  for  public  outreach  and  education  as  well  as  for  an  advancement  of  scientific  and  engineering  knowledge.    Several  agencies  and  organizations  are  planning  public  outreach  and  education  events  in  addition  to  scientific  and  engineering  conferences  to  highlight  the  New  Madrid  Bicentennial  (NMB).    Over  the  last  two  years  the  Central  U.S.  Earthquake  Consortium  (CUSEC),  the  U.S.  Geological  Survey  (USGS),  and  the  Center  for  Earthquake  Research  and  Information  (CERI)  at  the  University  of  Memphis  have  been  encouraging  New  Madrid  Bicentennial  events  and  participation  by  the  public,  governments,  universities,  and  the  private  sector.    Public  outreach  and  education  activities  include  townhall  meetings  on  earthquake  hazard,  earthquake  awareness  weeks,  community  participation  in  a  Great  Central  U.S.  ShakeOut,  and  production  of  video  presentations  on  the  New  Madrid  earthquakes.    Government  agencies  involved  with  emergency  management  on  the  local,  state,  and  national  levels  are  involved  with  earthquake  response  preparations  and  a  national  level  exercise  through  CUSEC  and  the  Federal  Emergency  Management  Agency  (FEMA).    Scientific  and  engineering  research  is  encouraged  by  the  USGS  via  NEHRP  grants,  by  the  Earthquake  Engineering  Research  Institute  (EERI)  via  a  New  Madrid  Scenario  project  involving  earthquake  effects  on  participating  central  U.S.  communities,  and  by  the  National  Science  Foundation’s  Earthscope  USArray  project  crossing  the  country.    Businesses  are  being  encouraged  to  prepare  for  a  major  New  Madrid  earthquake  through  business  continuity  workshops  in  addition  to  public  outreach  efforts.    National  scientific  and  engineering  conferences  are  planned  for  the  SSA  annual  meeting  in  Memphis,  TN  in  April  2011,  including  a  public  forum,  for  the  Eastern  Section  SSA  annual  meeting  in  Little  Rock,  AR  in  October  2011,  and  for  the  National  Earthquake  Conference  (NEC)  and  EERI  joint  meeting  in  Memphis,  TN  in  March  2012.    Please  visit  the  NMB  website  at  newmadrid2011.org  for  more  information  and  updates.  

    Presentation  Type:  Oral  

    Presenting  Author:  Chris  Cramer  

    32

  • 82nd  Annual  Meeting  of  the  Eastern  Section  of  the  Seismological  Society  of  America  October  18-‐19,  2010  

     

    LINEAR  SITE-EFFECT  VARIATION  FOR  HIGHER-FREQUENCY  (>  2HZ)  GROUND  MOTIONS  IN  SOUTHWESTERN  INDIANA,  CENTRAL  UNITED  STATES  

    PASCHALL,A.M.,Dept.  of  Earth  and  Environmental  Sciences,  University  of  Kentucky,101  Slone  Building,Lexington,KY  40506,  [email protected];WOOLERY,  E.W.,Dept.  of  Earth  and  Environmental  Sciences,  University  of  Kentucky,101  Slone  Building,Lexington,  KY  40506,  [email protected];  WANG,Z.,Kentucky  Geological  Survey,University  of  Kentucky,  228  MMRB,Lexington,  KY  40506,[email protected];SCHAEFER,J.,U.S.  Army  Corps  of  Engineers,Louisville  District,Louisville,  KY  40201,  [email protected];  STREET,R.L.,13813  Werth  Rd,Hermosa,  SD  57702,[email protected]  

     Abstract:  The  April  18,  2008  M5.2  Mt.  Carmel,  Illinois  earthquake  and  its  aftershocks  (M  4.6,  4.0,  and  3.7)  triggered  strong-‐motion  stations  along  the  lower  Ohio  River  and  tens  of  blast  monitors  in  Indiana,  Illinois,  and  Kentucky  coalfield  region.  In  this  study  the  observed  peak  horizontal  ground  motions  in  the  area  of  southwestern  Indiana  were  used  to  constrain  empirical  estimates  and  1-‐D  linear  approximations  of  the  site  effect.  An  observed  amplification  factor  at  each  site  was  determined  by  comparing  the  recorded  free-‐field  motion  and  current  predictive  relationships  for  the  eastern  and  central  United  States.  Dyna�m�i�c�  �s�i�t�e�  �p�r�o�p�e�r�t�i�e�s�  �f�o�r�  �t�h�e�  �n�o�n�-‐�l�i�t�h�i�f�i�e�d�  �s�e�d�i�m�e�n�t�s�  �a�n�d�  �b�e�d�r�o�c�k�  �w�e�r�e�  �m�e�a�s�u�r�e�d�  �u�s�i�n�g�  �s�h�e�a�r�-‐�w�a�v�e�  �(�S�H�)�  �r�e�f�r�a�c�t�i�o�n�/�r�e�f�l�e�c�t�i�o�n�  �s�u�r�v�e�y�s�.�  �A�l�t�h�o�u�g�h�  �1�-‐�D�  �t�r�a�n�s�f�e�r�  �f�u�n�c�t�i�o�n�  �c�a�l�c�u�l�a�t�i�o�n�s�  �d�i�d�  �n�o�t�  �u�n�i�v�e�r�s�a�l�l�y�  �c�o�r�r�e�l�a�t�e�  �w�i�t�h�  �t�h�e�  �o�b�s�e�r�v�a�t�i�o�n�s�,�  �r�e�s�u�l�t�s�  �i�n�d�i�c�a�t�e�  �t�h�a�t�  �t�h�e�y�  �b�e�t�t�e�r�  �a�p�p�r�o�x�i�m�a�t�e�d�  �t�h�e�  �r�e�c�o�r�d�e�d�  �o�b�s�e�r�v�a�t�i�o�n�s�  �t�h�a�n�  �t�h�e�  �e�m�p�i�r�i�c�a�l�  �c�o�e�f�f�i�c�i�e�n�t�s�.�  �S�o�u�r�c�e�s�  �o�f�  �t�h�e�  �v�a�r�i  

    Presentation  Type:  Poster  

    Presenting  Author:  Anthony  Paschall  

     

     

     

     

     

     

    33

  • 82nd  Annual  Meeting  of  the  Eastern  Section  of  the  Seismological  Society  of  America  October  18-‐19,  2010  

     

    THE  SOUTHERN  APPALACHIANS:  COMPLEX  LITHOSPHERIC  STRUCTURE  ASSOCIATED  WITH  MULTIPLE  WILSON  CYCLES  

    POWELL,  Christine,  Center  for  Earthquake  Research  and  Information,  University  of  Memphis,  Memphis,  TN  38152;  VLAHOVIC,  Gordana,  ARROUCAU,  Pierre,  Department  of  Environmental,  Earth  and  Geospatial  Sciences,  North  Carolina  Central  University,  Durham,  NC  27701;  CHAPMAN,  Martin,  Department  of  Geosciences,  Virginia  Tech,  Blacksburg,  VA  24061  

     Abstract:  The  Southern  Appalachians  record  a  rich  tectonic  history  covering  two  complete  Wilson  cycles.    Of  particular  interest  is  the  convergence  of  the  granite-‐rhyolite,  Grenville,  Ouachita,  Appalachian,  and  Mesozoic-‐Tertiary  lithospheres.    This  zone  of  convergence  is  obvious  on  the  magnetic  map  of  North  America  and  contains  a  wealth  of  information  concerning  the  construction  of  the  North  American  continent.    The  region  covering  parts  of  Alabama,  Georgia,  and  North  and  South  Carolina  has  experienced  multiple  continental  convergences,  suturing,  and  rifting  episodes.    Of  equal  interest  is  the  origin  of  another  obvious  feature  on  the  magnetic  map,  the  New  York  –  Alabama  (NY-‐AL)  magnetic  lineament.    The  magnetic  gradient  defining  the  NY-‐AL  is  particularly  well  defined  in  eastern  Tennessee  where  it  appears  to  control  the  trend  of  the  active  eastern  Tennessee  seismic  zone  (ETSZ).  The  high  rate  of  spatially  concentrated  earthquake  occurrence  in  the  ETSZ,  compared  to  most  of  the  rest  of  the  eastern  United  States,  will  offer  a  unique  opportunity  for  resolving  lithospheric  structure,  and  should  make  the  ETSZ  a  high  priority  target.  Detailed,  3D  Vp  and  Vs  models  for  the  upper  and  middle  crust  already  exist  for  the  ETSZ.    Joint  inversions  of  magnetic  and  gravity  fields  are  providing  further  insight  into  the  origin  of  the  NY-‐AL  magnetic  anomaly  and  other  potential  field  anomalies  associated  with  basement  features.    We  suggest  that  the  passage  of  the  EarthScope  Transportable  Array  coupled  with  FlexArray  deployments  will  provide  the  regional  array  capability  to  properly  interpret  the  complex  basement  features  illustrated  in  the  magnetic  anomaly  map  and  investigate  deeper  lithospheric  structure  associated  with  the  edge  of  the  continent.  

    Presentation  Type:  Oral  

    Presenting  Author:  Christine  Powell  

     

     

    34

  • 82nd  Annual  Meeting  of  the  Eastern  Section  of  the  Seismological  Society  of  America  October  18-‐19,  2010  

     

    NEW  EARTHQUAKE  RELOCATIONS  FOR  THE  NEW  MADRID  SEISMIC  ZONE  

    POWELL,  Christine,  DESHON,  Heather,  Center  for  Earthquake  Research  and  Information,  University  of  Memphis,  Memphis,  TN,  38152  

     Abstract:  Earthquakes  in  the  Cooperative  New  Madrid  Seismic  Network  catalog  for  the  period  1996-‐2008  are  relocated  using  3D  Vp  and  Vs  models  determined  using  the  inversion  method  tomoFDD.    The  dataset  contains  the  most  accurate  New  Madrid  seismic  zone  (NMSZ)  earthquake  locations  to  date  and  delineates  interesting  fault  complexity  associated  with  the  four  major  arms  of  NMSZ  seismicity.    The  major  arms  include  two  NE  trending,  right-‐lateral  strike-‐slip  faults  (the  Cottonwood  Grove  –  Blytheville  Arch  (CGBA)  fault  and  the  northern  arm)  offset  by  a  NW  trending  reverse  fault  (Reelfoot  fault  (RF)).    A  fourth  arm  trends  EW  from  the  northern  termination  of  the  RF.    The  simple  structural  model  of  two  strike-‐slip  faults  offset  by  a  left-‐stepping  reverse  fault  is  complicated  by  the  extension  of  the  RF  south  of  its  intersection  with  the  CGBA  and  by  the  presence  of  the  EW  trending  arm.    Our  relocations  reveal  distinct  differences  between  the  northern  portion  of  the  RF  (north  of  the  CGBA)  and  the  southern  portion.    In  the  northern  portion,  earthquakes  occur  in  distinct  clusters  that  delineate  a  SW  dipping  fault  plane  extending  from  about  6  to  14  km  depth.    Two  distinct,  parallel  clusters  of  earthquakes  are  often  observed  indicating  the  presence  of  parallel  fault  planes.    Northern  RF  seismicity  is  associated  with  low  Vp/Vs  ratios  produced  by  low  Vp  and  high  Vs  anomalies.    The  earthquakes  de-‐cluster  markedly  at  the  probable  intersection  of  the  CGBA  with  the  RF.    South  of  the  intersection,  seismicity  defining  the  RF  becomes  shallower  and  more  dispersed.      This  portion  of  the  southern  RF  is  associated  with  swarm  activity  and  low  Vp  and  Vs  anomalies.      The  northern  arm  of  seismicity  consists  of  two  parallel,  near-‐vertical  faults.    Earthquake  relocations  and  associated  velocity  anomalies  are  discussed  in  the  context  of  a  seismotectonic  model  for  the  NMSZ.  

    Presentation  Type:  Oral  

    Presenting  Author:  Christine  Powell  

     

     

     

     

    35

  • 82nd  Annual  Meeting  of  the  Eastern  Section  of  the  Seismological  Society  of  America  October  18-‐19,  2010  

     

    SEISMOLOGY  AT  SUNY  POTSDAM,  NY  

    REVETTA,  Frank  A.,  VALENTI,  Peter  V.,  Department  o