deep-sea neutrino telescopes

26
Deep-sea neutrino telescopes Prof. dr. Maarten de Jong Nikhef / Leiden University

Upload: acton-pruitt

Post on 31-Dec-2015

24 views

Category:

Documents


1 download

DESCRIPTION

Deep-sea neutrino telescopes. Prof. dr. Maarten de Jong Nikhef / Leiden University. contents. Neutrino astronomy Antares prototype KM3NeT next generation neutrino telescope issues, ideas. Neutrino astronomy. p. n. g. neutrinos. Why neutrinos? no absorption no bending. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Deep-sea neutrino telescopes

Deep-sea neutrino telescopes

Prof. dr. Maarten de JongNikhef / Leiden University

Page 2: Deep-sea neutrino telescopes

contents

Neutrino astronomy

Antares

‒ prototype

KM3NeT

‒ next generation neutrino telescope

issues, ideas

Page 3: Deep-sea neutrino telescopes

neutrinos g

np

Scientific motivation:– origin cosmic rays– creation& composition relativistic jets– mechanism cosmic particle acceleration– composition dark matter neutrino telescope

Why neutrinos?– no absorption– no bending

Neutrino astronomy

Page 4: Deep-sea neutrino telescopes

1960 Markov’s idea:

range of muon

detect Cherenkov light

transparency of water

Use sea water as target/detector

Page 5: Deep-sea neutrino telescopes

How?

muon

wavefront1 2 3 4 5

~few km

~100 m

muon travels with speed of light (300,000 km/s) → ns (10 cm) @ km

neutrino

interaction

1.5deg.

θTeVE

Page 6: Deep-sea neutrino telescopes

General layout

lightdetection

transmissionof (all) data

datafilter

real-time eventdistribution

shore station

3-5 km 800 m

50-100 km

1-2 km>1000 km

Page 7: Deep-sea neutrino telescopes

Antares

1997‒2005– R&D– site explorations– measurements of water properties

2005‒2008– construction-operation

2008‒2017– operation

prototype neutrino telescope ‒ 100 persons ‒ 25 M€

Page 8: Deep-sea neutrino telescopes

~2.5 km

500 m

250 Atm.

~200x200 m2

12 lines

25 storeys / line

Antares

Page 9: Deep-sea neutrino telescopes

Hydrophoneacoustic positioning

10” PMTphoton detection

Electronicsreadout

titanium framemechanical support

Optical beacontiming calibration

~1 m

Detection unit

Page 10: Deep-sea neutrino telescopes

Dutch industry

Gb/s transceiver

DC–DC converter

passive cooling

Page 11: Deep-sea neutrino telescopes

PMT100 Mb/s

e/o

Ethernetswitch

1 Gb/se/o e/o

optical fiber (21)

DWDMfilter

optical fiber (4)

40 km

5x15 m

5‒25x15 m

CPUFPGA

container

container

container

deep-sea network

penetrator (3)

connector (3)

penetrator (2)

wet-matable connector (2)

1 km

(40)

junctionbox

Page 12: Deep-sea neutrino telescopes

data filter data filter data filter

time

Ethernet switch

off-shore

on shore

CPU CPU CPU CPU CPU CPU

data flow

Page 13: Deep-sea neutrino telescopes

data filter data filter data filter

time

Ethernet switch

off-shore

on shore

CPU CPU CPU CPU CPU CPU

data flow

Page 14: Deep-sea neutrino telescopes

data filter data filter data filter

time

Ethernet switch

off-shore

on shore

CPU CPU CPU CPU CPU CPU

data flow

Page 15: Deep-sea neutrino telescopes

Antares

deep-sea infrastructure– 1 km3

• 900 PMTs, hydrophones, ADCP, seismometers, etc.• 10 kW, 1 GB/s

– one main electro-optical cable • 50 km, AC, 1 cupper conductor + sea return

‒ network• active multiplexing locally (Ethernet standard)• passive multiplexing based on DWDM technology

– low number of channels for reliability of offshore transceiver ( lstability)

‒ operation• 10 years (some maintenance’• data transmission signal recovery by amplification

Page 16: Deep-sea neutrino telescopes

KM3NeT

2005‒2008– design study

2008‒2012– preparatory phase

2013‒2017– construction

definitive neutrino telescope ‒ 300 persons ‒ 200 M€

Page 17: Deep-sea neutrino telescopes

31 x 3” PMT

Optical module (camera)

Electronics inside

Page 18: Deep-sea neutrino telescopes

deep-sea network

lj+1

lj

optical modulator

laser

laser

receiver

receiver

integrate timing system (GHz = ns) minimise offshore electronics

DWDM shore station

DWDM

penetrator (1)

wet-matable connector (1)

Page 19: Deep-sea neutrino telescopes

6 m

Mechanical cable connection

Data cable storage

Mechanical cable storage

Frame

Optical module

Mechanical holder

Needs new deployment technique

Storey

1 Digital Optical Module = Dom2 Dom’s on 1 bar = Dom-bar

20 Dom-bar’s on 1 tower = Dom tower

Page 20: Deep-sea neutrino telescopes
Page 21: Deep-sea neutrino telescopes

suddenEddie currents

Temperature

Earth & Sea sciences

France

observatoryfood supply

Bioluminescence

short lived (rare) eventsdominate deep-sea life

permanent observatory

time profile

Page 22: Deep-sea neutrino telescopes

KM3NeT

deep-sea infrastructure– 10 km3

• >100,000 PMTs, hydrophones, ACDP, seismometers, etc.• <100 kW, 100 GB/s

– two main electro-optical cables• 100 km, DC, 1 cupper conductor + sea return

‒ network‒ PON, point-to-point + amplification‒ new Ethernet standard

• Precision-Time-Protocol (”White Rabbit”)‒ operation

• 10 years without maintenance

Page 23: Deep-sea neutrino telescopes

Issues, ideas, etc.

Page 24: Deep-sea neutrino telescopes

Deep-sea infrastructure materials

– containers (glass, Ti, Al) mechanics

– drag, deployment, etc. cables

– dry versus oil-filled– little experience with vertical orientation

wet-matable connectors– expensive (combined fiber and cupper wires)– bulky (problems with handling)

penetrators– source of single-point-failures (error propagation)

Page 25: Deep-sea neutrino telescopes

data taking & processing network

– high-bandwidth & long haul• integration of data transmission & timing (PTP)

– (real-time) data distribution• monitoring• archival• offline analysis (astronomy, etc.)

– external triggers• satellites, other infrastructures

computing– (real-time) data processing

• algorithms (reduction of complexity & parallelization of problem)• implementation (state-of-the-art OO-programming)• hardware (multi-core, GPUs)

Page 26: Deep-sea neutrino telescopes

Fiber technology data transmission

– laser/[A]PD• flexible (2 x transceiver = point-to-point link)• active feedback loop (intrinsically instable power, l)• non-negligible electrical power consumption

– modulators• wavelength, phase, intensity, polarization• very low power• reliable

– amplification• long-haul communication

Energy transmission– ?

sensor– e.g. Bragg reflectrometer as deep-sea hydrophones

• sensitivity

low weight…