degenerations of k¨ahlerian k3 surfaces with finite ... · ka¨hlerian k3 surfaces with finite...

94
arXiv:1608.04373v2 [math.AG] 2 Nov 2016 Degenerations of K¨ahlerian K3 surfaces with finite symplectic automorphism groups. III Viacheslav V. Nikulin Abstract Similarly to our papers [19], [20], we classify degenerations of codimension 2 and higher of K¨ ahlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension one. 1 Introduction Similarly to our papers [19], [20], we classify degenerations of codimension 2 and higher of ahlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1. For readers convinience, in Section 3, we give the Table 1 from [20] which gives the main classification of such degenerations of codimension 1. In this variant of the paper, we do classification of degenerations of codimension 2 for finite symplectic automorphism groups of order 6. For groups of order > 8 and the group Q 8 of order 8, it is done in Section 3. It has Table 2 which contains classification of types and lattices S of such degenerations. They are main invariants of degenerations. Table 3 of Section 3 gives markings of such degenerations by Niemeier lattices N j in notations of [18], [19] and [20]. For such groups, the codimension of degenerations is less or equal to 4, and for the most of them it is less or equal to 3. We consider remaining difficult groups D 8 and (C 2 ) 3 of order 8 in Sections 4 and 5. There are too many cases for these difficult groups, and it is better to consider them separately. We hope to consider remaining groups D 6 , C 4 ,(C 2 ) 2 , C 3 , C 2 and give more results and details in further variants of the paper and further publications. * With support by Russian Sientific Fund N 14-50-00005. 1

Upload: others

Post on 15-Jan-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

arX

iv:1

608.

0437

3v2

[m

ath.

AG

] 2

Nov

201

6

Degenerations of Kahlerian K3 surfaces with finitesymplectic automorphism groups. III∗

Viacheslav V. Nikulin

Abstract

Similarly to our papers [19], [20], we classify degenerations of codimension 2 andhigher of Kahlerian K3 surfaces with finite symplectic automorphism groups. In [19],[20], it was done for the codimension one.

1 Introduction

Similarly to our papers [19], [20], we classify degenerations of codimension 2 and higher ofKahlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was donefor the codimension 1. For readers convinience, in Section 3, we give the Table 1 from [20]which gives the main classification of such degenerations of codimension 1.

In this variant of the paper, we do classification of degenerations of codimension ≥ 2 forfinite symplectic automorphism groups of order ≥ 6.

For groups of order > 8 and the group Q8 of order 8, it is done in Section 3. It has Table2 which contains classification of types and lattices S of such degenerations. They are maininvariants of degenerations. Table 3 of Section 3 gives markings of such degenerations byNiemeier lattices Nj in notations of [18], [19] and [20]. For such groups, the codimension ofdegenerations is less or equal to 4, and for the most of them it is less or equal to 3.

We consider remaining difficult groups D8 and (C2)3 of order 8 in Sections 4 and 5. There

are too many cases for these difficult groups, and it is better to consider them separately.We hope to consider remaining groups D6, C4, (C2)

2, C3, C2 and give more results anddetails in further variants of the paper and further publications.

∗With support by Russian Sientific Fund N 14-50-00005.

1

Page 2: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

2 Classification of degenerations of

Kahlerian K3 surfaces with finite symplectic

automorphism groups. The main theory.

Let X be a Kahlerian K3 surface (e. g. see [22], [21], [2], [23], [24] about such surfaces).That is X is a non-singular compact complex surface with the trivial canonical class KX ,and its irregularity q(X) is equal to 0. Then H2(X,Z) with the intersection pairing isan even unimodular lattice LK3 of the signature (3, 19). The primitive sublattice SX =H2(X,Z) ∩H1,1(X) ⊂ H2(X,Z) is the Picard lattice of X generated by first Chern classesof all line bundles over X .

Let G be a finite symplectic automorphism group of X . Here symplectic means thatfor any g ∈ G, for a non-zero holomorphic 2-form ωX ∈ H2,0(X) = Ω2[X ] = CωX , onehas g∗(ωX) = ωX . For an G-invariant sublattice M ⊂ H2(X,Z), we denote by MG = x ∈M | G(x) = x the invariant sublattice of M , and by MG = (MG)⊥M the coinvariant sublatticeof M . By [13], the coinvariant lattice SG = H2(X,Z)G = (SX)G is Leech type lattice: i. e. itis negative definite, it has no elements with square (−2), G acts trivially on the discriminantgroup ASG

= (SG)∗/SG, and (SG)

G = 0. For a general pair (X,G), the SG = SX , andnon-general (X,G) can be considered as Kahlerian K3 surfaces with the condition SG ⊂ SX

on the Picard lattice (in terminology of [13]). The dimension of their moduli is equal to20− rkSG.

Let E ⊂ X be a non-singular irreducible rational curve (that is E ∼= P1). It is equivalentto: α = cl(E) ∈ SX , α

2 = −2, α is effective and α is numerically effective: α · D ≥ 0 forevery irreducible curve D on X such that cl(D) 6= α.

Let us consider the primitive sublattice S = [SG, G(α)]pr ⊂ SX of SX generated by thecoinvariant sublattice SG and all classes of the orbit G(E). We remind that primitive meansthat SX/S has not torsion. Since SG has no elements with square (−2), it follows thatrkS = rkSG + 1 and S = [SG, α]pr ⊂ SX .

Let us assume that the lattice S = [SG, α]pr is negative definite. Then the elements G(α)define the basis of the root system ∆(S) of all elements with square (−2) of S. All curvesG(E) of X can be contracted to Du Val singularities of types of connected components of theDynkin diagram of the basis. The group G will act on the corresponding singular K3 surfaceX with these Du Val singularities. For a general such triplet (X,G,G(E)), the Picard latticeSX = S, and such triplets can be considered as a degeneration of codimension 1 of KahlerianK3 surfaces (X,G) with the finite symplectic automorphism group G. Really, the dimensionof moduli of Kahlerian K3 surfaces with the condition S ⊂ SX on the Picard lattice is equalto 20− rkS = 20− rkSG − 1.

By Global Torelli Theorem for K3 surfaces [21], [2], the main invariants of the degenera-

2

Page 3: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

tion is the type of the abstract group G which is equivalent to the isomorphism class of thecoinvariant lattice SG, and the type of the degeneration which is equivalent to the Dynkindiagram of the basis G(α) or the Dynkin diagram of the rational curves G(E).

We can consider only the maximal finite symplectic automorphism groupG with the samecoinvariant lattice SG, that is G = Clos(G). By Global Torelly Theorem for K3 surfaces,this is equivalent to

G|SG = g ∈ O(SG) | g is identity on ASG= (SG)

∗/SG.

Indeed, G and Clos(G) have the same lattice SG, the same orbits G(E) and Clos(G)(E),and the same sublattice S ⊂ SX .

In [19], all types of G = Clos(G) and types of degenerations (that is Dynkin diagrams ofthe orbits G(E)) are described. They are described in Table 1 below which is the same as[20, Table 1] where n gives types of possible G = Clos(G), and we show all possible typesof degenerations at the corresponding rows by their Dynkin diagrams.

In Table 1, the type of G = Clos(G) and the isomorphism class of the lattice SG ismarked by n. We also give the genus of SG which is defined by the discriminant quadraticform qSG

. They were calculated in papers [14], [11], [25], [5].In [20], with two exceptions which are marked by I and II for n = 10 (group D8) and the

degeneration 2A1, and for n = 34 (group S4) and the degeneration 6A1, it was shown thatthe lattice S = [SG, α]pr is unique, up to isomorphisms, and its genus (equivalent to rkSand the discriminant quadratic form qS) is shown in Table 1. In [20, Table 2], we describedpossible markings of S, G and α by Niemeier lattices which give exact lattices descriptionsof S, and the action of G on S and G(α).

For degenerations of arbitrary codimension t ≥ 1 which we consider in this paper, insteadof one orbit G(E) of a non-singular rational curve, we should consider t ≥ 1 different orbitsG(E1), . . . , G(Ek) of non-singular rational curves on X , and their classes G(α1), . . . , G(αk)in SX , but we also assume that the sublattice S = [SG, G(α1), . . . , G(αk)]pr ⊂ SX is negativedefinite. Then the codimension of the degeneration is equal to t = rkS − rkSG, and SX =S = [SG, α1, . . . , αt]pr in general. We remark that rkS = rkSG + t ≤ 19 since H2(X,Z) hasthe signature (3, 19). Thus, t ≤ 19− rkSG.

The type of the degeneration is given by the Dynkin diagrams and subdiagrams

(Dyn(G(α1)), . . . , Dyn(G(αt))) ⊂ Dyn(G(α1) ∪ · · · ∪G(αt))

and their types. In difficult cases, we also consider the matrix of subdiagrams which isdefined by

(Dyn(G(αi)), Dyn(G(αj))) ⊂ Dyn(G(αi) ∪G(αj))

and their types for 1 ≤ i < j ≤ t.

3

Page 4: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

In Table 2 which is similar to Table 1 for codimension 1, we give classification of typesof degenerations of arbitrary codimension ≥ 2 for n ≥ 12 (then the codimension is less orequal to 4). Equivalently, either |G| > 8 or G ∼= Q8 of order 8 (G is big enough). Wecalculate genuses of the lattices S by rkS and qS. By ∗, we mark cases when we prove thatthe lattice S is unique up to isomorphisms, for the given type. In Table 3 which is similarto [20, Table 2] for the codimension 1, we give the description of their markings S ⊂ Nj byNiemeier lattices Nj, j = 1, . . . , 24, where we use results and notations of [17], [18] and [19].For remaining groups D8 and (C2)

3 of order 8, similar results are given in Sections 4 and 5.All calculations are similar to our calculations in [19] and [20] for codimension 1, and

they use similar to [19] and [20] computer programs.We hope to give more details and other results in further variants of the paper and further

publications.

3 Types of degenerations for n ≥ 12

We remind that Niemeier lattices are negative definite even unimodular lattices of the rank24. There are 24 such lattices, up to isomorphisms, N = Nj, j = 1, 2, . . . , 24, classifiedby Niemeier. They are characterized by their root sublattices N (2) generated by all theirelements with square (−2) (called roots). Further, ∆(N) is the set of all roots of N . Wehave the following list of Niemeier lattices Nj where the number j is shown in the bracket:

N (2) = [∆(N)] =

(1) D24, (2) D16 ⊕ E8, (3) 3E8, (4) A24, (5) 2D12, (6) A17 ⊕ E7, (7) D10 ⊕ 2E7,

(8) A15 ⊕D9, (9) 3D8, (10) 2A12, (11) A11 ⊕D7 ⊕ E6, (12) 4E6, (13) 2A9 ⊕D6,

(14) 4D6, (15) 3A8, (16) 2A7 ⊕ 2D5, (17) 4A6, (18) 4A5 ⊕D4, (19) 6D4,

(20) 6A4, (21) 8A3, (22) 12A2, (23) 24A1

give 23 Niemeier lattices Nj . The last is Leech lattice (24) with N (2) = 0 which has noroots.

4

Page 5: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

Table 1: Types and lattices S of degenerations of codimension 1 of Kahlerian K3 surfaceswith finite symplectic automorphism groups G = Clos(G).n |G| i G rkSG qSG

Deg rkS qS

1 2 1 C2 8 2+8II A1 9 2+9

7

2A1 9 2−6II , 4

−13

2 3 1 C3 12 3+6 A1 13 2−13 , 3+6

3A1 13 2+11 , 3−5

3 4 2 C22 12 2−6

II , 4−2II A1 13 2+7

3 , 4+2II

2A1 13 2−4II , 4

−37

4A1 13 2−6II , 8

−13

4 4 1 C4 14 2+22 , 4+4

II A1 15 2−35 , 4+4

II

2A1 15 4−51

4A1 15 2+22 , 4+2

II , 8+17

A2 15 2+11 , 4−4

II

6 6 1 D6 14 2−2II , 3

+5 A1 15 2−37 , 3+5

2A1 15 4−13 , 3+5

3A1 15 2−31 , 3−4

6A1 15 4+11 , 3+4

9 8 5 C32 14 2+6

II , 4+22 2A1 15 2−4

II , 4−35

4A1 15 2+6II , 8

+11

8A1 15 2+6II , 4

+11

10 8 3 D8 15 4+51 A1 16 2+1

1 , 4+57

(2A1)I 16 2−26 , 4−4

6

(2A1)II 16 2+2II , 4

+4II

4A1 16 4+37 , 8+1

1

8A1 16 4+40

2A2 16 4+4II

12 8 4 Q8 17 2−37 , 8−2

II 8A1 18 2−37 , 16−1

3

A2 18 2−26 , 8−2

II

16 10 1 D10 16 5+4 A1 17 2+17 , 5+4

5A1 17 2+17 , 5−3

5

Page 6: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

n |G| i G rkSG qSGDeg rkS qS

17 12 3 A4 16 2−2II , 4

−2II , 3

+2 A1 17 2−37 , 4+2

II , 3+2

3A1 17 2−31 , 4+2

II , 3−1

4A1 17 2−2II , 8

−13 , 3+2

6A1 17 4−31 , 3+1

12A1 17 2−2II , 8

+11 , 3−1

18 12 4 D12 16 2+4II , 3

+4A1 17 2+5

7 , 3+4

2A1 17 2+2II , 4

+17 , 3+4

3A1 17 2−55 , 3−3

6A1 17 2−2II , 4

+11 , 3+3

21 16 14 C42 15 2+6

II , 8+1I 4A1 16 2+4

II , 4+2II

16A1 16 2+6II

22 16 11 C2 ×D8 16 2+2II , 4

+40 2A1 17 4+5

7

4A1 17 2+2II , 4

+20 , 8+1

7

8A1 17 2+2II , 4

+37

26 16 8 SD16 18 2+17 , 4+1

7 , 8+2II 8A1 19 2+1

1 , 4+11 , 16−1

3

2A2 19 2−15 , 8−2

II

30 18 4 A3,3 16 3+4, 9−1 3A1 17 2−15 , 3−3, 9−1

9A1 17 2−13 , 3+4

32 20 3 Hol(C5) 18 2−26 , 5+3 2A1 19 4+1

1 , 5+3

5A1 19 2+31 , 5−2

10A1 19 4−15 , 5+2

5A2 19 2−15 , 5−2

33 21 1 C7 ⋊ C3 18 7+3 7A1 19 2+11 , 7+2

34 24 12 S4 17 4+33 , 3+2 A1 18 2−1

5 , 4+31 , 3+2

2A1 18 2+22 , 4+2

II , 3+2

3A1 18 2+17 , 4−3

5 , 3−1

4A1 18 4−13 , 8−1

3 , 3+2

(6A1)I 18 2−24 , 4+2

0 , 3+1

(6A1)II 18 2+2II , 4

−2II , 3

+1

8A1 18 4+22 , 3+2

12A1 18 4−15 , 8+1

7 , 3−1

6A2 18 4−2II , 3

+1

6

Page 7: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

n |G| i G rkSG qSGDeg rkS qS

39 32 27 24C2 17 2+2II , 4

+20 , 8+1

7 4A1 18 4+46

8A1 18 2+2II , 4

+17 , 8+1

7

16A1 18 2+2II , 4

+26

40 32 49 Q8 ∗Q8 17 4+57 8A1 18 4+4

6

46 36 9 32C4 18 2−26 , 3+2, 9−1 6A1 19 4+1

7 , 3+1, 9−1

9A1 19 2−35 , 3+2

9A2 19 2−15 , 3+2

48 36 10 S3,3 18 2−2II , 3

+3, 9−1 3A1 19 2+35 , 3−2, 9−1

6A1 19 4+11 , 3+2, 9−1

9A1 19 2−37 , 3+3

49 48 50 24C3 17 2−4II , 8

+11 , 3−1 4A1 18 2−2

II , 4+2II , 3

−1

12A1 18 2−2II , 4

−22

16A1 18 2−4II , 3

−1

51 48 48 C2 ×S4 18 2+2II , 4

+22 , 3+2 2A1 19 4+3

1 , 3+2

4A1 19 2+2II , 8

+11 , 3+2

6A1 19 4−37 , 3+1

8A1 19 2−2II , 4

−15 , 3+2

12A1 19 2−2II , 8

+17 , 3−1

55 60 5 A5 18 2−2II , 3

+1, 5−2 A1 19 2−37 , 3+1, 5−2

5A1 19 2+33 , 3+1, 5+1

6A1 19 4+11 , 5−2

10A1 19 4+17 , 3+1, 5−1

15A1 19 2+35 , 5−1

56 64 138 Γ25a1 18 4+35 , 8+1

1 8A1 19 4−24 , 8−1

5

16A1 19 4+35

61 72 43 A4,3 18 4−2II , 3

−3 3A1 19 2−15 , 4+2

II , 3+2

12A1 19 8+11 , 3+2

65 96 227 24D6 18 2−2II , 4

+17 , 8+1

1 , 3−1 4A1 19 4−33 , 3−1

8A1 19 2−2II , 8

+17 , 3−1

12A1 19 4+35

16A1 19 2+2II , 4

−13 , 3−1

75 192 1023 42A4 18 2−2II , 8

−26 16A1 19 2−2

II , 8−15

7

Page 8: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

Table 2: Types and lattices S of degenerations of codimension ≥ 2 of Kahlerian K3 surfaceswith finite symplectic automorphism groups G = Clos(G) for n ≥ 12.n |G| i G rkSG Deg rkS qS

12 8 4 Q8 17 (8A1, 8A1) ⊂ 16A1 19 2−2II , 8

−15 ∗

(8A1, 8A1) ⊂ 8A2 19 2−37 , 3−1 ∗

(8A1,A2) ⊂ 8A1 ∐ A2 19 2+22 , 16−1

3 ∗(A2,A2) ⊂ 2A2 19 2−1

5 , 8−2II ∗

16 10 1 D10 16 (A1,A1) ⊂ 2A1 18 2+26 , 5+4

(A1, 5A1) ⊂ 6A1 18 2+26 , 5−3

(5A1, 5A1) ⊂ 10A1 18 2+26 , 5+2 ∗

(5A1, 5A1) ⊂ 5A2 18 3−1, 5−2 ∗(A1,A1, 5A1) ⊂ 7A1 19 2+3

5 , 5−3

(A1, 5A1, 5A1) ⊂ 11A1 19 2+35 , 5+2

(A1, 5A1, 5A1) ⊂ A1 ∐ 5A2 19 2+17 , 3−1, 5−2

(5A1, 5A1, 5A1) ⊂ 15A1 19 2−31 , 5−1 ∗

(5A1, 5A1, 5A1) ⊂ 5A2 ∐ 5A1 19 2+17 , 3−1, 5+1 ∗

5A1 5A2 10A1

5A1 5A2

5A1

⊂ 5A3 19 4+11 , 5+1 ∗

17 12 3 A4 16 (A1,A1) ⊂ 2A1 18 2+22 , 4+2

II , 3+2 ∗

(A1, 3A1) ⊂ 4A1 18 2−2II , 4

+2II , 3

−1 ∗(A1, 4A1) ⊂ 5A1 18 2+3

3 , 8+17 , 3+2 ∗

(A1, 6A1) ⊂ 7A1 18 2+11 , 4+3

7 , 3+1 ∗(A1, 12A1) ⊂ 13A1 18 2+3

3 , 8+11 , 3−1 ∗

(3A1, 4A1) ⊂ 7A1 18 2+35 , 8+1

7 , 3−1 ∗(3A1, 6A1) ⊂ 3A3 18 2+2

6 , 4−2II ∗

(3A1, 12A1) ⊂ 15A1 18 2−31 , 8+1

1 ∗(4A1, 4A1) ⊂ 8A1 18 4+2

2 , 3+2 ∗(4A1, 4A1) ⊂ 4A2 18 2−2

II , 3+3 ∗

(4A1, 6A1) ⊂ 10A1 18 4+11 , 8−1

3 , 3+1 ∗(4A1, 12A1) ⊂ 16A1 18 2−4

II , 3−1 ∗

(4A1, 12A1) ⊂ 4D4 18 2−2II , 3

−1 ∗(6A1, 6A1) ⊂ 12A1 18 2−2

II , 4−22 ∗

8

Page 9: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

(6A1, 6A1) ⊂ 6A2 18 4−2II , 3

+1 ∗(6A1, 12A1) ⊂ 6A3 18 4+2

6 ∗(A1,A1,A1) ⊂ 3A1 19 2+1

1 , 4+2II , 3

+2 ∗(A1,A1, 4A1) ⊂ 6A1 19 2+2

2 , 8+17 , 3+2 ∗

(A1,A1, 6A1) ⊂ 8A1 19 4−37 , 3+1 ∗

(A1,A1, 12A1) ⊂ 14A1 19 2+22 , 8−1

5 , 3−1 ∗(A1, 3A1, 4A1) ⊂ 8A1 19 2−2

II , 8+17 , 3−1 ∗

(A1, 3A1, 12A1) ⊂ 16A1 19 2−2II , 8

−15 ∗

(A1, 4A1, 4A1) ⊂ 9A1 19 2+11 , 4+2

0 , 3+2 ∗(A1, 4A1, 4A1) ⊂ A1 ∐ 4A2 19 2−3

7 , 3+3 ∗(A1, 4A1, 6A1) ⊂ 11A1 19 2−1

3 , 4+17 , 8−1

5 , 3+1

(A1, 4A1, 12A1) ⊂ A1 ∐ 4D4 19 2−37 , 3−1 ∗

(A1, 6A1, 6A1) ⊂ A1 ∐ 6A2 19 2−13 , 4−2

II , 3+1 ∗

(A1, 6A1, 12A1) ⊂ A1 ∐ 6A3 19 2+17 , 4+2

6

(3A1, 4A1, 4A1) ⊂ 11A1 19 2+11 , 4+2

2 , 3−1 ∗(3A1, 4A1, 4A1) ⊂ 3A1 ∐ 4A2 19 2+3

5 , 3−2 ∗(3A1, 4A1, 12A1) ⊂ 3A1 ∐ 4D4 19 2+3

5 ∗(3A1, 6A1, 4A1) ⊂ 3A3 ∐ 4A1 19 2+2

6 , 8−13

(4A1, 4A1, 4A1) ⊂ 12A1 19 8+11 , 3+2 ∗

4A1 4A2 8A1

4A1 4A2

4A1

⊂ 4A3 19 4+11 , 3+2 ∗

(4A1, 4A1, 6A1) ⊂ 14A1 19 2−22 , 4+1

1 , 3+1 ∗(4A1, 4A1, 6A1) ⊂ 4A2 ∐ 6A1 19 4+1

1 , 3+2 ∗(4A1, 6A1, 6A1) ⊂ 16A1 19 2−2

II , 8−15 ∗

(4A1, 6A1, 6A1) ⊂ 4A1 ∐ 6A2 19 8−13 , 3+1 ∗

9

Page 10: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

n |G| i G Deg rkS qS

18 12 4 D12 (A1, 2A1) ⊂ 3A1 18 2+37 , 4+1

7 , 3+4

(A1, 3A1) ⊂ 4A1 18 2+40 , 3−3 ∗

(A1, 6A1) ⊂ 7A1 18 2−31 , 4+1

7 , 3+3 ∗(2A1, 3A1) ⊂ 5A1 18 2+3

1 , 4+17 , 3−3

((2A1, 6A1) ⊂ 8A1)I 18 4−24 , 3+3 ∗

((2A1, 6A1) ⊂ 8A1)II 18 2−4II , 3

+3

(2A1, 6A1) ⊂ 2D4 18 2−2II , 3

+3 ∗(3A1, 6A1) ⊂ 9A1 18 2+3

7 , 4+17 , 3−2 ∗

(3A1, 6A1) ⊂ 3A3 18 2−46 , 3+2 ∗

(6A1, 6A1) ⊂ 12A1 18 4+22 , 3+2 ∗

(6A1, 6A1) ⊂ 6A2 18 2−2II , 3

−1, 9−1 ∗(A1, 2A1, 3A1) ⊂ 6A1 19 2+2

0 , 4+17 , 3−3 ∗

A1 3A1 7A1

2A1 (8A1)I6A1

⊂ 9A1 19 2+11 , 4+2

2 , 3+3

A1 3A1 7A1

2A1 2D4

6A1

⊂ A1 ∐ 2D4 19 2−37 , 3+3 ∗

(A1, 3A1, 6A1) ⊂ 10A1 19 2−22 , 4+1

7 , 3−2 ∗

A1 4A1 7A1

3A1 3A3

6A1

⊂ A1 ∐ 3A3 19 2+31 , 3+2 ∗

(A1, 6A1, 6A1) ⊂ 13A1 19 2+17 , 4+2

2 , 3+2 ∗(A1, 6A1, 6A1) ⊂ A1 ∐ 6A2 19 2+3

3 , 3−1, 9−1 ∗

2A1 5A1 (8A1)I3A1 9A1

6A1

⊂ 11A1 19 2+17 , 4+2

6 , 3−2

2A1 5A1 (8A1)I3A1 3A3

6A1

⊂ 2A1 ∐ 3A3 19 2+22 , 4+1

7 , 3+2 ∗

10

Page 11: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

2A1 5A1 (8A1)II3A1 3A3

6A1

⊂ 2A1 ∐ 3A3 19 2+2II , 4

+11 , 3+2

2A1 5A1 2D4

3A1 9A1

6A1

⊂ 3A1 ∐ 2D4 19 2+35 , 3−2 ∗

2A1 (8A1)I (8A1)II6A1 12A1

6A1

⊂ 14A1 19 2+2II , 4

+11 , 3+2

2A1 (8A1)I (8A1)I6A1 6A2

6A1

⊂ 2A1 ∐ 6A2 19 4−13 , 3−1, 9−1 ∗

2A1 2D4 (8A1)I6A1 12A1

6A1

⊂ 2D4 ∐ 6A1 19 4+11 , 3+2 ∗

(3A1, 6A1, 6A1) ⊂ 15A1 19 2−13 , 4−2

4 , 3−1 ∗(3A1, 6A1, 6A1) ⊂ 3A1 ∐ 6A2 19 2−3

1 , 9−1 ∗

3A1 3A3 9A1

6A1 12A1

6A1

⊂ 3A3 ∐ 6A1 19 2−26 , 4−1

5 , 3+1 ∗

3A1 3A3 9A1

6A1 6A2

6A1

⊂ 3A5 19 2+33 , 3−1 ∗

n |G| i G Deg rkS qS

21 16 14 C42 (4A1, 4A1) ⊂ 8A1 17 2+4

II , 8+17 ∗

(4A1, 4A1, 4A1) ⊂ 12A1 18 2−2II , 4

−22 ∗

(4A1, 4A1, 4A1, 4A1) ⊂ 16A1 19 2−2II , 8

−15 ∗

11

Page 12: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

n |G| i G Deg rkS qS

22 16 11 C2 ×D8 (2A1, 2A1) ⊂ 4A1 18 4+46 ∗

(2A1, 4A1) ⊂ 6A1 18 4+37 , 8+1

7 ∗(2A1, 8A1) ⊂ 10A1 18 4+4

6

((4A1, 4A1) ⊂ 8A1)I 18 4+46 ∗

((4A1, 4A1) ⊂ 8A1)II 18 2−2II , 8

−26 ∗

(4A1, 8A1) ⊂ 12A1 18 2+2II , 4

+17 , 8+1

7 ∗(4A1, 8A1) ⊂ 4A3 18 2−2

II , 4−22 ∗

(8A1, 8A1) ⊂ 16A1 18 2+2II , 4

+26 ∗

(2A1, 2A1, 4A1) ⊂ 8A1 19 4+26 , 8+1

7 ∗(2A1, 2A1, 8A1) ⊂ 12A1 19 4+3

5 ∗(2A1, (4A1, 4A1)II) ⊂ 10A1 19 4−1

5 , 8−24 ∗

(2A1, 4A1, 8A1) ⊂ 14A1 19 4−24 , 8−1

5

2A1 6A1 10A1

4A1 4A3

8A1

⊂ 2A1 ∐ 4A3 19 4+35 ∗

((4A1, 4A1)I , 8A1) ⊂ 16A1 19 4+35 ∗

4A1 (8A1)II 12A1

4A1 4A3

8A1

⊂ 4A1 ∐ 4A3 19 2−2II , 8

−15 ∗

30 18 4 A3,3 (3A1, 3A1) ⊂ 6A1 18 2+22 , 3+2, 9−1 ∗

(3A1, 9A1) ⊂ 12A1 18 2+30 , 3−3 ∗

(3A1, 9A1) ⊂ 3D4 18 3−3 ∗(9A1, 9A1) ⊂ 9A2 18 3−3 ∗

(3A1, 3A1, 3A1) ⊂ 9A1 19 2−37 , 3−1, 9−1 ∗

(3A1, 3A1, 9A1) ⊂ 15A1 19 2+31 , 3+2 ∗

3A1 6A1 12A1

3A1 3D4

9A1

⊂ 3A1 ∐ 3D4 19 2+11 , 3+2 ∗

12

Page 13: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

n |G| i G rkSG Deg rkS qS

34 24 12 S4 17 (A1,A1) ⊂ 2A1 19 4+31 , 3+2 ∗

(A1, 2A1) ⊂ 3A1 19 2+11 , 4+2

II , 3+2 ∗

(A1, 3A1) ⊂ 4A1 19 4−33 , 3−1 ∗

(A1, 4A1) ⊂ 5A1 19 2+11 , 4+1

1 , 8+17 , 3+2 ∗

(A1, (6A1)I) ⊂ 7A1 19 2+11 , 4−2

6 , 3+1 ∗(A1, 8A1) ⊂ 9A1 19 2+1

1 , 4+20 , 3+2 ∗

(A1, 12A1) ⊂ 13A1 19 2+17 , 4−1

5 , 8+17 , 3−1

(A1, 6A2) ⊂ A1 ∐ 6A2 19 2+17 , 4+2

II , 3+1 ∗

(2A1, 4A1) ⊂ 6A1 19 2+22 , 8+1

7 , 3+2 ∗(2A1, (6A1)II) ⊂ 8A1 19 4−3

7 , 3+1 ∗(2A1, 12A1) ⊂ 14A1 19 2+2

2 , 8+11 , 3−1 ∗

(3A1, 4A1) ⊂ 7A1 19 2+11 , 4+1

1 , 8−15 , 3−1 ∗

(3A1, (6A1)II) ⊂ 3A3 19 4+35 ∗

(3A1, 8A1) ⊂ 11A1 19 2+11 , 4−2

2 , 3−1 ∗(3A1, 12A1) ⊂ 15A1 19 2+1

7 , 4+17 , 8+1

7 ∗(4A1, 4A1) ⊂ 8A1 19 2+2

II , 4+11 , 3+2 ∗

(4A1, (6A1)I) ⊂ 10A1 19 2+26 , 8+1

1 , 3+1 ∗(4A1, (6A1)II) ⊂ 10A1 19 2+2

II , 8−13 , 3+1

(4A1, 8A1) ⊂ 12A1 19 8+11 , 3+2 ∗

(4A1, 8A1) ⊂ 4A3 19 4+11 , 3+2 ∗

(4A1, 12A1) ⊂ 16A1 19 2+2II , 4

−13 , 3−1 ∗

(4A1, 12A1) ⊂ 4D4 19 4−13 , 3−1 ∗

(4A1, 6A2) ⊂ 4A1 ∐ 6A2 19 8−13 , 3+1 ∗

((6A1)I , (6A1)II) ⊂ 12A1 19 4+35 ∗

((6A1)I , 8A1) ⊂ 14A1 19 2−24 , 4+1

7 , 3+1 ∗((6A1)I , 12A1) ⊂ 6A3 19 2−2

6 , 4−13 ∗

39 32 27 24C2 17 (4A1, 4A1) ⊂ 8A1 19 4−24 , 8−1

5 ∗(4A1, 8A1) ⊂ 12A1 19 4+3

5 ∗(8A1, 8A1) ⊂ 16A1 19 2−2

II , 8−15 ∗

40 32 49 Q8 ∗Q8 17 (8A1, 8A1) ⊂ 16A1 19 4+35 ∗

49 48 50 24C3 17 (4A1, 4A1) ⊂ 8A1 19 2−2II , 4

+17 , 3−1 ∗

(4A1, 12A1) ⊂ 16A1 19 2−2II , 8

−15 ∗

13

Page 14: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

Table 3: Markings S ⊂ Nj by Niemeier lattices, and lattices S⊥

Njof degenerations of codimen-

sion ≥ 2 of Kahlerian K3 surfaces with finite symplectic automorphism groups G = Clos(G)in notations [18], [19], [20] for n ≥ 12.

n=12, degeneration (8A1, 8A1) ⊂ 16A1:

j 23 ∗H H12,1

orbits of (α1, α4)

(S⊥

Nj)(2) 4A1

n=12, degeneration (8A1, 8A1) ⊂ 8A2:

j 18 22 ∗H H12,1 H12,1

orbits of (α1,1, α2,1) (α1,1, α2,1)

(S⊥

Nj)(2) D4 3A1 ⊕ A2

n=12, degeneration (8A1,A2) ⊂ 8A1 ∐ A2:

j 22 ∗H H12,1

orbits of (α1,1, α1,5),(α1,1, α1,8), (α1,1, α1,11), (α2,1, α1,5),(α2,1, α1,8), (α2,1, α1,11)

(S⊥

Nj)(2) 2A1 ⊕ A2

n=12, degeneration (A2,A2) ⊂ 2A2:

j 22 ∗H H12,1

orbits of (α1,5, α1,8),(α1,5, α1,11), (α1,8, α1,11)

(S⊥

Nj)(2) A1 ⊕A2

n=16, degeneration (A1,A1) ⊂ 2A1:

j 19 20 20 22 23H H16,1 H16,1 H16,1 H16,1 H16,1

orbits of (α1,3, α3,3), ... (α1,1, α3,1), ... (α1,1, α4,1) (α1,1, α1,2), ... (α1, α6), ...

(S⊥

Nj)(2) 2A1 0 0 0 2A1

14

Page 15: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

n=16, degeneration (A1, 5A1) ⊂ 6A1:

j 19 19 19 19 19H H16,1 H16,1 H16,1 H16,1 H16,1

orbits of (α1,3, α1,1), ... (α3,3, α1,1), ... (α2,3, α1,1), ... (α1,3, α2,1), ... (α2,3, α2,1)

(S⊥

Nj)(2) 3A1 3A1 3A1 3A1 3A1

20 20 20 20 22H16,1 H16,1 H16,1 H16,1 H16,1

(α1,1, α1,2), ... (α2,1, α1,2), ... (α1,1, α2,2), ... (α2,1, α2,2), ... (α1,2, α1,3), ...A2 A2 A2 A2 A2

22 22 23 23H16,1 H16,1 H16,1 H16,1

(α2,2, α1,3), ... (α1,1, α1,3), ... (α1, α2), ... (α19, α2), ...A2 A2 3A1 3A1

n=16, degeneration (5A1, 5A1) ⊂ 10A1:

j 19 20 20 22 23 ∗H H16,1 H16,1 H16,1 H16,1 H16,1

orbits of (α1,1, α3,1) (α1,2, α3,2), ... (α1,2, α4,2) (α1,3, α1,5), ... (α2, α3), ...

(S⊥

Nj)(2) D4 A4 A4 2A2 4A1

n=16, degeneration (5A1, 5A1) ⊂ 5A2:

j 19 20 20 22 ∗H H16,1 H16,1 H16,1 H16,1

orbits of (α1,1, α2,1), ... (α1,2, α2,2), ... (α2,2, α3,2) (α1,3, α2,3), ...

(S⊥

Nj)(2) D4 A4 A4 2A2

n=16, degeneration (A1,A1, 5A1) ⊂ 7A1:

j 19 19 19H H16,1 H16,1 H16,1

orbits of (α1,3, α3,3, α1,1), ... (α3,3, α4,3, α1,1), ... (α1,3, α3,3, α2,1), ...

(S⊥

Nj)(2) 2A1 2A1 2A1

15

Page 16: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

20 20 20 20H16,1 H16,1 H16,1 H16,1

(α1,1, α3,1, α1,2), ... (α1,1, α4,1, α1,2), ... (α1,1, α3,1, α2,2), ... (α1,1, α4,1, α2,2), ...0 0 0 0

22 22 23 23H16,1 H16,1 H16,1 H16,1

(α1,1, α1,2, α1,3), ... (α1,1, α2,2, α1,3), ... (α1, α6, α2), ... (α1, α19, α2), ...0 0 2A1 2A1

n=16, degeneration (A1, 5A1, 5A1) ⊂ 11A1:

j 19 19 19H H16,1 H16,1 H16,1

orbits of (α1,3, α1,1, α3,1), ... (α4,3, α1,1, α3,1), ... (α2,3, α1,1, α3,1), ...

(S⊥

Nj)(2) 3A1 3A1 3A1

20 20 20 20H16,1 H16,1 H16,1 H16,1

(α1,1, α1,2, α3,2), ... (α2,1, α1,2, α3,2), ... (α1,1, α1,2, α4,2), ... (α2,1, α1,2, α4,2), ...A2 A2 A2 A2

22 22 23 23H16,1 H16,1 H16,1 H16,1

(α1,2, α1,3, α1,5), ... (α2,2, α1,3, α1,5), ... (α1, α2, α3), ... (α6, α2, α3), ...A2 A2 3A1 3A1

n=16, degeneration (A1, 5A1, 5A1) ⊂ A1 ∐ 5A2:

j 19 19 19H H16,1 H16,1 H16,1

orbits of (α1,3, α1,1, α2,1), ... (α2,3, α1,1, α2,1), ... (α3,3, α1,1, α2,1), ...

(S⊥

Nj)(2) 3A1 3A1 3A1

20 20 20 20H16,1 H16,1 H16,1 H16,1

(α1,1, α1,2, α2,2), ... (α2,1, α1,2, α2,2), ... (α1,1, α2,2, α3,2), ... (α2,1, α2,2, α3,2), ...A2 A2 A2 A2

16

Page 17: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

22 22H16,1 H16,1

(α1,1, α1,3, α2,3), ... (α1,2, α1,3, α2,3), ...A2 A2

n=16, degeneration (5A1, 5A1, 5A1) ⊂ 15A1:

j 19 23 ∗H H16,1 H16,1

orbits of (α1,1, α3,1, α4,1), ... (α2, α3, α4), ...

(S⊥

Nj)(2) D4 4A1

n=16, degeneration (5A1, 5A1, 5A1) ⊂ 5A2 ∐ 5A1:

j 20 22 ∗H H16,1 H16,1

orbits of (α1,2, α2,2, α4,2), ... (α1,3, α2,3, α1,5), ...

(S⊥

Nj)(2) A4 2A2

n=16, degeneration

5A1 5A2 10A1

5A1 5A2

5A1

⊂ 5A3:

j 19 20 ∗H H16,1 H16,1

orbits of (α1,1, α2,1, α3,1), ... (α1,2, α2,2, α3,2), ...

(S⊥

Nj)(2) D4 A4

n=17, degeneration (A1,A1) ⊂ 2A1:

j 19 21 21 23 ∗ 23H H17,2 H17,1 H17,2 H17,1 H17,2

orbits of (α1,4, α3,4), ... (α1,1, α3,1), (α1,1, α3,1) (α5, α17), ... (α5, α17),(α1,5, α3,5) (α6, α10)

(S⊥

Nj)(2) 2A1 ⊕ A2 A3 0 3A1 2A1

n=17, degeneration (A1, 3A1) ⊂ 4A1:

17

Page 18: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

j 23 ∗ 23H H17,1 H17,3

orbits of (α15, α1) (α15, α1), (α10, α6)

(S⊥

Nj)(2) 4A1 A1

n=17, degeneration (A1, 4A1) ⊂ 5A1:

j 19 19 19 19 19H H17,1 H17,1 H17,2 H17,2 H17,2

orbits of (α2,3, α1,1), ... (α2,3, α2,1), (α2,3, α2,1) (α1,4, α2,1), ... (α2,4, α2,1)(α2,4, α2,1)

(S⊥

Nj)(2) A2 A2 D4 3A1 ⊕ A2 3A1 ⊕A2

21 21 21 21 22 22H17,2 H17,2 H17,1 H17,2 H17,1 H17,1

(α1,1, α1,3), ... (α2,1, α1,3), (α1,1, α2,3), (α2,1, α2,3) (α1,1, α1,3), ... (α2,1, α1,3), ...(α2,1, α3,3) (α3,1, α2,3)

A1 A1 A1 A1 A2 A2

23 23 23 ∗ 23H17,1 H17,1 H17,2 H17,3

(α5, α2), ... (α15, α2) (α5, α2), ... (α10, α2), ...4A1 4A1 3A1 A1

n=17, degeneration (A1, 6A1) ⊂ 7A1:

j 21 21 21 21 22 ∗H H17,1 H17,1 H17,2 H17,2 H17,1

orbits of (α1,1, α2,2), ... (α2,1, α2,2), (α1,1, α1,2), (α2,1, α1,2) (α1,1, α1,5), ...(α2,5, α2,2) (α3,1, α1,2)

(S⊥

Nj)(2) A1 ⊕ A3 A1 ⊕ A3 A1 A1 A2

23 23H17,2 H17,2

(α5, α1), ... (α6, α1), ...3A1 3A1

n=17, degeneration (A1, 12A1) ⊂ 13A1:

18

Page 19: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

j 19 ∗ 19 19H H17,2 H17,2 H17,2

orbits of (α2,3, α1,1) (α1,4, α1,1), ... (α2,4, α1,1)

(S⊥

Nj)(2) D4 3A1 ⊕ A2 3A1 ⊕A2

21 21 23 23H17,1 H17,1 H17,1 H17,1

(α1,1, α1,2), ... (α2,1, α1,2), (α2,5, α1,2) (α5, α3), ... (α15, α3)A1 ⊕ A3 A1 ⊕ A3 4A1 4A1

n=17, degeneration (3A1, 4A1) ⊂ 7A1:

j 19 19 19H H17,1 H17,1 H17,2

orbits of (α1,3, α1,1), ... (α1,3, α2,1), (α1,4, α2,1) (α1,3, α2,1)

(S⊥

Nj)(2) A1 ⊕ A2 A1 ⊕ A2 A1 ⊕D4

21 21 23 ∗ 23H17,2 H17,2 H17,1 H17,3

(α2,2, α1,3), (α2,2, α3,3) (α2,2, α2,3) (α1, α2) (α1, α2), ...A3 A3 5A1 2A1

n=17, degeneration (3A1, 6A1) ⊂ 3A3:

j 21 ∗H H17,2

orbits of (α2,2, α1,2)

(S⊥

Nj)(2) A3

n=17, degeneration (3A1, 12A1) ⊂ 15A1:

j 19 23 ∗H H17,2 H17,1

orbits of (α1,3, α1,1) (α1, α3)

(S⊥

Nj)(2) A1 ⊕D4 5A1

n=17, degeneration (4A1, 4A1) ⊂ 8A1:

19

Page 20: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

j 19 21 23 ∗ 23H H17,1 H17,2 H17,2 H17,3

orbits of (α1,1, α3,1), ... (α1,3, α3,3) (α2, α4) (α2, α3), ...

(S⊥

Nj)(2) 2A2 A3 4A1 2A1

n=17, degeneration (4A1, 4A1) ⊂ 4A2:

j 19 21 ∗ 22H H17,1 H17,2 H17,1

orbits of (α1,1, α2,1), ... (α1,3, α2,3), (α2,3, α3,3) (α1,3, α2,3)

(S⊥

Nj)(2) 2A2 A3 2A2

n=17, degeneration (4A1, 6A1) ⊂ 10A1:

j 21 21 22 23 ∗H H17,2 H17,2 H17,1 H17,2

orbits of (α1,3, α1,2), (α3,3, α1,2) (α2,3, α1,2) (α1,3, α1,5) (α2, α1), ...

(S⊥

Nj)(2) A3 A3 2A2 4A1

n=17, degeneration (4A1, 12A1) ⊂ 16A1:

j 23 ∗H H17,1

orbits of (α2, α3)

(S⊥

Nj)(2) 5A1

n=17, degeneration (4A1, 12A1) ⊂ 4D4:

j 19 ∗H H17,2

orbits of (α2,1, α1,1)

(S⊥

Nj)(2) A2 ⊕D4

n=17, degeneration (6A1, 6A1) ⊂ 12A1:

20

Page 21: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

j 23 ∗H H17,2

orbits of (α1, α7)

(S⊥

Nj)(2) 4A1

n=17, degeneration (6A1, 6A1) ⊂ 6A2:

j 22 ∗H H17,1

orbits of (α1,5, α2,5)

(S⊥

Nj)(2) 2A2

n=17, degeneration (6A1, 12A1) ⊂ 6A3:

j 21 ∗H H17,1

orbits of (α2,2, α1,2)

(S⊥

Nj)(2) 2A3

n=17, degeneration (A1,A1,A1) ⊂ 3A1:

j 19 23 ∗H H17,2 H17,1

orbits of (α1,4, α3,4, α4,4) (α5, α17, α21), ...

(S⊥

Nj)(2) A1 ⊕ A2 2A1

n=17, degeneration (A1,A1, 4A1) ⊂ 6A1:

j 19 21 21H H17,2 H17,2 H17,2

orbits of (α1,4, α3,4, α2,1), ... (α1,1, α3,1, α1,3), (α1,1, α3,1, α3,3) (α1,1, α3,1, α2,3)

(S⊥

Nj)(2) 2A1 ⊕ A2 0 0

23 ∗ 23H17,1 H17,2

(α5, α17, α2), ... (α5, α17, α2), ...3A1 2A1

21

Page 22: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

n=17, degeneration (A1,A1, 6A1) ⊂ 8A1:

j 21 23 ∗H H17,2 H17,2

orbits of (α1,1, α3,1, α1,2) (α6, α10, α1), (α5, α17, α7)

(S⊥

Nj)(2) 0 2A1

n=17, degeneration (A1,A1, 12A1) ⊂ 14A1:

j 19 21 23 ∗H H17,2 H17,1 H17,1

orbits of (α1,4, α3,4, α1,1), ... (α1,1, α3,1, α1,2), (α1,5, α3,5, α1,2) (α5, α17, α3), ...

(S⊥

Nj)(2) 2A1 ⊕ A2 A3 3A1

n=17, degeneration (A1, 3A1, 4A1) ⊂ 8A1:

j 23 ∗ 23H H17,1 H17,3

orbits of (α15, α1, α2) (α15, α1, α2)

(S⊥

Nj)(2) 4A1 A1

n=17, degeneration (A1, 3A1, 12A1) ⊂ 16A1:

j 23 ∗H H17,1

orbits of (α15, α1, α3)

(S⊥

Nj)(2) 4A1

n=17, degeneration (A1, 4A1, 4A1) ⊂ 9A1:

j 19 21 21H H17,1 H17,2 H17,2

orbits of (α2,3, α1,1, α3,1), ... (α1,1, α1,3, α3,3), (α3,1, α1,3, α3,3) (α2,1, α1,3, α3,3)

(S⊥

Nj)(2) A2 A1 A1

22

Page 23: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

23 ∗ 23H17,2 H17,3

(α5, α2, α4), ... (α10, α2, α3), ...3A1 A1

n=17, degeneration (A1, 4A1, 4A1) ⊂ A1 ∐ 4A2:

j 19 21 21 22 ∗H H17,1 H17,2 H17,2 H17,1

orbits of (α2,3, α1,1, α2,1), ... (α1,1, α1,3, α2,3), ... (α2,1, α1,3, α2,3), (α1,1, α1,3, α2,3)(α2,1, α2,3, α3,3)

(S⊥

Nj)(2) A2 A1 A1 A2

n=17, degeneration (A1, 4A1, 6A1) ⊂ 11A1:

j 21 21 21 21H H17,2 H17,2 H17,2 H17,2

orbits of (α1,1, α1,3, α1,2), ... (α2,1, α1,3, α1,2), (α1,1, α2,3, α1,2), (α2,1, α2,3, α1,2)(α2,1, α3,3, α1,2) (α3,1, α2,3, α1,2)

(S⊥

Nj)(2) A1 A1 A1 A1

22 22 23 23H17,1 H17,1 H17,2 H17,2

(α1,1, α1,3, α1,5), ... (α2,1, α1,3, α1,5), ... (α5, α2, α1), ... (α6, α2, α1), ...A2 A2 3A1 3A1

n=17, degeneration (A1, 4A1, 12A1) ⊂ A1 ∐ 4D4:

j 19 ∗ 19 19H H17,2 H17,2 H17,2

orbits of (α2,3, α2,1, α1,1) (α1,4, α1,2, α1,1), ... (α2,4, α1,2, α1,1)

(S⊥

Nj)(2) D4 A2 ⊕ 3A1 A2 ⊕ 3A1

n=17, degeneration (A1, 6A1, 6A1) ⊂ A1 ∐ 6A2:

j 22 ∗H H17,1

orbits of (α1,1, α1,5, α2,5)

(S⊥

Nj)(2) A2

23

Page 24: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

n=17, degeneration (A1, 6A1, 12A1) ⊂ A1 ∐ 6A3:

j 21 21H H17,1 H17,1

orbits of (α1,1, α2,2, α1,2), ... (α2,1, α2,2, α1,2), (α2,5, α2,2, α1,2)

(S⊥

Nj)(2) A1 ⊕A3 A1 ⊕ A3

n=17, degeneration (3A1, 4A1, 4A1) ⊂ 11A1:

j 19 21 23 ∗H H17,1 H17,2 H17,3

orbits of (α1,3, α1,1, α3,1), ... (α2,2, α1,3, α3,3) (α1, α2, α3), ...

(S⊥

Nj)(2) A1 ⊕A2 A3 2A1

n=17, degeneration (3A1, 4A1, 4A1) ⊂ 3A1 ∐ 4A2:

j 19 21 ∗H H17,1 H17,2

orbits of (α1,3, α1,1, α2,1), ... (α2,2, α1,3, α2,3), (α2,2, α3,3, α2,3)

(S⊥

Nj)(2) A1 ⊕A2 A3

n=17, degeneration (3A1, 4A1, 12A1) ⊂ 3A1 ∐ 4D4:

j 19 ∗H H17,2

orbits of (α1,3, α2,1, α1,1)

(S⊥

Nj)(2) A1 ⊕D4

n=17, degeneration (3A1, 6A1, 4A1) ⊂ 3A3 ∐ 4A1:

j 21 21H H17,2 H17,2

orbits of (α2,2, α1,2, α1,3), (α2,2, α1,2, α3,3) (α2,2, α1,2, α2,3)

(S⊥

Nj)(2) A3 A3

n=17, degeneration (4A1, 4A1, 4A1) ⊂ 12A1:

24

Page 25: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

j 19 23 ∗H H17,1 H17,3

orbits of (α1,1, α3,1, α4,1) (α2, α3, α8)

(S⊥

Nj)(2) 2A2 2A1

n=17, degeneration

4A1 4A2 8A1

4A1 4A2

4A1

⊂ 4A3:

j 19 21 ∗H H17,1 H17,2

orbits of (α1,1, α2,1, α3,1) (α1,3, α2,3, α3,3)

(S⊥

Nj)(2) 2A2 A3

n=17, degeneration (4A1, 4A1, 6A1) ⊂ 14A1:

j 21 23 ∗H H17,2 H17,2

orbits of (α1,3, α3,3, α1,2) (α2, α4, α1), (α2, α4, α7)

(S⊥

Nj)(2) A3 4A1

n=17, degeneration (4A1, 4A1, 6A1) ⊂ 4A2 ∐ 6A1:

j 21 22 ∗H H17,2 H17,1

orbits of (α1,3, α2,3, α1,2), (α2,3, α3,3, α1,2) (α1,3, α2,3, α1,5), (α1,3, α2,3, α2,5)

(S⊥

Nj)(2) A3 2A2

n=17, degeneration (4A1, 6A1, 6A1) ⊂ 16A1:

j 23 ∗H H17,2

orbits of (α2, α1, α7), (α4, α1, α7)

(S⊥

Nj)(2) 4A1

n=17, degeneration (4A1, 6A1, 6A1) ⊂ 4A1 ∐ 6A2:

25

Page 26: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

j 22 ∗H H17,1

orbits of (α1,3, α1,5, α2,5), (α2,3, α1,5, α2,5)

(S⊥

Nj)(2) 2A2

n=18, degeneration (A1, 2A1) ⊂ 3A1:

j 12 12 12 18 18 18H H18,1 H18,1 H18,1 H18,1 H18,1 H18,1

orbits of (α2,1, α1,1) (α4,1, α1,1) (α2,1, α3,1) (α3,1, α1,1) (α2,5, α1,1) (α2,5, α2,1)

(S⊥

Nj)(2) A1 A1 A1 A2 A1 A1

19 19 19 19 21H18,1 H18,2 H18,2 H18,2 H18,1

(α2,3, α2,1), ... (α4,3, α1,3) (α2,3, α2,4) (α4,3, α2,4) (α2,2, α1,1), (α2,1, α1,2)A2 A1 A1 A1 A1

22 22 23H18,1 H18,1 H18,1

(α1,1, α1,7), (α2,1, α2,7) (α2,1, α1,7), (α1,1, α2,7) (α1, α15), (α6, α15), (α1, α16), (α6, α16)0 0 A1

n=18, degeneration (A1, 3A1) ⊂ 4A1:

j 18 21 ∗H H18,1 H18,1

orbits of (α3,1, α3,2) (α2,2, α2,3), (α2,1, α2,5)

(S⊥

Nj)(2) 2A1 ⊕ A2 3A1

n=18, degeneration (A1, 6A1) ⊂ 7A1:

j 12 12 12 12 18 18H H18,1 H18,1 H18,1 H18,1 H18,1 H18,1

orbits of (α2,1, α1,2) (α4,1, α1,2) (α2,1, α3,2) (α4,1, α3,2) (α3,1, α1,2) (α2,5, α1,2)

(S⊥

Nj)(2) 3A1 3A1 3A1 3A1 2A1 ⊕ A2 3A1

26

Page 27: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

18 18 19 ∗ 19 19 19H18,1 H18,1 H18,1 H18,2 H18,2 H18,2

(α3,1, α2,2) (α2,5, α2,2) (α2,3, α1,1), (α2,4, α1,1) (α2,3, α1,1) (α4,3, α1,1) (α2,3, α1,4)2A1 ⊕A2 3A1 A2 A1 A1 A1

19 21 21 22H18,2 H18,1 H18,1 H18,1

(α4,3, α1,4) (α2,1, α1,3), (α2,2, α1,5) (α2,2, α1,3), (α2,1, α1,5) (α1,1, α1,5), (α2,1, α2,5)A1 3A1 3A1 0

22 23H18,1 H18,1

(α2,1, α1,5), (α1,1, α2,5) (α1, α2), (α6, α2), (α1, α8), (α6, α8)0 A1

n=18, degeneration (2A1, 3A1) ⊂ 5A1:

j 12 12 12 12 18 18H H18,1 H18,1 H18,1 H18,1 H18,1 H18,1

orbits of (α1,1, α2,2) (α1,1, α4,2) (α3,1, α2,2) (α3,1, α4,2) (α1,1, α3,2) (α1,1, α1,5)

(S⊥

Nj)(2) A3 A3 A3 A3 A1 ⊕A2 2A1

18 18 19 19 19 19H18,1 H18,1 H18,1 H18,2 H18,2 H18,2

(α2,1, α3,2) (α2,1, α1,5) (α2,1, α1,3), ... (α1,3, α2,1) (α2,4, α2,1) (α1,3, α3,1)A1 ⊕ A2 2A1 A1 ⊕ A2 2A1 A3 2A1

19 21 21 22H18,2 H18,1 H18,1 H18,1

(α2,4, α3,1) (α1,1, α2,3), (α1,2, α2,5) (α1,1, α2,5), (α1,2, α2,3) (α1,7, α1,2), (α2,7, α2,2)A3 2A1 2A1 A2

22 23H18,1 H18,1

(α2,7, α1,2), (α1,7, α2,2) (α15, α4), (α16, α4), (α15, α5), (α16, α5)A2 2A1

n=18, degeneration ((2A1, 6A1) ⊂ 8A1)I :

27

Page 28: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

j 12 12 12 12 18 18H H18,1 H18,1 H18,1 H18,1 H18,1 H18,1

orbits of (α1,1, α1,2) (α1,1, α3,2) (α3,1, α1,2) (α3,1, α3,2) (α1,1, α1,2) (α1,1, α2,2)

(S⊥

Nj)(2) A3 A3 A3 A3 A1 ⊕A2 A1 ⊕A2

18 18 19 ∗ 19 19H18,1 H18,1 H18,1 H18,2 H18,2

(α2,1, α1,2) (α2,1, α2,2) (α2,5, α1,1), (α2,1, α1,5) (α2,4, α1,1) (α1,3, α1,4)A1 ⊕ A2 A1 ⊕ A2 2A2 A3 2A1

21 22 22 23H18,1 H18,1 H18,1 H18,1

(α1,1, α1,3), (α1,2, α1,5) (α1,7, α1,5), (α2,7, α2,5) (α2,7, α1,5), (α1,7, α2,5) (α16, α2),(α15, α8)

2A1 A2 A2 2A1

n=18, degeneration ((2A1, 6A1) ⊂ 8A1)II :

j 19 21 23H H18,2 H18,1 H18,1

orbits of (α1,3, α1,1) (α1,1, α1,5), (α1,2, α1,3) (α15, α2), (α16, α8)

(S⊥

Nj)(2) 2A1 2A1 2A1

n=18, degeneration (2A1, 6A1) ⊂ 2D4:

j 19 ∗ 19H H18,1 H18,2

orbits of (α2,1, α1,1), (α2,5, α1,5) (α2,4, α1,4)

(S⊥

Nj)(2) 2A2 A3

n=18, degeneration (3A1, 6A1) ⊂ 9A1:

j 12 12 12 18 18 18H H18,1 H18,1 H18,1 H18,1 H18,1 H18,1

orbits of (α2,2, α1,2) (α4,2, α1,2) (α2,2, α3,2) (α3,2, α1,2) (α1,5, α1,2) (α1,5, α2,2)

(S⊥

Nj)(2) D4 D4 D4 3A1 ⊕ A2 4A1 4A1

28

Page 29: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

19 19 19 19 21H18,1 H18,2 H18,2 H18,2 H18,1

(α1,3, α1,1)... (α3,1, α1,1) (α2,1, α1,4) (α3,1, α1,4) (α2,5, α1,3), (α2,3, α1,5)A1 ⊕ A2 A3 A3 A3 4A1

22 22 23 ∗H18,1 H18,1 H18,1

(α1,2, α1,5), (α2,2, α2,5) (α1,2, α2,5), (α2,2, α1,5) (α2, α4), (α2, α5), (α8, α4), (α8, α5)A2 A2 2A1

n=18, degeneration (3A1, 6A1) ⊂ 3A3:

12 18 19 21 ∗H18,1 H18,1 H18,2 H18,1

(α4,2, α3,2) (α3,2, α2,2) (α2,1, α1,1) (α2,3, α1,3), (α2,5, α1,5)D4 3A1 ⊕A2 A3 4A1

n=18, degeneration (6A1, 6A1) ⊂ 12A1:

j 19 19 21 23 ∗H H18,1 H18,2 H18,1 H18,1

orbits of (α1,1, α1,5) (α1,1, α1,4) (α1,3, α1,5) (α2, α8)

(S⊥

Nj)(2) 2A2 A3 4A1 2A1

n=18, degeneration (6A1, 6A1) ⊂ 6A2:

j 12 18 22 ∗H H18,1 H18,1 H18,1

orbits of (α1,2, α3,2) (α1,2, α2,2) (α1,5, α2,5)

(S⊥

Nj)(2) D4 3A1 ⊕ A2 A2

n=18, degeneration (A1, 2A1, 3A1) ⊂ 6A1:

j 18 ∗ 21 23H H18,1 H18,1 H18,1

orbits of (α3,1, α1,1, α3,2) (α2,2, α1,1, α2,3), (α2,1, α1,2, α2,5) (α1, α15, α4), ...

(S⊥

Nj)(2) A2 A1 A1

29

Page 30: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

n=18, degeneration

A1 3A1 7A1

2A1 (8A1)I6A1

⊂ 9A1:

j 12 12 12 12H H18,1 H18,1 H18,1 H18,1

orbits of (α2,1, α1,1, α1,2) (α4,1, α1,1, α1,2) (α2,1, α1,1, α3,2) (α4,1, α1,1, α3,2)

(S⊥

Nj)(2) A1 A1 A1 A1

12 12 18 18 18H18,1 H18,1 H18,1 H18,1 H18,1

(α2,1, α3,1, α1,2) (α2,1, α3,1, α3,2) (α3,1, α1,1, α1,2) (α2,5, α1,1, α1,2) (α3,1, α1,1, α2,2)A1 A1 A2 A1 A2

18 18 18 19 19H18,1 H18,1 H18,1 H18,1 H18,2

(α2,5, α1,1, α2,2) (α2,5, α2,1, α1,2) (α2,5, α2,1, α2,2) (α2,3, α2,5, α1,1), ... (α2,3, α2,4, α1,1)A1 A1 A1 A2 A1

19 19 21 22 22H18,2 H18,2 H18,1 H18,1 H18,1

(α4,3, α2,4, α1,1) (α4,3, α1,3, α1,4) (α2,2, α1,1, α1,3), (α1,1, α1,7, α1,5), (α2,1, α1,7, α1,5),(α2,1, α1,2, α1,5) (α2,2, α2,7, α2,5) (α1,1, α2,7, α2,5)

A1 A1 A1 0 0

22 22 23H18,1 H18,1 H18,1

(α1,1, α2,7, α1,5), (α2,1, α1,7, α2,5) (α2,1, α2,7, α1,5), (α1,1, α1,7, α2,5) (α1, α16, α2), ...0 0 A1

n=18, degeneration

A1 3A1 7A1

2A1 2D4

6A1

⊂ A1 ∐ 2D4:

j 19 ∗ 19 19H H18,1 H18,2 H18,2

orbits of (α2,3, α2,1, α1,1), ... (α2,3, α2,4, α1,4) (α4,3, α2,4, α1,4), ...

(S⊥

Nj)(2) A2 A1 A1

30

Page 31: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

n=18, degeneration (A1, 3A1, 6A1) ⊂ 10A1:

j 18 21 23 ∗H H18,1 H18,1 H18,1

orbits of (α3,1, α3,2, α1,2) (α2,1, α2,5, α1,3), (α2,2, α2,3, α1,5) (α1, α4, α2), ...

(S⊥

Nj)(2) 2A1 ⊕ A2 3A1 A1

n=18, degeneration

A1 4A1 7A1

3A1 3A3

6A1

⊂ A1 ∐ 3A3:

j 18 21 ∗H H18,1 H18,1

orbits of (α3,1, α3,2, α2,2) (α2,2, α2,3, α1,3), (α2,1, α2,5, α1,5)

(S⊥

Nj)(2) 2A1 ⊕ A2 3A1

n=18, degeneration (A1, 6A1, 6A1) ⊂ 13A1:

j 19 19 19H H18,1 H18,2 H18,2

orbits of (α2,3, α1,1, α1,5), (α2,4, α1,1, α1,5) (α2,3, α1,1, α1,4) (α4,3, α1,1, α1,4)

(S⊥

Nj)(2) A2 A1 A1

21 ∗ 23H18,1 H18,1

(α2,1, α1,3, α1,5), (α2,2, α1,3, α1,5) (α1, α2, α8), (α6, α2, α8)3A1 A1

n=18, degeneration (A1, 6A1, 6A1) ⊂ A1 ∐ 6A2:

j 12 12 18 ∗ 18H H18,1 H18,1 H18,1 H18,1

orbits of (α2,1, α1,2, α3,2) (α4,1, α1,2, α3,2) (α3,1, α1,2, α2,2) (α2,5, α1,2, α2,2)

(S⊥

Nj)(2) 3A1 3A1 2A1 ⊕ A2 3A1

31

Page 32: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

22H18,1

(α1,1, α1,5, α2,5), (α2,1, α1,5, α2,5)0

n=18, degeneration

2A1 5A1 (8A1)I3A1 9A1

6A1

⊂ 11A1:

j 12 12 12 12H H18,1 H18,1 H18,1 H18,1

orbits of (α1,1, α2,2, α1,2) (α1,1, α4,2, α1,2) (α1,1, α2,2, α3,2) (α3,1, α2,2, α1,2)

(S⊥

Nj)(2) A3 A3 A3 A3

12 12 18 18 18H18,1 H18,1 H18,1 H18,1 H18,1

(α3,1, α4,2, α1,2) (α3,1, α2,2, α3,2) (α1,1, α3,2, α1,2) (α1,1, α1,5, α1,2) (α1,1, α1,5, α2,2)A3 A3 A1 ⊕ A2 2A1 2A1

18 18 18 19 19H18,1 H18,1 H18,1 H18,1 H18,2

(α2,1, α3,2, α1,2) (α2,1, α1,5, α1,2) (α2,1, α1,5, α2,2) (α2,5, α1,3, α1,1), ... (α2,4, α3,1, α1,1)A1 ⊕A2 2A1 2A1 A1 ⊕ A2 A3

19 19 21 22 22H18,2 H18,2 H18,1 H18,1 H18,1

(α1,3, α2,1, α1,4) (α1,3, α3,1, α1,4) (α1,1, α2,5, α1,3), (α1,7, α1,2, α1,5), (α2,7, α1,2, α1,5),(α1,2, α2,3, α1,5) (α2,7, α2,2, α2,5) (α1,7, α2,2, α2,5)

2A1 2A1 2A1 A2 A2

22 22 23H18,1 H18,1 H18,1

(α2,7, α1,2, α2,5), (α1,7, α2,2, α1,5) (α1,7, α1,2, α2,5), (α2,7, α2,2, α1,5) (α16, α4, α2), ...A2 A2 2A1

n=18, degeneration

2A1 5A1 (8A1)I3A1 3A3

6A1

⊂ 2A1 ∐ 3A3:

32

Page 33: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

j 12 12 18 18H H18,1 H18,1 H18,1 H18,1

orbits of (α1,1, α4,2, α3,2) (α3,1, α4,2, α3,2) (α1,1, α3,2, α2,2) (α2,1, α3,2, α2,2)

(S⊥

Nj)(2) A3 A3 A1 ⊕A2 A1 ⊕A2

19 21 ∗H18,2 H18,1

(α2,4, α2,1, α1,1) (α1,1, α2,3, α1,3), (α1,2, α2,5, α1,5)A3 2A1

n=18, degeneration

2A1 5A1 (8A1)II3A1 3A3

6A1

⊂ 2A1 ∐ 3A3:

j 19 21H H18,2 H18,1

orbits of (α1,3, α2,1, α1,1) (α1,1, α2,5, α1,5), (α1,2, α2,3, α1,3)

(S⊥

Nj)(2) 2A1 2A1

n=18, degeneration

2A1 5A1 2D4

3A1 9A1

6A1

⊂ 3A1 ∐ 2D4:

j 19 ∗ 19 19H H18,1 H18,2 H18,2

orbits of (α2,1, α1,3, α1,1), ... (α2,4, α2,1, α1,4) (α2,4, α3,1, α1,4)

(S⊥

Nj)(2) A1 ⊕A2 A3 A3

n=18, degeneration

2A1 (8A1)I (8A1)II6A1 12A1

6A1

⊂ 14A1:

j 19 21 23H H18,2 H18,1 H18,1

orbits of (α1,3, α1,4, α1,1) (α1,1, α1,3, α1,5), (α15, α8, α2),(α1,2, α1,3, α1,5) (α16, α2, α8)

(S⊥

Nj)(2) 2A1 2A1 2A1

33

Page 34: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

n=18, degeneration

2A1 (8A1)I (8A1)I6A1 6A2

6A1

⊂ 2A1 ∐ 6A2:

j 12 12 18 18H H18,1 H18,1 H18,1 H18,1

orbits of (α1,1, α1,2, α3,2) (α3,1, α1,2, α3,2) (α1,1, α1,2, α2,2) (α2,1, α1,2, α2,2)

(S⊥

Nj)(2) A3 A3 A1 ⊕A2 A1 ⊕A2

22 ∗H18,1

(α1,7, α1,5, α2,5), (α2,7, α1,5, α2,5)A2

n=18, degeneration

2A1 2D4 (8A1)I6A1 12A1

6A1

⊂ 2D4 ∐ 6A1:

j 19 ∗ 19H H18,1 H18,2

orbits of (α2,1, α1,1, α1,5), (α2,5, α1,5, α1,1) (α2,4, α1,4, α1,1)

(S⊥

Nj)(2) 2A2 A3

n=18, degeneration (3A1, 6A1, 6A1) ⊂ 15A1:

j 19 19 23 ∗H H18,1 H18,2 H18,1

orbits of (α1,3, α1,1, α1,5), (α1,4, α1,1, α1,5) (α3,1, α1,1, α1,4) (α4, α2, α8), (α5, α2, α8)

(S⊥

Nj)(2) A1 ⊕ A2 A3 2A1

n=18, degeneration (3A1, 6A1, 6A1) ⊂ 3A1 ∐ 6A2:

j 18 18 ∗ 22H H18,1 H18,1 H18,1

orbits of (α1,5, α1,2, α2,2) (α2,2, α1,2, α3,2) (α1,2, α1,5, α2,5), (α2,2, α1,5, α2,5)

(S⊥

Nj)(2) 4A1 D4 A2

34

Page 35: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

n=18, degeneration

3A1 3A3 9A1

6A1 12A1

6A1

⊂ 3A3 ∐ 6A1:

j 19 21 ∗H H18,2 H18,1

orbits of (α2,1, α1,1, α1,4) (α2,3, α1,3, α1,5), (α2,5, α1,5, α1,3)

(S⊥

Nj)(2) A3 4A1

n=18, degeneration

3A1 3A3 9A1

6A1 6A2

6A1

⊂ 3A5:

j 12 18 ∗H H18,1 H18,1

orbits of (α4,2, α3,2, α1,2) (α3,2, α2,2, α1,2)

(S⊥

Nj)(2) D4 3A1 ⊕ A2

n=21, degeneration (4A1, 4A1) ⊂ 8A1:

j 23 ∗H H21,1

orbits of (α1, α2), ...

(S⊥

Nj)(2) 4A1

n=21, degeneration (4A1, 4A1, 4A1) ⊂ 12A1:

j 23 ∗H H21,1

orbits of (α1, α2, α3), ...

(S⊥

Nj)(2) 4A1

n=21, degeneration (4A1, 4A1, 4A1, 4A1) ⊂ 16A1:

j 23 ∗H H21,1

orbits of (α1, α2, α3, α8), ...

(S⊥

Nj)(2) 4A1

35

Page 36: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

n=22, degeneration (2A1, 2A1) ⊂ 4A1:

j 23 ∗H H22,2

orbits of (α12, α16)

(S⊥

Nj)(2) 2A1

n=22, degeneration (2A1, 4A1) ⊂ 6A1:

j 21 21 23 23 ∗H H22,1 H22,1 H22,2 H22,3

orbits of (α1,1, α2,3), (α1,1, α1,4) (α12, α6), ... (α8, α1), ...(α1,2, α2,3) (α1,2, α1,4)

(S⊥

Nj)(2) 2A1 2A1 2A1 0

n=22, degeneration (2A1, 8A1) ⊂ 10A1:

j 21 23H H22,1 H22,2

orbits of (α1,1, α1,3), (α1,2, α1,3) (α12, α2), (α16, α2)

(S⊥

Nj)(2) 2A1 2A1

n=22, degeneration ((4A1, 4A1) ⊂ 8A1)I :

j 23 ∗H H22,2

orbits of (α6, α8)

(S⊥

Nj)(2) 2A1

n=22, degeneration ((4A1, 4A1) ⊂ 8A1)II :

j 21 23 ∗H H22,1 H22,3

orbits of (α2,3, α1,4) (α1, α2), ...

(S⊥

Nj)(2) 4A1 0

n=22, degeneration (4A1, 8A1) ⊂ 12A1:

36

Page 37: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

j 21 23 ∗H H22,1 H22,2

orbits of (α1,4, α1,3) (α6, α2), (α8, α2)

(S⊥

Nj)(2) 4A1 2A1

n=22, degeneration (4A1, 8A1) ⊂ 4A3:

j 21 ∗H H22,1

orbits of (α2,3, α1,3)

(S⊥

Nj)(2) 4A1

n=22, degeneration (8A1, 8A1) ⊂ 16A1:

j 23 ∗H H22,1

orbist of (α2, α4)

(S⊥

Nj)(2) 4A1

n=22, degeneration (2A1, 2A1, 4A1) ⊂ 8A1:

j 23 ∗H H22,2

orbits of (α12, α16, α6), (α12, α16, α8)

(S⊥

Nj)(2) 2A1

n=22, degeneration (2A1, 2A1, 8A1) ⊂ 12A1:

j 23 ∗H H22,2

orbits of (α12, α16, α2)

(S⊥

Nj)(2) 2A1

n=22, degeneration (2A1, (4A1, 4A1)II) ⊂ 10A1:

37

Page 38: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

j 21 ∗ 23H H22,1 H22,3

orbits of (α1,1, α2,3, α1,4), (α1,2, α2,3, α1,4) (α8, α1, α2), ...

(S⊥

Nj)(2) 2A1 0

n=22, degeneration (2A1, 4A1, 8A1) ⊂ 14A1:

j 21 23H H22,1 H22,2

orbits of (α1,1, α1,4, α1,3), ... (α12, α6, α2), ...

(S⊥

Nj)(2) 2A1 2A1

n=22, degeneration

2A1 6A1 10A1

4A1 4A3

8A1

⊂ 2A1 ∐ 4A3 :

j 21 ∗H H22,1

orbits of (α1,1, α2,3, α1,3), (α1,2, α2,3, α1,3)

(S⊥

Nj)(2) 2A1

n=22, degeneration ((4A1, 4A1)I , 8A1) ⊂ 16A1:

j 23 ∗H H22,2

orbits of (α6, α8, α2)

(S⊥

Nj)(2) 2A1

n=22, degeneration

4A1 (8A1)II 12A1

4A1 4A3

8A1

⊂ 4A1 ∐ 4A3 :

j 21 ∗H H22,1

orbits of (α1,4, α2,3, α1,3)

(S⊥

Nj)(2) 4A1

38

Page 39: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

n=30, degeneration (3A1, 3A1) ⊂ 6A1:

j 19 19 22 22 23 ∗H H30,1 H30,1 H30,2 H30,2 H30,1

orbits of (α2,1, α1,4), ... (α1,4,α1,5), ... (α1,1, α1,2), ... (α1,1, α2,2), ... (α4, α5), ...

(S⊥

Nj)(2) A1 ⊕ 2A2 2A1 ⊕ A2 0 0 3A1

n=30, degeneration (3A1, 9A1) ⊂ 12A1:

j 19 23 ∗H H30,1 H30,1

orbits of (α1,4, α1,1), ... (α4, α1), ...

(S⊥

Nj)(2) A1 ⊕ 2A2 3A1

n=30, degeneration (3A1, 9A1) ⊂ 3D4:

j 19 ∗H H30,1

orbits of (α2,1, α1,1)

(S⊥

Nj)(2) 3A2

n=30, degeneration (9A1, 9A1) ⊂ 9A2:

j 22 ∗H H30,1

orbits of (α1,1, α2,1)

(S⊥

Nj)(2) 3A2

n=30, degeneration (3A1, 3A1, 3A1) ⊂ 9A1:

j 19 ∗ 19 22H H30,1 H30,1 H30,2

orbits of (α2,1, α1,4, α1,5), ... (α1,4, α1,5, α1,6), ... (α1,1, α1,2, α1,6), ...

(S⊥

Nj)(2) 2A1 ⊕ A2 3A1 0

39

Page 40: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

22 22 23H30,2 H30,2 H30,1

(α1,1, α2,2, α2,6), ... (α1,1, α1,2, α2,6), ... (α4, α5, α11), ...0 0 3A1

n=30, degeneration (3A1, 3A1, 9A1) ⊂ 15A1:

j 19 23 ∗H H30,1 H30,1

orbits of (α1,4, α1,5, α1,1), ... (α4, α5, α1), ...

(S⊥

Nj)(2) 2A1 ⊕ A2 3A1

n=30, degeneration

3A1 6A1 12A1

3A1 3D4

9A1

⊂ 3A1 ∐ 3D4 :

j 19 ∗H H30,1

orbits of (α1,4, α2,1, α1,1), ...

(S⊥

Nj)(2) A1 ⊕ 2A2

n=34, degeneration (A1,A1) ⊂ 2A1:

j 21 21 23 23 ∗ 23H H34,1 H34,3 H34,1 H34,2 H34,3

orbits of (α1,2, α3,2) (α1,2, α3,2) (α5, α17),(α6, α21) (α21, α24) (α5, α21)

(S⊥

Nj)(2) 2A1 0 2A1 A1 0

n=34, degeneration (A1, 2A1) ⊂ 3A1:

j 19 23 ∗H H34,2 H34,2

orbits of (α1,4, α3,4) (α21, α4),(α24, α4)

(S⊥

Nj)(2) A1 ⊕A2 2A1

n=34, degeneration (A1, 3A1) ⊂ 4A1:

40

Page 41: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

j 23 ∗ 23H H34,2 H34,4

orbits of (α6, α2) (α10, α2),(α24, α3)

(S⊥

Nj)(2) 2A1 A1

n=34, degeneration (A1, 4A1) ⊂ 5A1:

j 19 19 19 ∗ 19 19 21H H34,1 H34,1 H34,2 H34,2 H34,2 H34,2

orbits of (α2,3, α2,1), (α2,3, α4,1), (α2,3, α2,1) (α1,4, α2,1) (α2,4, α2,1) (α2,1, α1,4),(α2,4, α2,1) (α2,4, α4,1) (α2,1, α3,4)

(S⊥

Nj)(2) A2 A2 A3 A1 ⊕ A2 A1 ⊕ A2 A1

21 21 21 22 22 22 22H34,2 H34,3 H34,3 H34,1 H34,1 H34,1 H34,1

(α2,1, α2,4) (α1,2, α2,4), (α2,2, α2,4) (α1,6, α1,1), (α1,10, α1,1), (α1,6, α2,1) (α1,10, α2,1)(α3,2, α2,4) (α2,6, α1,1) (α2,10, α1,1) (α2,6, α2,1) (α2,10, α2,1)

A1 A1 A1 A2 A2 A2 A2

23 23 23 23H34,2 H34,2 H34,3 H34,4

(α6, α1) (α21, α1), (α5, α1),(α5, α10), (α10, α1),(α10, α5),(α24, α1) (α21, α1), (α21, α10) (α24, α1),(α24, α2)

2A1 2A1 A1 A1

n=34, degeneration (A1, (6A1)I) ⊂ 7A1:

j 21 23 ∗H H34,1 H34,1

orbits of (α2,1, α2,3) (α5, α1),(α17, α1), (α6, α8),(α21, α8)

(S⊥

Nj)(2) A1 ⊕A3 3A1

n=34, degeneration (A1, 8A1) ⊂ 9A1:

j 19 21 21 23 ∗ 23H H34,1 H34,3 H34,3 H34,1 H34,4

orbits of (α2,3, α1,1), (α1,2, α1,4), (α2,2, α1,4) (α5, α2), (α6, α2), (α10, α4),(α2,4, α1,1) (α3,2, α1,4) (α17, α2),(α21, α2) (α24, α4)

(S⊥

Nj)(2) A2 A1 A1 3A1 A1

41

Page 42: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

n=34, degeneration (A1, 12A1) ⊂ 13A1:

j 19 19 19 21 21 21H H34,2 H34,2 H34,2 H34,1 H34,1 H34,1

orbits of (α2,3, α1,1) (α1,4, α1,1) (α2,4, α1,1) (α2,1, α1,3) (α2,2, α1,3) (α1,2, α1,3),(α3,2, α1,3)

(S⊥

Nj)(2) A3 A1 ⊕ A2 A1 ⊕ A2 A3 3A1 3A1

23 23H34,2 H34,2

(α6, α3) (α21, α3),(α24, α3)2A1 2A1

n=34, degeneration (A1, 6A2) ⊂ A1 ∐ 6A2:

j 22 ∗H H34,1

orbits of (α1,6, α1,2),(α2,6, α1,2), (α1,10, α1,2),(α2,10, α1,2)

(S⊥

Nj)(2) A2

n=34, degeneration (2A1, 4A1) ⊂ 6A1:

j 19 21 21 23 ∗ 23H H34,2 H34,2 H34,2 H34,2 H34,3

orbits of (α3,4, α2,1) (α1,1, α1,4), (α1,1, α2,4) (α4, α1) (α4, α1),(α1,1, α3,4) (α4, α10)

(S⊥

Nj)(2) 2A1 ⊕ A2 0 0 3A1 2A1

n=34, degeneration (2A1, (6A1)II) ⊂ 8A1:

j 21 23 ∗H H34,2 H34,3

orbits of (α1,1, α1,2) (α4, α2)

(S⊥

Nj)(2) 0 2A1

n=34, degeneration (2A1, 12A1) ⊂ 14A1:

42

Page 43: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

j 19 21 23 ∗H H34,2 H34,1 H34,2

orbits of (α3,4, α1,1) (α1,1, α1,3) (α4, α3)

(S⊥

Nj)(2) 2A1 ⊕ A2 A3 3A1

n=34, degeneration (3A1, 4A1) ⊂ 7A1:

j 19 19 19 21 21 21H H34,1 H34,1 H34,2 H34,2 H34,2 H34,3

orbits of (α1,3, α2,1), (α1,3, α4,1), (α1,3, α2,1) (α2,2, α1,4), (α2,2, α2,4) (α2,1, α2,4)(α1,4, α2,1) (α1,4, α4,1) (α2,2, α3,4)

(S⊥

Nj)(2) A1 ⊕ A2 A1 ⊕ A2 A1 ⊕ A3 2A1 2A1 A3

23 ∗ 23H34,2 H34,4

(α2, α1) (α2, α1),(α2, α5), (α3, α1),(α3, α5)3A1 2A1

n=34, degeneration (3A1, (6A1)II) ⊂ 3A3:

j 21 ∗H H34,2

orbits of (α2,2, α1,2)

(S⊥

Nj)(2) 2A1

n=34, degeneration (3A1, 8A1) ⊂ 11A1:

j 19 21 23 ∗H H34,1 H34,3 H34,4

orbits of (α1,3, α1,1),(α1,4, α1,1) (α2,1, α1,4) (α2, α4),(α3, α4)

(S⊥

Nj)(2) 2A2 A3 2A1

n=34, degeneration (3A1, 12A1) ⊂ 15A1:

j 19 23 ∗H H34,2 H34,2

orbits of (α1,3, α1,1) (α2, α3)

(S⊥

Nj)(2) A1 ⊕A3 3A1

43

Page 44: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

n=34, degeneration (4A1, 4A1) ⊂ 8A1:

j 21 23 ∗ 23H H34,2 H34,3 H34,4

orbits of (α1,4, α3,4) (α1, α10) (α1, α5)

(S⊥

Nj)(2) 2A1 2A1 2A1

v ∈ S⊥

Nj| v2 = −4 and v ⊥ (S⊥

Nj)(2) 2 6 2

n=34, degeneration (4A1, (6A1)I) ⊂ 10A1:

j 21 23 ∗H H34,3 H34,3

orbits of (α2,4, α1,1) (α1, α3),(α10, α3)

(S⊥

Nj)(2) A3 2A1

n=34, degeneration (4A1, (6A1)II) ⊂ 10A1:

j 21 21 23H H34,2 H34,2 H34,3

orbits of (α1,4, α1,2), (α3,4, α1,2) (α2,4, α1,2) (α1, α2), (α10, α2)

(S⊥

Nj)(2) 2A1 2A1 2A1

n=34, degeneration (4A1, 8A1) ⊂ 12A1:

j 19 23 ∗H H34,1 H34,4

orbits of (α4,1, α1,1) (α1, α4),(α5, α4)

(S⊥

Nj)(2) 2A2 2A1

n=34, degeneration (4A1, 8A1) ⊂ 4A3:

j 19 21 ∗H H34,1 H34,3

orbits of (α2,1, α1,1) (α2,4, α1,4)

(S⊥

Nj)(2) 2A2 A3

n=34, degeneration (4A1, 12A1) ⊂ 16A1:

44

Page 45: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

j 23 ∗H H34,2

orbits of (α1, α3)

(S⊥

Nj)(2) 3A1

n=34, degeneration (4A1, 12A1) ⊂ 4D4:

j 19 ∗H H34,2

orbits of (α2,1, α1,1)

(S⊥

Nj)(2) A2 ⊕A3

n=34, degeneration (4A1, 6A2) ⊂ 4A1 ∐ 6A2:

j 22 ∗H H34,1

orbits of (α1,1, α1,2), (α2,1, α1,2)

(S⊥

Nj)(2) 2A2

n=34, degeneration ((6A1)I , (6A1)II) ⊂ 12A1:

j 23 ∗H H34,3

orbit of (α3, α2)

(S⊥

Nj)(2) 2A1

n=34, degeneration ((6A1)I , 8A1) ⊂ 14A1:

j 21 23 ∗H H34,3 H34,1

orbits of (α1,1, α1,4) (α1, α2),(α8, α2)

(S⊥

Nj)(2) A3 4A1

n=34, degeneration ((6A1)I , 12A1) ⊂ 6A3:

j 21 ∗H H34,1

orbit of (α2,3, α1,3)

(S⊥

Nj)(2) 2A1 ⊕ A3

45

Page 46: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

n=39, degeneration (4A1, 4A1) ⊂ 8A1:

j 23 ∗H H39,2

orbits of (α2, α3), (α2, α4),(α3, α4)

(S⊥

Nj)(2) 2A1

n=39, degeneration (4A1, 8A1) ⊂ 12A1:

j 23 ∗H H39,2

orbits of (α2, α5), (α3, α5), (α4, α5)

(S⊥

Nj)(2) 2A1

n=39, degeneration (8A1, 8A1) ⊂ 16A1:

j 23 ∗H H39,3

orbits of (α3, α5)

(S⊥

Nj)(2) 4A1

n=40, degeneration (8A1, 8A1) ⊂ 16A1:

j 23 ∗H H40,1

orbits of (α1, α3)

(S⊥

Nj)(2) 2A1

n=49, degeneration (4A1, 4A1) ⊂ 8A1:

j 23 ∗ 23H H49,1 H49,3

orbits of (α2, α4) (α2, α4), (α2, α8), (α2, α10), (α2, α11), (α4, α8),(α4, α10), (α4, α11), (α8, α10), (α8, α11), (α10, α11)

(S⊥

Nj)(2) 4A1 A1

n=49, degeneration (4A1, 12A1) ⊂ 16A1:

j 23 ∗H H49,1

orbits of (α2, α1),(α4, α1)

(S⊥

Nj)(2) 4A1

46

Page 47: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

4 Tables of types of degenerations of Kahlerian K3 sur-

faces with symplectic automorphism group D8

Unfortunately, for remaining groups of small order (when n < 12), there are many types ofdegenerations. From our point of view, it is reasonable to consider classification of degen-erations for each of these groups separately. The number of cases depends on a group verymuch. Here, we consider the case of D8.

47

Page 48: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

Table 4: Types and lattices S of degenerations of codimension ≥ 2 of Kahlerian K3 surfaceswith symplectic automorphism group D8.n |G| i G rkSG Deg rkS qS

10 8 3 D8 15 (A1,A1) ⊂ 2A1 17 4+57 ∗

(A1, (2A1)I) ⊂ 3A1 17 2+17 , 4+4

0

(A1, (2A1)II) ⊂ A3 17 4+57 ∗

(A1, 4A1) ⊂ 5A1 17 2+17 , 4+3

1 , 8+17

(A1, 8A1) ⊂ 9A1 17 2+11 , 4+4

6

(A1, 2A2) ⊂ A1 ∐ 2A2 17 2+17 , 4+4

II ∗((2A1)I , (2A1)II) ⊂ 4A1 17 4+5

7 ∗((2A1)I , 4A1) ⊂ 6A1)I 17 2+2

6 , 4+20 , 8+1

1

((2A1)I , 4A1) ⊂ 6A1)II 17 2+26 , 4+2

II , 8+11

((2A1)II , 4A1) ⊂ 6A1 17 2+2II , 4

+2II , 8

+17

((2A1)I , 4A1) ⊂ 2A3 17 2+20 , 4+3

7 ∗((2A1)I , 8A1) ⊂ 10A1 17 2+2

2 , 4+35 ∗

((4A1, 4A1) ⊂ 8A1)I 17 4+17 , 8+2

0 ∗((4A1, 4A1) ⊂ 8A1)II 17 2+2

II , 4+37 ∗

(4A1, 4A1) ⊂ 4A2 17 4−31 , 3+1 ∗

(4A1, 8A1) ⊂ 12A1 17 4+26 , 8+1

1 ∗(4A1, 8A1) ⊂ 4A3 17 4+3

7 ∗(4A1, 2A2) ⊂ 4A1 ∐ 2A2 17 4−2

II , 8−13 ∗

(A1,A1, (2A1)I) ⊂ 4A1 18 4+46 ∗

(A1,A1, 4A1) ⊂ 6A1 18 4+37 , 8+1

7 ∗(A1,A1, 8A1) ⊂ 10A1 18 4+4

6

(A1, (2A1)II , (2A1)I) ⊂ A3 ∐ 2A1 18 4+46 ∗

A1 3A1 5A1

(2A1)I (6A1)I4A1

⊂ 7A1 18 2+17 , 4+2

6 , 8−15

(A1, (2A1)I , 4A1) ⊂ A1 ∐ 2A3 18 2+17 , 4+3

7 ∗(A1, (2A1)II , 4A1) ⊂ A3 ∐ 4A1 18 4+3

5 , 8+11

(A1, (2A1)I , 8A1) ⊂ 11A1 18 2+17 , 4+3

7 ∗

A1 5A1 5A1

4A1 (8A1)I4A1

⊂ 9A1 18 2+17 , 4+1

7 , 8−24

(A1, 4A1, 4A1) ⊂ A1 ∐ 4A2 18 2+17 , 4+3

1 , 3+1 ∗

48

Page 49: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

n G rkSG Deg rkS qS

10 D8 15 (A1, 4A1, 8A1) ⊂ 13A1 18 2+17 , 4+2

0 , 8+17

(A1, 4A1, 8A1) ⊂ A1 ∐ 4A3 18 2+17 , 4+3

7

(A1, 4A1, 2A2) ⊂ 5A1 ∐ 2A2 18 2−13 , 4+2

II , 8−13

(2A1)I 4A1 (6A1)I(2A1)II 6A1

4A1

⊂ 8A1 18 4+35 , 8+1

1

(2A1)I 4A1 (6A1)II(2A1)II 6A1

4A1

⊂ 8A1 18 4+37 , 8+1

7 ∗

(2A1)II 4A1 6A1

(2A1)I 2A3

4A1

⊂ 2A1 ∐ 2A3 18 4+46 ∗

(2A1)I (6A1)I (6A1)II4A1 (8A1)I

4A1

⊂ 10A1 18 2+26 , 8+2

0

(2A1)I (6A1)I (6A1)I4A1 (8A1)II

4A1

⊂ 10A1 18 4+46

(2A1)II 6A1 6A1

4A1 (8A1)I4A1

⊂ 10A1 18 2+2II , 8

+26

(2A1)II 6A1 6A1

4A1 (8A1)II4A1

⊂ 10A1 18 4+46

(2A1)I (6A1)I (6A1)I4A1 4A2

4A1

⊂ 2A1 ∐ 4A2 18 2+22 , 4+2

6 , 3+1 ∗

(2A1)II 6A1 6A1

4A1 4A2

4A1

⊂ 2A1 ∐ 4A2 18 2+2II , 4

−2II , 3

+1

(2A1)I 2A3 (6A1)I4A1 (8A1)I

4A1

⊂ 2A3 ∐ 4A1 18 2+20 , 4+1

7 , 8−13

(2A1)I 2A3 (6A1)II4A1 4A2

4A1

⊂ 2A5 18 2−22 , 4+2

II ∗

49

Page 50: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

n G rkSG Deg rkS qS

10 D8 15

(2A1)I (6A1)I 10A1

4A1 12A1

8A1

⊂ 14A1 18 2−22 , 4+1

1 , 8−13 ∗

(2A1)I (6A1)I 10A1

4A1 4A3

8A1

⊂ 2A1 ∐ 4A3 18 2−22 , 4+2

0

(2A1)I (6A1)II 10A1

4A1 4A3

8A1

⊂ 2A1 ∐ 4A3 18 2−22 , 4−2

II ∗

((2A1)I , 4A1, 8A1) ⊂ 2A3 ∐ 8A1 18 2−24 , 4−2

6 ∗

4A1 (8A1)I (8A1)II4A1 (8A1)I

4A1

⊂ 12A1 18 2−2II , 4

+11 , 8−1

5 ∗

4A1 (8A1)I (8A1)I4A1 4A2

4A1

⊂ 4A1 ∐ 4A2 18 4+17 , 8−1

5 , 3+1 ∗

4A1 4A2 (8A1)II4A1 4A2

4A1

⊂ 4A3 18 2−2II , 4

−22 ∗

4A1 (8A1)II 12A1

4A1 12A1

8A1

⊂ 16A1 18 2+2II , 4

+26 ∗

4A1 (8A1)I 12A1

4A1 4A3

8A1

⊂ 4A1 ∐ 4A3 18 4−15 , 8−1

5 ∗

4A1 4A2 12A1

4A1 4A3

8A1

⊂ 4D4 18 4+26 ∗

(4A1, 4A1, 2A2) ⊂ (8A1)I ∐ 2A2 18 8+26 ∗

(4A1, 4A1, 2A2) ⊂ 4A2 ∐ 2A2 18 4−2II , 3

+1 ∗

50

Page 51: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

n G Deg rkS qS

10 D8

A1 2A1 3A1 5A1

A1 3A1 5A1

(2A1)I (6A1)I4A1

⊂ 8A1 19 4−24 , 8−1

5 ∗

A1 2A1 5A1 5A1

A1 5A1 5A1

4A1 (8A1)I4A1

⊂ 10A1 19 4−15 , 8−2

4 ∗

(A1, A1, (2A1)I , 8A1) ⊂ 12A1 19 4+35 ∗

(A1, A1, 4A1, 8A1) ⊂ 14A1 19 4−24 , 8−1

5

(A1, A1, 4A1, 8A1) ⊂ 2A1 ∐ 4A3 19 4+35 ∗

A1 A3 3A1 5A1

(2A1)II 4A1 8A1

(2A1)I (6A1)I4A1

⊂ A3 ∐ 6A1 19 4−24 , 8−1

5

A1 A3 3A1 5A1

(2A1)II 4A1 6A1

(2A1)I 2A3

4A1

⊂ 3A3 19 4+35 ∗

A1 3A1 5A1 5A1

(2A1)I 2A3 (6A1)I4A1 (8A1)I

4A1

⊂ A1 ∐ 2A3 ∐ 4A1 19 2−13 , 4−1

5 , 8+11 ∗

A1 A3 5A1 5A1

(2A1)II 6A1 6A1

4A1 (8A1)I4A1

⊂ A3 ∐ 8A1 19 4+17 , 8+2

6

A1 3A1 5A1 5A1

(2A1)I (6A1)I (6A1)I4A1 4A2

4A1

⊂ 3A1 ∐ 4A2 19 2−13 , 4+2

0 , 3+1 ∗

(A1, (2A1)II , 4A1, 4A1) ⊂ A3 ∐ 4A2 19 4−37 , 3+1 ∗

A1 3A1 5A1 9A1

(2A1)I (6A1)I 10A1

4A1 12A1

8A1

⊂ 15A1 19 2+11 , 4−1

5 , 8−13 ∗

51

Page 52: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

n G Deg rkS qS

10 D8 (A1, (2A1)I , 4A1, 8A1) ⊂ A1 ∐ 2A3,∐8A1 19 2−13 , 4−2

6 ∗

A1 3A1 5A1 9A1

(2A1)I (6A1)I 10A1

4A1 4A3

8A1

⊂ 3A1 ∐ 4A3 19 2−15 , 4−2

4

A1 5A1 5A1 5A1

4A1 (8A1)I (8A1)I4A1 4A2

4A1

⊂ 5A1 ∐ 4A2 19 2+11 , 4+1

7 , 8−13 , 3+1

A1 5A1 5A1 9A1

4A1 (8A1)I 12A1

4A1 4A3

8A1

⊂ 5A1 ∐ 4A3 19 2+17 , 4−1

5 , 8−15 ∗

A1 5A1 5A1 9A1

4A1 4A2 12A1

4A1 4A3

8A1

⊂ A1 ∐ 4D4 19 2+17 , 4+2

6

A1 5A1 5A1 A1 ∐ 2A2

4A1 (8A1)I 4A1 ∐ 2A2

4A1 4A1 ∐ 2A2

2A2

⊂ 9A1 ∐ 2A2 19 2+17 , 8+2

6

(A1, 4A1, 4A1, 2A2) ⊂ A1 ∐ 6A2 19 2+17 , 4+2

II , 3+1 ∗

(2A1)I 4A1 (6A1)I (6A1)II(2A1)II 6A1 6A1

4A1 (8A1)I4A1

⊂ 12A1 19 4+17 , 8+2

6

(2A1)I 4A1 (6A1)I (6A1)I(2A1)II 6A1 6A1

4A1 (8A1)II4A1

⊂ 12A1 19 4+35

(2A1)I 4A1 (6A1)I (6A1)I(2A1)II 6A1 6A1

4A1 4A2

4A1

⊂ 4A1 ∐ 4A2 19 4−37 , 3+1 ∗

52

Page 53: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

n G Deg rkS qS

10 D8

(2A1)II 6A1 4A1 6A1

4A1 (6A1)I (8A1)I(2A1)I 2A3

4A1

⊂ 6A1 ∐ 2A3 19 4+26 , 8+1

7

(2A1)II 4A1 6A1 6A1

(2A1)I 2A3 (6A1)II4A1 4A2

4A1

⊂ 2A1 ∐ 2A5 19 4+35 ∗

(2A1)I (6A1)II (6A1)I (6A1)I4A1 (8A1)I (8A1)I

4A1 (8A1)II4A1

⊂ 14A1 19 4+26 , 8+1

7

(2A1)II 6A1 6A1 6A1

4A1 (8A1)I (8A1)I4A1 (8A1)II

4A1

⊂ 14A1 19 4−24 , 8−1

5

(2A1)I (6A1)II (6A1)I (6A1)I4A1 (8A1)I (8A1)I

4A1 4A2

4A1

⊂ 6A1 ∐ 4A2 19 2−22 , 8+1

1 , 3+1 ∗

(2A1)II 6A1 6A1 6A1

4A1 (8A1)I (8A1)I4A1 4A2

4A1

⊂ 6A1 ∐ 4A2 19 2+2II , 8

−13 , 3+1

(2A1)I (6A1)I (6A1)I (6A1)I4A1 4A2 (8A1)II

4A1 4A2

4A1

⊂ 2A1 ∐ 4A3 19 4+35 ∗

(2A1)II 6A1 6A1 6A1

4A1 4A2 (8A1)II4A1 4A2

4A1

⊂ 2A1 ∐ 4A3 19 4+35 ∗

(2A1)I 2A3 (6A1)I (6A1)I4A1 (8A1)I (8A1)I

4A1 4A2

4A1

⊂ 2A3 ∐ 4A2 19 2+20 , 4+1

7 , 3+1 ∗

53

Page 54: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

n G Deg rkS qS

10 D8

4A1 (6A1)I (8A1)I (8A1)I(2A1)I 2A3 (6A1)II

4A1 4A2

4A1

⊂ 4A1 ∐ 2A5 19 2+26 , 8+1

7

(2A1)I (6A1)I (6A1)II 10A1

4A1 (8A1)I 12A1

4A1 4A3

8A1

⊂ 6A1 ∐ 4A3 19 2−22 , 8−1

3 ∗

(2A1)I 2A3 (6A1)I 10A1

4A1 (8A1)I 12A1

4A1 4A3

8A1

⊂ 6A3 19 2−24 , 4−1

5 ∗

(2A1)I (6A1)I (6A1)I 10A1

4A1 4A2 12A1

4A1 4A3

8A1

⊂ 2A1 ∐ 4D4 19 2+26 , 4+1

7 ∗

4A1 (8A1)II (8A1)I (8A1)I4A1 (8A1)I (8A1)I

4A1 (8A1)II4A1

⊂ 16A1 19 4+35 ∗

4A1 (8A1)I (8A1)I (8A1)I4A1 4A2 (8A1)II

4A1 4A2

4A1

⊂ 4A1 ∐ 4A3 19 2−2II , 8

−15 ∗

4A1 4A2 (8A1)I (8A1)I4A1 (8A1)I (8A1)I

4A1 4A2

4A1

⊂ 8A2 19 4+11 , 3+2 ∗

4A1 (8A1)I (8A1)I 4A1 ∐ 2A2

4A1 4A2 4A1 ∐ 2A2

4A1 4A1 ∐ 2A2

2A2

⊂ 4A1 ∐ 6A2 19 8−13 , 3+1 ∗

54

Page 55: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

Table 5: Markings S ⊂ Nj by Niemeier lattices, and lattices S⊥

Njof degenerations of codi-

mension ≥ 2 of Kahlerian K3 surfaces with symplectic automorphism groups D8 in notations[18], [19], [20].

n=10, degeneration (A1,A1) ⊂ 2A1:

j 21 23 23 ∗H H10,1 H10,1 H10,2

orbits of (α1,1, α3,1) (α1, α24), (α5, α6) (α1, α6)

(S⊥

Nj)(2) 2A1 2A1 0

n=10, degeneration (A1, (2A1)I) ⊂ 3A1:

j 19 21 21 23H H10,1 H10,1 H10,2 H10,1

orbits of (α1,3, α3,3), (α3,4, α1,4) (α2,2, α2,4) (α2,2, α2,4) (α5, α10), ...

(S⊥

Nj)(2) A1 ⊕A3 A1 ⊕A3 3A1 3A1

n=10, degeneration (A1, (2A1)II) ⊂ A3:

j 18 21 ∗H H10,1 H10,2

orbits of (α2,5, α1,5) (α2,2, α1,2)

(S⊥

Nj)(2) 0 2A1

n=10, degeneration (A1, 4A1) ⊂ 5A1:

j 18 18 18 18H H10,1 H10,1 H10,1 H10,1

orbits of (α2,5, α1,1), ... (α4,5, α1,1), ... (α2,5, α2,1), ... (α4,5, α2,1), ...

(S⊥

Nj)(2) A1 A1 A1 A1

19 19 19 19 21H10,1 H10,1 H10,1 H10,1 H10,1

(α1,3, α2,1), ... (α2,3, α2,1), ... (α1,3, α4,1), ... (α2,3, α4,1), ... (α1,1, α2,3), ...A1 ⊕ A3 A1 ⊕ A3 A1 ⊕ A3 A1 ⊕ A3 3A1

55

Page 56: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

21 21 21 21 21 21H10,1 H10,1 H10,1 H10,1 H10,1 H10,2

(α2,1, α2,3) (α2,2, α2,3) (α1,1, α1,4), ... (α2,1, α1,4) (α2,2, α1,4) (α2,1, α1,3), ...3A1 A1 ⊕ A3 3A1 3A1 A1 ⊕ A3 3A1

21 21 21 21 21 22H10,2 H10,2 H10,2 H10,2 H10,2 H10,1

(α2,2, α1,3), ... (α2,1, α2,3) (α2,2, α2,3) (α2,1, α1,4) (α2,2, α1,4), ... (α1,1, α1,3), ...3A1 3A1 3A1 3A1 3A1 A2

22 23 23H10,1 H10,1 H10,2

(α2,1, α1,3), ... (α1, α3), ... (α1, α3), ...A2 3A1 A1

n=10, degeneration (A1, 8A1) ⊂ 9A1:

j 19 19 21 21H H10,1 H10,1 H10,1 H10,1

orbits of (α1,3, α1,1), ... (α2,3, α1,1), ... (α1,1, α1,3), ... (α2,1, α1,3)

(S⊥

Nj)(2) A1 ⊕ A3 A1 ⊕A3 3A1 3A1

21 23H10,1 H10,1

(α2,2, α1,3) (α1, α2), ...A1 ⊕A3 3A1

n=10, degeneration (A1, 2A2) ⊂ A1 ∐A2:

j 22 ∗H H10,1

orbits of (α1,1, α1,9), ...

(S⊥

Nj)(2) A2

n=10, degeneration ((2A1)I , (2A1)II) ⊂ 4A1:

56

Page 57: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

j 18 21 ∗ 21 23H H10,1 H10,2 H10,2 H10,2

orbits of (α3,1, α1,5), ... (α1,1, α1,2) (α2,4, α1,2) (α10, α2)

(S⊥

Nj)(2) 2A1 0 2A1 2A1

n=10, degeneration (((2A1)I , 4A1) ⊂ 6A1)I :

j 18 18 19 19H H10,1 H10,1 H10,1 H10,1

orbits of (α3,3, α1,1), ... (α3,3, α2,1), ... (α3,3, α2,1), ... (α3,3, α4,1), ...

(S⊥

Nj)(2) A3 A3 2A1 ⊕A3 2A1 ⊕A3

21 21 21 21 21 21H10,1 H10,1 H10,2 H10,2 H10,2 H10,2

(α1,2, α1,4) (α2,4, α2,3) (α1,1, α1,3), ... (α1,1, α2,3) (α1,4, α1,3), ... (α2,4, α2,3)A3 2A1 ⊕A3 2A1 2A1 4A1 4A1

23 23H10,1 H10,2

(α10, α3), ... (α16, α3), ...4A1 2A1

n=10, degeneration (((2A1)I , 4A1) ⊂ 6A1)II :

j 18 21 21 23H H10,1 H10,1 H10,2 H10,2

orbits of (α3,1, α1,1), ... (α1,2, α2,3) (α1,1, α1,4) (α10, α3), ...

(S⊥

Nj)(2) A3 A3 2A1 2A1

n=10, degeneration ((2A1)II , 4A1) ⊂ 6A1:

j 18 18 21 21H H10,1 H10,1 H10,2 H10,2

orbits of (α1,5, α1,1), ... (α1,5, α2,1), ... (α1,2, α1,3), ... (α1,2, α2,3)

(S⊥

Nj)(2) 2A1 2A1 2A1 2A1

57

Page 58: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

21 23H10,2 H10,2

(α1,2, α1,4) (α2, α3), ...2A1 2A1

n=10, degeneration ((2A1)I , 4A1) ⊂ 2A3:

j 18 21 ∗ 21H H10,1 H10,1 H10,2

orbits of (α3,1, α2,1), ... (α2,4, α1,4) (α2,4, α1,4)

(S⊥

Nj)(2) A3 2A1 ⊕A3 4A1

n=10, degeneration ((2A1)I , 8A1) ⊂ 10A1:

j 19 21 21 23 ∗H H10,1 H10,1 H10,1 H10,1

orbits of (α3,3, α1,1), ... (α1,2, α1,3) (α2,4, α1,3) (α10, α2), ...

(S⊥

Nj)(2) 2A1 ⊕ A3 A3 2A1 ⊕ A3 4A1

n=10, degeneration ((4A1, 4A1) ⊂ 8A1)I :

j 18 18 18 21H H10,1 H10,1 H10,1 H10,1

orbits of (α1,1, α1,3) (α1,1, α2,3), ... (α2,1, α2,3) (α2,3, α1,4)

(S⊥

Nj)(2) A3 A3 A3 2A1 ⊕A3

21 21 22 23 ∗H10,2 H10,2 H10,1 H10,2

(α1,3, α1,4), ... (α2,3, α1,4) (α1,3, α1,5), ... (α3, α4), ...4A1 4A1 2A2 2A1

n=10, degeneration ((4A1, 4A1) ⊂ 8A1)II :

j 21 23 23 ∗H H10,2 H10,1 H10,2

orbits of (α1,3, α3,3) (α3, α7) (α3, α5), ...

(S⊥

Nj)(2) 4A1 4A1 2A1

58

Page 59: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

n=10, degeneration (4A1, 4A1) ⊂ 4A2:

j 18 19 ∗ 21 22H H10,1 H10,1 H10,2 H10,1

orbits of (α1,1, α2,1), ... (α2,1, α4,1) (α1,3, α2,3), ... (α1,3, α2,3), ...

(S⊥

Nj)(2) A3 2A3 4A1 2A2

n=10, degeneration (4A1, 8A1) ⊂ 12A1:

j 19 21 23 ∗H H10,1 H10,1 H10,1

orbits of (α4,1, α1,1) (α1,4, α1,3) (α3, α2), ...

(S⊥

Nj)(2) 2A3 2A1 ⊕A3 4A1

n=10, degeneration (4A1, 8A1) ⊂ 4A3:

j 19 21 ∗H H10,1 H10,1

orbits of (α2,1, α1,1) (α2,3, α1,3)

(S⊥

Nj)(2) 2A3 2A1 ⊕ A3

n=10, degeneration (4A1, 2A2) ⊂ 4A1 ∐ 2A2:

j 22 ∗H H10,1

orbits of (α1,3, α1,9), ...

(S⊥

Nj)(2) 2A2

n=10, degeneration (A1,A1, (2A1)I) ⊂ 4A1:

j 23 ∗H H10,1

orbits of (α5, α6, α10), (α1, α24, α15)

(S⊥

Nj)(2) 2A1

n=10, degeneration (A1,A1, 4A1) ⊂ 6A1:

59

Page 60: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

j 21 21 23 23 ∗H H10,1 H10,1 H10,1 H10,2

orbits of (α1,1, α3,1, α2,3) (α1,1, α3,1, α1,4) (α1, α24, α3), ... (α1, α6, α3), ...

(S⊥

Nj)(2) 2A1 2A1 2A1 0

n=10, degeneration (A1,A1, 8A1) ⊂ 10A1:

j 21 23H H10,1 H10,1

orbits of (α1,1, α3,1, α1,3) (α1, α24, α2), (α5, α6, α2)

(S⊥

Nj)(2) 2A1 2A1

n=10, degeneration (A1, (2A1)II , (2A1)I) ⊂ A3 ∐ 2A1:

j 21 ∗H H10,2

orbits of (α2,2, α1,2, α2,4)

(S⊥

Nj)(2) 2A1

n=10, degeneration

A1 3A1 5A1

(2A1)I (6A1)I4A1

⊂ 7A1:

j 19 19 21 21H H10,1 H10,1 H10,1 H10,2

orbits of (α1,3, α3,3, α2,1), ... (α1,3, α3,3, α4,1), ... (α2,2, α2,4, α2,3) (α2,2, α2,4, α2,3)

(S⊥

Nj)(2) A1 ⊕ A3 A1 ⊕ A3 A1 ⊕A3 3A1

21 23H10,2 H10,1

(α2,2, α2,4, α1,3), ... (α5, α10, α3), ...3A1 3A1

n=10, degeneration (A1, (2A1)I , 4A1) ⊂ A1 ∐ 2A3:

60

Page 61: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

j 21 ∗ 21H H10,1 H10,2

orbits of (α2,2, α2,4, α1,4) (α2,2, α2,4, α1,4)

(S⊥

Nj)(2) A1 ⊕A3 3A1

n=10, degeneration (A1, (2A1)II , 4A1) ⊂ A3 ∐ 4A1:

j 18 18 21H H10,1 H10,1 H10,2

orbits of (α2,5, α1,5, α1,1), ... (α2,5, α1,5, α2,1), ... (α2,2, α1,2, α1,3), ...

(S⊥

Nj)(2) 0 0 2A1

21 21H10,2 H10,2

(α2,2, α1,2, α2,3) (α2,2, α1,2, α1,4)2A1 2A1

n=10, degeneration (A1, (2A1)I , 8A1) ⊂ 11A1:

j 19 21 23 ∗H H10,1 H10,1 H10,1

orbits of (α1,3, α3,3, α1,1), ...s (α2,2, α2,4, α1,3) (α5, α10, α2), ...

(S⊥

Nj)(2) A1 ⊕ A3 A1 ⊕ A3 3A1

n=10, degeneration

A1 5A1 5A1

4A1 (8A1)I4A1

⊂ 9A1:

j 18 18 18 18H H10,1 H10,1 H10,1 H10,1

orbits of (α2,5, α1,1, α1,3) (α4,5, α1,1, α1,3) (α2,5, α1,1, α2,3), ... (α4,5, α1,1, α2,3), ...

(S⊥

Nj)(2) A1 A1 A1 A1

18 18 21 21 21 ∗H10,1 H10,1 H10,1 H10,1 H10,1

(α2,5, α2,1, α2,3) (α4,5, α2,1, α2,3) (α1,1, α2,3, α1,4), ... (α2,1, α2,3, α1,4) (α2,2, α2,3, α1,4)A1 A1 3A1 3A1 A1 ⊕A3

61

Page 62: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

21 21 21 21H10,2 H10,2 H10,2 H10,2

(α2,1, α1,3, α1,4), ... (α2,2, α1,3, α1,4), ... (α2,1, α2,3, α1,4) (α2,2, α2,3, α1,4)3A1 3A1 3A1 3A1

22 22 22 23H10,1 H10,1 H10,1 H10,2

(α1,1, α1,3, α1,5), ... (α2,1, α1,3, α1,5), ... (α1,2, α1,3, α1,5), ... (α1, α3, α4), ...A2 A2 A2 A1

n=10, degeneration (A1, 4A1, 4A1) ⊂ A1 ∐ 4A2:

j 18 18 19H H10,1 H10,1 H10,1

orbits of (α2,5, α1,1, α2,1), ... (α4,5, α1,1, α2,1), ... (α1,3, α2,1, α4,1), ...

(S⊥

Nj)(2) A1 A1 A1 ⊕A3

19 21 21 22 ∗H10,1 H10,2 H10,2 H10,1

(α2,3, α2,1, α4,1), ... (α2,1, α1,3, α2,3), ... (α2,2, α1,3, α2,3), ... (α1,1, α1,3, α2,3), ...A1 ⊕A3 3A1 3A1 A2

n=10, degeneration (A1, 4A1, 8A1) ⊂ 13A1:

j 19 19 21H H10,1 H10,1 H10,1

orbits of (α1,3, α4,1, α1,1), ... (α2,3, α4,1, α1,1), ... (α1,1, α1,4, α1,3)

(S⊥

Nj)(2) A1 ⊕ A3 A1 ⊕ A3 3A1

21 21 23H10,1 H10,1 H10,1

(α2,1, α1,4, α1,3) (α2,2, α1,4, α1,3) (α1, α3, α2), ...3A1 A1 ⊕ A3 3A1

n=10, degeneration (A1, 4A1, 8A1) ⊂ A1 ∐ 4A3:

62

Page 63: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

j 19 19 21H H10,1 H10,1 H10,1

orbits of (α1,3, α2,1, α1,1), ... (α2,3, α2,1, α1,1), ... (α1,1, α2,3, α1,3), ...

(S⊥

Nj)(2) A1 ⊕A3 A1 ⊕A3 3A1

21 21H10,1 H10,1

(α2,1, α2,3, α1,3) (α2,2, α2,3, α1,3)3A1 A1 ⊕ A3

n=10, degeneration (A1, 4A1, 2A2) ⊂ 5A1 ∐ 2A2:

j 22 22H H10,1 H10,1

orbits of (α1,1, α1,3, α1,9) (α2,1, α1,3, α1,9)

(S⊥

Nj)(2) A2 A2

n=10, degeneration

(2A1)I 4A1 (6A1)I(2A1)II 6A1

4A1

⊂ 8A1:

j 18 18 21H H10,1 H10,1 H10,2

orbits of (α3,3, α1,5, α1,1), ... (α3,3, α1,5, α2,1), ... (α1,1, α1,2, α1,3), ...

(S⊥

Nj)(2) 2A1 2A1 0

21 21 23H10,2 H10,2 H10,2

(α1,1, α1,2, α2,3) (α2,4, α1,2, α1,3), ... (α16, α2, α3), ...0 2A1 2A1

n=10, degeneration

(2A1)I 4A1 (6A1)II(2A1)II 6A1

4A1

⊂ 8A1:

j 18 21 ∗ 21 23H H10,1 H10,2 H10,2 H10,2

orbits of (α3,1, α1,5, α1,1), ... (α1,1, α1,2, α1,4) (α2,4, α1,2, α2,3) (α10, α2, α3), ...

(S⊥

Nj)(2) 2A1 0 2A1 2A1

63

Page 64: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

n=10, degeneration

(2A1)II 4A1 6A1

(2A1)I 2A3

4A1

⊂ 2A1 ∐ 2A3:

j 21 ∗H H10,2

orbits of (α1,2, α2,4, α1,4)

(S⊥

Nj)(2) 2A1

n=10, degeneration

(2A1)I (6A1)I (6A1)II4A1 (8A1)I

4A1

⊂ 10A1:

j 18 18 21H H10,1 H10,1 H10,1

orbits of (α3,1, α1,3, α1,1), ... (α3,1, α2,3, α1,1), ... (α1,2, α1,4, α2,3)

(S⊥

Nj)(2) A3 A3 A3

21 21 23H10,2 H10,2 H10,2

(α1,1, α1,3, α1,4), ... (α1,1, α2,3, α1,4) (α10, α4, α3)2A1 2A1 2A1

n=10, degeneration

(2A1)I (6A1)I (6A1)I4A1 (8A1)II

4A1

⊂ 10A1:

j 21 23H H10,2 H10,2

orbits of (α1,1, α1,3, α3,3) (α16, α3, α5), ...

(S⊥

Nj)(2) 2A1 2A1

n=10, degeneration

(2A1)II 6A1 6A1

4A1 (8A1)I4A1

⊂ 10A1:

64

Page 65: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

j 18 18 18H H10,1 H10,1 H10,1

orbits of (α1,5, α1,1, α1,3) (α1,5, α1,1, α2,3), ... (α1,5, α2,1, α2,3)

(S⊥

Nj)(2) 2A1 2A1 2A1

21 21 23H10,2 H10,2 H10,2

(α1,2, α1,3, α1,4), ... (α1,2, α2,3, α1,4) (α2, α3, α4), ...2A1 2A1 2A1

n=10, degeneration

(2A1)II 6A1 6A1

4A1 (8A1)II4A1

⊂ 10A1:

j 21 23H H10,2 H10,2

orbits of (α1,2, α1,3, α3,3) (α2, α3, α5), ...

(S⊥

Nj)(2) 2A1 2A1

n=10, degeneration

(2A1)I (6A1)I (6A1)I4A1 4A2

4A1

⊂ 2A1 ∐ 4A2

j 18 19 21H H10,1 H10,1 H10,2

orbits of (α3,3, α1,1, α2,1), ... (α3,3, α2,1, α4,1), ... (α1,1, α1,3, α2,3), ...

(S⊥

Nj)(2) A3 2A1 ⊕ A3 2A1

21 ∗H10,2

(α2,4, α1,3, α2,3), ...4A1

n=10, degeneration

(2A1)II 6A1 6A1

4A1 4A2

4A1

⊂ 2A1 ∐ 4A2:

65

Page 66: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

j 18 21H H10,1 H10,2

orbits of (α1,5, α1,1, α2,1), ... (α1,2, α1,3, α2,3), ...

(S⊥

Nj)(2) 2A1 2A1

n=10, degeneration

(2A1)I 2A3 (6A1)I4A1 (8A1)I

4A1

⊂ 2A3 ∐ 4A1:

j 18 18 21 ∗H H10,1 H10,1 H10,1

orbits of (α3,3, α2,3, α1,1), ... (α3,1, α2,1, α2,3), ... (α2,4, α1,4, α2,3)

(S⊥

Nj)(2) A3 A3 2A1 ⊕ A3

21 21H10,2 H10,2

(α2,4, α1,4, α1,3), ... (α2,4, α1,4, α2,3)4A1 4A1

n=10, degeneration

(2A1)I 2A3 (6A1)II4A1 4A2

4A1

⊂ 2A5:

j 18 ∗H H10,1

orbits of (α3,1, α2,1, α1,1), ...

(S⊥

Nj)(2) A3

n=10, degeneration

(2A1)I (6A1)I 10A1

4A1 12A1

8A1

⊂ 14A1:

j 19 21 23 ∗H H10,1 H10,1 H10,1

orbits of (α3,3, α4,1, α1,1), ... (α1,2, α1,4, α1,3) (α10, α3, α2), ...

(S⊥

Nj)(2) 2A1 ⊕ A3 A3 4A1

66

Page 67: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

n=10, degeneration

(2A1)I (6A1)I 10A1

4A1 4A3

8A1

⊂ 2A1 ∐ 4A3:

j 19 21H H10,1 H10,1

orbits of (α3,3, α2,1, α1,1), ... (α2,4, α2,3, α1,3)

(S⊥

Nj)(2) 2A1 ⊕ A3 2A1 ⊕A3

n=10, degeneration

(2A1)I (6A1)II 10A1

4A1 4A3

8A1

⊂ 2A1 ∐ 4A3:

j 21 ∗H H10,1

orbits of (α1,2, α2,3, α1,3)

(S⊥

Nj)(2) A3

n=10, degeneration ((2A1)I , 4A1, 8A1) ⊂ 2A3 ∐ 8A1:

j 21 ∗H H10,1

orbits of (α2,4, α1,4, α1,3)

(S⊥

Nj)(2) 2A1 ⊕ A3

n=10, degeneration

4A1 (8A1)I (8A1)II4A1 (8A1)I

4A1

⊂ 12A1:

j 21 23 ∗H H10,2 H10,2

orbits of (α1,3, α1,4, α3,3) (α3, α4, α5), ...

(S⊥

Nj)(2) 4A1 2A1

n=10, degeneration

4A1 (8A1)I (8A1)I4A1 4A2

4A1

⊂ 4A1 ∐ 4A2:

67

Page 68: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

j 18 18 21H H10,1 H10,1 H10,2

orbits of (α1,3, α1,1, α2,1), ... (α2,3, α1,1, α2,1), ... (α1,4, α1,3, α2,3), ...

(S⊥

Nj)(2) A3 A3 4A1

22 ∗H10,1

(α1,5, α1,3, α2,3), ...2A2

n=10, degeneration

4A1 4A2 (8A1)II4A1 4A2

4A1

⊂ 4A3:

j 21 ∗H H10,2

orbits of (α1,3, α2,3, α3,3)

(S⊥

Nj)(2) 4A1

n=10, degeneration

4A1 (8A1)II 12A1

4A1 12A1

8A1

⊂ 16A1:

j 23 ∗H H10,1

orbits of (α3, α7, α2)

(S⊥

Nj)(2) 4A1

n=10, degeneration

4A1 (8A1)I 12A1

4A1 4A3

8A1

⊂ 4A1 ∐ 4A3:

j 21 ∗H H10,1

orbits of (α1,4, α2,3, α1,3)

(S⊥

Nj)(2) 2A1 ⊕ A3

68

Page 69: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

n=10, degeneration

4A1 4A2 12A1

4A1 4A3

8A1

⊂ 4D4:

j 19 ∗H H10,1

orbits of (α4,1, α2,1, α1,1)

(S⊥

Nj)(2) 2A3

n=10, degeneration (4A1, 4A1, 2A2) ⊂ (8A1)I ∐ 2A2:

j 22 ∗H H10,1

orbits of (α1,3, α1,5, α1,9)

(S⊥

Nj)(2) 2A2

n=10, degeneration (4A1, 4A1, 2A2) ⊂ 4A2 ∐ 2A2:

j 22 ∗H H10,1

orbits of (α1,3, α2,3, α1,9), ...

(S⊥

Nj)(2) 2A2

n=10, degeneration

A1 2A1 3A1 5A1

A1 3A1 5A1

(2A1)I (6A1)I4A1

⊂ 8A1:

j 23 ∗H H10,1

orbits of (α5, α6, α10, α3), ...

(S⊥

Nj)(2) 2A1

n=10, degeneration

A1 2A1 5A1 5A1

A1 5A1 5A1

4A1 (8A1)I4A1

⊂ 10A1:

69

Page 70: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

j 21 ∗ 23H H10,1 H10,2

orbits of (α1,1, α3,1, α2,3, α1,4) (α1, α6, α3, α4), ...

(S⊥

Nj)(2) 2A1 0

n=10, degeneration (A1, A1, (2A1)I , 8A1) ⊂ 12A1:

j 23 ∗H H10,1

orbits of (α5, α6, α10, α2), (α1, α24, α15, α2)

(S⊥

Nj)(2) 2A1

n=10, degeneration (A1, A1, 4A1, 8A1) ⊂ 14A1:

j 21 23H H10,1 H10,1

orbits of (α1,1, α3,1, α1,4, α1,3) (α1, α24, α3, α2), ...

(S⊥

Nj)(2) 2A1 2A1

n=10, degeneration (A1, A1, 4A1, 8A1) ⊂ 2A1 ∐ 4A3:

j 21 ∗H H10,1

orbits of (α1,1, α1,3, α2,3, α1,3)

(S⊥

Nj)(2) 2A1

n=10, degeneration

A1 A3 3A1 5A1

(2A1)II 4A1 8A1

(2A1)I (6A1)I4A1

⊂ A3 ∐ 6A1:

j 21 21H H10,2 H10,2

orbits of (α2,2, α1,2, α2,4, α1,3), (α2,2, α1,2, α2,4, α3,3) (α2,2, α1,2, α2,3, α2,4)

(S⊥

Nj)(2) 2A1 2A1

70

Page 71: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

n=10, degeneration

A1 A3 3A1 5A1

(2A1)II 4A1 6A1

(2A1)I 2A3

4A1

⊂ 3A3:

j 21 ∗H H10,2

orbits of (α2,2, α1,2, α2,4, α1,4)

(S⊥

Nj)(2) 2A1

n=10, degeneration

A1 3A1 5A1 5A1

(2A1)I 2A3 (6A1)I4A1 (8A1)I

4A1

⊂ A1 ∐ 2A3 ∐ 4A1:

j 21 ∗ 21 21H H10,1 H10,2 H10,2

orbits of (α2,2, α2,4, α1,4, α2,3) (α2,2, α2,4, α1,4, α1,3), ... (α2,2, α2,4, α1,4, α2,3)

(S⊥

Nj)(2) A1 ⊕ A3 3A1 3A1

n=10, degeneration

A1 A3 5A1 5A1

(2A1)II 6A1 6A1

4A1 (8A1)I4A1

⊂ A3 ∐ 8A1:

j 18 18 18H H10,1 H10,1 H10,1

orbits of (α2,5, α1,5, α1,3, α1,1) (α2,5, α1,5, α2,3, α1,1), ... (α2,5, α1,5, α2,3, α2,1)

(S⊥

Nj)(2) 0 0 0

21 21H10,2 H10,2

(α2,2, α1,2, α1,3, α1,4), ... (α2,2, α1,2, α2,3, α1,4)2A1 2A1

n=10, degeneration

A1 3A1 5A1 5A1

(2A1)I (6A1)I (6A1)I4A1 4A2

4A1

⊂ 3A1 ∐ 4A2:

71

Page 72: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

j 19 21 ∗H H10,1 H10,2

orbits of (α1,3, α3,3, α2,1, α4,1), ... (α2,2, α2,4, α1,3, α2,3), ...

(S⊥

Nj)(2) A1 ⊕ A3 3A1

n=10, degeneration (A1, (2A1)II , 4A1, 4A1) ⊂ A3 ∐ 4A2:

j 18 21 ∗H H10,1 H10,2

orbits of (α2,5, α1,5, α2,1, α1,1), ... (α2,2, α1,2, α1,3, α2,3), ...

(S⊥

Nj)(2) 0 2A1

n=10, degeneration

A1 3A1 5A1 9A1

(2A1)I (6A1)I 10A1

4A1 12A1

8A1

⊂ 15A1:

j 19 23 ∗H H10,1 H10,1

orbits of (α1,3, α3,3, α4,1, α1,1), ... (α5, α10, α3, α2), ...

(S⊥

Nj)(2) A1 ⊕ A3 3A1

n=10, degeneration (A1, (2A1)I , 4A1, 8A1) ⊂ A1 ∐ 2A3,∐8A1:

j 21 ∗H H10,1

orbits of (α2,2, α2,4, α1,4, α1,3)

(S⊥

Nj)(2) A1 ⊕A3

n=10, degeneration

A1 3A1 5A1 9A1

(2A1)I (6A1)I 10A1

4A1 4A3

8A1

⊂ 3A1 ∐ 4A3:

j 19 21H H10,1 H10,1

orbits of (α1,3, α3,3, α2,1, α1,1), ... (α2,2, α2,4, α2,3, α1,3), ...

(S⊥

Nj)(2) A1 ⊕ A3 A1 ⊕ A3

72

Page 73: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

n=10, degeneration

A1 5A1 5A1 5A1

4A1 (8A1)I (8A1)I4A1 4A2

4A1

⊂ 5A1 ∐ 4A2:

j 18 18 18H H10,1 H10,1 H10,1

orbits of (α2,5, α1,3, α2,1, α1,1), ... (α4,5, α1,3, α2,1, α1,1), ... (α2,5, α2,3, α2,1, α1,1), ...

(S⊥

Nj)(2) A1 A1 A1

18 21 21H10,1 H10,2 H10,2

(α4,5, α2,3, α2,1, α1,1), ... (α2,1, α1,4, α1,3, α2,3), ... (α2,2, α1,4, α1,3, α2,3), ...A1 3A1 3A1

22 22H10,1 H10,1

(α1,1, α1,5, α1,3, α2,3), ... (α2,1, α1,5, α1,3, α2,3), ...A2 A2

n=10, degeneration

A1 5A1 5A1 9A1

4A1 (8A1)I 12A1

4A1 4A3

8A1

⊂ 5A1 ∐ 4A3:

j 21 21 21 ∗H H10,1 H10,1 H10,1

orbits of (α1,1, α1,4, α2,3, α1,3), ... (α2,1, α1,4, α2,3, α1,3) (α2,2, α1,4, α2,3, α1,3)

(S⊥

Nj)(2) 3A1 3A1 A1 ⊕ A3

n=10, degeneration

A1 5A1 5A1 9A1

4A1 4A2 12A1

4A1 4A3

8A1

⊂ A1 ∐ 4D4:

j 19 19H H10,1 H10,1

orbits of (α1,3, α4,1, α2,1, α1,1), ... (α2,3, α4,1, α2,1, α1,1), ...

(S⊥

Nj)(2) A1 ⊕ A3 A1 ⊕ A3

73

Page 74: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

n=10, degeneration

A1 5A1 5A1 A1 ∐ 2A2

4A1 (8A1)I 4A1 ∐ 2A2

4A1 4A1 ∐ 2A2

2A2

⊂ 9A1 ∐ 2A2:

j 22 22 22H H10,1 H10,1 H10,1

orbits of (α1,1, α1,3, α1,5, α1,9), ... (α2,1, α1,3, α1,5, α1,9), ... (α1,2, α1,3, α1,5, α1,9), ...

(S⊥

Nj)(2) A2 A2 A2

n=10, degeneration (A1, 4A1, 4A1, 2A2) ⊂ A1 ∐ 6A2:

j 22 ∗H H10,1

orbits of (α1,1, α1,3, α2,3, α1,9), ...

(S⊥

Nj)(2) A2

n=10, degeneration

(2A1)I 4A1 (6A1)I (6A1)II(2A1)II 6A1 6A1

4A1 (8A1)I4A1

⊂ 12A1:

j 18 18 21H H10,1 H10,1 H10,2

orbits of (α3,1, α1,5, α1,3, α1,1), ... (α3,1, α1,5, α2,3, α1,1), ... (α1,1, α1,2, α1,3, α1,4), ...

(S⊥

Nj)(2) 2A1 2A1 0

21 23H10,2 H10,2

(α1,1, α1,2, α2,3, α1,4) (α10, α2, α4, α3), ...0 2A1

n=10, degeneration

(2A1)I 4A1 (6A1)I (6A1)I(2A1)II 6A1 6A1

4A1 (8A1)II4A1

⊂ 12A1:

74

Page 75: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

j 23 ∗H H10,2

orbits of (α16, α2, α3, α5), ...

(S⊥

Nj)(2) 2A1

n=10, degeneration

(2A1)I 4A1 (6A1)I (6A1)I(2A1)II 6A1 6A1

4A1 4A2

4A1

⊂ 4A1 ∐ 4A2:

j 18 21 ∗ 21H H10,1 H10,2 H10,2

orbits of (α1,5, α3,3, α2,1, α1,1), ... (α1,1, α1,2, α1,3, α2,3), ... (α2,4, α1,2, α1,3, α2,3), ...

(S⊥

Nj)(2) 2A1 0 2A1

n=10, degeneration

(2A1)II 6A1 4A1 6A1

4A1 (6A1)I (8A1)I(2A1)I 2A3

4A1

⊂ 6A1 ∐ 2A3:

j 18 18H H10,1 H10,1

orbits of (α1,5, α1,1, α3,3, α2,3), ... (α1,5, α2,3, α3,1, α2,1), ...

(S⊥

Nj)(2) 2A1 2A1

21 21H10,2 H10,2

(α1,2, α1,3, α2,4, α1,4), ... (α1,2, α2,3, α2,4, α1,4)2A1 2A1

n=10, degeneration

(2A1)II 4A1 6A1 6A1

(2A1)I 2A3 (6A1)II4A1 4A2

4A1

⊂ 2A1 ∐ 2A5:

j 18 ∗H H10,1

orbits of (α1,5, α3,1, α2,1, α1,1), (α1,5, α3,3, α2,3, α1,3)

(S⊥

Nj)(2) 2A1

75

Page 76: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

n=10, degeneration

(2A1)I (6A1)II (6A1)I (6A1)I4A1 (8A1)I (8A1)I

4A1 (8A1)II4A1

⊂ 14A1:

j 21 23H H10,2 H10,2

orbits of (α1,1, α1,4, α1,3, α3,3) (α16, α4, α5, α3), ...

(S⊥

Nj)(2) 2A1 2A1

n=10, degeneration

(2A1)II 6A1 6A1 6A1

4A1 (8A1)I (8A1)I4A1 (8A1)II

4A1

⊂ 14A1:

j 21 23H H10,2 H10,2

orbits of (α1,2, α1,4, α1,3, α3,3) (α2, α4, α3, α5), ...

(S⊥

Nj)(2) 2A1 2A1

n=10, degeneration

(2A1)I (6A1)II (6A1)I (6A1)I4A1 (8A1)I (8A1)I

4A1 4A2

4A1

⊂ 6A1 ∐ 4A2:

j 18 ∗ 21H H10,1 H10,2

orbits of (α3,3, α1,3, α1,1, α2,1), ... (α1,1, α1,4, α1,3, α2,3), ...

(S⊥

Nj)(2) A3 2A1

n=10, degeneration

(2A1)II 6A1 6A1 6A1

4A1 (8A1)I (8A1)I4A1 4A2

4A1

⊂ 6A1 ∐ 4A2:

j 18 18 21H H10,1 H10,1 H10,2

orbits of (α1,5, α1,3, α2,1, α1,1), ... (α1,5, α2,3, α2,1, α1,1), ... (α1,2, α1,4, α1,3, α2,3), ...

(S⊥

Nj)(2) 2A1 2A1 2A1

76

Page 77: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

n=10, degeneration

(2A1)I (6A1)I (6A1)I (6A1)I4A1 4A2 (8A1)II

4A1 4A2

4A1

⊂ 2A1 ∐ 4A3:

j 21 ∗H H10,2

orbits of (α1,1, α1,3, α2,3, α3,3)

(S⊥

Nj)(2) 2A1

n=10, degeneration

(2A1)II 6A1 6A1 6A1

4A1 4A2 (8A1)II4A1 4A2

4A1

⊂ 2A1 ∐ 4A3:

j 21 ∗H H10,2

orbits of (α1,2, α1,3, α2,3, α3,3)

(S⊥

Nj)(2) 2A1

n=10, degeneration

(2A1)I 2A3 (6A1)I (6A1)I4A1 (8A1)I (8A1)I

4A1 4A2

4A1

⊂ 2A3 ∐ 4A2:

j 18 21 ∗H H10,1 H10,2

orbits of (α3,3, α2,3, α2,1, α1,1), ... (α2,4, α1,4, α1,3, α2,3), ...

(S⊥

Nj)(2) A3 4A1

n=10, degeneration

4A1 (6A1)I (8A1)I (8A1)I(2A1)I 2A3 (6A1)II

4A1 4A2

4A1

⊂ 4A1 ∐ 2A5:

j 18 18H H10,1 H10,1

orbits of (α1,3, α3,1, α2,1, α1,1), ... (α2,3, α3,1, α2,1, α1,1), ...

(S⊥

Nj)(2) A3 A3

77

Page 78: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

n=10, degeneration

(2A1)I (6A1)I (6A1)II 10A1

4A1 (8A1)I 12A1

4A1 4A3

8A1

⊂ 6A1 ∐ 4A3:

j 21 ∗H H10,1

orbits of (α1,2, α1,4, α2,3, α1,3)

(S⊥

Nj)(2) A3

n=10, degeneration

(2A1)I 2A3 (6A1)I 10A1

4A1 (8A1)I 12A1

4A1 4A3

8A1

⊂ 6A3:

j 21 ∗H H10,1

orbits of (α2,4, α1,4, α2,3, α1,3)

(S⊥

Nj)(2) 2A1 ⊕ A3

n=10, degeneration

(2A1)I (6A1)I (6A1)I 10A1

4A1 4A2 12A1

4A1 4A3

8A1

⊂ 2A1 ∐ 4D4:

j 19 ∗H H10,1

orbits of (α3,3, α4,1, α2,1, α1,1), ...

(S⊥

Nj)(2) 2A1 ⊕ A3

n=10, degeneration

4A1 (8A1)II (8A1)I (8A1)I4A1 (8A1)I (8A1)I

4A1 (8A1)II4A1

⊂ 16A1:

j 23 ∗H H10,2

orbits of (α3, α5, α4, α7)

(S⊥

Nj)(2) 2A1

78

Page 79: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

n=10, degeneration

4A1 (8A1)I (8A1)I (8A1)I4A1 4A2 (8A1)II

4A1 4A2

4A1

⊂ 4A1 ∐ 4A3:

j 21 ∗H H10,2

orbits of (α1,4, α1,3, α2,3, α3,3)

(S⊥

Nj)(2) 4A1

n=10, degeneration

4A1 4A2 (8A1)I (8A1)I4A1 (8A1)I (8A1)I

4A1 4A2

4A1

⊂ 8A2:

j 18 22 ∗H H10,1 H10,1

orbits of (α1,1, α2,1, α1,3, α2,3) (α1,3, α2,3, α1,5, α2,5)

(S⊥

Nj)(2) A3 2A2

n=10, degeneration

4A1 (8A1)I (8A1)I 4A1 ∐ 2A2

4A1 4A2 4A1 ∐ 2A2

4A1 4A1 ∐ 2A2

2A2

⊂ 4A1 ∐ 6A2:

j 22 ∗H H10,1

orbits of (α1,3, α1,5, α2,5, α1,9), ...

(S⊥

Nj)(2) 2A2

79

Page 80: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

5 Tables of types of degenerations of Kahlerian K3 sur-

faces with symplectic automorphism group (C2)3

Here, we consider the case of (C2)3. This case contains much less cases, and it is much easier

than the previous case of D8.

80

Page 81: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

Table 6: Types and lattices S of degenerations of codimension ≥ 2 of Kahlerian K3 surfaceswith symplectic automorphism group (C2)

3.n |G| G Deg rkS qS

9 8 (C2)3 ((2A1, 2A1) ⊂ 4A1)I 16 2+2

II , 4+40 ∗

((2A1, 2A1) ⊂ 4A1)II 16 2+4II , 4

+2II ∗

(2A1, 4A1) ⊂ 6A1 16 2+4II , 4

+17 , 8+1

1 ∗(2A1, 4A1) ⊂ 2A3 16 2+4

II , 4+2II ∗

(2A1, 8A1) ⊂ 10A1 16 2−4II , 4

−24 ∗

(4A1, 4A1) ⊂ 8A1 16 2+4II , 4

+2II

(4A1, 8A1) ⊂ 4A3 16 2+6II ∗

(8A1, 8A1) ⊂ 16A1 16 2+6II ∗

2A1 (4A1)I (4A1)I2A1 (4A1)I

2A1

⊂ 6A1 17 4+57 ∗

((2A1, 2A1)I , 4A1) ⊂ 8A1 17 2+2II , 4

+26 , 8+1

1 ∗((2A1, 2A1)II , 4A1) ⊂ 8A1 17 2+4

II , 8+17 ∗

2A1 (4A1)I 6A1

2A1 2A3

4A1

⊂ 2A1 ∐ 2A3 17 2+2II , 4

+37 ∗

((2A1, 2A1)I , 8A1) ⊂ 12A1 17 2+2II , 4

+37 ∗

(2A1, 4A1, 4A1) ⊂ 10A1 17 2+2II , 4

+37 ∗

(2A1, 4A1, 4A1) ⊂ 2A3 ∐ 4A1 17 2+4II , 8

+17 ∗

(2A1, 4A1, 8A1) ⊂ 2A1 ∐ 4A3 17 2+4II , 4

+17 ∗

(4A1, 4A1, 4A1) ⊂ 12A1 17 2+4II , 8

+17

2A1 (4A1)I (4A1)I (4A1)I2A1 (4A1)I (4A1)I

2A1 (4A1)I2A1

⊂ 8A1 18 4+46 ∗

2A1 (4A1)I (4A1)I 6A1

2A1 (4A1)I 6A1

2A1 6A1

4A1

⊂ 10A1 18 4+35 , 8+1

1 ∗

2A1 (4A1)I (4A1)I 6A1

2A1 (4A1)I 6A1

2A1 2A3

4A1

⊂ 4A1 ∐ 2A3 18 4+46 ∗

81

Page 82: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

n G Deg rkS qS

9 (C2)3

2A1 (4A1)I (4A1)I 10A1

2A1 (4A1)I 10A1

2A1 10A1

8A1

⊂ 14A1 18 4+46

((2A1, 2A1)I , 4A1, 4A1) ⊂ 12A1 18 4+46 ∗

((2A1, 2A1)II , 4A1, 4A1) ⊂ 12A1 18 2−2II , 4

−22 ∗

2A1 2A3 (4A1)I 6A1

4A1 6A1 8A1

2A1 6A1

4A1

⊂ 2A3 ∐ 6A1 18 2−2II , 4

+11 , 8−1

5 ∗

2A1 2A3 (4A1)I 6A1

4A1 6A1 8A1

2A1 2A3

4A1

⊂ 4A3 18 2−2II , 4

−22 ∗

((2A1, 2A1)I , 4A1, 8A1) ⊂ 4A1 ∐ 4A3 18 2−2II , 4

−22 ∗

(2A1, 4A1, 4A1, 4A1) ⊂ 14A1 18 2+2II , 4

−15 , 8−1

5 ∗(2A1, 4A1, 4A1, 4A1) ⊂ 2A3 ∐ 8A1 18 2+2

II , 4+26 ∗

(4A1, 4A1, 4A1, 4A1) ⊂ 16A1 18 2+2II , 4

+26 ∗

2A1 (4A1)I (4A1)I (4A1)I 10A1

2A1 (4A1)I (4A1)I 10A1

2A1 (4A1)I 10A1

2A1 10A1

8A1

⊂ 16A1 19 4+35 ∗

2A1 (4A1)I 6A1 6A1 6A1

2A1 6A1 (4A1)I 6A1

4A1 6A1 8A1

2A1 2A3

4A1

⊂ 8A1 ∐ 2A3 19 4−24 , 8−1

5 ∗

2A1 (4A1)I 6A1 (4A1)I 6A1

2A1 2A3 (4A1)I 6A1

4A1 6A1 8A1

2A1 2A3

4A1

⊂ 2A1 ∐ 4A3 19 4+35 ∗

82

Page 83: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

n G Deg rkS qS

9 (C2)3

2A1 (4A1)I (4A1)I 6A1 10A1

2A1 (4A1)I 6A1 10A1

2A1 6A1 10A1

4A1 4A3

8A1

⊂ 6A1 ∐ 4A3 19 4+35 ∗

((2A1, 2A1)II , 4A1, 4A1, 4A1) ⊂ 16A1 19 2−2II , 8

−15 ∗

2A1 2A3 (4A1)I 6A1 6A1

4A1 6A1 8A1 8A1

2A1 2A3 6A1

4A1 8A1

4A1

⊂ 4A3 ∐ 4A1 19 2−2II , 8

−15 ∗

Table 7: Markings S ⊂ Nj by Niemeier lattices, and lattices S⊥

Njof degenerations of codimen-

sion ≥ 2 of Kahlerian K3 surfaces with symplectic automorphism group (C2)3 in notations

[18], [19], [20].

n=9, degeneration ((2A1, 2A1) ⊂ 4A1)I :

j 21 21 21 23 23 ∗H H9,1 H9,2 H9,2 H9,3 H9,4

orbits of (α1,1, α1,2), ... (α2,2, α2,3), ... (α2,2, α1,1), ... (α6, α8), ... (α1, α8), ...

(S⊥

Nj)(2) 4A1 4A1 2A1 2A1 0

n=9, degeneration ((2A1, 2A1) ⊂ 4A1)II :

j 23 ∗H H9,1

orbits of (α5, α6)

(S⊥

Nj)(2) 4A1

n=9, degeneration (2A1, 4A1) ⊂ 6A1:

j 21 21 21 23 23 ∗H H9,1 H9,2 H9,2 H9,1 H9,4

orbits of (α1,1, α2,3), ... (α2,3, α1,2), ... (α1,1, α1,2), ... (α5, α2), ... (α1, α2), ...

(S⊥

Nj)(2) 6A1 4A1 2A1 4A1 0

83

Page 84: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

n=9, degeneration (2A1, 4A1) ⊂ 2A3:

j 21 ∗H H9,2

orbits of (α2,2, α1,2), ...

(S⊥

Nj)(2) 4A1

n=9, degeneration (2A1, 8A1) ⊂ 10A1:

j 21 23 ∗H H9,1 H9,3

orbits of (α1,1, α1,3), ... (α6, α2), ...

(S⊥

Nj)(2) 6A1 2A1

n=9, degeneration (4A1, 4A1) ⊂ 8A1:

j 21 23H H9,2 H9,1

orbits of (α1,2, α1,3), ... (α2, α3), ...

(S⊥

Nj)(2) 4A1 4A1

n=9, degeneration (4A1, 8A1) ⊂ 4A3:

j 21 ∗H H9,1

orbits of (α2,3, α1,3)

(S⊥

Nj)(2) 8A1

n=9, degeneration (8A1, 8A1) ⊂ 16A1:

j 23 ∗H H9,2

orbits of (α2, α4)

(S⊥

Nj)(2) 8A1

n=9, degeneration

2A1 (4A1)I (4A1)I2A1 (4A1)I

2A1

⊂ 6A1:

84

Page 85: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

j 21 21 23 23 ∗H H9,1 H9,2 H9,3 H9,4

orbits of (α1,1, α1,2, α1,4), ... (α2,2, α2,3, α1,1), ... (α6, α8, α10), ... (α1, α8, α10), ...

(S⊥

Nj)(2) 2A1 2A1 2A1 0

n=9, degeneration ((2A1, 2A1)I , 4A1) ⊂ 8A1:

j 21 21 21 23 ∗H H9,1 H9,2 H9,2 H9,4

orbits of (α1,1, α1,2, α2,3), ... (α2,3, α2,7, α1,2), ... (α2,3, α1,1, α1,2), ... (α1, α8, α2), ...

(S⊥

Nj)(2) 4A1 4A1 2A1 0

n=9, degeneration ((2A1, 2A1)II , 4A1) ⊂ 8A1:

j 23 ∗H H9,1

orbits of (α5, α6, α2), ...

(S⊥

Nj)(2) 4A1

n=9, degeneration

2A1 (4A1)I 6A1

2A1 2A3

4A1

⊂ 2A1 ∐ 2A3:

j 21 ∗ 21H H9,2 H9,2

orbits of (α2,3, α2,2, α1,2), ... (α1,1, α2,2, α1,2), ...

(S⊥

Nj)(2) 4A1 2A1

n=9, degeneration ((2A1, 2A1)I , 8A1) ⊂ 12A1:

j 21 23 ∗H H9,1 H9,3

orbits of (α1,1, α1,2, α1,3), ... (α6, α8, α2), ...

(S⊥

Nj)(2) 4A1 2A1

n=9, degeneration (2A1, 4A1, 4A1) ⊂ 10A1:

85

Page 86: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

j 21 21 ∗ 23H H9,2 H9,2 H9,1

orbits of (α2,7, α1,2, α1,3), ... (α1,1, α1,2, α1,3), ... (α5, α2, α3), ...

(S⊥

Nj)(2) 4A1 2A1 4A1

n=9, degeneration (2A1, 4A1, 4A1) ⊂ 2A3 ∐ 4A1:

j 21 ∗H H9,2

orbits of (α2,2, α1,2, α1,3), ...

(S⊥

Nj)(2) 4A1

n=9, degeneration (2A1, 4A1, 8A1) ⊂ 2A1 ∐ 4A3:

j 21 ∗H H9,1

orbits of (α1,1, α2,3, α1,3), ...

(S⊥

Nj)(2) 6A1

n=9, degeneration (4A1, 4A1, 4A1) ⊂ 12A1:

j 21 23H H9,2 H9,1

orbits of (α1,2, α1,3, α1,7), ... (α2, α3, α4), ...

(S⊥

Nj)(2) 4A1 4A1

n=9, degeneration

2A1 (4A1)I (4A1)I (4A1)I2A1 (4A1)I (4A1)I

2A1 (4A1)I2A1

⊂ 8A1:

j 23 ∗H H9,3

orbits of (α6, α8, α10, α16), ...

(S⊥

Nj)(2) 2A1

86

Page 87: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

n=9, degeneration

2A1 (4A1)I (4A1)I 6A1

2A1 (4A1)I 6A1

2A1 6A1

4A1

⊂ 10A1:

j 21 21 23 ∗H H9,1 H9,2 H9,4

orbits of (α1,1, α1,2, α1,4, α2,3), ... (α2,3, α2,7, α1,1, α1,2), ... (α1, α8, α10, α2), ...

(S⊥

Nj)(2) 2A1 2A1 0

n=9, degeneration

2A1 (4A1)I (4A1)I 6A1

2A1 (4A1)I 6A1

2A1 2A3

4A1

⊂ 4A1 ∐ 2A3:

j 21 ∗H H9,2

orbits of (α1,1, α2,3, α2,2, α1,2), ...

(S⊥

Nj)(2) 2A1

n=9, degeneration

2A1 (4A1)I (4A1)I 10A1

2A1 (4A1)I 10A1

2A1 10A1

8A1

⊂ 14A1:

j 21 23H H9,1 H9,3

orbits of (α1,1, α1,2, α1,4, α1,3), ... (α6, α8, α10, α2), ...

(S⊥

Nj)(2) 2A1 2A1

n=9, degeneration ((2A1, 2A1)I , 4A1, 4A1) ⊂ 12A1:

j 21 ∗H H9,2

orbits of (α2,7, α1,1, α1,2, α1,3), ...

(S⊥

Nj)(2) 2A1

87

Page 88: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

n=9, degeneration ((2A1, 2A1)II , 4A1, 4A1) ⊂ 12A1:

j 23 ∗H H9,1

orbits of (α5, α6, α2, α3), ...

(S⊥

Nj)(2) 4A1

n=9, degeneration

2A1 2A3 (4A1)I 6A1

4A1 6A1 8A1

2A1 6A1

4A1

⊂ 2A3 ∐ 6A1:

j 21 ∗ 21H H9,2 H9,2

orbits of (α2,2, α1,2, α2,7, α1,3), ... (α2,2, α1,2, α1,1, α1,3), ...

(S⊥

Nj)(2) 4A1 2A1

n=9, degeneration

2A1 2A3 (4A1)I 6A1

4A1 6A1 8A1

2A1 2A3

4A1

⊂ 4A3:

j 21 ∗H H9,2

orbits of (α2,2, α1,2, α2,3, α1,3), ...

(S⊥

Nj)(2) 4A1

n=9, degeneration ((2A1, 2A1)I , 4A1, 8A1) ⊂ 4A1 ∐ 4A3:

j 21 ∗H H9,1

orbits of (α1,1, α1,2, α2,3, α1,3), ...

(S⊥

Nj)(2) 4A1

n=9, degeneration (2A1, 4A1, 4A1, 4A1) ⊂ 14A1:

88

Page 89: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

j 21 23 ∗H H9,2 H9,1

orbits of (α1,1, α1,2, α1,3, α1,7), ... (α5, α2, α3, α4), ...

(S⊥

Nj)(2) 2A1 4A1

n=9, degeneration (2A1, 4A1, 4A1, 4A1) ⊂ 2A3 ∐ 8A1:

j 21 ∗H H9,2

orbits of (α2,2, α1,2, α1,3, α1,7), ...

(S⊥

Nj)(2) 4A1

n=9, degeneration (4A1, 4A1, 4A1, 4A1) ⊂ 16A1:

j 23 ∗H H9,1

orbits of (α2, α3, α4, α7), ...

(S⊥

Nj)(2) 4A1

n=9, degeneration

2A1 (4A1)I (4A1)I (4A1)I 10A1

2A1 (4A1)I (4A1)I 10A1

2A1 (4A1)I 10A1

2A1 10A1

8A1

⊂ 16A1:

j 23 ∗H H9,3

orbits of (α6, α8, α10, α16, α2), ...

(S⊥

Nj)(2) 2A1

n=9, degeneration

2A1 (4A1)I 6A1 6A1 6A1

2A1 6A1 (4A1)I 6A1

4A1 6A1 8A1

2A1 2A3

4A1

⊂ 8A1 ∐ 2A3:

89

Page 90: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

j 21 ∗H H9,2

orbits of (α1,1, α2,7, α1,3, α2,2, α1,2), ...

(S⊥

Nj)(2) 2A1

n=9, degeneration

2A1 (4A1)I 6A1 (4A1)I 6A1

2A1 2A3 (4A1)I 6A1

4A1 6A1 8A1

2A1 2A3

4A1

⊂ 2A1 ∐ 4A3:

j 21 ∗H H9,2

orbits of (α1,1, α2,2, α1,2, α2,3, α1,3), ...

(S⊥

Nj)(2) 2A1

n=9, degeneration

2A1 (4A1)I (4A1)I 6A1 10A1

2A1 (4A1)I 6A1 10A1

2A1 6A1 10A1

4A1 4A3

8A1

⊂ 6A1 ∐ 4A3:

j 21 ∗H H9,1

orbits of (α1,1, α1,2, α1,4, α2,3, α1,3), ...

(S⊥

Nj)(2) 2A1

n=9, degeneration ((2A1, 2A1)II , 4A1, 4A1, 4A1) ⊂ 16A1:

j 23 ∗H H9,1

orbits of (α5, α6, α2, α3, α4), ...

(S⊥

Nj)(2) 4A1

n=9, degeneration

2A1 2A3 (4A1)I 6A1 6A1

4A1 6A1 8A1 8A1

2A1 2A3 6A1

4A1 8A1

4A1

⊂ 4A3 ∐ 4A1:

90

Page 91: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

j 21 ∗H H9,2

orbits of (α2,2, α1,2, α2,3, α1,3, α1,7), ...

(S⊥

Nj)(2) 4A1

6 Final remarks

We hope to give more details and applications in further variants of the paper and furtherpublications.

We hope to consider remaining groups D6, C4, (C2)2, C3, C2 later as well.

91

Page 92: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

References

[1] N. Bourbaki, Groupes et algebres de Lie, Groupes de Coxeter et systemes de Tits,Groupes engendres par des reflexions, systemes de racines, Hermann, Paris VI, 1968.

[2] D. Burns, M. Rapoport, On the Torelli problem for Kahlerian K-3 surfaces, Ann.scient. Ec. Norm. Sup. 4e ser. 8 (1975), 235–274.

[3] J.H. Conway, N.J.A. Sloane, Sphere packings, lattices and groups, Springer, 1988.663 pages.

[4] The GAP Group, GAP-Groups, Algorithms and Programming, Version 4.6.5, 2013,http://www.gap-system.org

[5] K. Hashimoto, Finite symplectic actions on the K3 lattice, Nagoya Math J., 206(2012), 99–153 (see also arXiv:1012.2682).

[6] D.G. James, The number of embeddings of quadratic Z-lattices, J. Number Theory58, (1996), 1–8.

[7] Sh. Kondo, Niemeier lattices, Mathieu groups, and finite groups of symplectic auto-morphisms of K3 surfaces (with appendix by Sh. Mukai), Duke Math. J. 92, (1998),593–603.

[8] Vic. S. Kulikov, Degenerations of K3 surfaces and Enriques surfaces, Izv. Akad.Nauk SSSR Ser. Mat. 41 (1977), no. 5, 1008–1042; English transl. in Math. USSRIzv. 11, (1977) no. 5, 957–989.

[9] R. Miranda, D.R. Morrison The number of embeddings of integral quadratic forms.I, Proc. Japan Acad. 61, Ser. A (1985), 317–320.

[10] R. Miranda, D.R. Morrison The number of embeddings of integral quadratic forms.II, Proc. Japan Acad. 62, Ser. A (1986), 29–32.

[11] Sh. Mukai, Finite groups of automorphisms of K3 surfaces and the Mathieu group,Invent. math. 94, (1988), 183–221.

[12] V.V. Nikulin, On Kummer surfaces, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975),no. 2, 278–293; English transl. in Math. USSR Izv. 9 (1975), 261–275.

[13] V.V. Nikulin, Finite automorphism groups of Kahlerian surfaces of type K3, Uspehimatem. nauk 31 (1976), no. 2, 223–224. (In Russian.)

92

Page 93: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

[14] V.V. Nikulin, Finite automorphism groups of Kahler K3 surfaces, Trudy Mosk. Mat.ob-va V. 38 (1979), 75–137; English transl. in Trans. Moscow Math. Soc. V. 38

(1980), 71–135.

[15] V.V. Nikulin, Integral symmetric bilinear forms and some of their geometric appli-cations, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 1, 111–177; English transl.in Math. USSR Izv. 14 (1980), no. 1, 103–167.

[16] V.V. Nikulin, Involutions of integral quadratic forms and their applications to realalgebraic geometry, Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), no. 1, 109–188;English transl. in Math. USSR Izv. 22 (1984), no. 1, 99–172.

[17] V.V. Nikulin, Kahlerian K3 surfaces and Niemeier lattices. I, Izvestiya RAN: Ser.Mat. 77 (2013), no. 5, 109–154; English transl.: Izvestya: Mathematics 77 (2013),no. 5, 954–997 (see also arXiv:1109.2879).

[18] V.V. Nikulin, Kahlerian K3 surfaces and Niemeier lattices, II, Advanced Studies inPure Mathematics 69, 2016, Development of Moduli Theory—Kyoto 2013, 421–471(see also arXiv:1109.2879).

[19] V.V. Nikulin, Degenerations of Kahlerian K3 surfaces with finite symplectic au-tomorphism groups, Izvestiya RAN: Ser. Mat. 79 (2015), no. 4, 103–158; Englishtransl.: Izvestya: Mathematics 79 (2015), no. 4, 740–794 (see also arXiv:1403.6061).

[20] V.V. Nikulin, Degenerations of Kahlerian K3 surfaces with finite symplectic au-tomorphism groups. II, Izvestiya RAN: Ser. Mat. 80 (2016), no. 2, 81–124;English transl.: Izvestya: Mathematics 80 (2016), no. 2, 359–402 (see alsoarXiv:1504.00326).

[21] I.I. Pjatetskii-Sapiro and I.R. Safarevic, A Torelli theorem for algebraic surfaces oftype K3, Izv. AN SSSR. Ser. mat., 35 (1971), no. 3, 530–572; English transl.: Math.USSR Izv. 5 (1971), no. 3, 547–588.

[22] I.R. Shafarevich (ed.), Algebraic Surfaces, Proc. Steklov Math. Inst. 75 (1965),3–215.

[23] Y. Siu, A simple proof of the surjectivity of the period map of K3 surfaces,Manuscripta Math. 35 (1981), no. 3, 311–321.

[24] A. Todorov, Applications of the Kahler–Einstein–Calabi–Yau metric to moduli ofK3 surfaces, Invent. math. 61 (1981), no. 3, 251–265.

93

Page 94: Degenerations of K¨ahlerian K3 surfaces with finite ... · Ka¨hlerian K3 surfaces with finite symplectic automorphism groups. In [19], [20], it was done for the codimension 1

[25] G. Xiao, Galois covers between K3 surfaces, Ann. Inst. Fourier (Grenoble) 46 (1996),73–88.

V.V. NikulinSteklov Mathematical Institute,ul. Gubkina 8, Moscow 117966, GSP-1, Russia;

Deptm. of Pure Mathem. The University of Liverpool, LiverpoolL69 3BX, UK

[email protected] [email protected] [email protected] page: http://vnikulin.com

94