deliang chen regional climate group earth sciences centre gothenburg university sweden...

33
Deliang Chen Regional Climate Group Earth Sciences Centre Gothenburg University Sweden www.gvc.gu.se\ngeo\deliang\deliang.htm Data for impact modelling in Data for impact modelling in Sweden: Experiences with Sweden: Experiences with empirical downscaling and use empirical downscaling and use of weather generator of weather generator Acknowledgement: Christine Achberger, Cecilia Hellström Yaoming Liao, Aristita Busuoic, Youmin Chen, Xiaodong Li Tinghai Ou, Klaus Wyser, Lin Tang and SWECLIM colleagues

Upload: caitlin-harriet-wood

Post on 02-Jan-2016

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Deliang Chen Regional Climate Group Earth Sciences Centre Gothenburg University Sweden \ngeo\deliang\deliang.htm Data for impact modelling

Deliang ChenRegional Climate GroupEarth Sciences CentreGothenburg UniversitySwedenwww.gvc.gu.se\ngeo\deliang\deliang.htm

Data for impact modelling in Sweden: Data for impact modelling in Sweden: Experiences with empirical downscaling Experiences with empirical downscaling

and use of weather generatorand use of weather generator

Acknowledgement: Christine Achberger, Cecilia HellströmYaoming Liao, Aristita Busuoic, Youmin Chen, Xiaodong Li

Tinghai Ou, Klaus Wyser, Lin Tang and SWECLIM colleagues

Page 2: Deliang Chen Regional Climate Group Earth Sciences Centre Gothenburg University Sweden \ngeo\deliang\deliang.htm Data for impact modelling

Outline

•Statistical versus dynamic downscaling •What we did and learnt?•Requirements from the impact community•Our answers to the requirements

Page 3: Deliang Chen Regional Climate Group Earth Sciences Centre Gothenburg University Sweden \ngeo\deliang\deliang.htm Data for impact modelling

Main downscaling approaches:

• Dynamical (higher resolution models)

• empirical/statistical downscaling processes

• statistical/dynamical downscaling processes

A

D

D

I

N

G

V

A

L

U

E

Page 4: Deliang Chen Regional Climate Group Earth Sciences Centre Gothenburg University Sweden \ngeo\deliang\deliang.htm Data for impact modelling

• Dynamic downscaling builds on physically based models for both global and regional scales

• Statistical downscaling relies on GCM for large scale and statistical models for regional and/or local scales. Dynamic downscaling still has problems with today’s climate! Can deal with nonstandard or difficult (e.g. Sea ice) variables. Can handle a variety of different scales. Less problematic with bias (because of data-based). Fast ->large number of non-time slice scenarios However, more risky with extrapolations! Needs extensive data!

Dynamic versus statistical downscaling

Page 5: Deliang Chen Regional Climate Group Earth Sciences Centre Gothenburg University Sweden \ngeo\deliang\deliang.htm Data for impact modelling

What did we during last 5 years (SWECLIM time)?

A. On the dynamic side, a regional climate model (Rossby Center Model), together with two GCMs (HadCM3 and ECHAM4), has been used to get a number of regional (44*44 km) scenarios for Nordic countries;

B. Successful statistical models have been developed for monthly temperature and precipitation for Swedish stations. These model have been used to create MONTHLY scenarios for a number of GCM and emission scenarios.

Page 6: Deliang Chen Regional Climate Group Earth Sciences Centre Gothenburg University Sweden \ngeo\deliang\deliang.htm Data for impact modelling

1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7January temperature in SW Sweden

R=0.84

N=122

observation

reconstruction

Tem

pera

ture

ano

mal

y (o

C)

Year

Circulation is the dominating forcing of interannual and longer scale varabilitities

Page 7: Deliang Chen Regional Climate Group Earth Sciences Centre Gothenburg University Sweden \ngeo\deliang\deliang.htm Data for impact modelling

1 2 3 4 5 6 7 8 9 10 11 12

20

40

60

80

100

120 obs SDH DDH HadCM2

Pre

cip

itatio

n (

mm

/mo

nth

)

Month

1 2 3 4 5 6 7 8 9 10 11 1220

40

60

80

100

120 obs SDE DDE ECHAM4

Improved seasonal cycles by downscalings (SD,DD)

Vänersborg, One station in southern Sweden

Page 8: Deliang Chen Regional Climate Group Earth Sciences Centre Gothenburg University Sweden \ngeo\deliang\deliang.htm Data for impact modelling

The maximum sea ice over the Baltic can be realistically predicted by a statistical model (Omstedt & Chen, 2002)

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995

0

50

100

150

200

250

300

350

400

450

Minimum

Mean

Extremelysevere

observation numerical ice-ocean model statistical model

Max

imum

ice

exte

nt (

103

km2 )

Year

Page 9: Deliang Chen Regional Climate Group Earth Sciences Centre Gothenburg University Sweden \ngeo\deliang\deliang.htm Data for impact modelling

Future changes based on the statistical downscaling model driven by 17 GCMs

from CMIP2 (Chen et al., 2003)

region1 region2 region3 region4 all stn

-30

-20

-10

0

10

20

30

40

cha

ng

e in

pre

cip

itatio

n (

%)

0102030405060708091011121314151617

ANN

region1 region2 region3 region4 all stn-20

-15

-10

-5

0

5

10

15

20

25

30

cha

ng

e in

pre

cip

itatio

n (

%)

ANN

Page 10: Deliang Chen Regional Climate Group Earth Sciences Centre Gothenburg University Sweden \ngeo\deliang\deliang.htm Data for impact modelling

Meeting needs of impact community

• Usually high spatial resolution (LRA,WG)

• Usually high temporal resolution (WG)

• Tailoring of information (WG)

• Capability for risk analysis and decisionmaking under uncertainty (WG)

• Transparency of scenarios

• Practical and useful tools (WG)

Page 11: Deliang Chen Regional Climate Group Earth Sciences Centre Gothenburg University Sweden \ngeo\deliang\deliang.htm Data for impact modelling

Our answer to the requirements of Impact community: LRA & WG

LRA=Lapse Rate ApproachWG=Weather Generator

Page 12: Deliang Chen Regional Climate Group Earth Sciences Centre Gothenburg University Sweden \ngeo\deliang\deliang.htm Data for impact modelling

LRA (local correction based on topography): observation or modelling based

• Observation based method uses observations at different sites in the area to determine the topography dependence

• Modelling based method uses a high resolution numerical model to simulate meteorological variables at different sites and the results are then used in determining the topography dependence

Page 13: Deliang Chen Regional Climate Group Earth Sciences Centre Gothenburg University Sweden \ngeo\deliang\deliang.htm Data for impact modelling

An Example: The temperature stations in Abisko area

Name St. no. Latitude (oN) Longitude (oE) Height(m) Nat_no

RITSEM 1 67.73 17.47 521 17792

AKTSE 2 67.15 18.30 530 17874

ALUOKTA 3 67.32 18.88 385 17879

TARFALA 4 67.90 18.62 1140 17897

ÅLLOLUOKTA 5 67.13 19.50 370 17974

NIKKALUOKTA 6 67.85 19.03 470 17995

GÄLLIVARE 7 67.13 20.67 365 18073

GÄLLIVARE FLYG. 8 67.15 20.83 312 18074

MALMBERGET 9 67.17 20.67 373 18075

KIRUNA FLYGPLATS 10 67.82 20.33 459 18094

ABISKO-AUT 11 68.35 18.82 388 18879

ABISKO 12 68.35 18.82 388 18880

KATTERJÄKK 13 68.42 18.17 500 18882

RIKSGRÄNSEN 14 68.43 18.13 508 18883

TORNETRÄSK 15 68.22 19.72 393 18976

KATTUVUOMA 16 68.28 19.90 355 18978

Page 14: Deliang Chen Regional Climate Group Earth Sciences Centre Gothenburg University Sweden \ngeo\deliang\deliang.htm Data for impact modelling

Lapse rate of temperature

200 400 600 800 1000 1200 1400

6

8

10

12

14

Y =15.0-0.0074 X

R2=0.79

JulyT

empe

ratu

re (

o C)

Height (m)

Page 15: Deliang Chen Regional Climate Group Earth Sciences Centre Gothenburg University Sweden \ngeo\deliang\deliang.htm Data for impact modelling

The precipitation stations in the area Name St. no. Latitude (oN) Longitude (oE) Height(m) Nat_no

RITSEM 1 67.73 17.47 521 17792

AKTSE 2 67.15 18.30 530 17874

ALUOKTA 3 67.32 18.88 385 17879

ÅLLOLUOKTA 5 67.13 19.50 370 17974

PUOLTSA 6 67.80 19,87 465 17994

NIKKALUOKTA 7 67.85 19.03 470 17995

KAITUM 8 67.53 20.12 490 18001

GÄLLIVARE 7 67.13 20.67 365 18073

MALMBERGET 9 67.17 20.67 373 18075

LADNIVAARA 10 67.27 20.27 460 18078

KILLINGI 11 67.52 20.28 485 18086

KIRUNA FLYGPLATS 12 67.82 20.33 459 18094

BJöRKLIDEN 13 68.38 18.68 360 18868

ABISKO 14 68.35 18.82 388 18880

KATTERJÄKK 15 68.42 18.17 500 18882

RIKSGRÄNSEN 16 68.43 18.13 508 18883

BERGFORS 17 68,15 19,80 480 18974

TORNETRÄSK 18 68.22 19.72 393 18976

KATTUVUOMA 19 68.28 19.90 355 18978

KUMMAVUOPIO 20 68.90 20.87 465 19097

Page 16: Deliang Chen Regional Climate Group Earth Sciences Centre Gothenburg University Sweden \ngeo\deliang\deliang.htm Data for impact modelling

Precipitation and height

300 350 400 450 500 550200

400

600

800

1000

Y =4992.62015-21.70059 X+0.02585 X2

R2=0.26

AnnualP

reci

pita

tion

(mm

/yea

r)

Height (m)

Page 17: Deliang Chen Regional Climate Group Earth Sciences Centre Gothenburg University Sweden \ngeo\deliang\deliang.htm Data for impact modelling

Statistical Downscaling to Enhance Understanding at Local Scales

Source: A Study at the Abisko Laboratory of Net Primary Production under Changing Climate Conditions

Page 18: Deliang Chen Regional Climate Group Earth Sciences Centre Gothenburg University Sweden \ngeo\deliang\deliang.htm Data for impact modelling

Ongoing work on WGWG=Stochastic model:basic idea

given slow set of statistics (monthly means andstandard deviations, Y, from statistical or dynamical prediction),generate the high frequency variability of theweather (y) based on auto- and cross correlation:

=> y(t) = OT[Y, y(t-1)]

where OT is the time operator.

Page 19: Deliang Chen Regional Climate Group Earth Sciences Centre Gothenburg University Sweden \ngeo\deliang\deliang.htm Data for impact modelling

Weather GeneratorsPrecipitation Process

Occurrence Amount

Non-precipitation variables

Maximum temperatureMinimum temperature

Solar radiation

Model calibration (observation)

Synthetic data generation

Climate scenarios

GCM statistics

How a WG works?

Page 20: Deliang Chen Regional Climate Group Earth Sciences Centre Gothenburg University Sweden \ngeo\deliang\deliang.htm Data for impact modelling

Other meteorological variables

Condition the statistics of the daily variables (typically maximum/ minimum temperatures and solar radiation) on occurrence of precipitation.

In the classic WGEN model, multiple variables are modelled simultaneously with auto-regression:

( ) [ ] ( ) [ ] ( )tε+1-t=t BzAz

Where z(t) are normally distributed values for today’s nonprecipitation variables, z(t-1) are corresponding values for the previous day, and [A] and [B] are K K matrices of parameters, and (t) is white-noise forcing.

Page 21: Deliang Chen Regional Climate Group Earth Sciences Centre Gothenburg University Sweden \ngeo\deliang\deliang.htm Data for impact modelling

Other meteorological variables (cont.)

The z(t) are transformed to weather variables dependent on rainfall occurrence:

( )( ) ( )

( ) ( )tztσ+μ

tztσ+μ{=tT

kk,1k,1

kk,0k,0

k

if day t is dry

if day t is wet

where each Tk is any of the nonprecipitation variables, k,0 and k,0 are its mean and standard deviation for dry days, and k,1 and k,1 are its mean and standard deviation for wet days.

Seasonal dependence of the means and standard deviations is usually achieved through Fourier harmonics (i.e., sine and cosines).

Page 22: Deliang Chen Regional Climate Group Earth Sciences Centre Gothenburg University Sweden \ngeo\deliang\deliang.htm Data for impact modelling

Weather Generators

Area

Grid Box

Calibrate weather generator using area-average weather

Calibrate weather generator for each individual station within area

Station parameter set

Calculate changes in parameters from grid box data

Area parameter set Apply changes in parameters derived from difference between area and grid box parameter sets to individual station parameter files; generate synthetic data for scenario

Spatial Downscaling->high spatial resolution!

Page 23: Deliang Chen Regional Climate Group Earth Sciences Centre Gothenburg University Sweden \ngeo\deliang\deliang.htm Data for impact modelling

Weather GeneratorsTemporal Downscaling->high temporal resolution! – Use of monthly scenarios

Parameter file containing statistical characteristics of observed station data

Observed station data

WG

Monthly scenario information from GCM, RCM or SD

Generate daily weather data corresponding to the monthly scenario

Page 24: Deliang Chen Regional Climate Group Earth Sciences Centre Gothenburg University Sweden \ngeo\deliang\deliang.htm Data for impact modelling

Weather Generators

ADVANTAGES• the ability to generate time series of unlimited

length• opportunity to obtain representative weather

time series in regions of data sparsity, by interpolating observed parameter data

• ability to alter the WG’s parameters in accordance with scenarios of future climate change - changes in variability as well mean changes

Fundamental AssumptionThe statistical correlations between climatic variables derived from observed data are assumed to be valid

under a changed climate.

Page 25: Deliang Chen Regional Climate Group Earth Sciences Centre Gothenburg University Sweden \ngeo\deliang\deliang.htm Data for impact modelling

Weather Generators

Challenges

• seldom able to describe all aspects of climate accurately, especially persistent events, rare events and decadal- or century-scale variations

• designed for use, independently, at individual locations and few account for the spatial correlation of climate

Page 26: Deliang Chen Regional Climate Group Earth Sciences Centre Gothenburg University Sweden \ngeo\deliang\deliang.htm Data for impact modelling

A weather generator following Richardson (1981)

• P (W |D) = PWD

• P (D |D) =PDD= 1-PWD

• P (D |W) = PDW

• P (W |W) = PWW=1-PDW

0,,

/exp/ƒ

1

Page 27: Deliang Chen Regional Climate Group Earth Sciences Centre Gothenburg University Sweden \ngeo\deliang\deliang.htm Data for impact modelling

Daily weather generation (Markov chain)

Source: Wilks and Wilby (1999)

Not yet!

Page 28: Deliang Chen Regional Climate Group Earth Sciences Centre Gothenburg University Sweden \ngeo\deliang\deliang.htm Data for impact modelling

1 2 1 4 1 6 1 8 2 0 2 2 2 4

5 6

5 8

6 0

6 2

6 4

6 6

6 8

0 . 5

0 . 5 5

0 . 6

0 . 6 5

0 . 7

0 . 7 5

( e )

1 2 1 4 1 6 1 8 2 0 2 2 2 4

5 6

5 8

6 0

6 2

6 4

6 6

6 8

0 . 2 6

0 . 3 1

0 . 3 6

( e )

PWW PWD

Page 29: Deliang Chen Regional Climate Group Earth Sciences Centre Gothenburg University Sweden \ngeo\deliang\deliang.htm Data for impact modelling

1 2 1 4 1 6 1 8 2 0 2 2 2 4

5 6

5 8

6 0

6 2

6 4

6 6

6 8

0 . 7 2

0 . 8 2

0 . 9 2

1 . 0 2

1 . 1 2

( e )

1 2 1 4 1 6 1 8 2 0 2 2 2 4

5 6

5 8

6 0

6 2

6 4

6 6

6 8

2 . 5

3 . 5

4 . 5

5 . 5

6 . 5

7 . 5

( e )

α β

Page 30: Deliang Chen Regional Climate Group Earth Sciences Centre Gothenburg University Sweden \ngeo\deliang\deliang.htm Data for impact modelling

A 5 year simulation for Vännesborg

365 730 1095 1460 18250

5

10

15

20

25

30

35

40

45

Pre

cip

ita

tio

n (

mm

/da

y)

Number of day

Page 31: Deliang Chen Regional Climate Group Earth Sciences Centre Gothenburg University Sweden \ngeo\deliang\deliang.htm Data for impact modelling

Stochastic feature of rain simulation

7武汉站 月份逐日降水模拟

0

20

40

60

80

100

120

140

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 317日期( 月)

mm降

水量

()

Daily precipitation at a station

Date of a month

Precipitation (mm

)

Page 32: Deliang Chen Regional Climate Group Earth Sciences Centre Gothenburg University Sweden \ngeo\deliang\deliang.htm Data for impact modelling

Simulated versus observed monthly precipitation at a Swedish site

y = 0. 9991x

R2 = 0. 989

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700

实测值

模拟

Observation (mm)

Sim

ulation (mm

)

Page 33: Deliang Chen Regional Climate Group Earth Sciences Centre Gothenburg University Sweden \ngeo\deliang\deliang.htm Data for impact modelling

Future

• Develop the WG further by including more variables and by testing new formulations such as higher order Markov chain, conditional probability on circulation.

• Continue cooperating with DNMI on development and application of the WG in Norway.